Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Enhancement of the Neutrality in Recommendation
Workshop on Human Decision Making in Recommender Systems, in conjunction with RecSys 2012
Article @ Official Site: http://ceur-ws.org/Vol-893/
Article @ Personal Site: http://www.kamishima.net/archive/2012-ws-recsys-print.pdf
Handnote : http://www.kamishima.net/archive/2012-ws-recsys-HN.pdf
Program codes : http://www.kamishima.net/inrs
Workshop Homepage: http://recex.ist.tugraz.at/RecSysWorkshop2012
Abstract:
This paper proposes an algorithm for making recommendation so that the neutrality toward the viewpoint specified by a user is enhanced. This algorithm is useful for avoiding to make decisions based on biased information. Such a problem is pointed out as the filter bubble, which is the influence in social decisions biased by a personalization technology. To provide such a recommendation, we assume that a user specifies a viewpoint toward which the user want to enforce the neutrality, because recommendation that is neutral from any information is no longer recommendation. Given such a target viewpoint, we implemented information neutral recommendation algorithm by introducing a penalty term to enforce the statistical independence between the target viewpoint and a preference score. We empirically show that our algorithm enhances the independence toward the specified viewpoint by and then demonstrate how sets of recommended items are changed.
Enhancement of the Neutrality in Recommendation Workshop on Human Decision Making in Recommender Systems, in conjunction with RecSys 2012 Article @ Official Site: http://ceur-ws.org/Vol-893/ Article @ Personal Site: http://www.kamishima.net/archive/2012-ws-recsys-print.pdf Handnote : http://www.kamishima.net/archive/2012-ws-recsys-HN.pdf Program codes : http://www.kamishima.net/inrs Workshop Homepage: http://recex.ist.tugraz.at/RecSysWorkshop2012 Abstract: This paper proposes an algorithm for making recommendation so that the neutrality toward the viewpoint specified by a user is enhanced. This algorithm is useful for avoiding to make decisions based on biased information. Such a problem is pointed out as the filter bubble, which is the influence in social decisions biased by a personalization technology. To provide such a recommendation, we assume that a user specifies a viewpoint toward which the user want to enforce the neutrality, because recommendation that is neutral from any information is no longer recommendation. Given such a target viewpoint, we implemented information neutral recommendation algorithm by introducing a penalty term to enforce the statistical independence between the target viewpoint and a preference score. We empirically show that our algorithm enhances the independence toward the specified viewpoint by and then demonstrate how sets of recommended items are changed.
Total views
1,511
On Slideshare
0
From embeds
0
Number of embeds
27
Downloads
15
Shares
0
Comments
0
Likes
3
The SlideShare family just got bigger. You now have unlimited* access to books, audiobooks, magazines, and more from Scribd.
Cancel anytime.
Be the first to comment