SlideShare a Scribd company logo
1 of 43
Download to read offline
HUAWEI TECHNOLOGIES CO., LTD. 
www.huawei.com/enterprise 
Pierścienie w sieciach Ethernet 
Marek Janik 
marek.janik@huawei.com
Agenda 
Po co właściwie są protokoły pierścieniowe 
RRPP/SEP – protokoły własne Huawei 
G.8032/ERPS – ITU 
Założenia 
Porównanie ERPSv1 i ERPSv2 
Topologie 
Konfiguracje praktyczne
Drawbacks of STP – The convergence time is too long! 
STP (spanning-tree protocol) is built for the redundant links and loop avoidance network. When topology changes, STP takes about 30-50 seconds to converge. 
RSTP (Rapid STP) improves the speed of convergence for bridged network from 30-50 seconds to about 4 seconds, by immediately transitioning root and designated ports to the forwarding state. 
Ring Protocols only spends 50-200 ms converging but it uses a ring topology instead of tree topology. 
Potrzeby wynikające z ograniczeń STP 
STP 
RSTP 
Ring Proto 
Topology Type 
Any Topology 
Any Topology 
Ring Topology 
Convergence Time 
30-50 seconds 
6 seconds 
50-250ms*
Company 
Cisco 
3 COM 
Foundry 
HP 
Extreme 
Huawei 
Huawei 
Protocol 
REP 
RRPP 
MRP/ MRPII 
RRPP 
EAPS EAPSv2 
RRPP 
SEP 
Name 
Resilient Ethernet Protocol 
Rapid Ring Protection Protocol 
Metro Ring Protocol 
Rapid Ring Protection Protocol 
Ethernet Automatic Protection Switching 
Rapid Ring Protection Protocol 
Smart Ethernet Protection 
Ring Topologies 
Single ring/ More complex rings 
Single ring/ 
Two or more rings 
Single ring/ 
Overlapping rings 
Single ring/ 
Two or more rings 
Single rings/More complex rings 
Single ring/ 
Two or more rings 
Single ring/More Complex rings/Multi Rings 
Convergence Time 
50-250ms 
< 200ms 
50ms 
< 200ms 
Faster than RSTP 
50-60ms 
50-60ms 
Porównanie protokołów „pierścieniowych”
Principle of RRPP---Disadvantage 
RRPP meets the requirement for fast protection but encounters the following problems due to limitations of its basic mechanism: 
Sub-rings must be directly connected to the major ring and a major ring can have only one level of sub-rings. 
RRPP cannot be used with STP, RSTP, or MSTP properly. 
The revertive switching function cannot be disabled. 
The logical topology cannot be displayed, which makes network maintenance difficult. 
The configuration is complex especially when there are multiple rings on the network.
Page 6 
Single Ring 
Only one ring exists on the network. At this time, you need to define only an RRPP domain and an RRPP ring. In this networking, the change of the topology can be detected rapidly and the convergence time is short.
Page 7 
Intersectant Ring 
There are two or more than two rings on the network. There are two common nodes between rings. Only an RRPP domain needs to be defined. One ring is specified as the major ring, and the other rings are sub-rings.
Page 8 
Tangent Ring 
There are two or more than two rings on the network. There is one common node between rings. Each ring must belong to a different RRPP domain. This topology can be adopted when the network is of a large scale and the area-based management is required.
Page 9 
Principle of SEP---Feature 
SEP is designed to implement failover within 50 ms on ring networks and provide the following functions: 
Support more complex ring networks. 
Work with STP, RSTP, or MSTP. 
Prevent traffic from being switched back after link recovery, which improves network stability. 
Support logical topology display to improve network maintainability. 
Simplify configuration on multi-ring networks. 
Support flexible selection of the blocked point to better implements traffic load balancing.
Page 10 
Open ring: It is a chain topology. An open ring is also called a segment, and each segment has a unique ID. 
Closed ring: It can be considered as a special open ring where two edge ports are located on the same node. 
A SEP basic topology must have a blocked point at any time. 
Principle of SEP---Basic Topology 
Open ring 
Closed Ring
Page 11 
Closed rings and open rings can form a complex topology. 
The basic topologies can transmit topology change notifications to each other, and no complex configurations are required. 
Principle of SEP---Complex Topology
SEP Network Architecture
Konfiguracja SEP – Single-Ring krok 1 
<HUAWEI> system-view 
[HUAWEI] sysname LSW1 
[LSW1] sep segment 1 
[LSW1-sep-segment1] control-vlan 10 
[LSW1-sep-segment1] protected-instance all 
[LSW1-sep-segment1] quit 
<HUAWEI> system-view 
[HUAWEI] sysname LSW2 
[LSW2] sep segment 1 
[LSW2-sep-segment1] control-vlan 10 
[LSW2-sep-segment1] protected-instance all 
[LSW2-sep-segment1] quit 
<HUAWEI> system-view 
[HUAWEI] sysname LSW3 
[LSW3] sep segment 1 
[LSW3-sep-segment1] control-vlan 10 
[LSW3-sep-segment1] protected-instance all 
[LSW3-sep-segment1] quit 
<HUAWEI> system-view 
[HUAWEI] sysname LSW4 
[LSW4] sep segment 1 
[LSW4-sep-segment1] control-vlan 10 
[LSW4-sep-segment1] protected-instance all 
[LSW4-sep-segment1] quit 
<HUAWEI> system-view 
[HUAWEI] sysname LSW5 
[LSW5] sep segment 1 
[LSW5-sep-segment1] control-vlan 10 
[LSW5-sep-segment1] protected-instance all 
[LSW5-sep-segment1] quit
Konfiguracja SEP – Single-Ring krok 2 
LSW1] interface gigabitethernet 0/0/1 
[LSW1-GigabitEthernet0/0/1] port link-type hybrid 
[LSW1-GigabitEthernet0/0/1] stp disable 
[LSW1-GigabitEthernet0/0/1] sep segment 1 edge primary 
[LSW1-GigabitEthernet0/0/1] quit 
[LSW1] interface gigabitethernet 0/0/3 
[LSW1-GigabitEthernet0/0/3] port link-type hybrid 
[LSW1-GigabitEthernet0/0/3] stp disable 
[LSW1-GigabitEthernet0/0/3] sep segment 1 edge secondary 
[LSW1-GigabitEthernet0/0/3] quit 
[LSW2] interface gigabitethernet 0/0/1 
[LSW2-GigabitEthernet0/0/1] port link-type hybrid 
[LSW2-GigabitEthernet0/0/1] stp disable 
[LSW2-GigabitEthernet0/0/1] sep segment 1 
[LSW2-GigabitEthernet0/0/1] quit[ 
LSW2] interface gigabitethernet 0/0/2 
[LSW2-GigabitEthernet0/0/2] port link-type hybrid 
[LSW2-GigabitEthernet0/0/2] stp disable 
[LSW2-GigabitEthernet0/0/2] sep segment 1 
[LSW2-GigabitEthernet0/0/2] quit 
[LSW3] interface gigabitethernet 0/0/1 
[LSW3-GigabitEthernet0/0/1] port link-type hybrid 
[LSW3-GigabitEthernet0/0/1] stp disable 
[LSW3-GigabitEthernet0/0/1] sep segment 1 
[LSW3-GigabitEthernet0/0/1] quit[ 
LSW3] interface gigabitethernet 0/0/2 
[LSW3-GigabitEthernet0/0/2] port link-type hybrid 
[LSW3-GigabitEthernet0/0/2] stp disable 
[LSW3-GigabitEthernet0/0/2] sep segment 1
Konfiguracja SEP – Single-Ring krok 3 
[LSW1] sep segment 1 
[LSW1-sep-segment1] block port optimal 
#Set the priority of GE0/0/2 on LSW3. 
[LSW3] interface gigabitethernet 0/0/2 
[LSW3-GigabitEthernet0/0/2] sep segment 1 priority 128 
[LSW3-GigabitEthernet0/0/2] quit
Page 16 
Ring Network Protocol 
Advantage 
Disadvantage 
STP/RSTP/MSTP 
•Apply to all Layer 2 networks. 
•Are standard IEEE protocols that allow Huawei devices to communicate with non-Huawei devices. 
Provides a low convergence speed on a large network, which cannot meet the carrier-class reliability requirement. 
RRPP 
Features fast convergence, meeting the carrier-class reliability requirement. 
•Supports only level-1 subrings on ring networks. 
•Is a Huawei proprietary protocol that does not support interoperability between Huawei and non-Huawei devices. 
SEP 
•Applies to all Layer 2 networks. 
•Features fast convergence, meeting the carrier- class reliability requirement. 
•Displays the topology of an entire ring, facilitating fault location and device maintenance. 
Is a Huawei proprietary protocol that does not support interoperability between Huawei and non-Huawei devices. 
ERPS 
Features fast convergence, meeting the carrier-class reliability requirement. 
Supports single-ring and multi-ring networking. 
Introduction to ERPS 
On a ring network, devices supporting ERPS can communicate with each other regardless of their manufacturers. 
ERPS is a protocol defined by the ITU-T to prevent loops at Layer 2. Because it is defined in Recommendation ITU-T G.8032/Y.1344, it is also called G.8032. ERPS defines R-APS PDUs and the protection switching mechanism. 
ERPS blocks a specified port to prevent loops at the Ethernet link layer. 
ERPS has two versions: ERPSv1 released in June 2008 and ERPSv2 released in August 2010. 
Comparison Among Ring Network Protocols Supported by Huawei Devices
17 
G.8032 Objectives and Principles 
Use of standard 802 MAC and OAM frames around the ring. Uses standard 802.1Q (and amended Q bridges), but with xSTP disabled. 
Ring nodes supports standard FDB MAC learning, forwarding, flush behaviour and port blocking/unblocking mechanisms. 
Prevents loops within the ring by blocking one of the links (either a pre- determined link or a failed link). 
Monitoring of the ETH layer for discovery and identification of Signal Failure (SF) conditions. 
Protection and recovery switching within 50 ms for typical rings. 
Total communication for the protection mechanism should consume a very small percentage of total available bandwidth.
HUAWEI TECHNOLOGIES CO., LTD. 
Huawei Confidential 
18 
G.8032 Terms and Concepts 
Ring Protection Link (RPL) – Link designated by mechanism that is blocked during Idle state to prevent loop on Bridged ring 
RPL Owner – Node connected to RPL that blocks traffic on RPL during Idle state and unblocks during Protected state 
Link Monitoring – Links of ring are monitored using standard ETH CC OAM messages (CFM) 
Signal Fail (SF) – Signal Fail is declared when ETH trail signal fail condition is detected 
No Request (NR) – No Request is declared when there are no outstanding conditions (e.g., SF, etc.) on the node 
Ring APS (R-APS) Messages – Protocol messages defined in Y.1731 and G.8032 
Automatic Protection Switching (APS) Channel - Ring-wide VLAN used exclusively for transmission of OAM messages including R-APS messages
Page 19 
Basic ERPS Concepts 
Control VLAN: A control VLAN is only used to transmit R-APS PDUs. Each ERPS ring must have a control VLAN. After a port is added to an ERPS ring that has a control VLAN, the port is automatically added to the control VLAN. ERPS rings must use different control VLANs. 
Data VLAN: A data VLAN is used to transmit data packets. 
Protected instance: On an ERPS-enabled Layer 2 device, VLANs that transmit R-APS PDUs and data packets must be mapped to a protected instance so that ERPS forwards or blocks these VLAN packets. Otherwise, VLAN packets may cause broadcast storms on the ring network, making the network unavailable. 
Example 
As shown in the figure, four switches form an ERPS ring and are nodes on the ring. 
The port marked in red is the RPL owner port. When ERPS works normally, the RPL owner port is in Discarding state, preventing loops on the ERPS ring.
Physical topology has all nodes connected in a ring 
ERP guarantees lack of loop by blocking the RPL (link between 6 & 1 in figure) 
Logical topology has all nodes connected without a loop. 
Each link is monitored by its two adjacent nodes using ETH CC OAM messages 
Signal Failure as defined in Y.1731, is trigger to ring protection 
Loss of Continuity 
Server layer failure (e.g. Phy Link Down) 
RPL Owner 
RPL 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
ETH-CC 
Physical topology 
Logical topology 
1 
2 
6 
4 
3 
5 
RPL 
1 
2 
6 
4 
3 
5 
Ring Idle State
Protection Switching  Link Failure 
A.Link/node failure is detected by the nodes adjacent to the failure. 
B.The nodes adjacent to the failure, block the failed link and report this failure to the ring using R-APS (SF) message 
C.R-APS (SF) message triggers 
RPL Owner unblocks the RPL 
All nodes perform FDB flushing 
D.Ring is in protection state 
E.All nodes remain connected in the logical topology. 
Physical topology 
Logical topology 
1 
2 
6 
4 
3 
5 
RPL 
1 
2 
6 
4 
3 
5 
RPL 
1 
2 
6 
4 
3 
5 
1 
2 
6 
4 
3 
5 
RPL Owner 
RPL 
R-APS(SF) 
R-APS(SF) 
R-APS(SF) 
R-APS(SF)
Protection Switching  Failure Recovery 
A.When the failed link recovers, the traffic is kept blocked on the nodes adjacent to the recovered link 
B.The nodes adjacent to the recovered link transmit R-APS(NR) message indicating they have no local request present 
C.When the RPL Owner receives R- APS(NR) message it Starts WTR timer 
D.Once WTR timer expires, RPL Owner blocks RPL and transmits R-APS (NR, RB) message 
E.Nodes receiving the message – perform a FDB Flush and unblock their previously blocked ports 
F.Ring is now returned to Idle state 
RPL Owner 
RPL 
R-APS(NR) 
R-APS(NR) 
R-APS(NR) 
R-APS(NR) 
R-APS(NR, RB) 
R-APS(NR, RB) 
Physical topology 
Logical topology 
1 
2 
6 
4 
3 
5 
RPL 
1 
2 
6 
4 
3 
5 
1 
2 
6 
4 
3 
5 
RPL 
1 
2 
6 
4 
3 
5
Porównanie ERPSv1 i ERPSv2 
Function 
ERPSv1 
ERPSv2 
Ring type 
Supports single rings only. 
Supports single rings and multi-rings. A multi-ring topology comprises major rings and sub-rings. 
Port role configuration 
Supports the ring protection link (RPL) owner port and ordinary ports. 
Supports the RPL owner port, RPL neighbor port, and ordinary ports. 
Topology change notification 
Not supported. 
Supported. 
R-APS PDU transmission modes on sub-rings 
Not supported. 
Supported. 
Revertive and non- revertive switching 
Supports revertive switching by default and does not support non- revertive switching or switching mode configuration. 
Supported. 
Manual port blocking 
Not supported. 
Supports forced switch (FS) and manual switch (MS).
Interconnected rings with a VC or NVC 
Page 24 
VC: RAPS PDUs in sub-rings are transmitted to the major ring through interconnected nodes. The RPL owner port of the sub-ring blocks both RAPS PDUs and data traffic. 
NVC: RAPS PDUs in sub-rings are terminated on the interconnected nodes. The RPL owner port blocks data traffic but not RAPS PDUs in each sub-ring.
Topologie ERPS – Single-Ring, Multi- Instance
Topologie ERPS – Multi-Ring and Ladder LSW4LSW1LSW3Blocked portLSW2LSW6LSW5Ring 2Ring 1LSW5LSW5VLAN/VPLSNPERing 3
Konfiguracja ERPS – Single Ring 
# Configure SwitchA. 
The configurations of SwitchB, SwitchC, SwitchD, and SwitchE are similar to the configuration of SwitchA 
<Switch> system-view 
[Switch] sysname SwitchA 
[SwitchA] vlan batch 100 to 200 
[SwitchA] interface gigabitethernet 1/0/1 
[SwitchA-GigabitEthernet1/0/1] port link-type trunk 
[SwitchA-GigabitEthernet1/0/1] port trunk allow-pass vlan 100 to 200 
[SwitchA-GigabitEthernet1/0/1] quit 
[SwitchA] interface gigabitethernet 1/0/2 
[SwitchA-GigabitEthernet1/0/2] port link-type trunk 
[SwitchA-GigabitEthernet1/0/2] port trunk allow-pass vlan 100 to 200 
[SwitchA-GigabitEthernet1/0/2] quit 
# Configure SwitchA. 
[SwitchA] erps ring 1 
[SwitchA-erps-ring1] control-vlan 10 
[SwitchA-erps-ring1] protected-instance 1 
[SwitchA-erps-ring1] quit 
[SwitchA] stp region-configuration 
[SwitchA-mst-region] instance 1 vlan 10 100 to 200 
[SwitchA-mst-region] active region-configuration 
[SwitchA-mst-region] quit
Konfiguracja ERPS – Single Ring 
# Configure SwitchA. 
[SwitchA] interface gigabitethernet 1/0/1 
[SwitchA-GigabitEthernet1/0/1] stp disable 
[SwitchA-GigabitEthernet1/0/1] erps ring 1 
[SwitchA-GigabitEthernet1/0/1] quit 
[SwitchA] interface gigabitethernet 1/0/2 
[SwitchA-GigabitEthernet1/0/2] stp disable 
[SwitchA-GigabitEthernet1/0/2] erps ring 1 
[SwitchA-GigabitEthernet1/0/2] quit 
# The configurations of SwitchB, SwitchD, and SwitchE are similar to the configuration of SwitchA, 
# Configure SwitchC. 
[SwitchC] interface gigabitethernet 1/0/1 
[SwitchC-GigabitEthernet1/0/1] stp disable 
[SwitchC-GigabitEthernet1/0/1] erps ring 1 
[SwitchC-GigabitEthernet1/0/1] quit 
[SwitchC] interface gigabitethernet 1/0/2 
[SwitchC-GigabitEthernet1/0/2] stp disable 
[SwitchC-GigabitEthernet1/0/2] erps ring 1 rpl owner 
[SwitchC-GigabitEthernet1/0/2] quit
[SwitchC] display erps ring 1 verbose 
Ring ID : 1 
Description : Ring 1 
Control Vlan : 10 
Protected Instance : 1 
WTR Timer Setting (min) : 6 Running (s) : 0 
Guard Timer Setting (csec) : 100 Running (csec) : 0 
Holdoff Timer Setting (deciseconds) : 0 Running (deciseconds) : 0 
Ring State : Idle 
RAPS_MEL : 7 
Time since last topology change : 0 days 0h:33m:4s 
-------------------------------------------------------------------------------- 
Port Port Role Port Status Signal Status 
-------------------------------------------------------------------------------- 
GE1/0/1 Common Forwarding Non-failed 
GE1/0/2 RPL Owner Discarding Non-failed
Konfiguracja ERPS – Multi-Ring krok 1 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchA 
[SwitchA] interface gigabitethernet 0/0/1 
[SwitchA-GigabitEthernet0/0/1] port link-type trunk 
[SwitchA-GigabitEthernet0/0/1] quit 
[SwitchA] interface gigabitethernet 0/0/2 
[SwitchA-GigabitEthernet0/0/2] port link-type trunk 
[SwitchA-GigabitEthernet0/0/2] quit 
[SwitchA] interface gigabitethernet 0/0/3 
[SwitchA-GigabitEthernet0/0/3] port link-type trunk 
[SwitchA-GigabitEthernet0/0/3] quit 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchD 
[SwitchD] interface gigabitethernet 0/0/1 
[SwitchD-GigabitEthernet0/0/1] port link-type trunk 
[SwitchD-GigabitEthernet0/0/1] quit 
[SwitchD] interface gigabitethernet 0/0/2 
[SwitchD-GigabitEthernet0/0/2] port link-type trunk 
[SwitchD-GigabitEthernet0/0/2] quit 
[SwitchD] interface gigabitethernet 0/0/3 
[SwitchD-GigabitEthernet0/0/3] port link-type trunk 
[SwitchD-GigabitEthernet0/0/3] quit
Konfiguracja ERPS – Multi-Ring krok 1 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchB 
[SwitchB] interface gigabitethernet 0/0/1 
[SwitchB-GigabitEthernet0/0/1] port link-type trunk 
[SwitchB-GigabitEthernet0/0/1] quit 
[SwitchB] interface gigabitethernet 0/0/2 
[SwitchB-GigabitEthernet0/0/2] port link-type trunk 
[SwitchB-GigabitEthernet0/0/2] quit 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchC 
[SwitchC] interface gigabitethernet 0/0/1 
[SwitchC-GigabitEthernet0/0/1] port link-type trunk 
[SwitchC-GigabitEthernet0/0/1] quit 
[SwitchC] interface gigabitethernet 0/0/2 
[SwitchC-GigabitEthernet0/0/2] port link-type trunk 
[SwitchC-GigabitEthernet0/0/2] quit
Konfiguracja ERPS – Multi-Ring krok 2 
[SwitchA] erps ring 1 
[SwitchA-erps-ring1] control-vlan 10 
[SwitchA-erps-ring1] protected-instance 1 
[SwitchA-erps-ring1] quit 
[SwitchA] stp region-configuration 
[SwitchA-mst-region] instance 1 vlan 10 100 to 200 
[SwitchA-mst-region] active region-configuration 
[SwitchA-mst-region] quit 
[SwitchA] erps ring 2 
[SwitchA-erps-ring2] control-vlan 20 
[SwitchA-erps-ring2] protected-instance 2 
[SwitchA-erps-ring2] quit 
[SwitchA] stp region-configuration 
[SwitchA-mst-region] instance 2 vlan 20 300 to 400 
[SwitchA-mst-region] active region-configuration 
[SwitchA-mst-region] quit 
[SwitchB] erps ring 1 
[SwitchB-erps-ring1] control-vlan 10 
[SwitchB-erps-ring1] protected-instance 1 
[SwitchB-erps-ring1] quit 
[SwitchB] stp region-configuration 
[SwitchB-mst-region] instance 1 vlan 10 100 to 200 
[SwitchB-mst-region] active region-configuration 
[SwitchB-mst-region] quit
Konfiguracja ERPS – Multi-Ring krok 2 
[SwitchD] erps ring 1 
[SwitchD-erps-ring1] control-vlan 10 
[SwitchD-erps-ring1] protected-instance 1 
[SwitchD-erps-ring1] quit 
[SwitchD] stp region-configuration 
[SwitchD-mst-region] instance 1 vlan 10 100 to 200 
[SwitchD-mst-region] active region-configuration 
[SwitchD-mst-region] quit 
[SwitchD] erps ring 2 
[SwitchD-erps-ring2] control-vlan 20 
[SwitchD-erps-ring2] protected-instance 2 
[SwitchD-erps-ring2] quit 
[SwitchD] stp region-configuration 
[SwitchD-mst-region] instance 2 vlan 20 300 to 400 
[SwitchD-mst-region] active region-configuration 
[SwitchD-mst-region] quit 
[SwitchC] erps ring 2 
[SwitchC-erps-ring2] control-vlan 20 
[SwitchC-erps-ring2] protected-instance 2 
[SwitchC-erps-ring2] quit 
[SwitchC] stp region-configuration 
[SwitchC-mst-region] instance 2 vlan 20 300 to 400 
[SwitchC-mst-region] active region-configuration 
[SwitchC-mst-region] quit
Konfiguracja ERPS – Multi-Ring krok 3 
[SwitchA] erps ring 1 
[SwitchA-erps-ring1] version v2 
[SwitchA-erps-ring1] quit 
[SwitchA] erps ring 2 
[SwitchA-erps-ring2] version v2 
[SwitchA-erps-ring2] sub-ring 
[SwitchA-erps-ring2] quit 
[SwitchB] erps ring 1 
[SwitchB-erps-ring1] version v2 
[SwitchB-erps-ring1] quit 
[SwitchC] erps ring 2 
[SwitchC-erps-ring2] version v2 
[SwitchC-erps-ring2] sub-ring 
[SwitchC-erps-ring2] quit 
[SwitchD] erps ring 1 
[SwitchD-erps-ring1] version v2 
[SwitchD-erps-ring1] quit 
[SwitchD] erps ring 2 
[SwitchD-erps-ring2] version v2 
[SwitchD-erps-ring2] sub-ring 
[SwitchD-erps-ring2] quit
Konfiguracja ERPS – Multi-Ring krok 4 
[SwitchA] interface gigabitethernet 0/0/1 
[SwitchA-GigabitEthernet0/0/1] stp disable 
[SwitchA-GigabitEthernet0/0/1] erps ring 1 
[SwitchA-GigabitEthernet0/0/1] quit 
[SwitchA] interface gigabitethernet 0/0/2 
[SwitchA-GigabitEthernet0/0/2] stp disable 
[SwitchA-GigabitEthernet0/0/2] erps ring 1 
[SwitchA-GigabitEthernet0/0/2] erps ring 2 
[SwitchA-GigabitEthernet0/0/2] quit 
[SwitchA] interface gigabitethernet 0/0/3 
[SwitchA-GigabitEthernet0/0/3] stp disable 
[SwitchA-GigabitEthernet0/0/3] erps ring 2 
[SwitchA-GigabitEthernet0/0/3] quit# 
[SwitchB] interface gigabitethernet 0/0/1 
[SwitchB-GigabitEthernet0/0/1] stp disable 
[SwitchB-GigabitEthernet0/0/1] erps ring 1 rpl owner 
[SwitchB-GigabitEthernet0/0/1] quit 
[SwitchB] interface gigabitethernet 0/0/2 
[SwitchB-GigabitEthernet0/0/2] stp disable 
[SwitchB-GigabitEthernet0/0/2] erps ring 1 
[SwitchB-GigabitEthernet0/0/2] quit
Konfiguracja ERPS – Multi-Ring krok 4 
[SwitchC] interface gigabitethernet 0/0/1 
[SwitchC-GigabitEthernet0/0/1] stp disable 
[SwitchC-GigabitEthernet0/0/1] erps ring 2 rpl owner 
[SwitchC-GigabitEthernet0/0/1] quit 
[SwitchC] interface gigabitethernet 0/0/2 
[SwitchC-GigabitEthernet0/0/2] stp disable 
[SwitchC-GigabitEthernet0/0/2] erps ring 2 
[SwitchC-GigabitEthernet0/0/2] quit# 
[SwitchD] interface gigabitethernet 0/0/1 
[SwitchD-GigabitEthernet0/0/1] stp disable 
[SwitchD-GigabitEthernet0/0/1] erps ring 1 
[SwitchD-GigabitEthernet0/0/1] quit 
[SwitchD] interface gigabitethernet 0/0/2 
[SwitchD-GigabitEthernet0/0/2] stp disable 
[SwitchD-GigabitEthernet0/0/2] erps ring 1 
[SwitchD-GigabitEthernet0/0/2] erps ring 2 
[SwitchD-GigabitEthernet0/0/2] quit 
[SwitchD] interface gigabitethernet 0/0/3 
[SwitchD-GigabitEthernet0/0/3] stp disable 
[SwitchD-GigabitEthernet0/0/3] erps ring 2 
[SwitchD-GigabitEthernet0/0/3] quit
Konfiguracja ERPS – Multi-Ring krok 5 
[SwitchA] erps ring 2 
[SwitchA-erps-ring2] tc-notify erps ring 1 
[SwitchA-erps-ring2] quit 
[SwitchD] erps ring 2 
[SwitchD-erps-ring2] tc-notify erps ring 1 
[SwitchD-erps-ring2] quit
Konfiguracja ERPS – Multi-Instance krok 1 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchA 
[SwitchA] interface gigabitethernet 0/0/1 
[SwitchA-GigabitEthernet0/0/1] port link-type trunk 
[SwitchA-GigabitEthernet0/0/1] quit 
[SwitchA] interface gigabitethernet 0/0/2 
[SwitchA-GigabitEthernet0/0/2] port link-type trunk 
[SwitchA-GigabitEthernet0/0/2] quit 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchB 
[SwitchB] interface gigabitethernet 0/0/1 
[SwitchB-GigabitEthernet0/0/1] port link-type trunk 
[SwitchB-GigabitEthernet0/0/1] quit 
[SwitchB] interface gigabitethernet 0/0/2 
[SwitchB-GigabitEthernet0/0/2] port link-type trunk 
[SwitchB-GigabitEthernet0/0/2] quit 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchC 
[SwitchC] interface gigabitethernet 0/0/1 
[SwitchC-GigabitEthernet0/0/1] port link-type trunk 
[SwitchC-GigabitEthernet0/0/1] quit 
[SwitchC] interface gigabitethernet 0/0/2 
[SwitchC-GigabitEthernet0/0/2] port link-type trunk 
[SwitchC-GigabitEthernet0/0/2] quit 
<HUAWEI> system-view 
[HUAWEI] sysname SwitchD 
[SwitchD] interface gigabitethernet 0/0/1 
[SwitchD-GigabitEthernet0/0/1] port link-type trunk 
[SwitchD-GigabitEthernet0/0/1] quit 
[SwitchD] interface gigabitethernet 0/0/2 
[SwitchD-GigabitEthernet0/0/2] port link-type trunk 
[SwitchD-GigabitEthernet0/0/2] quit
Konfiguracja ERPS – Multi-Instance krok 2 
[SwitchA] erps ring 1 
[SwitchA-erps-ring1] control-vlan 10 
[SwitchA-erps-ring1] protected-instance 1 
[SwitchA-erps-ring1] quit 
[SwitchA] stp region-configuration 
[SwitchA-mst-region] instance 1 vlan 10 100 to 200 
[SwitchA-mst-region] active region-configuration 
[SwitchA-mst-region] quit 
[SwitchA] erps ring 2 
[SwitchA-erps-ring2] control-vlan 20 
[SwitchA-erps-ring2] protected-instance 2 
[SwitchA-erps-ring2] quit 
[SwitchA] stp region-configuration 
[SwitchA-mst-region] instance 2 vlan 20 300 to 400 
[SwitchA-mst-region] active region-configuration 
[SwitchA-mst-region] quit 
[SwitchB] erps ring 1 
[SwitchB-erps-ring1] control-vlan 10 
[SwitchB-erps-ring1] protected-instance 1 
[SwitchB-erps-ring1] quit 
[SwitchB] stp region-configuration 
[SwitchB-mst-region] instance 1 vlan 10 100 to 200 
[SwitchB-mst-region] active region-configuration 
[SwitchB-mst-region] quit 
[SwitchB] erps ring 2 
[SwitchB-erps-ring2] control-vlan 20 
[SwitchB-erps-ring2] protected-instance 2 
[SwitchB-erps-ring2] quit 
[SwitchB] stp region-configuration 
[SwitchB-mst-region] instance 2 vlan 20 300 to 400 
[SwitchB-mst-region] active region-configuration 
[SwitchB-mst-region] quit
Konfiguracja ERPS – Multi-Instance krok 2 
[SwitchC] erps ring 1 
[SwitchC-erps-ring1] control-vlan 10 
[SwitchC-erps-ring1] protected-instance 1 
[SwitchC-erps-ring1] quit 
[SwitchC] stp region-configuration 
[SwitchC-mst-region] instance 1 vlan 10 100 to 200 
[SwitchC-mst-region] active region-configuration 
[SwitchC-mst-region] quit 
[SwitchC] erps ring 2 
[SwitchC-erps-ring2] control-vlan 20 
[SwitchC-erps-ring2] protected-instance 2 
[SwitchC-erps-ring2] quit 
[SwitchC] stp region-configuration 
[SwitchC-mst-region] instance 2 vlan 20 300 to 400 
[SwitchC-mst-region] active region-configuration 
[SwitchC-mst-region] quit 
[SwitchD] erps ring 1 
[SwitchD-erps-ring1] control-vlan 10 
[SwitchD-erps-ring1] protected-instance 1 
[SwitchD-erps-ring1] quit 
[SwitchD] stp region-configuration 
[SwitchD-mst-region] instance 1 vlan 10 100 to 200 
[SwitchD-mst-region] active region-configuration 
[SwitchD-mst-region] quit 
[SwitchD] erps ring 2 
[SwitchD-erps-ring2] control-vlan 20 
[SwitchD-erps-ring2] protected-instance 2 
[SwitchD-erps-ring2] quit 
[SwitchD] stp region-configuration 
[SwitchD-mst-region] instance 2 vlan 20 300 to 400 
[SwitchD-mst-region] active region-configuration 
[SwitchD-mst-region] quit
Konfiguracja ERPS – Multi-Instance krok 3 
[SwitchA] interface gigabitethernet 0/0/1 
[SwitchA-GigabitEthernet0/0/1] stp disable 
[SwitchA-GigabitEthernet0/0/1] erps ring 1 
[SwitchA-GigabitEthernet0/0/1] erps ring 2 rpl owner 
[SwitchA-GigabitEthernet0/0/1] quit 
[SwitchA] interface gigabitethernet 0/0/2 
[SwitchA-GigabitEthernet0/0/2] stp disable 
[SwitchA-GigabitEthernet0/0/2] erps ring 1 
[SwitchA-GigabitEthernet0/0/2] erps ring 2 
[SwitchA-GigabitEthernet0/0/2] quit 
[SwitchB] interface gigabitethernet 0/0/1 
[SwitchB-GigabitEthernet0/0/1] stp disable 
[SwitchB-GigabitEthernet0/0/1] erps ring 1 
[SwitchB-GigabitEthernet0/0/1] erps ring 2 
[SwitchB-GigabitEthernet0/0/1] quit 
[SwitchB] interface gigabitethernet 0/0/2 
[SwitchB-GigabitEthernet0/0/2] stp disable 
[SwitchB-GigabitEthernet0/0/2] erps ring 1 rpl owner 
[SwitchB-GigabitEthernet0/0/2] erps ring 2 
[SwitchB-GigabitEthernet0/0/2] quit
Konfiguracja ERPS – Multi-Instance krok 3 
[SwitchC] interface gigabitethernet 0/0/1 
[SwitchC-GigabitEthernet0/0/1] stp disable 
[SwitchC-GigabitEthernet0/0/1] erps ring 1 
[SwitchC-GigabitEthernet0/0/1] erps ring 2 
[SwitchC-GigabitEthernet0/0/1] quit 
[SwitchC] interface gigabitethernet 0/0/2 
[SwitchC-GigabitEthernet0/0/2] stp disable 
[SwitchC-GigabitEthernet0/0/2] erps ring 1 
[SwitchC-GigabitEthernet0/0/2] erps ring 2 
[SwitchC-GigabitEthernet0/0/2] quit 
[SwitchD] interface gigabitethernet 0/0/1 
[SwitchD-GigabitEthernet0/0/1] stp disable 
[SwitchD-GigabitEthernet0/0/1] erps ring 1 
[SwitchD-GigabitEthernet0/0/1] erps ring 2 
[SwitchD-GigabitEthernet0/0/1] quit 
[SwitchD] interface gigabitethernet 0/0/2 
[SwitchD-GigabitEthernet0/0/2] stp disable 
[SwitchD-GigabitEthernet0/0/2] erps ring 1 
[SwitchD-GigabitEthernet0/0/2] erps ring 2 
[SwitchD-GigabitEthernet0/0/2] quit
Thank you 
www.huawei.com

More Related Content

What's hot

Ccna 3 chapter 2 exam answer v5
Ccna 3 chapter 2 exam answer v5Ccna 3 chapter 2 exam answer v5
Ccna 3 chapter 2 exam answer v5
friv4schoolgames
 
Advance eigrp
Advance eigrp Advance eigrp
Advance eigrp
firey
 
Packet Tracer Simulation Lab Layer 2 Switching
Packet Tracer Simulation Lab Layer 2 SwitchingPacket Tracer Simulation Lab Layer 2 Switching
Packet Tracer Simulation Lab Layer 2 Switching
Johnson Liu
 

What's hot (20)

CCNP Switching Chapter 4
CCNP Switching Chapter 4CCNP Switching Chapter 4
CCNP Switching Chapter 4
 
Ccna 3 chapter 2 exam answer v5
Ccna 3 chapter 2 exam answer v5Ccna 3 chapter 2 exam answer v5
Ccna 3 chapter 2 exam answer v5
 
Juniper Platform Overview
Juniper Platform OverviewJuniper Platform Overview
Juniper Platform Overview
 
CCNP Switching Chapter 6
CCNP Switching Chapter 6CCNP Switching Chapter 6
CCNP Switching Chapter 6
 
CCNA R&S-12-Spanning Tree Protocol Concepts
CCNA R&S-12-Spanning Tree Protocol ConceptsCCNA R&S-12-Spanning Tree Protocol Concepts
CCNA R&S-12-Spanning Tree Protocol Concepts
 
CCNP Switching Chapter 5
CCNP Switching Chapter 5CCNP Switching Chapter 5
CCNP Switching Chapter 5
 
CCNA3 Verson6 Chapter10
CCNA3 Verson6 Chapter10CCNA3 Verson6 Chapter10
CCNA3 Verson6 Chapter10
 
Chapter 2 LAN redundancy
Chapter 2   LAN  redundancyChapter 2   LAN  redundancy
Chapter 2 LAN redundancy
 
Lan Network with Redundancy.ppt
Lan Network with Redundancy.pptLan Network with Redundancy.ppt
Lan Network with Redundancy.ppt
 
CCNP Switching Chapter 8
CCNP Switching Chapter 8CCNP Switching Chapter 8
CCNP Switching Chapter 8
 
Advance eigrp
Advance eigrp Advance eigrp
Advance eigrp
 
Lab 6.4.1 InterVLAN routing
Lab 6.4.1 InterVLAN routingLab 6.4.1 InterVLAN routing
Lab 6.4.1 InterVLAN routing
 
End to End Convergence
End to End ConvergenceEnd to End Convergence
End to End Convergence
 
CCNP ROUTE V7 CH4
CCNP ROUTE V7 CH4CCNP ROUTE V7 CH4
CCNP ROUTE V7 CH4
 
CCNP Switching Chapter 3
CCNP Switching Chapter 3CCNP Switching Chapter 3
CCNP Switching Chapter 3
 
Multi Protocol Label Switching. (by Rahil Reyaz)
Multi Protocol Label Switching. (by Rahil Reyaz)Multi Protocol Label Switching. (by Rahil Reyaz)
Multi Protocol Label Switching. (by Rahil Reyaz)
 
Packet Tracer Simulation Lab Layer 2 Switching
Packet Tracer Simulation Lab Layer 2 SwitchingPacket Tracer Simulation Lab Layer 2 Switching
Packet Tracer Simulation Lab Layer 2 Switching
 
10.) vxlan
10.) vxlan10.) vxlan
10.) vxlan
 
CCNA Exploration 3 - Chapter 5
CCNA Exploration 3 - Chapter 5CCNA Exploration 3 - Chapter 5
CCNA Exploration 3 - Chapter 5
 
CCNA3 Verson6 Chapter4
CCNA3 Verson6 Chapter4CCNA3 Verson6 Chapter4
CCNA3 Verson6 Chapter4
 

Viewers also liked

PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
PROIDEA
 
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environmentPLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
PROIDEA
 

Viewers also liked (13)

PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
PLNOG 13: Andrzej Karpiński: Mechanizmy ochrony anty-DDoS stosowanych w Tele...
 
PLNOG 13: Piotr Głaska: Quality of service monitoring in IP networks
PLNOG 13: Piotr Głaska: Quality of service monitoring in IP networksPLNOG 13: Piotr Głaska: Quality of service monitoring in IP networks
PLNOG 13: Piotr Głaska: Quality of service monitoring in IP networks
 
PLNOG 13: Artur Gmaj: Architecture of Modern Data Center
PLNOG 13: Artur Gmaj: Architecture of Modern Data CenterPLNOG 13: Artur Gmaj: Architecture of Modern Data Center
PLNOG 13: Artur Gmaj: Architecture of Modern Data Center
 
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environmentPLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
PLNOG 13: Bart Salaets: Optimising TCP in today’s changing network environment
 
PLNOG 13: Robert Ślaski: NFV, Virtualise networks or die – the voice of the r...
PLNOG 13: Robert Ślaski: NFV, Virtualise networks or die – the voice of the r...PLNOG 13: Robert Ślaski: NFV, Virtualise networks or die – the voice of the r...
PLNOG 13: Robert Ślaski: NFV, Virtualise networks or die – the voice of the r...
 
PLNOG 13: Piotr Okupski: Implementation of Wanguard software as a protection ...
PLNOG 13: Piotr Okupski: Implementation of Wanguard software as a protection ...PLNOG 13: Piotr Okupski: Implementation of Wanguard software as a protection ...
PLNOG 13: Piotr Okupski: Implementation of Wanguard software as a protection ...
 
PLNOG 13: Paweł Kuśmierski: How Akamai and Prolexic mitigate (D)DoS attacks
PLNOG 13: Paweł Kuśmierski: How Akamai and Prolexic mitigate (D)DoS attacksPLNOG 13: Paweł Kuśmierski: How Akamai and Prolexic mitigate (D)DoS attacks
PLNOG 13: Paweł Kuśmierski: How Akamai and Prolexic mitigate (D)DoS attacks
 
PLNOG 13: Radosław Ziemba: GPON or xWDM as technology for connecting business...
PLNOG 13: Radosław Ziemba: GPON or xWDM as technology for connecting business...PLNOG 13: Radosław Ziemba: GPON or xWDM as technology for connecting business...
PLNOG 13: Radosław Ziemba: GPON or xWDM as technology for connecting business...
 
PLNOG 13: P. Kupisiewicz, O. Pelerin: Make IOS-XE Troubleshooting Easy – Pack...
PLNOG 13: P. Kupisiewicz, O. Pelerin: Make IOS-XE Troubleshooting Easy – Pack...PLNOG 13: P. Kupisiewicz, O. Pelerin: Make IOS-XE Troubleshooting Easy – Pack...
PLNOG 13: P. Kupisiewicz, O. Pelerin: Make IOS-XE Troubleshooting Easy – Pack...
 
PLNOG 13: Krzysztof Mazepa: BGP FlowSpec
PLNOG 13: Krzysztof Mazepa: BGP FlowSpecPLNOG 13: Krzysztof Mazepa: BGP FlowSpec
PLNOG 13: Krzysztof Mazepa: BGP FlowSpec
 
Nimsoft SaaS Service Desk Essentials - presented at CA World 2011
Nimsoft SaaS Service Desk Essentials - presented at CA World 2011Nimsoft SaaS Service Desk Essentials - presented at CA World 2011
Nimsoft SaaS Service Desk Essentials - presented at CA World 2011
 
Inflation
InflationInflation
Inflation
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 

Similar to PLNOG 13: Marek Janik: Rings in Ethernet Networks

Day 1 LTE Technology Overview
Day 1 LTE Technology OverviewDay 1 LTE Technology Overview
Day 1 LTE Technology Overview
mahesh savita
 
Rail-net Indian railway internet
Rail-net Indian railway internetRail-net Indian railway internet
Rail-net Indian railway internet
Rahul Kumar
 

Similar to PLNOG 13: Marek Janik: Rings in Ethernet Networks (20)

RRSTP: A Spanning Tree Protocol for Obviating Count-to-Infinity from Switched...
RRSTP: A Spanning Tree Protocol for Obviating Count-to-Infinity from Switched...RRSTP: A Spanning Tree Protocol for Obviating Count-to-Infinity from Switched...
RRSTP: A Spanning Tree Protocol for Obviating Count-to-Infinity from Switched...
 
Erp
ErpErp
Erp
 
Ijcn 114DRSTP: A Simple Technique for Preventing Count-to-Infinity in RSTP Co...
Ijcn 114DRSTP: A Simple Technique for Preventing Count-to-Infinity in RSTP Co...Ijcn 114DRSTP: A Simple Technique for Preventing Count-to-Infinity in RSTP Co...
Ijcn 114DRSTP: A Simple Technique for Preventing Count-to-Infinity in RSTP Co...
 
Digital network lecturer7
Digital network  lecturer7Digital network  lecturer7
Digital network lecturer7
 
Rapid Ring Protection Protocol (RRPP)
Rapid Ring Protection Protocol (RRPP)Rapid Ring Protection Protocol (RRPP)
Rapid Ring Protection Protocol (RRPP)
 
configuration of switch campus network
configuration of switch campus networkconfiguration of switch campus network
configuration of switch campus network
 
huawei-s5700-28p-li-ac-brochure-datasheet.pdf
huawei-s5700-28p-li-ac-brochure-datasheet.pdfhuawei-s5700-28p-li-ac-brochure-datasheet.pdf
huawei-s5700-28p-li-ac-brochure-datasheet.pdf
 
LTE_Basic_principle.pptx
LTE_Basic_principle.pptxLTE_Basic_principle.pptx
LTE_Basic_principle.pptx
 
huawei-ls-s2318tp-ei-ac-brochure-datasheet.pdf
huawei-ls-s2318tp-ei-ac-brochure-datasheet.pdfhuawei-ls-s2318tp-ei-ac-brochure-datasheet.pdf
huawei-ls-s2318tp-ei-ac-brochure-datasheet.pdf
 
Session 2
Session 2Session 2
Session 2
 
huawei-ls-s2309tp-ei-dc-brochure-datasheet.pdf
huawei-ls-s2309tp-ei-dc-brochure-datasheet.pdfhuawei-ls-s2309tp-ei-dc-brochure-datasheet.pdf
huawei-ls-s2309tp-ei-dc-brochure-datasheet.pdf
 
Allied Telesis IE510-28GSX
Allied Telesis IE510-28GSXAllied Telesis IE510-28GSX
Allied Telesis IE510-28GSX
 
huawei-s5700s-52p-li-ac-brochure-datasheet.pdf
huawei-s5700s-52p-li-ac-brochure-datasheet.pdfhuawei-s5700s-52p-li-ac-brochure-datasheet.pdf
huawei-s5700s-52p-li-ac-brochure-datasheet.pdf
 
4 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 24 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 2
 
lte_principle (1).pptx
lte_principle (1).pptxlte_principle (1).pptx
lte_principle (1).pptx
 
Day 1 LTE Technology Overview
Day 1 LTE Technology OverviewDay 1 LTE Technology Overview
Day 1 LTE Technology Overview
 
LTE Basic Principle
LTE Basic PrincipleLTE Basic Principle
LTE Basic Principle
 
5 IEEE standards
5  IEEE standards5  IEEE standards
5 IEEE standards
 
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
 
Rail-net Indian railway internet
Rail-net Indian railway internetRail-net Indian railway internet
Rail-net Indian railway internet
 

Recently uploaded

一比一原版布兰迪斯大学毕业证如何办理
一比一原版布兰迪斯大学毕业证如何办理一比一原版布兰迪斯大学毕业证如何办理
一比一原版布兰迪斯大学毕业证如何办理
A
 
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
hfkmxufye
 
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
AS
 
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
AS
 
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
AS
 
一比一定制波士顿学院毕业证学位证书
一比一定制波士顿学院毕业证学位证书一比一定制波士顿学院毕业证学位证书
一比一定制波士顿学院毕业证学位证书
A
 
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
AS
 
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
Fi
 
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
Fi
 
一比一定制加州大学欧文分校毕业证学位证书
一比一定制加州大学欧文分校毕业证学位证书一比一定制加州大学欧文分校毕业证学位证书
一比一定制加州大学欧文分校毕业证学位证书
A
 
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
musaddumba454
 
一比一原版帝国理工学院毕业证如何办理
一比一原版帝国理工学院毕业证如何办理一比一原版帝国理工学院毕业证如何办理
一比一原版帝国理工学院毕业证如何办理
F
 
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
AS
 
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
ZurliaSoop
 

Recently uploaded (20)

一比一原版布兰迪斯大学毕业证如何办理
一比一原版布兰迪斯大学毕业证如何办理一比一原版布兰迪斯大学毕业证如何办理
一比一原版布兰迪斯大学毕业证如何办理
 
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
如何办理(UCLA毕业证)加州大学洛杉矶分校毕业证成绩单本科硕士学位证留信学历认证
 
Dan Quinn Commanders Feather Dad Hat Hoodie
Dan Quinn Commanders Feather Dad Hat HoodieDan Quinn Commanders Feather Dad Hat Hoodie
Dan Quinn Commanders Feather Dad Hat Hoodie
 
APNIC Updates presented by Paul Wilson at CaribNOG 27
APNIC Updates presented by Paul Wilson at  CaribNOG 27APNIC Updates presented by Paul Wilson at  CaribNOG 27
APNIC Updates presented by Paul Wilson at CaribNOG 27
 
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
一比一定制(Waikato毕业证书)新西兰怀卡托大学毕业证学位证书
 
The Rise of Subscription-Based Digital Services.pdf
The Rise of Subscription-Based Digital Services.pdfThe Rise of Subscription-Based Digital Services.pdf
The Rise of Subscription-Based Digital Services.pdf
 
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
一比一原版(毕业证书)新西兰怀特克利夫艺术设计学院毕业证原件一模一样
 
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
一比一原版(Wintec毕业证书)新西兰怀卡托理工学院毕业证原件一模一样
 
Abortion Pills In Jeddah+966572737505 & Get cytotec Jeddah
Abortion Pills In Jeddah+966572737505 & Get cytotec JeddahAbortion Pills In Jeddah+966572737505 & Get cytotec Jeddah
Abortion Pills In Jeddah+966572737505 & Get cytotec Jeddah
 
一比一定制波士顿学院毕业证学位证书
一比一定制波士顿学院毕业证学位证书一比一定制波士顿学院毕业证学位证书
一比一定制波士顿学院毕业证学位证书
 
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
原版定制(LBS毕业证书)英国伦敦商学院毕业证原件一模一样
 
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
一比一原版(UWE毕业证书)西英格兰大学毕业证原件一模一样
 
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
一比一原版(Soton毕业证书)南安普顿大学毕业证原件一模一样
 
一比一定制加州大学欧文分校毕业证学位证书
一比一定制加州大学欧文分校毕业证学位证书一比一定制加州大学欧文分校毕业证学位证书
一比一定制加州大学欧文分校毕业证学位证书
 
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
100^%)( POLOKWANE))(*((+27838792658))*))௹ )Abortion Pills for Sale in Sibasa,...
 
Down bad crying at the gym t shirtsDown bad crying at the gym t shirts
Down bad crying at the gym t shirtsDown bad crying at the gym t shirtsDown bad crying at the gym t shirtsDown bad crying at the gym t shirts
Down bad crying at the gym t shirtsDown bad crying at the gym t shirts
 
一比一原版帝国理工学院毕业证如何办理
一比一原版帝国理工学院毕业证如何办理一比一原版帝国理工学院毕业证如何办理
一比一原版帝国理工学院毕业证如何办理
 
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
一比一原版(Polytechnic毕业证书)新加坡理工学院毕业证原件一模一样
 
APNIC Policy Roundup presented by Sunny Chendi at TWNOG 5.0
APNIC Policy Roundup presented by Sunny Chendi at TWNOG 5.0APNIC Policy Roundup presented by Sunny Chendi at TWNOG 5.0
APNIC Policy Roundup presented by Sunny Chendi at TWNOG 5.0
 
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
 

PLNOG 13: Marek Janik: Rings in Ethernet Networks

  • 1. HUAWEI TECHNOLOGIES CO., LTD. www.huawei.com/enterprise Pierścienie w sieciach Ethernet Marek Janik marek.janik@huawei.com
  • 2. Agenda Po co właściwie są protokoły pierścieniowe RRPP/SEP – protokoły własne Huawei G.8032/ERPS – ITU Założenia Porównanie ERPSv1 i ERPSv2 Topologie Konfiguracje praktyczne
  • 3. Drawbacks of STP – The convergence time is too long! STP (spanning-tree protocol) is built for the redundant links and loop avoidance network. When topology changes, STP takes about 30-50 seconds to converge. RSTP (Rapid STP) improves the speed of convergence for bridged network from 30-50 seconds to about 4 seconds, by immediately transitioning root and designated ports to the forwarding state. Ring Protocols only spends 50-200 ms converging but it uses a ring topology instead of tree topology. Potrzeby wynikające z ograniczeń STP STP RSTP Ring Proto Topology Type Any Topology Any Topology Ring Topology Convergence Time 30-50 seconds 6 seconds 50-250ms*
  • 4. Company Cisco 3 COM Foundry HP Extreme Huawei Huawei Protocol REP RRPP MRP/ MRPII RRPP EAPS EAPSv2 RRPP SEP Name Resilient Ethernet Protocol Rapid Ring Protection Protocol Metro Ring Protocol Rapid Ring Protection Protocol Ethernet Automatic Protection Switching Rapid Ring Protection Protocol Smart Ethernet Protection Ring Topologies Single ring/ More complex rings Single ring/ Two or more rings Single ring/ Overlapping rings Single ring/ Two or more rings Single rings/More complex rings Single ring/ Two or more rings Single ring/More Complex rings/Multi Rings Convergence Time 50-250ms < 200ms 50ms < 200ms Faster than RSTP 50-60ms 50-60ms Porównanie protokołów „pierścieniowych”
  • 5. Principle of RRPP---Disadvantage RRPP meets the requirement for fast protection but encounters the following problems due to limitations of its basic mechanism: Sub-rings must be directly connected to the major ring and a major ring can have only one level of sub-rings. RRPP cannot be used with STP, RSTP, or MSTP properly. The revertive switching function cannot be disabled. The logical topology cannot be displayed, which makes network maintenance difficult. The configuration is complex especially when there are multiple rings on the network.
  • 6. Page 6 Single Ring Only one ring exists on the network. At this time, you need to define only an RRPP domain and an RRPP ring. In this networking, the change of the topology can be detected rapidly and the convergence time is short.
  • 7. Page 7 Intersectant Ring There are two or more than two rings on the network. There are two common nodes between rings. Only an RRPP domain needs to be defined. One ring is specified as the major ring, and the other rings are sub-rings.
  • 8. Page 8 Tangent Ring There are two or more than two rings on the network. There is one common node between rings. Each ring must belong to a different RRPP domain. This topology can be adopted when the network is of a large scale and the area-based management is required.
  • 9. Page 9 Principle of SEP---Feature SEP is designed to implement failover within 50 ms on ring networks and provide the following functions: Support more complex ring networks. Work with STP, RSTP, or MSTP. Prevent traffic from being switched back after link recovery, which improves network stability. Support logical topology display to improve network maintainability. Simplify configuration on multi-ring networks. Support flexible selection of the blocked point to better implements traffic load balancing.
  • 10. Page 10 Open ring: It is a chain topology. An open ring is also called a segment, and each segment has a unique ID. Closed ring: It can be considered as a special open ring where two edge ports are located on the same node. A SEP basic topology must have a blocked point at any time. Principle of SEP---Basic Topology Open ring Closed Ring
  • 11. Page 11 Closed rings and open rings can form a complex topology. The basic topologies can transmit topology change notifications to each other, and no complex configurations are required. Principle of SEP---Complex Topology
  • 13. Konfiguracja SEP – Single-Ring krok 1 <HUAWEI> system-view [HUAWEI] sysname LSW1 [LSW1] sep segment 1 [LSW1-sep-segment1] control-vlan 10 [LSW1-sep-segment1] protected-instance all [LSW1-sep-segment1] quit <HUAWEI> system-view [HUAWEI] sysname LSW2 [LSW2] sep segment 1 [LSW2-sep-segment1] control-vlan 10 [LSW2-sep-segment1] protected-instance all [LSW2-sep-segment1] quit <HUAWEI> system-view [HUAWEI] sysname LSW3 [LSW3] sep segment 1 [LSW3-sep-segment1] control-vlan 10 [LSW3-sep-segment1] protected-instance all [LSW3-sep-segment1] quit <HUAWEI> system-view [HUAWEI] sysname LSW4 [LSW4] sep segment 1 [LSW4-sep-segment1] control-vlan 10 [LSW4-sep-segment1] protected-instance all [LSW4-sep-segment1] quit <HUAWEI> system-view [HUAWEI] sysname LSW5 [LSW5] sep segment 1 [LSW5-sep-segment1] control-vlan 10 [LSW5-sep-segment1] protected-instance all [LSW5-sep-segment1] quit
  • 14. Konfiguracja SEP – Single-Ring krok 2 LSW1] interface gigabitethernet 0/0/1 [LSW1-GigabitEthernet0/0/1] port link-type hybrid [LSW1-GigabitEthernet0/0/1] stp disable [LSW1-GigabitEthernet0/0/1] sep segment 1 edge primary [LSW1-GigabitEthernet0/0/1] quit [LSW1] interface gigabitethernet 0/0/3 [LSW1-GigabitEthernet0/0/3] port link-type hybrid [LSW1-GigabitEthernet0/0/3] stp disable [LSW1-GigabitEthernet0/0/3] sep segment 1 edge secondary [LSW1-GigabitEthernet0/0/3] quit [LSW2] interface gigabitethernet 0/0/1 [LSW2-GigabitEthernet0/0/1] port link-type hybrid [LSW2-GigabitEthernet0/0/1] stp disable [LSW2-GigabitEthernet0/0/1] sep segment 1 [LSW2-GigabitEthernet0/0/1] quit[ LSW2] interface gigabitethernet 0/0/2 [LSW2-GigabitEthernet0/0/2] port link-type hybrid [LSW2-GigabitEthernet0/0/2] stp disable [LSW2-GigabitEthernet0/0/2] sep segment 1 [LSW2-GigabitEthernet0/0/2] quit [LSW3] interface gigabitethernet 0/0/1 [LSW3-GigabitEthernet0/0/1] port link-type hybrid [LSW3-GigabitEthernet0/0/1] stp disable [LSW3-GigabitEthernet0/0/1] sep segment 1 [LSW3-GigabitEthernet0/0/1] quit[ LSW3] interface gigabitethernet 0/0/2 [LSW3-GigabitEthernet0/0/2] port link-type hybrid [LSW3-GigabitEthernet0/0/2] stp disable [LSW3-GigabitEthernet0/0/2] sep segment 1
  • 15. Konfiguracja SEP – Single-Ring krok 3 [LSW1] sep segment 1 [LSW1-sep-segment1] block port optimal #Set the priority of GE0/0/2 on LSW3. [LSW3] interface gigabitethernet 0/0/2 [LSW3-GigabitEthernet0/0/2] sep segment 1 priority 128 [LSW3-GigabitEthernet0/0/2] quit
  • 16. Page 16 Ring Network Protocol Advantage Disadvantage STP/RSTP/MSTP •Apply to all Layer 2 networks. •Are standard IEEE protocols that allow Huawei devices to communicate with non-Huawei devices. Provides a low convergence speed on a large network, which cannot meet the carrier-class reliability requirement. RRPP Features fast convergence, meeting the carrier-class reliability requirement. •Supports only level-1 subrings on ring networks. •Is a Huawei proprietary protocol that does not support interoperability between Huawei and non-Huawei devices. SEP •Applies to all Layer 2 networks. •Features fast convergence, meeting the carrier- class reliability requirement. •Displays the topology of an entire ring, facilitating fault location and device maintenance. Is a Huawei proprietary protocol that does not support interoperability between Huawei and non-Huawei devices. ERPS Features fast convergence, meeting the carrier-class reliability requirement. Supports single-ring and multi-ring networking. Introduction to ERPS On a ring network, devices supporting ERPS can communicate with each other regardless of their manufacturers. ERPS is a protocol defined by the ITU-T to prevent loops at Layer 2. Because it is defined in Recommendation ITU-T G.8032/Y.1344, it is also called G.8032. ERPS defines R-APS PDUs and the protection switching mechanism. ERPS blocks a specified port to prevent loops at the Ethernet link layer. ERPS has two versions: ERPSv1 released in June 2008 and ERPSv2 released in August 2010. Comparison Among Ring Network Protocols Supported by Huawei Devices
  • 17. 17 G.8032 Objectives and Principles Use of standard 802 MAC and OAM frames around the ring. Uses standard 802.1Q (and amended Q bridges), but with xSTP disabled. Ring nodes supports standard FDB MAC learning, forwarding, flush behaviour and port blocking/unblocking mechanisms. Prevents loops within the ring by blocking one of the links (either a pre- determined link or a failed link). Monitoring of the ETH layer for discovery and identification of Signal Failure (SF) conditions. Protection and recovery switching within 50 ms for typical rings. Total communication for the protection mechanism should consume a very small percentage of total available bandwidth.
  • 18. HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential 18 G.8032 Terms and Concepts Ring Protection Link (RPL) – Link designated by mechanism that is blocked during Idle state to prevent loop on Bridged ring RPL Owner – Node connected to RPL that blocks traffic on RPL during Idle state and unblocks during Protected state Link Monitoring – Links of ring are monitored using standard ETH CC OAM messages (CFM) Signal Fail (SF) – Signal Fail is declared when ETH trail signal fail condition is detected No Request (NR) – No Request is declared when there are no outstanding conditions (e.g., SF, etc.) on the node Ring APS (R-APS) Messages – Protocol messages defined in Y.1731 and G.8032 Automatic Protection Switching (APS) Channel - Ring-wide VLAN used exclusively for transmission of OAM messages including R-APS messages
  • 19. Page 19 Basic ERPS Concepts Control VLAN: A control VLAN is only used to transmit R-APS PDUs. Each ERPS ring must have a control VLAN. After a port is added to an ERPS ring that has a control VLAN, the port is automatically added to the control VLAN. ERPS rings must use different control VLANs. Data VLAN: A data VLAN is used to transmit data packets. Protected instance: On an ERPS-enabled Layer 2 device, VLANs that transmit R-APS PDUs and data packets must be mapped to a protected instance so that ERPS forwards or blocks these VLAN packets. Otherwise, VLAN packets may cause broadcast storms on the ring network, making the network unavailable. Example As shown in the figure, four switches form an ERPS ring and are nodes on the ring. The port marked in red is the RPL owner port. When ERPS works normally, the RPL owner port is in Discarding state, preventing loops on the ERPS ring.
  • 20. Physical topology has all nodes connected in a ring ERP guarantees lack of loop by blocking the RPL (link between 6 & 1 in figure) Logical topology has all nodes connected without a loop. Each link is monitored by its two adjacent nodes using ETH CC OAM messages Signal Failure as defined in Y.1731, is trigger to ring protection Loss of Continuity Server layer failure (e.g. Phy Link Down) RPL Owner RPL ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC ETH-CC Physical topology Logical topology 1 2 6 4 3 5 RPL 1 2 6 4 3 5 Ring Idle State
  • 21. Protection Switching  Link Failure A.Link/node failure is detected by the nodes adjacent to the failure. B.The nodes adjacent to the failure, block the failed link and report this failure to the ring using R-APS (SF) message C.R-APS (SF) message triggers RPL Owner unblocks the RPL All nodes perform FDB flushing D.Ring is in protection state E.All nodes remain connected in the logical topology. Physical topology Logical topology 1 2 6 4 3 5 RPL 1 2 6 4 3 5 RPL 1 2 6 4 3 5 1 2 6 4 3 5 RPL Owner RPL R-APS(SF) R-APS(SF) R-APS(SF) R-APS(SF)
  • 22. Protection Switching  Failure Recovery A.When the failed link recovers, the traffic is kept blocked on the nodes adjacent to the recovered link B.The nodes adjacent to the recovered link transmit R-APS(NR) message indicating they have no local request present C.When the RPL Owner receives R- APS(NR) message it Starts WTR timer D.Once WTR timer expires, RPL Owner blocks RPL and transmits R-APS (NR, RB) message E.Nodes receiving the message – perform a FDB Flush and unblock their previously blocked ports F.Ring is now returned to Idle state RPL Owner RPL R-APS(NR) R-APS(NR) R-APS(NR) R-APS(NR) R-APS(NR, RB) R-APS(NR, RB) Physical topology Logical topology 1 2 6 4 3 5 RPL 1 2 6 4 3 5 1 2 6 4 3 5 RPL 1 2 6 4 3 5
  • 23. Porównanie ERPSv1 i ERPSv2 Function ERPSv1 ERPSv2 Ring type Supports single rings only. Supports single rings and multi-rings. A multi-ring topology comprises major rings and sub-rings. Port role configuration Supports the ring protection link (RPL) owner port and ordinary ports. Supports the RPL owner port, RPL neighbor port, and ordinary ports. Topology change notification Not supported. Supported. R-APS PDU transmission modes on sub-rings Not supported. Supported. Revertive and non- revertive switching Supports revertive switching by default and does not support non- revertive switching or switching mode configuration. Supported. Manual port blocking Not supported. Supports forced switch (FS) and manual switch (MS).
  • 24. Interconnected rings with a VC or NVC Page 24 VC: RAPS PDUs in sub-rings are transmitted to the major ring through interconnected nodes. The RPL owner port of the sub-ring blocks both RAPS PDUs and data traffic. NVC: RAPS PDUs in sub-rings are terminated on the interconnected nodes. The RPL owner port blocks data traffic but not RAPS PDUs in each sub-ring.
  • 25. Topologie ERPS – Single-Ring, Multi- Instance
  • 26. Topologie ERPS – Multi-Ring and Ladder LSW4LSW1LSW3Blocked portLSW2LSW6LSW5Ring 2Ring 1LSW5LSW5VLAN/VPLSNPERing 3
  • 27. Konfiguracja ERPS – Single Ring # Configure SwitchA. The configurations of SwitchB, SwitchC, SwitchD, and SwitchE are similar to the configuration of SwitchA <Switch> system-view [Switch] sysname SwitchA [SwitchA] vlan batch 100 to 200 [SwitchA] interface gigabitethernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-type trunk [SwitchA-GigabitEthernet1/0/1] port trunk allow-pass vlan 100 to 200 [SwitchA-GigabitEthernet1/0/1] quit [SwitchA] interface gigabitethernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-type trunk [SwitchA-GigabitEthernet1/0/2] port trunk allow-pass vlan 100 to 200 [SwitchA-GigabitEthernet1/0/2] quit # Configure SwitchA. [SwitchA] erps ring 1 [SwitchA-erps-ring1] control-vlan 10 [SwitchA-erps-ring1] protected-instance 1 [SwitchA-erps-ring1] quit [SwitchA] stp region-configuration [SwitchA-mst-region] instance 1 vlan 10 100 to 200 [SwitchA-mst-region] active region-configuration [SwitchA-mst-region] quit
  • 28. Konfiguracja ERPS – Single Ring # Configure SwitchA. [SwitchA] interface gigabitethernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] stp disable [SwitchA-GigabitEthernet1/0/1] erps ring 1 [SwitchA-GigabitEthernet1/0/1] quit [SwitchA] interface gigabitethernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] stp disable [SwitchA-GigabitEthernet1/0/2] erps ring 1 [SwitchA-GigabitEthernet1/0/2] quit # The configurations of SwitchB, SwitchD, and SwitchE are similar to the configuration of SwitchA, # Configure SwitchC. [SwitchC] interface gigabitethernet 1/0/1 [SwitchC-GigabitEthernet1/0/1] stp disable [SwitchC-GigabitEthernet1/0/1] erps ring 1 [SwitchC-GigabitEthernet1/0/1] quit [SwitchC] interface gigabitethernet 1/0/2 [SwitchC-GigabitEthernet1/0/2] stp disable [SwitchC-GigabitEthernet1/0/2] erps ring 1 rpl owner [SwitchC-GigabitEthernet1/0/2] quit
  • 29. [SwitchC] display erps ring 1 verbose Ring ID : 1 Description : Ring 1 Control Vlan : 10 Protected Instance : 1 WTR Timer Setting (min) : 6 Running (s) : 0 Guard Timer Setting (csec) : 100 Running (csec) : 0 Holdoff Timer Setting (deciseconds) : 0 Running (deciseconds) : 0 Ring State : Idle RAPS_MEL : 7 Time since last topology change : 0 days 0h:33m:4s -------------------------------------------------------------------------------- Port Port Role Port Status Signal Status -------------------------------------------------------------------------------- GE1/0/1 Common Forwarding Non-failed GE1/0/2 RPL Owner Discarding Non-failed
  • 30. Konfiguracja ERPS – Multi-Ring krok 1 <HUAWEI> system-view [HUAWEI] sysname SwitchA [SwitchA] interface gigabitethernet 0/0/1 [SwitchA-GigabitEthernet0/0/1] port link-type trunk [SwitchA-GigabitEthernet0/0/1] quit [SwitchA] interface gigabitethernet 0/0/2 [SwitchA-GigabitEthernet0/0/2] port link-type trunk [SwitchA-GigabitEthernet0/0/2] quit [SwitchA] interface gigabitethernet 0/0/3 [SwitchA-GigabitEthernet0/0/3] port link-type trunk [SwitchA-GigabitEthernet0/0/3] quit <HUAWEI> system-view [HUAWEI] sysname SwitchD [SwitchD] interface gigabitethernet 0/0/1 [SwitchD-GigabitEthernet0/0/1] port link-type trunk [SwitchD-GigabitEthernet0/0/1] quit [SwitchD] interface gigabitethernet 0/0/2 [SwitchD-GigabitEthernet0/0/2] port link-type trunk [SwitchD-GigabitEthernet0/0/2] quit [SwitchD] interface gigabitethernet 0/0/3 [SwitchD-GigabitEthernet0/0/3] port link-type trunk [SwitchD-GigabitEthernet0/0/3] quit
  • 31. Konfiguracja ERPS – Multi-Ring krok 1 <HUAWEI> system-view [HUAWEI] sysname SwitchB [SwitchB] interface gigabitethernet 0/0/1 [SwitchB-GigabitEthernet0/0/1] port link-type trunk [SwitchB-GigabitEthernet0/0/1] quit [SwitchB] interface gigabitethernet 0/0/2 [SwitchB-GigabitEthernet0/0/2] port link-type trunk [SwitchB-GigabitEthernet0/0/2] quit <HUAWEI> system-view [HUAWEI] sysname SwitchC [SwitchC] interface gigabitethernet 0/0/1 [SwitchC-GigabitEthernet0/0/1] port link-type trunk [SwitchC-GigabitEthernet0/0/1] quit [SwitchC] interface gigabitethernet 0/0/2 [SwitchC-GigabitEthernet0/0/2] port link-type trunk [SwitchC-GigabitEthernet0/0/2] quit
  • 32. Konfiguracja ERPS – Multi-Ring krok 2 [SwitchA] erps ring 1 [SwitchA-erps-ring1] control-vlan 10 [SwitchA-erps-ring1] protected-instance 1 [SwitchA-erps-ring1] quit [SwitchA] stp region-configuration [SwitchA-mst-region] instance 1 vlan 10 100 to 200 [SwitchA-mst-region] active region-configuration [SwitchA-mst-region] quit [SwitchA] erps ring 2 [SwitchA-erps-ring2] control-vlan 20 [SwitchA-erps-ring2] protected-instance 2 [SwitchA-erps-ring2] quit [SwitchA] stp region-configuration [SwitchA-mst-region] instance 2 vlan 20 300 to 400 [SwitchA-mst-region] active region-configuration [SwitchA-mst-region] quit [SwitchB] erps ring 1 [SwitchB-erps-ring1] control-vlan 10 [SwitchB-erps-ring1] protected-instance 1 [SwitchB-erps-ring1] quit [SwitchB] stp region-configuration [SwitchB-mst-region] instance 1 vlan 10 100 to 200 [SwitchB-mst-region] active region-configuration [SwitchB-mst-region] quit
  • 33. Konfiguracja ERPS – Multi-Ring krok 2 [SwitchD] erps ring 1 [SwitchD-erps-ring1] control-vlan 10 [SwitchD-erps-ring1] protected-instance 1 [SwitchD-erps-ring1] quit [SwitchD] stp region-configuration [SwitchD-mst-region] instance 1 vlan 10 100 to 200 [SwitchD-mst-region] active region-configuration [SwitchD-mst-region] quit [SwitchD] erps ring 2 [SwitchD-erps-ring2] control-vlan 20 [SwitchD-erps-ring2] protected-instance 2 [SwitchD-erps-ring2] quit [SwitchD] stp region-configuration [SwitchD-mst-region] instance 2 vlan 20 300 to 400 [SwitchD-mst-region] active region-configuration [SwitchD-mst-region] quit [SwitchC] erps ring 2 [SwitchC-erps-ring2] control-vlan 20 [SwitchC-erps-ring2] protected-instance 2 [SwitchC-erps-ring2] quit [SwitchC] stp region-configuration [SwitchC-mst-region] instance 2 vlan 20 300 to 400 [SwitchC-mst-region] active region-configuration [SwitchC-mst-region] quit
  • 34. Konfiguracja ERPS – Multi-Ring krok 3 [SwitchA] erps ring 1 [SwitchA-erps-ring1] version v2 [SwitchA-erps-ring1] quit [SwitchA] erps ring 2 [SwitchA-erps-ring2] version v2 [SwitchA-erps-ring2] sub-ring [SwitchA-erps-ring2] quit [SwitchB] erps ring 1 [SwitchB-erps-ring1] version v2 [SwitchB-erps-ring1] quit [SwitchC] erps ring 2 [SwitchC-erps-ring2] version v2 [SwitchC-erps-ring2] sub-ring [SwitchC-erps-ring2] quit [SwitchD] erps ring 1 [SwitchD-erps-ring1] version v2 [SwitchD-erps-ring1] quit [SwitchD] erps ring 2 [SwitchD-erps-ring2] version v2 [SwitchD-erps-ring2] sub-ring [SwitchD-erps-ring2] quit
  • 35. Konfiguracja ERPS – Multi-Ring krok 4 [SwitchA] interface gigabitethernet 0/0/1 [SwitchA-GigabitEthernet0/0/1] stp disable [SwitchA-GigabitEthernet0/0/1] erps ring 1 [SwitchA-GigabitEthernet0/0/1] quit [SwitchA] interface gigabitethernet 0/0/2 [SwitchA-GigabitEthernet0/0/2] stp disable [SwitchA-GigabitEthernet0/0/2] erps ring 1 [SwitchA-GigabitEthernet0/0/2] erps ring 2 [SwitchA-GigabitEthernet0/0/2] quit [SwitchA] interface gigabitethernet 0/0/3 [SwitchA-GigabitEthernet0/0/3] stp disable [SwitchA-GigabitEthernet0/0/3] erps ring 2 [SwitchA-GigabitEthernet0/0/3] quit# [SwitchB] interface gigabitethernet 0/0/1 [SwitchB-GigabitEthernet0/0/1] stp disable [SwitchB-GigabitEthernet0/0/1] erps ring 1 rpl owner [SwitchB-GigabitEthernet0/0/1] quit [SwitchB] interface gigabitethernet 0/0/2 [SwitchB-GigabitEthernet0/0/2] stp disable [SwitchB-GigabitEthernet0/0/2] erps ring 1 [SwitchB-GigabitEthernet0/0/2] quit
  • 36. Konfiguracja ERPS – Multi-Ring krok 4 [SwitchC] interface gigabitethernet 0/0/1 [SwitchC-GigabitEthernet0/0/1] stp disable [SwitchC-GigabitEthernet0/0/1] erps ring 2 rpl owner [SwitchC-GigabitEthernet0/0/1] quit [SwitchC] interface gigabitethernet 0/0/2 [SwitchC-GigabitEthernet0/0/2] stp disable [SwitchC-GigabitEthernet0/0/2] erps ring 2 [SwitchC-GigabitEthernet0/0/2] quit# [SwitchD] interface gigabitethernet 0/0/1 [SwitchD-GigabitEthernet0/0/1] stp disable [SwitchD-GigabitEthernet0/0/1] erps ring 1 [SwitchD-GigabitEthernet0/0/1] quit [SwitchD] interface gigabitethernet 0/0/2 [SwitchD-GigabitEthernet0/0/2] stp disable [SwitchD-GigabitEthernet0/0/2] erps ring 1 [SwitchD-GigabitEthernet0/0/2] erps ring 2 [SwitchD-GigabitEthernet0/0/2] quit [SwitchD] interface gigabitethernet 0/0/3 [SwitchD-GigabitEthernet0/0/3] stp disable [SwitchD-GigabitEthernet0/0/3] erps ring 2 [SwitchD-GigabitEthernet0/0/3] quit
  • 37. Konfiguracja ERPS – Multi-Ring krok 5 [SwitchA] erps ring 2 [SwitchA-erps-ring2] tc-notify erps ring 1 [SwitchA-erps-ring2] quit [SwitchD] erps ring 2 [SwitchD-erps-ring2] tc-notify erps ring 1 [SwitchD-erps-ring2] quit
  • 38. Konfiguracja ERPS – Multi-Instance krok 1 <HUAWEI> system-view [HUAWEI] sysname SwitchA [SwitchA] interface gigabitethernet 0/0/1 [SwitchA-GigabitEthernet0/0/1] port link-type trunk [SwitchA-GigabitEthernet0/0/1] quit [SwitchA] interface gigabitethernet 0/0/2 [SwitchA-GigabitEthernet0/0/2] port link-type trunk [SwitchA-GigabitEthernet0/0/2] quit <HUAWEI> system-view [HUAWEI] sysname SwitchB [SwitchB] interface gigabitethernet 0/0/1 [SwitchB-GigabitEthernet0/0/1] port link-type trunk [SwitchB-GigabitEthernet0/0/1] quit [SwitchB] interface gigabitethernet 0/0/2 [SwitchB-GigabitEthernet0/0/2] port link-type trunk [SwitchB-GigabitEthernet0/0/2] quit <HUAWEI> system-view [HUAWEI] sysname SwitchC [SwitchC] interface gigabitethernet 0/0/1 [SwitchC-GigabitEthernet0/0/1] port link-type trunk [SwitchC-GigabitEthernet0/0/1] quit [SwitchC] interface gigabitethernet 0/0/2 [SwitchC-GigabitEthernet0/0/2] port link-type trunk [SwitchC-GigabitEthernet0/0/2] quit <HUAWEI> system-view [HUAWEI] sysname SwitchD [SwitchD] interface gigabitethernet 0/0/1 [SwitchD-GigabitEthernet0/0/1] port link-type trunk [SwitchD-GigabitEthernet0/0/1] quit [SwitchD] interface gigabitethernet 0/0/2 [SwitchD-GigabitEthernet0/0/2] port link-type trunk [SwitchD-GigabitEthernet0/0/2] quit
  • 39. Konfiguracja ERPS – Multi-Instance krok 2 [SwitchA] erps ring 1 [SwitchA-erps-ring1] control-vlan 10 [SwitchA-erps-ring1] protected-instance 1 [SwitchA-erps-ring1] quit [SwitchA] stp region-configuration [SwitchA-mst-region] instance 1 vlan 10 100 to 200 [SwitchA-mst-region] active region-configuration [SwitchA-mst-region] quit [SwitchA] erps ring 2 [SwitchA-erps-ring2] control-vlan 20 [SwitchA-erps-ring2] protected-instance 2 [SwitchA-erps-ring2] quit [SwitchA] stp region-configuration [SwitchA-mst-region] instance 2 vlan 20 300 to 400 [SwitchA-mst-region] active region-configuration [SwitchA-mst-region] quit [SwitchB] erps ring 1 [SwitchB-erps-ring1] control-vlan 10 [SwitchB-erps-ring1] protected-instance 1 [SwitchB-erps-ring1] quit [SwitchB] stp region-configuration [SwitchB-mst-region] instance 1 vlan 10 100 to 200 [SwitchB-mst-region] active region-configuration [SwitchB-mst-region] quit [SwitchB] erps ring 2 [SwitchB-erps-ring2] control-vlan 20 [SwitchB-erps-ring2] protected-instance 2 [SwitchB-erps-ring2] quit [SwitchB] stp region-configuration [SwitchB-mst-region] instance 2 vlan 20 300 to 400 [SwitchB-mst-region] active region-configuration [SwitchB-mst-region] quit
  • 40. Konfiguracja ERPS – Multi-Instance krok 2 [SwitchC] erps ring 1 [SwitchC-erps-ring1] control-vlan 10 [SwitchC-erps-ring1] protected-instance 1 [SwitchC-erps-ring1] quit [SwitchC] stp region-configuration [SwitchC-mst-region] instance 1 vlan 10 100 to 200 [SwitchC-mst-region] active region-configuration [SwitchC-mst-region] quit [SwitchC] erps ring 2 [SwitchC-erps-ring2] control-vlan 20 [SwitchC-erps-ring2] protected-instance 2 [SwitchC-erps-ring2] quit [SwitchC] stp region-configuration [SwitchC-mst-region] instance 2 vlan 20 300 to 400 [SwitchC-mst-region] active region-configuration [SwitchC-mst-region] quit [SwitchD] erps ring 1 [SwitchD-erps-ring1] control-vlan 10 [SwitchD-erps-ring1] protected-instance 1 [SwitchD-erps-ring1] quit [SwitchD] stp region-configuration [SwitchD-mst-region] instance 1 vlan 10 100 to 200 [SwitchD-mst-region] active region-configuration [SwitchD-mst-region] quit [SwitchD] erps ring 2 [SwitchD-erps-ring2] control-vlan 20 [SwitchD-erps-ring2] protected-instance 2 [SwitchD-erps-ring2] quit [SwitchD] stp region-configuration [SwitchD-mst-region] instance 2 vlan 20 300 to 400 [SwitchD-mst-region] active region-configuration [SwitchD-mst-region] quit
  • 41. Konfiguracja ERPS – Multi-Instance krok 3 [SwitchA] interface gigabitethernet 0/0/1 [SwitchA-GigabitEthernet0/0/1] stp disable [SwitchA-GigabitEthernet0/0/1] erps ring 1 [SwitchA-GigabitEthernet0/0/1] erps ring 2 rpl owner [SwitchA-GigabitEthernet0/0/1] quit [SwitchA] interface gigabitethernet 0/0/2 [SwitchA-GigabitEthernet0/0/2] stp disable [SwitchA-GigabitEthernet0/0/2] erps ring 1 [SwitchA-GigabitEthernet0/0/2] erps ring 2 [SwitchA-GigabitEthernet0/0/2] quit [SwitchB] interface gigabitethernet 0/0/1 [SwitchB-GigabitEthernet0/0/1] stp disable [SwitchB-GigabitEthernet0/0/1] erps ring 1 [SwitchB-GigabitEthernet0/0/1] erps ring 2 [SwitchB-GigabitEthernet0/0/1] quit [SwitchB] interface gigabitethernet 0/0/2 [SwitchB-GigabitEthernet0/0/2] stp disable [SwitchB-GigabitEthernet0/0/2] erps ring 1 rpl owner [SwitchB-GigabitEthernet0/0/2] erps ring 2 [SwitchB-GigabitEthernet0/0/2] quit
  • 42. Konfiguracja ERPS – Multi-Instance krok 3 [SwitchC] interface gigabitethernet 0/0/1 [SwitchC-GigabitEthernet0/0/1] stp disable [SwitchC-GigabitEthernet0/0/1] erps ring 1 [SwitchC-GigabitEthernet0/0/1] erps ring 2 [SwitchC-GigabitEthernet0/0/1] quit [SwitchC] interface gigabitethernet 0/0/2 [SwitchC-GigabitEthernet0/0/2] stp disable [SwitchC-GigabitEthernet0/0/2] erps ring 1 [SwitchC-GigabitEthernet0/0/2] erps ring 2 [SwitchC-GigabitEthernet0/0/2] quit [SwitchD] interface gigabitethernet 0/0/1 [SwitchD-GigabitEthernet0/0/1] stp disable [SwitchD-GigabitEthernet0/0/1] erps ring 1 [SwitchD-GigabitEthernet0/0/1] erps ring 2 [SwitchD-GigabitEthernet0/0/1] quit [SwitchD] interface gigabitethernet 0/0/2 [SwitchD-GigabitEthernet0/0/2] stp disable [SwitchD-GigabitEthernet0/0/2] erps ring 1 [SwitchD-GigabitEthernet0/0/2] erps ring 2 [SwitchD-GigabitEthernet0/0/2] quit