We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Fairness-aware Classifier with Prejudice Remover Regularizer
Proceedings of the European Conference on Machine Learning and Principles of Knowledge Discovery in Databases (ECMLPKDD), Part II, pp.35-50 (2012)
Article @ Official Site: http://dx.doi.org/10.1007/978-3-642-33486-3_3
Article @ Personal Site: http://www.kamishima.net/archive/2012-p-ecmlpkdd-print.pdf
Handnote: http://www.kamishima.net/archive/2012-p-ecmlpkdd-HN.pdf
Program codes : http://www.kamishima.net/fadm/
Conference Homepage: http://www.ecmlpkdd2012.net/
Abstract:
With the spread of data mining technologies and the accumulation of social data, such technologies and data are being used for determinations that seriously affect individuals' lives. For example, credit scoring is frequently determined based on the records of past credit data together with statistical prediction techniques. Needless to say, such determinations must be nondiscriminatory and fair in sensitive features, such as race, gender, religion, and so on. Several researchers have recently begun to attempt the development of analysis techniques that are aware of social fairness or discrimination. They have shown that simply avoiding the use of sensitive features is insufficient for eliminating biases in determinations, due to the indirect influence of sensitive information. In this paper, we first discuss three causes of unfairness in machine learning. We then propose a regularization approach that is applicable to any prediction algorithm with probabilistic discriminative models. We further apply this approach to logistic regression and empirically show its effectiveness and efficiency.
Fairness-aware Classifier with Prejudice Remover Regularizer
Proceedings of the European Conference on Machine Learning and Principles of Knowledge Discovery in Databases (ECMLPKDD), Part II, pp.35-50 (2012)
Article @ Official Site: http://dx.doi.org/10.1007/978-3-642-33486-3_3
Article @ Personal Site: http://www.kamishima.net/archive/2012-p-ecmlpkdd-print.pdf
Handnote: http://www.kamishima.net/archive/2012-p-ecmlpkdd-HN.pdf
Program codes : http://www.kamishima.net/fadm/
Conference Homepage: http://www.ecmlpkdd2012.net/
Abstract:
With the spread of data mining technologies and the accumulation of social data, such technologies and data are being used for determinations that seriously affect individuals' lives. For example, credit scoring is frequently determined based on the records of past credit data together with statistical prediction techniques. Needless to say, such determinations must be nondiscriminatory and fair in sensitive features, such as race, gender, religion, and so on. Several researchers have recently begun to attempt the development of analysis techniques that are aware of social fairness or discrimination. They have shown that simply avoiding the use of sensitive features is insufficient for eliminating biases in determinations, due to the indirect influence of sensitive information. In this paper, we first discuss three causes of unfairness in machine learning. We then propose a regularization approach that is applicable to any prediction algorithm with probabilistic discriminative models. We further apply this approach to logistic regression and empirically show its effectiveness and efficiency.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!