SlideShare a Scribd company logo
1 of 22
Download to read offline
Unit.2 Vector Calculus 
UNIT II VECTOR CALCULUS 
Part-A 
      
         
                 
    
  
    i  x  cy  z  bx y z j   x cy z           x  y  az 
       
 y z x z 
    
k bx y z x y az 
           
 ic 1 j a  4 k b  2 
1 
Problem 1 Prove that div(grad )  2 
Solution: 
div(grad )  . 
   
     
i j k 
x y z 
         
i j k i j k 
x y z x y z 
2 2 2 
x2 y2 z2 
      
   
   
2 2 2 
x2 y2 z2 
 
     
          
2 . 
Problem 2 Find a, b, c, if F  x  2y  azi  bx 3y  z j  (4x  cy  2z)k 
is 
irrotational. 
Solution: 
F 
  
 
is irrotational if  F  0 
   
i j k 
   
2 3 4 2 
F 
x y z 
x y az bx y z x cy z 
   
   
      
 
 4 2   3   4 2   2 
 
 3 2   2 
 
x y 
 
   
ic 1 j a  4 k b  2 
    
 F  0 0i  0 j  0k 
   
c 1  0, a  4  0, b  2  0 
c  1, a  4, b  2. 
Problem 3 If S is any closed surface enclosing a volume V and r 
 
is the position 
vector of a point, prove  .  3 
  r n ds  V 
S 

Unit.2 Vector Calculus 
      
      
        
   
                                        
                                          
2 
Solution: 
Let r  xi  y j  zk 
    
By Gauss divergence theorem 
  
 
  F n ds     FdV 
S V 
  
Here F  .r 
  
 
  r  n ds     rdV 
S V 
.  
             
V 
     
i j k xi y j zk dV 
x y z 
   111dV 
 3 . 
  r n ds  V 
S 
 
   
Problem 4 If r  a cos nt  bsin nt, 
  
where a,b, n 
are constants show that 
    
r  d r  na  
b 
dt 
Solution: 
   
Given r  a cos nt  bsin nt 
   
d r   na sin nt  
nb cos nt 
dt 
r  d r  a cos nt  bsin nt     na sin nt  
nb cos nt  
dt 
    
 nabcos2 nt  basin2 nt 
 nabcos2 nt  absin2 nt   
a b  ba 
    
 n ab1 n ab 
 
Problem 5 Prove that div curl A  0 
Solution: 
  
   
   
1 2 3 
. 
i j k 
x y z 
A A A 
       
   
i 3 2 j 3 1 k 2 1 
y z x z x y 
3 2 3 1 2 1 
x y z y x z z x y
Unit.2 Vector Calculus 
  2   2     2   2     2   2 
  
 3  2    1  3   2  1 
  x  y  x  z      y  z  y  x    z  x  z  y 
 
   
3 
 
div curl A  0 
Problem 6 Find the unit normal to surface xy3z2  4 at 1,1,2 
Solution: 
Let   xy3z2  4 
   
  y3z2 i  3xy2z2 j  2xy3zk 
   3  2   2  2   3   
1, 1,2  1 2 i 3 1 1 2 j 2 1 1 2 k            
   
  4i 12 j  4k 
Unit normal to the surface is n 
 
 
 
 
 
   
 i  j  k 
 
4 12 4 
16  144  
16 
4 3  
 i  j  k 
176 
  
   
      
4 3   3  
. 
 i  j  k  i  j  k 
  
16  
11 11 
Problem 7 Applying Green’s theorem in plane show that area enclosed by a simple 
closed curve C is 1   
2 
 xdy  ydx 
Solution: 
    
Pdx Qdy Q P dx dy 
            
P  y, Q  x 
P 1, Q 1 
y x 
C R 
x y 
  
   
  
  1 1 2 
 x dy  ydx     dxdy   dx dy 
R R 
= 2 Area enclosed by C 
Area enclosed by C = 1   
2 
 xdy  ydx . 
 
and B 
Problem 8 If A 
 
  
are irrotational show that A B 
is solenoidal 
Solution: 
Given A 
 
  
is irrotational i.e.,  A  0
Unit.2 Vector Calculus 
   
 j 3z2 3xy 3x2 3yz 
             
  
x dx x dx x dx x 
2 2 2 
    
       
3 3 
4 
 
  
B 
is irrotational i.e.,  B  0 
      
.A B  B. A A. B 
    
 B0  A0  0 
  
 A B 
is solenoidal. 
 
Problem 9 If F  grad x3  y3  z3  3xyz 
 
find curl F 
Solution: 
 
F x3  y3  z3  3xyz 
 3x2  3yzl  3y2 3xz  j  3z2 3xyk 
   
i j k 
   
3 2 3 3 2 3 3 2 3 
F 
x y z 
x yz y xz z xy 
   
   
   
 
   
 i  3z2  3xy   3y2  3xz 
 y  z 
  
x z 
 
    
k 3y2 3xz 3x2 3yz 
       x  y 
 
 
   
i3x  3x j 3y  3y k 3z  3z 
   
i 0  j0 k 0 0 
. 
   
Problem 10 If F  x2 i  y2 j, 
  
evaluate  F  dr 
along the straight line y  x from 
0,0 to 1,1 . 
Solution: 
     
F.d r  x2 i  y2 jdxi  dy 
 x2dx  y2dy 
Given y  x 
dy  dx 
  1 
  
 F d r   x 2 dx  y 2 
dy 
C 0 
1 1 3 1 
2 2 2 
0 0 0 
Problem 11 What is the unit normal to the surface   x, y, z  C at the point x, y, z? 
Solution:
Unit.2 Vector Calculus 
   
   
5 
n 
 
 
 
 
 
. 
 
to be solenoidal 
Problem 12 State the condition for a vector F 
Solution: 
  
.F  divF  0 
Problem 13 If a  
 
? 
is a constant vector what is  a 
Solution: 
Let 1 2 3 a  a i  a j  a k 
    
   
  
   
    
1 2 3 
0 
i j k 
a 
 x  y  
z 
a a a 
Problem 14 Find grad  at 2,2,2 when   x2  y2  z2  2 
Solution: 
grad   
i x2 y2x2 2 j x2 y2 z2 2 k x2 y2 z2 2 
x y z 
           
   
   
 2x i  2y j  2zk 
   
2,2,2   4i  4 j  4k 
Problem 15 State Gauss Divergence Theorem 
Solution: 
The surface integral of the normal component of a vector function F over a closed 
 
surface S enclosing volume V is equal to the volume integral of the divergence of F 
   
  F nds     FdV 
taken over V. i.e., . . 
S V 
Part –B 
Problem 1 Find the directional derivative of   x2 yz  4xz2 at the point 1,2,1 in 
   
the direction of the vector 2i  j  2k. 
Solution: 
  x2 yz  4xz2
Unit.2 Vector Calculus 
   
                    
    
      
6 
   
  2xyz  4z2 i  x2z j  x2 y 8xzk 
       2  2    2      
1, 2, 1  2 1 2 1 4 1 i 1 1 j 1 2 8 1 1 k   
   
 4  4i  j  2 8k 
   
 8i  j 10k 
Directional derivative a  
 
is .a  
 
 
 
 
      
8 i  j  10 k .2 i  j  2 k 
 
4 1 4 
 
  
16  1  
20 37 . 
  
3 3 
Problem 2 Find the maximum directional derivative of   xyz2 at 1,0,3 . 
Solution: 
Given   xyz2 
   
  yz2 i  xz2 j  2xyzk 
   2   2     
1,0,3   0 3 i  1 3 j  2 1 0 3 k  9 j 
 
Maximum directional directive of  is   9 j 
Magnitude of maximum directional directive is   92  9. 
Problem 3 Find the angle between the surfaces x2  y2  z2  9 and x2  y2  z  3at the 
point 2,1, 2 . 
Solution: 
Let 2 2 2 
1   x  y  z  9 
   
1   2xi  2y j  2zk 
      1 2, 1,2  2(2)i 2 1 j 2 2 k 4i 2 j 4k          
2 2 
2   x  y  z  3 
   
2   2xi  2y j  k 
   
22, 1,2  4i 2 j 2k      
If  is the angle between the surfaces then 
  
cos . 
1 2 
  
  
 
|  ||  
| 
1   2 
 4 i  2 j  4 k    
.4 i  2 j  2 k 
 
16 4 16 16 4 4 
 
   
Unit.2 Vector Calculus 
    
7 
16  4  
8 
36 24 
 
12 1 
6 2 6 6 
  
 
cos 1 1 . 
     
6 
  
   
Problem 4 Find the work done, when a force F  x2  y2  xi  2xy  y j 
moves a 
particle from the origin to the point 1,1 along y2  x . 
Solution: 
 Given F    
x2  y2  xi  2xy  y j 
    
F.d r  x2  y2  xdx  2xy  ydy 
d r  dxi  dy j  dzk 
  
Given y2  x 
2ydy  dx 
  
F.dr  x2  x  xdx  2y3  ydy 
 x2dx  2y3  ydy 
  1 1 
 Fdr   x 2 dx   y 3 
 y dy 
0 0 
2 
C 
 
3 1 4 2 1 
 x    
   2 
y  y  3    
 0  4 2 
 
0 
1 0 2 1 0 0 
                3   4 2 
   
1 1 1 
3 2 2 
       
 1  
 1  
2 
3 3 
  
Work done . 2 
  F dr  
3 C 
Problem 5 Prove that F   y2 cos x  z3 i  2y sin x  4 j  3xz2 k 
is irrotational and 
find its scalar potential. 
Solution: 
Given F   y2 cos x  z3 i  2y sin x  4 j  3xz2 k 
   
Unit.2 Vector Calculus 
 
       
y2 cos x z3 i 2y sin x 4j 3xz2 k i j 
   
      
8 
   
i j k 
   
2 cos 3 2 sin 4 3 2 
F 
x y z 
y x z y x xz 
   
   
  
 
   
 i0  0 j 3z2 3z2   k2y cos x  2y cos 
   
 0i  0 j  0k  0 
 
 F  0 
 
is irrotational 
Hence F 
F   
x y yz 
  
   
Equating the coefficient i, j, k 
   
y2 cos x z3 y2 cos x z3dx 
 
x 
 
 
      
2 3 
1 1   y sin x  z x C 
2y sin x 4 2y sin x 4dy 
 
   
x 
 
 
      
  x y  y C 
  
2 
2 2 2 sin 4 
2 
   
3xz2 3xz2dy 
 
x 
 
 
    
3 
  3 
x z C 
3 3 
3   y2 sin x  xz3  4y C 
Problem 6    
If F  3xyi  y2 j 
  
evaluate  F.dr 
when C is curve in the xy plane 
y  2x2 , from 0,0 to 1,2 
Solution: 
F  3xyi  y2 j 
   
dr  dxi  dy j  dzk 
    
F.dr  3xydx  y2dy 
  
Given y  2x2 
dy  4xdx 
  
 F.d r  3x(2x2 )dx  2x2 2 4x dx 
 6x3dx  4x4 (4x)dx 
 6x3dx 16x5dx
Unit.2 Vector Calculus 
   
  
C F d r   x dx   aydy   x  b dx   
 a 3   b 2    a 3 
  
     a          ab 
  
        
9 
  1 
 Fd r   x 3  x 5 
dx 
0 
6 16 
C 
  
4 6 1 
 x x  
    
  
6 16 7 . 
4 6 6 
0 
6 16 
4 6 
 
    
Problem 7 Find . 
 F dr 
C 
  
when F  x2  y2 i  2xy j 
where the cure C is the 
rectangle in the xy plane bounded by x  0, x  a, y  b, y  0. 
Solution: 
 Given F x2  y2   
i  2xy j 
    
Fdr  (x2  y2 )dx  2xy dy 
d r  dxi  dy j  dzk 
  
C is the rectangle OABC and C consists of four different paths. 
OA (y = 0) 
AB (x = a) 
BC (y = b) 
CO (x = 0) 
  
 F . 
d r         
C OA AB BC CO 
Along 
OA, y  0, dy  0 
AB, x  a, dx  0 
BC, y  b, dy  0 
CO, x  0, dx  0 
. 2 2  2 2  0 
C OA AB BC CO 
  0 
a b 
  x 2 dx  2 
a ydy  x 2  b 2 
dx 
0 0 
a 
a b o 
 x 3   y 2   3 
 
  a  x       b 2 
x 
 
      
0 
2 
3 2 3 
o a 
  
0 2 0 0 0 2 
3 2 3 
 2ab2. 
   
Problem 8 If F  4xy 3x2 z2 i  2x2 j  2x3zk 
 F dr 
check whether the integral . 
C 
  
is 
independent of the pathC . 
Solution: 
Given
Unit.2 Vector Calculus 
10 
   
F  4xy 3x2 z2 i  2x2 j  2x3zk 
    
d r  dxi  dy j  dzk 
  
. 4 3 2 2  2 2 2 3 
C C C C 
 F dr   xy  x z dx   x dy   x zdz 
This  integral is independent  
of path of integration if 
F    F  0 
   
i j k 
   
4 3 2 2 2 2 2 3 
F 
x y z 
xy x z x x z 
   
   
  
 
  
 i 0,0  j 6x2 z  6x2 z k 4x  4x 
    
 0i  0i  0 j  0k  0. 
Hence the line integral is independent of path. 
Problem 9 Verify Green’s Theorem in a plane for  2 (1 ) ( 3 3 )  
 x  y dx  y  x dy where 
C 
C is the square bounded x   a, y   a 
Solution: 
Let P  x2 (1 y) 
 
P  
x2 
y 
 
Q  y3  x3 
 
Q  
3x2 
x 
 
By green’s theorem in a plane 
  
C C 
    
Pdx Qdy Q P dxdy 
     
    x  y 
  Now 
    
         
R 
Q P dx dy 
x y 
3 2 2  
a a 
    
a a 
x x dx dy 
  
2 2 
a a 
   
  
dy x dx 
a a 
  
2 3 
3 
a 
a 
a 
a 
y x  
 
  
   
  
  2  3 3  
 a  a a  a 
3
Unit.2 Vector Calculus 
       
Pdx Qdy x y dx x y dy 
       
Pdx Qdy x y dx x y dy 
 
       
Pdx Qdy x y dx x y dy 
11 
8 4 (1) 
3 
 a  
Now   
 Pdx Qdy         
C AB BC CD DA 
Along AB, y  a, dy  0 
X varies from a to a 
a 
   2 1   3 3   
AB  
a 
    
  
2 (1 ) 0 
a 
a 
x a dx 
 
3 
1 
3 
a 
a 
a x 
 
  
    
  
  3 4 
 1   a    a 3  a 3  2 a  
2 
a  3  
3 3 
Along BC 
x  a, dx  0 
Y varies from  a to a 
a 
   2 1   3 3   
BC  
a 
   
( 3 3 ) 
a 
a 
a y dy 
 
4 
3 
4 
a 
a 
a y y 
 
  
    
  
 4   4 
 
         
    
a a a a a 
4 4 2 4 
4 4 
Along CD 
y  a, dy  0 
X varies from a to a 
a 
   2 1   3 3   
CD a 
 
   
  
2 (1 ) 
a 
a 
x a dx 
 3 
 
 1 
a x dx 
3 
a 
a 
    
  
   
a a a 
  
3 3 
1 
    
3 
 
Unit.2 Vector Calculus 
 
       
Pdx Qdy x y dx x y dy 
3 4 3 4 
 Pdx Qdy  2 a  2 a  2 a 4  2 a  2 a  2 a 
4 
3 3 3 3 C 
             
Hence Green’s theorem verified. 
Problem 10 Verify Green’s theorem in a plane for 
3 2 8 2  4 6  
C 
12 
2 3 2 4 
3 3 
  a  a 
Along DA, 
x  a, dx  0 
Y Varies from a to a 
a 
   2 1   3 3   
DA a 
 2 1   3 3   
a 
     
a 
a y dx y a dy 
 
 
 4 
 
   3 
 4 
 
 
a 
a 
y a y 
 4   4 
 
         
    
a a a a a 
4 4 2 4 
4 4 
  
4 4 4 4 
 a  a 
3 
 8 a 
4 ......(2) 
3 
From (1) and (2) 
  
    
Pdx Qdy Q P dxdy 8 a 
4 . 
x y 
3 C R 
 x  y dx  y  xy dy where C is the boundary of the region defined by 
x  y2 , y  x2. 
Solution: 
Green’s theorem states that 
    
udx vdy v u dxdy 
            
C R 
x y 
    
Pdx Qdy Q p dxdy 
     
    x  y 
 C R 
 Given 3 2 8 2  4 6  
 x  y dx  y  xy dy 
C 
P  3x2 8y2
Unit.2 Vector Calculus 
 Pdx Qdy   x  x dx  x  x xdx 
 Pdx Qdy   y  y y dy  y  y dy 
13 
P 16y 
y 
 
  
 
Q  4y  6xy 
 
Q   
6y 
x 
 
Evaluation of 
 Pdx Qdy 
C 
(i) Along OA 
y  x2 dy  2xdx 
3 2 8 4  4 2 6 3 2 
OA OA 
  1 
  3x 2 8x 4  8x 3 12x 4 
dx 
0 
1 
    20x 4  8x 3  3x 2 
dx 
0 
5 4 3 1 
0 
  
 x x  20  8  3 
x  
 5 4 3 
 
20 8 3 
5 5 3 
 
   
  4  2 1  1 
Along AO 
y2  x2ydy  dx 
3 4 8 2 2 4 6 3  
Ao Ao 
  (6 y 5  16 y 3  4 y  6 y 3 ) 
dy 
AO 
0 
    6y 5  22y 3 
 4y dy 
1 
6 4 2 0 
 y y y  
     
  
1 
6 22 4 
6 4 2 
0 
11 2 5 
2 2 
 y 6  y 4  y 2 
     
1 
1 5 3 (1) 
 Pdx Qdy          
2 2 C OA AO 
Evaluation of 
    
         
R 
Q P dx dy 
x y 
    
              
v u dxdy  6 y 16 y  
dxdy 
x y 
R R
Unit.2 Vector Calculus 
14 
  
y 
1 1 
2 
10 10 
0 0 
x y 
x y 
y 
y dx dy xy dy  
      
  1 
 10y y  y 2 
dy 
0 
1 3 
 
2 3 
  10 y y dy 
0 
  
    
1 
 5 
 
 2 4 
 
0 
y y 
10 5 4 
    
  
 2 
 
10 2 1 
     5 4 
 
10 8 5 
      20 
 
  30  3  
(2) 
20 2 
For (1) and (2) 
Hence Green’s theorem is verified. 
Problem 11 Verify Gauss divergence theorem for F  yi  x j  z2 k 
    
over the cylindrical 
region bounded by x2  y2  9, Z  0 and Z  2 . 
Solution: 
Gauss divergence theorem is 
   
 F . 
n ds   divFdV 
S V 
   
    
   
div F  y  x z2  2z 
x y z 
 
2 
3 9  
2 
    
div F dV z dzdy dx 
3 9 2 
0 
2 
x 
V    
x 
 
3 9 2 
2 2 
    
3 9 2 
0 
2 
2 
x 
x 
z dydx 
 
   
  
   
2 
   
2 
= 4 (Area of the circular region) 
 4    3 
2   36 .................(1) 
3 9 
3 9 
4 
x 
x 
dydx 
 
  
Unit.2 Vector Calculus 
15 
 
 F n ds     
1 2 3 
. 
S S S S 
S is the bottom of the circular region, S is the top of the circular region and S is the 
1 2 3 cylindrical  region 
 
On S , n   k, ds  dxdy, z  0 
1  F n ds   z dxdy  
1 
. 2 0 
S 
  
  
On 2 S , n  k 
, ds  dxdy, z  2 
 F n ds   z dx dy 
2 
. 2 
s 
 
 4 dxdy 
 4 (Area of circular region) 
  2   4  3  36 
On 3 S ,   x2  y2  9 
 
n xi y j 
2 2 
4 
  
  
  
 x 2 y 
2  
 
 
  
  
xi  y j 
 
3 
       
   
F n ds yi x j z k xi y j ds 
  
3 
. 2 
     
3 S 
  
  
yx  
yx ds 2 
xy ds     
3 3 S 
Let x  3cos , y  3sin 
ds  3 d dy 
 varies from 0 to 2 
z varies from 0 to 2 
2  9sin cos  
3 
3 
2 2 
0 0 
d dz 
 
      
2 2 
18 sin 2 
2 
0 0 
d dz 
 
     
2 2 
 cos 2 
    9    
2 
0 0 
dz 
 
  2 
  
9 1 1 0 
2 
    dz  
0 
. 0 36 0 36 ...............(2) 
 F n ds       
S 
 
Unit.2 Vector Calculus 
    
  
16 
from (1) and (2) 
   
 F . 
n ds   div FdV 
C V 
Problem 12   Verify  
Stoke’s theorem for the vector field defined by 
F  x2  y2 i  2xy j 
in the rectangular region in the xy plane bounded by the lines 
x  0, x  a, y  0, y  b. 
Solution: 
   
F  x2  y2 i  2xy j 
    
 F dr  curl F n ds 
By Stoke’s theorem . . 
C S 
   
i j k 
   
2 2 2 0 
curlF 
x y z 
x y xy 
 
   
  
 
 i0  0 j 0  0 k 2y  2y  4yk 
As the region is in the xy plane we can take n  k and ds  dxdy 
curl F . n ds    4 yk . 
k dx dy 
S 
   
0 0 
4 
b a 
    y dx dy 
  
 2 
 
0 
0 
4 
2 
b 
y x a 
    
  
 2ab2..............(1) 
 
 F . 
dr         
C OA AB BC CO 
Along OA 
y  0dy  0, 
x varies from 0 to a 
 2 2  
0 
    x  y dx  2 
xy dy 
a 
OA 
a  x  
a x dx 
a 3 3 
 
2 
       
0 0 3 3 
Along AB 
x  adx  o, y varies from 0 to b
Unit.2 Vector Calculus 
    
17 
 2 2  
0 
   a  y .0  2 
ay dy 
b 
AB 
 y 2 
 
b a ab 
2 
      
0 
2 
2 
  
Along BC 
y  b, dy  0 
x varies from a to 0 
  0 
   x  b dx  
2 2 0 
BC a 
3 0 
  
 x   b 2 
x 
 
  
3 a 
3 
2 
  a  ab 
3 
Along CO 
x  0, dx  0, 
y varies from b to 0 
  0 
    y   
0 2 0 0 0 
CO b 
3 3 
  
 F dr  a  ab  a  ab  
. 2 2 0 
3 3 c 
 2ab2.........(2) 
For (1) and (2) 
    
 F . d r  curlF . 
nds 
C S 
Here Stoke’s theorem is verified. 
Problem 13 Find . 
 F nds 
S 
  
if F  x  y2 i  2x j  2yzk 
where S is the surface in 
the plane 2x  y  2z  6 in the first octant. 
Solution: 
Let   2x  y  2z  6 be the given surface 
   
Then   2i  j  2k 
      
 i j k i j k 
2   2 2   
2 
4 1 4 3 
   
  
 The unit outward normal n  
to the surface S is  1 2 2 
n   i  j  k  
3 
   
Let R be the projection of S on the xy plane
Unit.2 Vector Calculus 
        
F n   x  y i  x j  yzk  i  j  k 
  x  y dx  x  xy  where C is the boundary of the 
18 
    
F . n ds F . 
n dx dy 
S R . 
1 
n k 
   
  
      
. 1 2 2 . 2 
n k  i  j  k k  
3 3 
.  2  2 2 .1 2 2  
3 
2  2  2 4 
3 3 3 
 x  y  x  yz 
2  2 2  
3 
 y  yz 
2  2  
3 
 y y  z 
2  6 2  
3 
 y y   y  x 
2 6 2  
3 
 y  x 
4 3  
3 
 y  x 
. . 
    
F n ds F n dx dy 
  
n k 
   
S S . 
  y  x dxdy 
4 3  
3 2 / 3 
  
1 
   x dx dy 
2 3 
R 
  
3 6 2 
2 3 
0 0 
x 
x dx dy 
  
    
x x y dx 
3 2 6 2 
  
   
  
2 3 
    
    
2 
0 0 
3 
3 
 4  3  x dx 
0 
4 3 
0 
  x  
4 (3 ) 
    4 
  
 81units. 
Problem 14 Evaluate   2 3  
C 
triangle with vertices 2,0,0,0,3,0&0,0,6 using Stoke’s theorem. 
Solution:
Unit.2 Vector Calculus 
  
 
             
19 
   
Stoke’s theorem is . . 
 F dr  curlF nds 
C S 
where S is the surface of the triangle and n 
is 
the unit  vector  
normal to surface S . 
Given F.dr   x  ydx  2x  z dy   y  z dz 
    
dr i dx  jdy  k dz 
F  x  yi  2x  z j   y  zk 
    
   
i j k 
   
2 
curlF 
x y z 
x y x z y z 
 
   
   
 
   
 i 11  j 0  0  k 2 1 
   
curl F  2i  k 
Equation of the plane ABC is 
x  y  z  
1 
2 3 6 
3x  2y  z  6 
Let   3x  2y  z  6 
   
  3i  2 j  k 
Unit normal vector to the surface ABCor  is 
 3 2 
n i j k  
   
  
 
14 
 
   
      
     
curl F n i k i j k 
.  2 . 3 2 6 1 7 
      
14 14 14 
  
 
Hence .  7 
curlF nds   ds 
S S 14 
 
7 
14 R 
dxdy 
nk 
   where R is the projection of surface ABC on XOY plane 
7 3 2 . 1 14 1 14 14 
14 
R 
dxdy n k i j k k 
     
 7 
dxdy 
R 
 7 Area of le OAB 
 73  21.
Unit.2 Vector Calculus 
Problem 15 Verify Stoke’s theorem for F   y  zi  yz j  xzk 
20 
    
where S is the 
surface bounded by the planes x  0, x 1, y  0, y 1, z  0 and z 1 above the 
XOY plane. 
Solution: 
   
Stoke's theorem is . . 
 F d r   F nds 
C S 
    
F   y  zi  yz j  xzk 
   
i j k 
F 
   
x y z 
y z yz xz 
   
   
  
 
   
 yi  z 1 j  k 
 
 
 F n ds       
1 2 3 4 5 
. 
S S S S S S 
6 S  is not applicable, since the given condition is above the XOY plane. 
  
   yi  z  j  k  idydz 
1 
1 . 
S AEGD 
    
  ydy dz 
AEGD 
1 1 1 2 1 
  
y dy dz y dz 
     
 1 
     
0 0 0 0 2 
1 1 
2 2 
  z   
0 
    
   yi  z  j  k  i dydz 
2 
1 . 
S OBFC 
    
1 1 1 2 1 
  
y dy dz y dz 
     
     
0 0 0 0 
1 
2 2 
  
   yi  z  j  k  jdxdz 
3 
1 
S EBFG 
    
1 1 1 
    
1 
0 
   z 1 dx dz   xz  x dz 
0 0 0 
2 1 
  
        
  
0 
1 1 1 
z z 
2 2 2 
    
   yi  z  j  k   j dxdz 
4 
1 
S OADC 
   
Unit.2 Vector Calculus 
   y  z  dy  dz  
  
   x  z  dx  dz  
  
21 
  
1 1 
   z 1 dx dz 
0 0 
1 1 
    
1 
0 
  xz  x   z 1 dz 
0 0 
2 1 
    
       
  
0 
    
1 1 1 
z z 
2 2 2 
   yi  z  j  k kdxdy 
5 
1 . 
S DGFC 
    
1 1 1 
    
1 
0 
   1 dxdy   x dy 
0 0 0 
1 
    
1 
0 
  1 dy  y  1 
0 
       
S S1 S2 S3 S4 S5 
1 1 1 1 1 1 
2 2 2 2 
        
  
L . H . S   F . 
dr         
C OA AE EB BO 
  
   y  z dx  yzdy  xzdz 
OA OA 
0 0  0, 0, 0, 0 
OA 
   y  z dx  yzdy  xzdz 
AE AE 
0 0  1, 0, 0, 0 
AE 
   y  z dx  yzdy  xzdz 
EB EB 
  
0 
 1 dx y 1, z  0, 
1 
 0 
1  x  0 1  1 
  
   y  z dx  yzdy  xzdz 
BO BO 
0 0  0, 0 
   x  z  
BO 
 0 
        
 0  0 1 0  1 
C OA AE EB BO
Unit.2 Vector Calculus 
22 
L.HS = R.HS. 
Hence Stoke’s theorem is verified. 
z C (0,0,1) F 
D G 
O y 
B(0,1,0) 
x A (1,0,0) E (1,1,0)

More Related Content

What's hot

Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1 Pokarn Narkhede
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier seriesderry92
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)Nigel Simmons
 
Mcqs -Matrices and determinants
Mcqs -Matrices and determinantsMcqs -Matrices and determinants
Mcqs -Matrices and determinantss9182647608y
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesEnrique Valderrama
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential EquationsJDagenais
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graphKaushal Surti
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference methodPrateek Jha
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONDhrupal Patel
 
Linear Systems - Domain & Range
Linear Systems - Domain & RangeLinear Systems - Domain & Range
Linear Systems - Domain & Rangeswartzje
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsJayanshu Gundaniya
 

What's hot (20)

Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
 
Fourier integral
Fourier integralFourier integral
Fourier integral
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)11X1 T08 03 angle between two lines (2010)
11X1 T08 03 angle between two lines (2010)
 
Mcqs -Matrices and determinants
Mcqs -Matrices and determinantsMcqs -Matrices and determinants
Mcqs -Matrices and determinants
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Second Order Derivative | Mathematics
Second Order Derivative | MathematicsSecond Order Derivative | Mathematics
Second Order Derivative | Mathematics
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
Systems Of Differential Equations
Systems Of Differential EquationsSystems Of Differential Equations
Systems Of Differential Equations
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graph
 
First order ordinary differential equations and applications
First order ordinary differential equations and applicationsFirst order ordinary differential equations and applications
First order ordinary differential equations and applications
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 
Fourier series
Fourier series Fourier series
Fourier series
 
Linear Systems - Domain & Range
Linear Systems - Domain & RangeLinear Systems - Domain & Range
Linear Systems - Domain & Range
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 

Similar to Unit 2.126182703

VIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVasista Vinuthan
 
VIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVasista Vinuthan
 
non homogeneous equation btech math .pptx
non homogeneous equation  btech math .pptxnon homogeneous equation  btech math .pptx
non homogeneous equation btech math .pptxBhatAakib2
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integrationKamel Attar
 
UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperVasista Vinuthan
 
UPSEE - Mathematics -2007 Unsolved Paper
UPSEE - Mathematics -2007 Unsolved PaperUPSEE - Mathematics -2007 Unsolved Paper
UPSEE - Mathematics -2007 Unsolved PaperVasista Vinuthan
 
VIT - Mathematics -2007 Unsolved Paper
VIT - Mathematics -2007 Unsolved PaperVIT - Mathematics -2007 Unsolved Paper
VIT - Mathematics -2007 Unsolved PaperVasista Vinuthan
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
UPSEE - Mathematics -2001 Unsolved Paper
UPSEE - Mathematics -2001 Unsolved PaperUPSEE - Mathematics -2001 Unsolved Paper
UPSEE - Mathematics -2001 Unsolved PaperVasista Vinuthan
 
VIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVasista Vinuthan
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2Laurie Smith
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & AnswersSantoshTamadaddi
 
Directional Derivative.pdf
Directional Derivative.pdfDirectional Derivative.pdf
Directional Derivative.pdfWaqas Mehmood
 

Similar to Unit 2.126182703 (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
VIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved PaperVIT - Mathematics -2009 Unsolved Paper
VIT - Mathematics -2009 Unsolved Paper
 
VIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved Paper
 
non homogeneous equation btech math .pptx
non homogeneous equation  btech math .pptxnon homogeneous equation  btech math .pptx
non homogeneous equation btech math .pptx
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
Liner Differential Equation
Liner Differential EquationLiner Differential Equation
Liner Differential Equation
 
UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved Paper
 
Assign1 21314-sol
Assign1 21314-solAssign1 21314-sol
Assign1 21314-sol
 
UPSEE - Mathematics -2007 Unsolved Paper
UPSEE - Mathematics -2007 Unsolved PaperUPSEE - Mathematics -2007 Unsolved Paper
UPSEE - Mathematics -2007 Unsolved Paper
 
VIT - Mathematics -2007 Unsolved Paper
VIT - Mathematics -2007 Unsolved PaperVIT - Mathematics -2007 Unsolved Paper
VIT - Mathematics -2007 Unsolved Paper
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
UPSEE - Mathematics -2001 Unsolved Paper
UPSEE - Mathematics -2001 Unsolved PaperUPSEE - Mathematics -2001 Unsolved Paper
UPSEE - Mathematics -2001 Unsolved Paper
 
Q2
Q2Q2
Q2
 
Formula m2
Formula m2Formula m2
Formula m2
 
VIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved PaperVIT - Mathematics -2008 Unsolved Paper
VIT - Mathematics -2008 Unsolved Paper
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
AMU - Mathematics - 1996
AMU - Mathematics  - 1996AMU - Mathematics  - 1996
AMU - Mathematics - 1996
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & Answers
 
Directional Derivative.pdf
Directional Derivative.pdfDirectional Derivative.pdf
Directional Derivative.pdf
 
AMU - Mathematics - 1997
AMU - Mathematics  - 1997AMU - Mathematics  - 1997
AMU - Mathematics - 1997
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

Unit 2.126182703

  • 1. Unit.2 Vector Calculus UNIT II VECTOR CALCULUS Part-A                                           i  x  cy  z  bx y z j   x cy z           x  y  az         y z x z     k bx y z x y az             ic 1 j a  4 k b  2 1 Problem 1 Prove that div(grad )  2 Solution: div(grad )  .         i j k x y z          i j k i j k x y z x y z 2 2 2 x2 y2 z2             2 2 2 x2 y2 z2                 2 . Problem 2 Find a, b, c, if F  x  2y  azi  bx 3y  z j  (4x  cy  2z)k is irrotational. Solution: F    is irrotational if  F  0    i j k    2 3 4 2 F x y z x y az bx y z x cy z               4 2   3   4 2   2   3 2   2  x y     ic 1 j a  4 k b  2      F  0 0i  0 j  0k    c 1  0, a  4  0, b  2  0 c  1, a  4, b  2. Problem 3 If S is any closed surface enclosing a volume V and r  is the position vector of a point, prove  .  3   r n ds  V S 
  • 2. Unit.2 Vector Calculus                                                                                                          2 Solution: Let r  xi  y j  zk     By Gauss divergence theorem      F n ds     FdV S V   Here F  .r      r  n ds     rdV S V .               V      i j k xi y j zk dV x y z    111dV  3 .   r n ds  V S     Problem 4 If r  a cos nt  bsin nt,   where a,b, n are constants show that     r  d r  na  b dt Solution:    Given r  a cos nt  bsin nt    d r   na sin nt  nb cos nt dt r  d r  a cos nt  bsin nt     na sin nt  nb cos nt  dt      nabcos2 nt  basin2 nt  nabcos2 nt  absin2 nt   a b  ba      n ab1 n ab  Problem 5 Prove that div curl A  0 Solution:         1 2 3 . i j k x y z A A A           i 3 2 j 3 1 k 2 1 y z x z x y 3 2 3 1 2 1 x y z y x z z x y
  • 3. Unit.2 Vector Calculus   2   2     2   2     2   2    3  2    1  3   2  1   x  y  x  z      y  z  y  x    z  x  z  y     3  div curl A  0 Problem 6 Find the unit normal to surface xy3z2  4 at 1,1,2 Solution: Let   xy3z2  4      y3z2 i  3xy2z2 j  2xy3zk    3  2   2  2   3   1, 1,2  1 2 i 3 1 1 2 j 2 1 1 2 k                 4i 12 j  4k Unit normal to the surface is n          i  j  k  4 12 4 16  144  16 4 3   i  j  k 176            4 3   3  .  i  j  k  i  j  k   16  11 11 Problem 7 Applying Green’s theorem in plane show that area enclosed by a simple closed curve C is 1   2  xdy  ydx Solution:     Pdx Qdy Q P dx dy             P  y, Q  x P 1, Q 1 y x C R x y          1 1 2  x dy  ydx     dxdy   dx dy R R = 2 Area enclosed by C Area enclosed by C = 1   2  xdy  ydx .  and B Problem 8 If A    are irrotational show that A B is solenoidal Solution: Given A    is irrotational i.e.,  A  0
  • 4. Unit.2 Vector Calculus     j 3z2 3xy 3x2 3yz                x dx x dx x dx x 2 2 2            3 3 4    B is irrotational i.e.,  B  0       .A B  B. A A. B      B0  A0  0    A B is solenoidal.  Problem 9 If F  grad x3  y3  z3  3xyz  find curl F Solution:  F x3  y3  z3  3xyz  3x2  3yzl  3y2 3xz  j  3z2 3xyk    i j k    3 2 3 3 2 3 3 2 3 F x y z x yz y xz z xy               i  3z2  3xy   3y2  3xz  y  z   x z      k 3y2 3xz 3x2 3yz        x  y      i3x  3x j 3y  3y k 3z  3z    i 0  j0 k 0 0 .    Problem 10 If F  x2 i  y2 j,   evaluate  F  dr along the straight line y  x from 0,0 to 1,1 . Solution:      F.d r  x2 i  y2 jdxi  dy  x2dx  y2dy Given y  x dy  dx   1    F d r   x 2 dx  y 2 dy C 0 1 1 3 1 2 2 2 0 0 0 Problem 11 What is the unit normal to the surface   x, y, z  C at the point x, y, z? Solution:
  • 5. Unit.2 Vector Calculus       5 n      .  to be solenoidal Problem 12 State the condition for a vector F Solution:   .F  divF  0 Problem 13 If a   ? is a constant vector what is  a Solution: Let 1 2 3 a  a i  a j  a k                 1 2 3 0 i j k a  x  y  z a a a Problem 14 Find grad  at 2,2,2 when   x2  y2  z2  2 Solution: grad   i x2 y2x2 2 j x2 y2 z2 2 k x2 y2 z2 2 x y z                   2x i  2y j  2zk    2,2,2   4i  4 j  4k Problem 15 State Gauss Divergence Theorem Solution: The surface integral of the normal component of a vector function F over a closed  surface S enclosing volume V is equal to the volume integral of the divergence of F      F nds     FdV taken over V. i.e., . . S V Part –B Problem 1 Find the directional derivative of   x2 yz  4xz2 at the point 1,2,1 in    the direction of the vector 2i  j  2k. Solution:   x2 yz  4xz2
  • 6. Unit.2 Vector Calculus                                  6      2xyz  4z2 i  x2z j  x2 y 8xzk        2  2    2      1, 2, 1  2 1 2 1 4 1 i 1 1 j 1 2 8 1 1 k       4  4i  j  2 8k     8i  j 10k Directional derivative a   is .a            8 i  j  10 k .2 i  j  2 k  4 1 4    16  1  20 37 .   3 3 Problem 2 Find the maximum directional derivative of   xyz2 at 1,0,3 . Solution: Given   xyz2      yz2 i  xz2 j  2xyzk    2   2     1,0,3   0 3 i  1 3 j  2 1 0 3 k  9 j  Maximum directional directive of  is   9 j Magnitude of maximum directional directive is   92  9. Problem 3 Find the angle between the surfaces x2  y2  z2  9 and x2  y2  z  3at the point 2,1, 2 . Solution: Let 2 2 2 1   x  y  z  9    1   2xi  2y j  2zk       1 2, 1,2  2(2)i 2 1 j 2 2 k 4i 2 j 4k          2 2 2   x  y  z  3    2   2xi  2y j  k    22, 1,2  4i 2 j 2k      If  is the angle between the surfaces then   cos . 1 2      |  ||  | 1   2  4 i  2 j  4 k    .4 i  2 j  2 k  16 4 16 16 4 4     
  • 7. Unit.2 Vector Calculus     7 16  4  8 36 24  12 1 6 2 6 6    cos 1 1 .      6      Problem 4 Find the work done, when a force F  x2  y2  xi  2xy  y j moves a particle from the origin to the point 1,1 along y2  x . Solution:  Given F    x2  y2  xi  2xy  y j     F.d r  x2  y2  xdx  2xy  ydy d r  dxi  dy j  dzk   Given y2  x 2ydy  dx   F.dr  x2  x  xdx  2y3  ydy  x2dx  2y3  ydy   1 1  Fdr   x 2 dx   y 3  y dy 0 0 2 C  3 1 4 2 1  x       2 y  y  3     0  4 2  0 1 0 2 1 0 0                 3   4 2    1 1 1 3 2 2         1   1  2 3 3   Work done . 2   F dr  3 C Problem 5 Prove that F   y2 cos x  z3 i  2y sin x  4 j  3xz2 k is irrotational and find its scalar potential. Solution: Given F   y2 cos x  z3 i  2y sin x  4 j  3xz2 k    
  • 8. Unit.2 Vector Calculus         y2 cos x z3 i 2y sin x 4j 3xz2 k i j          8    i j k    2 cos 3 2 sin 4 3 2 F x y z y x z y x xz              i0  0 j 3z2 3z2   k2y cos x  2y cos     0i  0 j  0k  0   F  0  is irrotational Hence F F   x y yz      Equating the coefficient i, j, k    y2 cos x z3 y2 cos x z3dx  x         2 3 1 1   y sin x  z x C 2y sin x 4 2y sin x 4dy     x           x y  y C   2 2 2 2 sin 4 2    3xz2 3xz2dy  x       3   3 x z C 3 3 3   y2 sin x  xz3  4y C Problem 6    If F  3xyi  y2 j   evaluate  F.dr when C is curve in the xy plane y  2x2 , from 0,0 to 1,2 Solution: F  3xyi  y2 j    dr  dxi  dy j  dzk     F.dr  3xydx  y2dy   Given y  2x2 dy  4xdx    F.d r  3x(2x2 )dx  2x2 2 4x dx  6x3dx  4x4 (4x)dx  6x3dx 16x5dx
  • 9. Unit.2 Vector Calculus      C F d r   x dx   aydy   x  b dx    a 3   b 2    a 3        a          ab           9   1  Fd r   x 3  x 5 dx 0 6 16 C   4 6 1  x x        6 16 7 . 4 6 6 0 6 16 4 6      Problem 7 Find .  F dr C   when F  x2  y2 i  2xy j where the cure C is the rectangle in the xy plane bounded by x  0, x  a, y  b, y  0. Solution:  Given F x2  y2   i  2xy j     Fdr  (x2  y2 )dx  2xy dy d r  dxi  dy j  dzk   C is the rectangle OABC and C consists of four different paths. OA (y = 0) AB (x = a) BC (y = b) CO (x = 0)    F . d r         C OA AB BC CO Along OA, y  0, dy  0 AB, x  a, dx  0 BC, y  b, dy  0 CO, x  0, dx  0 . 2 2  2 2  0 C OA AB BC CO   0 a b   x 2 dx  2 a ydy  x 2  b 2 dx 0 0 a a b o  x 3   y 2   3    a  x       b 2 x        0 2 3 2 3 o a   0 2 0 0 0 2 3 2 3  2ab2.    Problem 8 If F  4xy 3x2 z2 i  2x2 j  2x3zk  F dr check whether the integral . C   is independent of the pathC . Solution: Given
  • 10. Unit.2 Vector Calculus 10    F  4xy 3x2 z2 i  2x2 j  2x3zk     d r  dxi  dy j  dzk   . 4 3 2 2  2 2 2 3 C C C C  F dr   xy  x z dx   x dy   x zdz This  integral is independent  of path of integration if F    F  0    i j k    4 3 2 2 2 2 2 3 F x y z xy x z x x z             i 0,0  j 6x2 z  6x2 z k 4x  4x      0i  0i  0 j  0k  0. Hence the line integral is independent of path. Problem 9 Verify Green’s Theorem in a plane for  2 (1 ) ( 3 3 )   x  y dx  y  x dy where C C is the square bounded x   a, y   a Solution: Let P  x2 (1 y)  P  x2 y  Q  y3  x3  Q  3x2 x  By green’s theorem in a plane   C C     Pdx Qdy Q P dxdy          x  y   Now              R Q P dx dy x y 3 2 2  a a     a a x x dx dy   2 2 a a      dy x dx a a   2 3 3 a a a a y x            2  3 3   a  a a  a 3
  • 11. Unit.2 Vector Calculus        Pdx Qdy x y dx x y dy        Pdx Qdy x y dx x y dy         Pdx Qdy x y dx x y dy 11 8 4 (1) 3  a  Now    Pdx Qdy         C AB BC CD DA Along AB, y  a, dy  0 X varies from a to a a    2 1   3 3   AB  a       2 (1 ) 0 a a x a dx  3 1 3 a a a x            3 4  1   a    a 3  a 3  2 a  2 a  3  3 3 Along BC x  a, dx  0 Y varies from  a to a a    2 1   3 3   BC  a    ( 3 3 ) a a a y dy  4 3 4 a a a y y           4   4               a a a a a 4 4 2 4 4 4 Along CD y  a, dy  0 X varies from a to a a    2 1   3 3   CD a       2 (1 ) a a x a dx  3   1 a x dx 3 a a          a a a   3 3 1     3  
  • 12. Unit.2 Vector Calculus         Pdx Qdy x y dx x y dy 3 4 3 4  Pdx Qdy  2 a  2 a  2 a 4  2 a  2 a  2 a 4 3 3 3 3 C              Hence Green’s theorem verified. Problem 10 Verify Green’s theorem in a plane for 3 2 8 2  4 6  C 12 2 3 2 4 3 3   a  a Along DA, x  a, dx  0 Y Varies from a to a a    2 1   3 3   DA a  2 1   3 3   a      a a y dx y a dy    4     3  4   a a y a y  4   4               a a a a a 4 4 2 4 4 4   4 4 4 4  a  a 3  8 a 4 ......(2) 3 From (1) and (2)       Pdx Qdy Q P dxdy 8 a 4 . x y 3 C R  x  y dx  y  xy dy where C is the boundary of the region defined by x  y2 , y  x2. Solution: Green’s theorem states that     udx vdy v u dxdy             C R x y     Pdx Qdy Q p dxdy          x  y  C R  Given 3 2 8 2  4 6   x  y dx  y  xy dy C P  3x2 8y2
  • 13. Unit.2 Vector Calculus  Pdx Qdy   x  x dx  x  x xdx  Pdx Qdy   y  y y dy  y  y dy 13 P 16y y     Q  4y  6xy  Q   6y x  Evaluation of  Pdx Qdy C (i) Along OA y  x2 dy  2xdx 3 2 8 4  4 2 6 3 2 OA OA   1   3x 2 8x 4  8x 3 12x 4 dx 0 1     20x 4  8x 3  3x 2 dx 0 5 4 3 1 0    x x  20  8  3 x   5 4 3  20 8 3 5 5 3       4  2 1  1 Along AO y2  x2ydy  dx 3 4 8 2 2 4 6 3  Ao Ao   (6 y 5  16 y 3  4 y  6 y 3 ) dy AO 0     6y 5  22y 3  4y dy 1 6 4 2 0  y y y         1 6 22 4 6 4 2 0 11 2 5 2 2  y 6  y 4  y 2      1 1 5 3 (1)  Pdx Qdy          2 2 C OA AO Evaluation of              R Q P dx dy x y                   v u dxdy  6 y 16 y  dxdy x y R R
  • 14. Unit.2 Vector Calculus 14   y 1 1 2 10 10 0 0 x y x y y y dx dy xy dy          1  10y y  y 2 dy 0 1 3  2 3   10 y y dy 0       1  5   2 4  0 y y 10 5 4        2  10 2 1      5 4  10 8 5       20    30  3  (2) 20 2 For (1) and (2) Hence Green’s theorem is verified. Problem 11 Verify Gauss divergence theorem for F  yi  x j  z2 k     over the cylindrical region bounded by x2  y2  9, Z  0 and Z  2 . Solution: Gauss divergence theorem is     F . n ds   divFdV S V           div F  y  x z2  2z x y z  2 3 9  2     div F dV z dzdy dx 3 9 2 0 2 x V    x  3 9 2 2 2     3 9 2 0 2 2 x x z dydx          2    2 = 4 (Area of the circular region)  4    3 2   36 .................(1) 3 9 3 9 4 x x dydx    
  • 15. Unit.2 Vector Calculus 15   F n ds     1 2 3 . S S S S S is the bottom of the circular region, S is the top of the circular region and S is the 1 2 3 cylindrical  region  On S , n   k, ds  dxdy, z  0 1  F n ds   z dxdy  1 . 2 0 S     On 2 S , n  k , ds  dxdy, z  2  F n ds   z dx dy 2 . 2 s   4 dxdy  4 (Area of circular region)   2   4  3  36 On 3 S ,   x2  y2  9  n xi y j 2 2 4        x 2 y 2        xi  y j  3           F n ds yi x j z k xi y j ds   3 . 2      3 S     yx  yx ds 2 xy ds     3 3 S Let x  3cos , y  3sin ds  3 d dy  varies from 0 to 2 z varies from 0 to 2 2  9sin cos  3 3 2 2 0 0 d dz        2 2 18 sin 2 2 0 0 d dz       2 2  cos 2     9    2 0 0 dz    2   9 1 1 0 2     dz  0 . 0 36 0 36 ...............(2)  F n ds       S  
  • 16. Unit.2 Vector Calculus       16 from (1) and (2)     F . n ds   div FdV C V Problem 12   Verify  Stoke’s theorem for the vector field defined by F  x2  y2 i  2xy j in the rectangular region in the xy plane bounded by the lines x  0, x  a, y  0, y  b. Solution:    F  x2  y2 i  2xy j      F dr  curl F n ds By Stoke’s theorem . . C S    i j k    2 2 2 0 curlF x y z x y xy         i0  0 j 0  0 k 2y  2y  4yk As the region is in the xy plane we can take n  k and ds  dxdy curl F . n ds    4 yk . k dx dy S    0 0 4 b a     y dx dy    2  0 0 4 2 b y x a        2ab2..............(1)   F . dr         C OA AB BC CO Along OA y  0dy  0, x varies from 0 to a  2 2  0     x  y dx  2 xy dy a OA a  x  a x dx a 3 3  2        0 0 3 3 Along AB x  adx  o, y varies from 0 to b
  • 17. Unit.2 Vector Calculus     17  2 2  0    a  y .0  2 ay dy b AB  y 2  b a ab 2       0 2 2   Along BC y  b, dy  0 x varies from a to 0   0    x  b dx  2 2 0 BC a 3 0    x   b 2 x    3 a 3 2   a  ab 3 Along CO x  0, dx  0, y varies from b to 0   0     y   0 2 0 0 0 CO b 3 3    F dr  a  ab  a  ab  . 2 2 0 3 3 c  2ab2.........(2) For (1) and (2)      F . d r  curlF . nds C S Here Stoke’s theorem is verified. Problem 13 Find .  F nds S   if F  x  y2 i  2x j  2yzk where S is the surface in the plane 2x  y  2z  6 in the first octant. Solution: Let   2x  y  2z  6 be the given surface    Then   2i  j  2k        i j k i j k 2   2 2   2 4 1 4 3       The unit outward normal n  to the surface S is  1 2 2 n   i  j  k  3    Let R be the projection of S on the xy plane
  • 18. Unit.2 Vector Calculus         F n   x  y i  x j  yzk  i  j  k   x  y dx  x  xy  where C is the boundary of the 18     F . n ds F . n dx dy S R . 1 n k            . 1 2 2 . 2 n k  i  j  k k  3 3 .  2  2 2 .1 2 2  3 2  2  2 4 3 3 3  x  y  x  yz 2  2 2  3  y  yz 2  2  3  y y  z 2  6 2  3  y y   y  x 2 6 2  3  y  x 4 3  3  y  x . .     F n ds F n dx dy   n k    S S .   y  x dxdy 4 3  3 2 / 3   1    x dx dy 2 3 R   3 6 2 2 3 0 0 x x dx dy       x x y dx 3 2 6 2        2 3         2 0 0 3 3  4  3  x dx 0 4 3 0   x  4 (3 )     4    81units. Problem 14 Evaluate   2 3  C triangle with vertices 2,0,0,0,3,0&0,0,6 using Stoke’s theorem. Solution:
  • 19. Unit.2 Vector Calculus                 19    Stoke’s theorem is . .  F dr  curlF nds C S where S is the surface of the triangle and n is the unit  vector  normal to surface S . Given F.dr   x  ydx  2x  z dy   y  z dz     dr i dx  jdy  k dz F  x  yi  2x  z j   y  zk        i j k    2 curlF x y z x y x z y z             i 11  j 0  0  k 2 1    curl F  2i  k Equation of the plane ABC is x  y  z  1 2 3 6 3x  2y  z  6 Let   3x  2y  z  6      3i  2 j  k Unit normal vector to the surface ABCor  is  3 2 n i j k        14                curl F n i k i j k .  2 . 3 2 6 1 7       14 14 14    Hence .  7 curlF nds   ds S S 14  7 14 R dxdy nk    where R is the projection of surface ABC on XOY plane 7 3 2 . 1 14 1 14 14 14 R dxdy n k i j k k       7 dxdy R  7 Area of le OAB  73  21.
  • 20. Unit.2 Vector Calculus Problem 15 Verify Stoke’s theorem for F   y  zi  yz j  xzk 20     where S is the surface bounded by the planes x  0, x 1, y  0, y 1, z  0 and z 1 above the XOY plane. Solution:    Stoke's theorem is . .  F d r   F nds C S     F   y  zi  yz j  xzk    i j k F    x y z y z yz xz              yi  z 1 j  k    F n ds       1 2 3 4 5 . S S S S S S 6 S  is not applicable, since the given condition is above the XOY plane.      yi  z  j  k  idydz 1 1 . S AEGD       ydy dz AEGD 1 1 1 2 1   y dy dz y dz       1      0 0 0 0 2 1 1 2 2   z   0        yi  z  j  k  i dydz 2 1 . S OBFC     1 1 1 2 1   y dy dz y dz           0 0 0 0 1 2 2      yi  z  j  k  jdxdz 3 1 S EBFG     1 1 1     1 0    z 1 dx dz   xz  x dz 0 0 0 2 1             0 1 1 1 z z 2 2 2        yi  z  j  k   j dxdz 4 1 S OADC    
  • 21. Unit.2 Vector Calculus    y  z  dy  dz       x  z  dx  dz    21   1 1    z 1 dx dz 0 0 1 1     1 0   xz  x   z 1 dz 0 0 2 1              0     1 1 1 z z 2 2 2    yi  z  j  k kdxdy 5 1 . S DGFC     1 1 1     1 0    1 dxdy   x dy 0 0 0 1     1 0   1 dy  y  1 0        S S1 S2 S3 S4 S5 1 1 1 1 1 1 2 2 2 2           L . H . S   F . dr         C OA AE EB BO      y  z dx  yzdy  xzdz OA OA 0 0  0, 0, 0, 0 OA    y  z dx  yzdy  xzdz AE AE 0 0  1, 0, 0, 0 AE    y  z dx  yzdy  xzdz EB EB   0  1 dx y 1, z  0, 1  0 1  x  0 1  1      y  z dx  yzdy  xzdz BO BO 0 0  0, 0    x  z  BO  0          0  0 1 0  1 C OA AE EB BO
  • 22. Unit.2 Vector Calculus 22 L.HS = R.HS. Hence Stoke’s theorem is verified. z C (0,0,1) F D G O y B(0,1,0) x A (1,0,0) E (1,1,0)