We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, and Theoretical Aspects
Invited Talk @ Workshop on Fairness, Accountability, and Transparency in Machine Learning
In conjunction with the ICML 2015 @ Lille, France, Jul. 11, 2015
Web Site: http://www.kamishima.net/fadm/
Handnote: http://www.kamishima.net/archive/2015-ws-icml-HN.pdf
The goal of fairness-aware data mining (FADM) is to analyze data while taking into account potential issues of fairness. In this talk, we will cover three topics in FADM:
1. Fairness in a Recommendation Context: In classification tasks, the term "fairness" is regarded as anti-discrimination. We will present other types of problems related to the fairness in a recommendation context.
2. What is Fairness: Most formal definitions of fairness have a connection with the notion of statistical independence. We will explore other types of formal fairness based on causality, agreement, and unfairness.
3. Theoretical Problems of FADM: After reviewing technical and theoretical open problems in the FADM literature, we will introduce the theory of the generalization bound in terms of accuracy as well as fairness.
Joint work with Jun Sakuma, Shotaro Akaho, and Hideki Asoh
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, and Theoretical Aspects
Invited Talk @ Workshop on Fairness, Accountability, and Transparency in Machine Learning
In conjunction with the ICML 2015 @ Lille, France, Jul. 11, 2015
Web Site: http://www.kamishima.net/fadm/
Handnote: http://www.kamishima.net/archive/2015-ws-icml-HN.pdf
The goal of fairness-aware data mining (FADM) is to analyze data while taking into account potential issues of fairness. In this talk, we will cover three topics in FADM:
1. Fairness in a Recommendation Context: In classification tasks, the term "fairness" is regarded as anti-discrimination. We will present other types of problems related to the fairness in a recommendation context.
2. What is Fairness: Most formal definitions of fairness have a connection with the notion of statistical independence. We will explore other types of formal fairness based on causality, agreement, and unfairness.
3. Theoretical Problems of FADM: After reviewing technical and theoretical open problems in the FADM literature, we will introduce the theory of the generalization bound in terms of accuracy as well as fairness.
Joint work with Jun Sakuma, Shotaro Akaho, and Hideki Asoh
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!