SlideShare a Scribd company logo

機械学習研究でのPythonの利用

Pythonオープンサイエンスシンポジウム in つくば https://startpython.connpass.com/event/70649/ 2012-12-12 デモファイル: https://gist.github.com/tkamishima/8a8675f0f3eb687316513788379af92a

1 of 28
Download to read offline
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用

Recommended

RecSys2018論文読み会 資料
RecSys2018論文読み会 資料RecSys2018論文読み会 資料
RecSys2018論文読み会 資料Toshihiro Kamishima
 
Considerations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items TaskConsiderations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items TaskToshihiro Kamishima
 
Model-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced RecommendationModel-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced RecommendationToshihiro Kamishima
 
科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要Toshihiro Kamishima
 

More Related Content

More from Toshihiro Kamishima

Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Toshihiro Kamishima
 
Correcting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityCorrecting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityToshihiro Kamishima
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないToshihiro Kamishima
 
The Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersThe Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersToshihiro Kamishima
 
Efficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationEfficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationToshihiro Kamishima
 
Absolute and Relative Clustering
Absolute and Relative ClusteringAbsolute and Relative Clustering
Absolute and Relative ClusteringToshihiro Kamishima
 
Consideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningConsideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningToshihiro Kamishima
 
Fairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerFairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerToshihiro Kamishima
 
Enhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationEnhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationToshihiro Kamishima
 
OpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングOpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングToshihiro Kamishima
 
Fairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachFairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachToshihiro Kamishima
 
Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Toshihiro Kamishima
 

More from Toshihiro Kamishima (13)

ICML2015読み会 資料
ICML2015読み会 資料ICML2015読み会 資料
ICML2015読み会 資料
 
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
 
Correcting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityCorrecting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation Neutrality
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
 
The Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersThe Independence of Fairness-aware Classifiers
The Independence of Fairness-aware Classifiers
 
Efficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationEfficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced Recommendation
 
Absolute and Relative Clustering
Absolute and Relative ClusteringAbsolute and Relative Clustering
Absolute and Relative Clustering
 
Consideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningConsideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data Mining
 
Fairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerFairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover Regularizer
 
Enhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationEnhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in Recommendation
 
OpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングOpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシング
 
Fairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachFairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization Approach
 
Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理