SlideShare a Scribd company logo
1 of 99
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Lower	
  Extremity	
  Arthrology	
  Guide	
  
Summer	
  2015	
  
Derya	
  Anderson	
  
	
  
Scott	
  Bentley	
  
	
  
Bow	
  Decker	
  	
  
	
  
Ashley	
  Haight	
  
	
  
Cynthia	
  Hobbs	
  
	
  
Jennifer	
  Rogers	
  
	
  
Jill	
  Stephenson	
  
	
  
Andrew	
  Trevino	
  
	
  
Table	
  18	
  
2
Arthrology	
  Guide:	
  Table	
  of	
  Contents	
  
	
  
	
  
Introduction	
  to	
  the	
  Pelvic	
  Region………………………………………………………….………..3	
  
	
   Femoroacetabular	
  Joint………………………………………………………………………..…7	
  
	
   Pubic	
  Sympyhsis	
  ………………………………………………………………………….............16	
  
	
   Sacroiliac	
  Joint…………………………………………………………………………………..….20	
  
	
  
Introduction	
  to	
  the	
  Knee	
  Complex…………………………………………………………………25	
  
	
   Tibofemoral	
  Joint……………………………………………………………………………......…30	
  
	
   Patellofemoral	
  Joint………………………………………………………………….……...….…37	
  
	
  
Introduction	
  to	
  the	
  Ankle	
  Joint………………………………………………………………………42	
  
	
   Proximal	
  Tibiofibular	
  Joint	
  …………………………………………………………...….……45	
  
	
   Distal	
  Tibiofibular	
  Joint	
  ……………………………………………………………….………...47	
  
	
   Talocrural	
  Joint……………………………………………………………………………………...50	
  
	
   Subtalar	
  Joint………………………………………………………………………………………...56	
  
	
  
Introduction	
  to	
  the	
  Foot	
  Complex………………………………………………………….………62	
  
	
   Transverse	
  Tarsal	
  Joints	
  ………………………………………………………….…………….65	
  
	
   Distal	
  Intertarsal	
  Joints	
  ………………………………………………………………………….73	
  
	
   Tarsometarsal	
  Joints……………………………………………………..……………………….79	
  
	
   Intermetarsal	
  Joints……………………………………………………………………………….84	
  
	
   Metatarsophalangeal	
  Joints…………………………………………………………………….87	
  
	
   Interphalangeal	
  Joints…………………………………………………………………………….93	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
3
Introduction	
  to	
  the	
  Pelvic	
  Region	
  
	
  
The	
  pelvic	
  region	
  contains	
  three	
  major	
  joints.	
  It	
  includes	
  the	
  femoroacetabular	
  joint	
  
(hip	
  joint),	
  the	
  sacroiliac	
  joint	
  (SI),	
  and	
  the	
  pubic	
  symphysis.	
  These	
  three	
  joints	
  work	
  
together	
  for	
  the	
  purpose	
  of	
  weight	
  bearing,	
  stability,	
  and	
  shock	
  absorption/weight	
  
distribution.	
  The	
  joint’s	
  second	
  but	
  equally	
  important	
  purpose	
  is	
  to	
  allow	
  dynamic	
  
movement	
  such	
  as	
  walking,	
  running,	
  and	
  jumping.	
  These	
  joints	
  have	
  to	
  be	
  able	
  to	
  work	
  
together	
  to	
  provide	
  the	
  stability	
  required	
  so	
  
dynamic	
  movements	
  can	
  occur	
  effectively	
  and	
  pain	
  
free.	
  	
  
The	
  pelvis	
  is	
  comprised	
  of	
  the	
  sacrum	
  and	
  an	
  
innominate	
  bone	
  on	
  each	
  side.	
  The	
  union	
  of	
  these	
  
bones	
  creates	
  the	
  sacroiliac	
  joint	
  and	
  the	
  pubic	
  
symphysis.	
  As	
  mentioned	
  above,	
  the	
  pelvis	
  serves	
  to	
  
distribute	
  weight	
  from	
  the	
  upper	
  body	
  down	
  to	
  the	
  
lower	
  extremities.	
  This	
  is	
  done	
  very	
  effectively	
  due	
  
to	
  the	
  ring	
  that	
  is	
  created	
  from	
  the	
  joining	
  of	
  these	
  
three	
  bones.	
  The	
  pelvis	
  is	
  also	
  important	
  due	
  to	
  the	
  
many	
  muscle	
  attachment	
  sites	
  from	
  both	
  the	
  lower	
  
extremity	
  and	
  the	
  trunk.	
  	
  
The	
  last	
  component	
  of	
  the	
  pelvic	
  region	
  
includes	
  the	
  femur	
  bone.	
  The	
  head	
  of	
  the	
  femur	
  
articulates	
  with	
  the	
  acetabulum	
  to	
  create	
  the	
  femoroacetabular	
  joint.	
  The	
  innominate	
  is	
  
comprised	
  of	
  three	
  parts:	
  the	
  ilium,	
  the	
  ischium,	
  and	
  the	
  pubis.	
  These	
  three	
  components	
  of	
  
the	
  innominate	
  come	
  together	
  to	
  form	
  the	
  acetabulum	
  (Figure	
  1).	
  It	
  is	
  at	
  this	
  joint	
  that	
  most	
  
of	
  the	
  weight	
  bearing	
  occurs.	
  	
  
The	
  pelvic	
  region	
  receives	
  its	
  main	
  blood	
  supply	
  from	
  the	
  internal	
  and	
  external	
  iliac	
  
arteries	
  which	
  ultimately	
  originate	
  from	
  the	
  split	
  of	
  the	
  abdominal	
  aorta.	
  The	
  internal	
  iliac	
  
artery	
  supplies	
  blood	
  to	
  the	
  organs	
  of	
  the	
  pelvis	
  and	
  the	
  surrounding	
  muscles,	
  and	
  the	
  
external	
  iliac	
  artery	
  travels	
  laterally	
  to	
  supply	
  blood	
  to	
  the	
  femoroacetabular	
  joint	
  and	
  the	
  
lower	
  extremities.	
  The	
  pelvic	
  
region	
  is	
  innervated	
  by	
  the	
  
lumbosacral	
  plexus.	
  The	
  plexus	
  
arises	
  from	
  the	
  ventral	
  root	
  of	
  
T12-­‐S4	
  (Figure	
  2).	
  The	
  lumbar	
  
portion	
  of	
  the	
  plexus	
  goes	
  to	
  
innervate	
  the	
  anterior	
  and	
  lateral	
  
aspect	
  of	
  the	
  pelvis	
  while	
  the	
  
sacral	
  portion	
  innervates	
  the	
  
posterior	
  and	
  lateral	
  aspect	
  of	
  the	
  
pelvis.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  1.	
  Bones	
  of	
  the	
  acetabulum	
  
Figure	
  2.	
  Nervous	
  supply	
  of	
  pelvis	
  
4
Table	
  1.	
  Muscles	
  Acting	
  on	
  the	
  Pelvic	
  Joints	
  	
  
Muscle	
   Proximal	
  Attachment	
   Distal	
  Attachment	
  
Segmental	
  
Innervations	
  
Peripheral	
  
Innervations	
  
Gluteus	
  max	
  
Aponeurosis	
  of	
  the	
  
erector	
  spinae,	
  sacrum,	
  
sacrotuberous	
  ligament	
  &	
  
posterior	
  gluteal	
  line	
  
(innominate)	
  
Greater	
  trochanter,	
  
gluteal	
  tuberosity	
  of	
  
the	
  femur	
  &	
  the	
  
iliotibial	
  tract	
  
L5-­‐S1-­‐2	
  
Inferior	
  
Gluteal	
  Nerve	
  
Gluteus	
  
medius	
  
External	
  iliac	
  surface	
  
Oblique	
  ridge	
  on	
  the	
  
lateral	
  aspect	
  of	
  the	
  
greater	
  trochanter;	
  
gluteal	
  aponeurosis	
  
L4-­‐5-­‐S1	
  
Superior	
  
Gluteal	
  Nerve	
  
Gluteus	
  
minimis	
  
External	
  iliac	
  surface	
  and	
  
margin	
  of	
  the	
  greater	
  
sciatic	
  notch	
  
Anterolateral	
  aspect	
  
of	
  the	
  greater	
  
trochanter	
  
L4-­‐5-­‐S1	
  
Superior	
  
Gluteal	
  Nerve	
  
Piriformis	
  
Anterolateral	
  sacrum	
  &	
  
posterior	
  inferior	
  iliac	
  
spine	
  
Upper	
  border	
  of	
  the	
  
greater	
  trochanter	
  
(L5)	
  S1-­‐2	
  
Nerve	
  to	
  the	
  
piriformis	
  
Superior	
  
gemellus	
  
Xternal	
  surface	
  spine	
  of	
  
ischium	
  via	
  obturator	
  	
  
internus	
  tendon	
  to	
  
greater	
  trochanter	
  
Greater	
  trochanter	
   L5-­‐S1-­‐S2	
   Sacral	
  Plexus	
  
Obturator	
  
internus	
  
Anterolateral	
  wall	
  of	
  the	
  
pelvis	
  &	
  obturator	
  
membrane	
  
Medial	
  surface	
  of	
  
the	
  greater	
  
trochanter	
  
L5-­‐S1-­‐2	
  
Nerve	
  to	
  the	
  
obturator	
  
internus	
  
(from	
  sacral	
  
plexus)	
  
Obturator	
  
externus	
  
Rami	
  of	
  pubis	
  and	
  
ischium;	
  external	
  surface	
  
obturator	
  membrane	
  
Trochanteric	
  fossa	
   L3-­‐4	
  
Obturator	
  
Nerve	
  
Inferior	
  
gemellus	
  
Proximal	
  ischial	
  
tuberosity	
  via	
  obturator	
  
internus	
  tendon	
  
Greater	
  trochanter	
   L4-­‐5-­‐S1	
  (S2)	
   Sacral	
  Plexus	
  
5
Quadratus	
  
femoris	
  
Ischial	
  tuberosity	
  
Quadrate	
  tubercle	
  of	
  
the	
  femur	
  
L4-­‐5-­‐S1,	
  (S2)	
  
Nerve	
  to	
  
quadratus	
  
femoris	
  from	
  
sacral	
  plexus	
  
Hamstring	
  
(Semimembra
n-­‐osus,	
  
Semitendinos
us,	
  Biceps	
  
femoris)	
  
SM:	
  ischial	
  tuberosity	
  
ST:	
  ischial	
  tuberosity	
  
BF:	
  ischial	
  tuberosity	
  	
  &	
  
sacrotuberous	
  lig.	
  (long	
  
head)	
  ;	
  lateral	
  lip	
  of	
  linea	
  
aspera	
  &	
  lateral	
  
supracondylar	
  line	
  (short	
  
head)	
  
SM:	
  posterior	
  aspect	
  
of	
  the	
  medial	
  tibial	
  
condyle	
  
ST:	
  proximal,	
  medial	
  
tibia	
  
BF:	
  the	
  lateral	
  side	
  
of	
  fibular	
  head	
  
SM:	
  L4-­‐5-­S1-­‐2	
  
ST:	
  L4-­‐5-­S1-­2	
  
BF:	
  L5-­‐S1-­2-­‐3	
  
to	
  long	
  head;	
  
L5-­S1-­2	
  to	
  
short	
  head	
  
SM:	
  tibial	
  
division	
  of	
  the	
  
sciatic	
  nerve	
  
ST:	
  tibial	
  
division	
  of	
  the	
  
sciatic	
  nerve	
  
BF:	
  tibial	
  
branch	
  of	
  
sciatic	
  (long	
  
head)	
  &	
  
fibular	
  branch	
  
of	
  sciatic	
  
nerve	
  (short	
  
head)	
  
Adductor	
  
magnus	
  
Inferior	
  pubic	
  ramus,	
  
ischial	
  ramus	
  &	
  
tuberosity	
  
Gluteal	
  tuberosity,	
  
linea	
  aspera,	
  medial	
  
supracondylar	
  ridge	
  
&	
  adductor	
  tubercle	
  
of	
  the	
  femur	
  
L2-­‐3-­‐4	
  &	
  L4-­‐
5-­‐S1	
  
Obturator	
  
nerve	
  
(adductor	
  
region)	
  &	
  
tibial	
  division	
  
of	
  the	
  sciatic	
  
nerve	
  
Adductor	
  
longus	
  
Pubic	
  crest	
  
Medial	
  lip	
  of	
  linea	
  
aspera	
  
L2,	
  L3,	
  L4	
  
Obturator	
  
nerve	
  
Adductor	
  
brevis	
  
Inferior	
  pubic	
  ramus	
  
Distal	
  2/3	
  pectineal	
  
line	
  and	
  medial	
  lip	
  
linea	
  aspera	
  
L2,	
  L3,	
  L4	
  
Obturator	
  
nerve	
  
Adductor	
  
minimus	
  
Inferior	
  Rami	
  
Linea	
  Aspera	
  of	
  the	
  
femur	
  
L2,	
  L3,	
  L4	
  
Obturator	
  and	
  
Tibial	
  nerve	
  
TFL	
  
Anterior	
  superior	
  iliac	
  
spine	
  &	
  external	
  lip	
  iliac	
  
crest	
  
Iliotibial	
  tract	
   L4,	
  L4,	
  S1	
  
Superior	
  
gluteal	
  nerve	
  
Quadriceps	
  
(Vastus	
  
Lateralis,	
  
VL:	
  intertrochanteric	
  line,	
  
greater	
  trochanter,	
  
gluteal	
  tuberosity	
  &	
  linea	
  
VL:	
  base	
  &	
  lateral	
  
border	
  of	
  the	
  patella	
  
VM:	
  medial	
  border	
  
L2,	
  L3,	
  L4	
   Femoral	
  nerve	
  
6
Vastus	
  
Medialis,	
  
Vastus	
  
intermedius)	
  
aspera	
  
VM:	
  intertrochanteric	
  
line,	
  spiral	
  line,	
  linea	
  
aspera	
  &	
  medial	
  
supracondylar	
  line	
  
VI:	
  anterior	
  aspect	
  of	
  the	
  
proximal	
  2/3rds	
  of	
  the	
  
femoral	
  shaft	
  
of	
  the	
  patella	
  
VI:	
  lateral	
  border	
  of	
  
the	
  patella	
  
Rectus	
  
femoris	
  
Anterior	
  inferior	
  Iliac	
  
Spine	
  
Base	
  of	
  the	
  patella	
   L2,	
  L3,	
  L4	
   Femoral	
  nerve	
  
Sartorius	
  
Anterior	
  Superior	
  Iliac	
  
Spine	
  
Medial	
  aspect	
  of	
  the	
  
proximal	
  tibia	
  
L2-­‐L3	
  (L4)	
   Femoral	
  nerve	
  
Pectineus	
   Superior	
  pubic	
  ramus	
  
Femur	
  between	
  the	
  
lesser	
  trochanter	
  &	
  
linea	
  aspera	
  
(pectineal	
  line)	
  
L2-­‐3-­‐4	
  
Femoral	
  nerve	
  
&	
  obturator	
  
nerve	
  
Gracilis	
  
Body	
  of	
  the	
  pubis	
  &	
  
inferior	
  pubic	
  ramus	
  
Medial	
  surface	
  of	
  
tibia,	
  distal	
  to	
  
condyle,	
  proximal	
  to	
  
insertion	
  of	
  
semitendinosus,	
  
lateral	
  to	
  insertion	
  
of	
  sartorius	
  
L2-­‐3-­‐4	
  
Obturator	
  
nerve	
  
Iliopsoas	
  
·	
  	
  	
  	
  	
  	
  Iliacus	
  
·	
  	
  	
  	
  	
  	
  Psoas	
  
major	
  
Iliacus:	
  iliac	
  fossa,	
  iliac	
  
crest,	
  sacral	
  ala	
  &	
  SI	
  
ligaments	
  
Psoas	
  Major:	
  anterior	
  
transverse	
  processes,	
  
vertebral	
  bodies	
  &	
  discs	
  	
  
Iliacus:	
  femur	
  just	
  
distal	
  to	
  lesser	
  
trochanter	
  
Psoas:	
  lesser	
  
trochanter	
  
Iliacus:	
  (L1)	
  
L2-­‐3-­‐4	
  
Psoas:	
  L1-­‐2-­‐3-­‐
4	
  
Iliacus:	
  
Lumbar	
  
plexus	
  
	
  
7
Femoroacetabular	
  Joint	
  
	
  
The	
  femoroacetabular	
  joint	
  is	
  the	
  articulation	
  of	
  the	
  acetabulum	
  and	
  the	
  head	
  of	
  the	
  
femur.	
  The	
  main	
  purpose	
  of	
  the	
  joint	
  is	
  to	
  bear	
  the	
  weight	
  of	
  the	
  trunk	
  and	
  upper	
  extremity	
  
in	
  static	
  positions	
  as	
  well	
  as	
  with	
  dynamic	
  movements.	
  The	
  joint	
  must	
  be	
  stable	
  enough	
  to	
  
bear	
  the	
  weight	
  of	
  the	
  body	
  as	
  well	
  as	
  mobile	
  enough	
  to	
  allow	
  dynamic	
  movement	
  to	
  occur.	
  
Stability	
  is	
  achieved	
  through	
  the	
  many	
  ligaments	
  and	
  muscles	
  surrounding	
  the	
  joint.	
  
Mobility	
  is	
  achieved	
  through	
  the	
  nature	
  of	
  the	
  joint	
  being	
  a	
  ball	
  and	
  socket	
  joint.	
  	
  
	
  
Neurovascular	
  Supply	
  (Figure	
  3)	
  
The	
  hip	
  joint	
  receives	
  its	
  arterial	
  
supply	
  from	
  the	
  medial	
  circumflex	
  artery	
   and	
  
the	
  lateral	
  circumflex	
  artery.	
  These	
  two	
  
arteries	
  arise	
  from	
  the	
  profunda	
  femoris	
  
artery	
  and	
  supply	
  the	
  head	
  and	
  neck	
  of	
  the	
  
femur.	
  Specifically,	
  branches	
  off	
  the	
  medial	
  
circumflex	
  artery	
  called	
  retinacular	
  
arteries	
  are	
  the	
  most	
  abundant	
  and	
  its	
   main	
  
supplier.	
  An	
  artery	
  call	
  the	
  ‘artery	
  to	
  the	
   head	
  
of	
  the	
  femur’	
  is	
  located	
  inside	
  the	
  
ligamentum	
  teres.	
  It	
  is	
  a	
  branch	
  from	
  the	
  
obturator	
  artery	
  and	
  supplies	
  the	
  head	
  of	
   the	
  
femur	
  as	
  well	
  but	
  very	
  minimally.	
  
Moore	
  mentions	
  that	
  a	
  nerve	
  
innervating	
  any	
  muscles	
  that	
  crosses	
  a	
  
joint	
  also	
  innervates	
  the	
  joint	
  itself.	
  This	
  is	
  known	
  as	
  Hilton’s	
  Law.	
  Taking	
  this	
  into	
  account,	
  
the	
  hip	
  flexors	
  are	
  innervated	
  by	
  the	
  femoral	
  nerve,	
  lateral	
  rotators	
  by	
  the	
  obturator	
  nerve	
  
and	
  the	
  nerve	
  to	
  quadratus	
  femoris,	
  and	
  abductors	
  by	
  superior	
  gluteal	
  nerve.	
  These	
  nerves	
  
all	
  originate	
  from	
  the	
  ventral	
  rami	
  of	
  the	
  lumbosacral	
  plexus.	
  	
  
	
  
Tissue	
  Layers	
  from	
  Superficial	
  to	
  Deep	
  
• Integumentary	
  
o epidermis	
  
o dermis	
  
o hypodermis	
  
• Neurovascular	
  
o Nervous	
  Tissue	
  
! Femoral	
  nerve	
  
! Obturator	
  nerve	
  
! Sciatic	
  nerve	
  
! Superior	
  gluteal	
  nerve	
  
! Inferior	
  gluteal	
  nerve	
  
o Vascular	
  Tissue	
  
! Femoral	
  artery	
  
! Medial	
  femoral	
  circumflex	
  artery	
  
Figure	
  3.	
  Blood	
  supply	
  to	
  the	
  proximal	
  femur	
  
8
! Superior	
  and	
  inferior	
  gluteal	
  (minor	
  contributions)	
  
! Lateral	
  femoral	
  circumflex	
  artery	
  
! Artery	
  of	
  ligamentum	
  teres	
  
• Muscle	
  
o Hip	
  extensor	
  muscles	
  
o Hip	
  adductor	
  muscles	
  
o Hip	
  flexor	
  muscles	
  
• Ligaments	
  
o Iliofemoral	
  ligament	
  
o Ischiofemoral	
  ligament	
  
o Pubofemoral	
  ligament	
  
• Joint	
  Capsule/Tissue	
  
o Fibrous	
  capsule	
  
o Synovial	
  membrane	
  
o Synovial	
  fluid	
  
• Articular	
  cartilage	
  	
  
• Labrum	
  
• Bone	
  
o Head	
  of	
  the	
  femur	
  
o Acetabulum	
  
	
  
Biomechanics	
  of	
  the	
  Femoroacetabular	
  Joint	
  	
  
The	
  hip	
  joint	
  is	
  a	
  classic	
  ball	
  and	
  socket	
  joint.	
  A	
  ball	
  and	
  socket	
  joint	
  is	
  known	
  to	
  
allow	
  the	
  greatest	
  amount	
  of	
  movement.	
  Even	
  so,	
  the	
  number	
  one	
  priority	
  of	
  the	
  hip	
  joint	
  is	
  
stability	
  followed	
  by	
  movement.	
  The	
  hip	
  receives	
  its	
  stability	
  from	
  the	
  large	
  amount	
  of	
  
muscles	
  and	
  ligaments	
  that	
  surround	
  it.	
  Mobility	
  comes	
  from	
  the	
  three	
  degrees	
  of	
  freedom	
  
of	
  the	
  joint.	
  Before	
  discussing	
  the	
  movements	
  in	
  each	
  plane,	
  one	
  must	
  look	
  at	
  the	
  
kinematics	
  of	
  the	
  hip.	
  When	
  the	
  femur	
  is	
  moving	
  in	
  a	
  stable	
  pelvis,	
  it	
  is	
  described	
  as	
  femur-­‐
on-­‐pelvis.	
  When	
  the	
  pelvis	
  is	
  moving	
  on	
  a	
  stable	
  femur,	
  it	
  is	
  known	
  as	
  pelvis-­‐on-­‐femur.	
  
Different	
  motions	
  and	
  movements	
  occur	
  depending	
  on	
  which	
  scenario	
  one	
  considers.	
  
Below	
  is	
  a	
  description	
  of	
  movements	
  in	
  each	
  plane:	
  
Pelvis-­‐on-­‐Femur:	
  
Sagittal	
  plane:	
  Posterior	
  and	
  anterior	
  tilt	
  
Transverse	
  Plane:	
  Internal	
  and	
  external	
  rotation	
  of	
  the	
  hip	
  
Frontal	
  Plane:	
  Abduction	
  and	
  adduction	
  of	
  the	
  hip	
  
Femur-­‐on-­‐Pelvis	
  
Sagittal	
  Plane:	
  Flexion	
  and	
  extension	
  	
  
Transverse	
  Plane:	
  Internal/external	
  rotation	
  of	
  femur	
  
Frontal	
  Plane:	
  Abduction	
  and	
  adduction	
  of	
  hip	
  
	
  
Joint	
  Configuration	
  of	
  the	
  Femoroacetabular	
  Joint	
  
As	
  mentioned	
  above,	
  the	
  hip	
  joint	
  is	
  a	
  ball	
  and	
  socket	
  joint.	
  A	
  ball	
  and	
  socket	
  joint	
  is	
  
a	
  synovial	
  joint	
  that	
  allows	
  the	
  most	
  amount	
  of	
  freedom	
  as	
  it	
  has	
  movements	
  in	
  all	
  three	
  
planes.	
  It	
  consists	
  of	
  a	
  convex	
  surface	
  moving	
  on	
  a	
  concave	
  surface	
  or	
  vice	
  versa.	
  The	
  table	
  
below	
  summarizes	
  the	
  osteokinematics,	
  arthrokinematics,	
  and	
  planes	
  the	
  hip	
  joint	
  
functions	
  in.	
  The	
  movements	
  are	
  described	
  in	
  open-­‐chain	
  position.	
  
9
Table	
  2.	
  Movements	
  of	
  the	
  Femoroacetabular	
  Joint	
  
Plane	
   Osteokinematics	
   Arthrokinematics	
  
Sagittal	
   Flexion	
  (120°)	
   Roll	
  anteriorly,	
  glide	
  posteriorly	
  
Sagittal	
   Extension	
  (20°)	
  
Rolls	
  posteriorly	
  and	
  glides	
  
anteriorly	
  
Transverse	
   Internal	
  Rotation	
  (45°)	
   Rolls	
  medially	
  and	
  glides	
  laterally	
  
Transverse	
   External	
  Rotation	
  (45°)	
   Rolls	
  laterally	
  and	
  glides	
  medially	
  
Frontal	
   Abduction	
  (45°)	
   Rolls	
  laterally	
  and	
  glides	
  medially	
  
Frontal	
   Adduction	
  (30°)	
   Rolls	
  medially	
  and	
  glides	
  laterally	
  
The	
  degrees	
  of	
  motion	
  are	
  according	
  to	
  the	
  AAOS	
  guideline	
  	
  
	
  
The	
  roll	
  allows	
  for	
  the	
  joint	
  to	
  move	
  into	
  the	
  proper	
  position	
  while	
  the	
  glide	
  
prevents	
  the	
  head	
  of	
  the	
  femur	
  from	
  falling	
  out	
  of	
  the	
  acetabulum.	
  The	
  table	
  below	
  lists	
  the	
  
primary	
  and	
  secondary	
  movers	
  of	
  specific	
  motions.	
  
	
  
Table	
  3.	
  Joint	
  Motions	
  of	
  the	
  Femoroacetabular	
  Joint	
  	
  
Joint	
  Motion	
   Primary	
  Movers	
   Secondary	
  Movers	
  
Flexion	
  
iliopsoas,	
  sartorius,	
  TFL,	
  Rectus	
  
femoris,	
  Adductor	
  Longus,	
  
pectineus	
  
Adductor	
  Brevis,	
  Gracilis,	
  Gluteus	
  
Minimus	
  (anterior	
  fibers)	
  
Extension	
  
Gluteus	
  Maximus,	
  Biceps	
  Femoris	
  
(long	
  head),	
  Semitendinosus,	
  
Semimembranosus,	
  Adductor	
  
Magnus	
  (posterior	
  head)	
  
Gluteus	
  Medius	
  (posterior	
  fibers),	
  
Adductor	
  Magnus	
  (anterior	
  head)	
  
Abduction	
  
Gluteus	
  Medius,	
  Gluteus	
  Minimus,	
  
TFL	
  
Piriformis,	
  Sartorius	
  
Adduction	
  
Pectineus,	
  Adductor	
  Longus,	
  
Gracilis,	
  Adductor	
  Brevis,	
  
Adductor	
  Magnus	
  
Biceps	
  Femoris	
  (long	
  head),	
  Gluteus	
  
Maximus	
  (lower	
  fibers),	
  Quadratus	
  
Femoris	
  
10
Internal	
  
Rotation	
  
N/A	
  
Gluteus	
  Minimus	
  (anterior	
  fibers),	
  
Gluteus	
  Medius	
  (anterior	
  fibers),	
  TFL,	
  
Adductor	
  Longus,	
  Adductor	
  Brevis,	
  
Pectineus	
  
External	
  
Rotation	
  
Gluteus	
  Maximus,	
  Piriformis,	
  
Obturator	
  Internus,	
  Gemellus	
  
Superior,	
  Gemellus	
  Inferior,	
  
Quadratus	
  Femoris	
  
Gluteus	
  Medius	
  (posterior	
  fibers),	
  
Gluteus	
  Minimus	
  (posterior	
  fibers),	
  
Obturator	
  Externus,	
  Sartorius,	
  Biceps	
  
Femoris	
  (long	
  head)	
  
	
  
Kinetics	
  of	
  the	
  Hip	
  
The	
  forces	
  going	
  through	
  the	
  hip	
  joint	
  vary	
  depending	
  on	
  the	
  activity.	
  In	
  bilateral	
  
stance,	
  the	
  hips	
  are	
  in	
  an	
  extended	
  and	
  relatively	
  relaxed	
  position.	
  There	
  are	
  no	
  muscles	
  
that	
  are	
  actively	
  working	
  to	
  keep	
  the	
  hips	
  extended.	
  This	
  is	
  due	
  to	
  the	
  fact	
  that	
  the	
  line	
  of	
  
gravity	
  is	
  posterior	
  to	
  the	
  hip	
  joint,	
  thereby	
  putting	
  an	
  extension	
  moment	
  on	
  the	
  joint.	
  The	
  
ligaments	
  located	
  anterior	
  to	
  the	
  joint	
  (iliofemoral,	
  ischiofemoral,	
  and	
  pubofemoral)	
  
tighten	
  up	
  and	
  prevent	
  it	
  from	
  going	
  into	
  hyperextension.	
  In	
  reference	
  to	
  the	
  forces	
  at	
  the	
  
hip,	
  there	
  is	
  an	
  equal	
  distribution	
  at	
  both	
  joints.	
  The	
  line	
  of	
  gravity	
  is	
  directed	
  downward	
  
going	
  through	
  the	
  center	
  of	
  the	
  pelvis	
  (Figure	
  4).	
  Since	
  this	
  is	
  an	
  equal	
  distance	
  away	
  from	
  
both	
  hip	
  joints,	
  the	
  moment	
  arms	
  are	
  identical,	
  thereby	
  distributing	
  equal	
  compression	
  
forces	
  across	
  both	
  joints.	
  	
  
	
   During	
  unilateral	
  stance,	
  the	
  forces	
  at	
  the	
  hip	
  
joint	
  change.	
  As	
  one	
  leg	
  is	
  lifted	
  off	
  the	
  ground,	
  the	
  
line	
  of	
  gravity	
  does	
  not	
  go	
  through	
  the	
  center	
  of	
  the	
  
pelvis	
  anymore,	
  but	
  is	
  shifted	
  towards	
  the	
  stance	
  
limb.	
  Because	
  of	
  this	
  shift,	
  the	
  pelvis	
  goes	
  into	
  an	
  
adduction	
  moment	
  in	
  relation	
  to	
  the	
  stance	
  limb.	
  In	
  
order	
  to	
  keep	
  the	
  pelvis	
  in	
  a	
  neutral	
  position,	
  the	
  hip	
  
abductors	
  of	
  the	
  stance	
  limb	
  must	
  generate	
  enough	
  
force	
  to	
  counterbalance	
  the	
  adduction	
  torque	
  
moment.	
  This	
  puts	
  all	
  of	
  the	
  compression	
  force	
  on	
  the	
  
joint,	
  which	
  amounts	
  to	
  approximately	
  3-­‐4	
  times	
  the	
  
body	
  weight.	
  If	
  the	
  hip	
  abductors	
  are	
  incapable	
  of	
  
producing	
  enough	
  force	
  to	
  counterbalance	
  the	
  
adduction	
  moment	
  of	
  the	
  hip,	
  a	
  trendelenburg	
  gait	
  
may	
  occur.	
  One	
  way	
  to	
  compensate	
  for	
  this	
  is	
  a	
  lateral	
  
trunk	
  lean	
  towards	
  the	
  stance	
  limb.	
  The	
  moment	
  arm	
  
of	
  the	
  abductors	
  remains	
  the	
  same,	
  but	
  the	
  moment	
  arm	
  of	
  the	
  line	
  of	
  gravity	
  is	
  decreased.	
  
This	
  decreases	
  the	
  gravitational	
  pull	
  of	
  the	
  pelvis	
  into	
  an	
  adduction	
  moment,	
  thereby	
  
decreasing	
  the	
  amount	
  of	
  counterforce	
  needed	
  from	
  the	
  hip	
  abductors.	
  	
  	
  
	
  
	
  
	
  
Figure	
  4.	
  Weight	
  vector	
  
through	
  the	
  pelvis	
  
11
	
   The	
  biomechanics	
  of	
  the	
  hip	
  will	
  also	
  change	
  depending	
  on	
  the	
  amount	
  of	
  coxa	
  vara	
  
or	
  coxa	
  valga	
  present.	
  In	
  a	
  normal	
  hip	
  joint,	
  the	
  angle	
  of	
  inclination	
  of	
  the	
  femoral	
  neck	
  is	
  
approximately	
  125°.	
  With	
  coxa	
  vara,	
  the	
  angle	
  of	
  inclination	
  is	
  less	
  than	
  125°,	
  and	
  in	
  coxa	
  
valga,	
  the	
  angle	
  is	
  greater	
  than	
  125°.	
  In	
  coxa	
  vara,	
  the	
  moment	
  arm	
  for	
  the	
  abductors	
  
increases.	
  The	
  abductors	
  have	
  a	
  longer	
  lever	
  arm	
  to	
  work	
  with	
  and	
  can	
  create	
  more	
  torque.	
  
However,	
  the	
  abductors	
  are	
  not	
  at	
  their	
  optimal	
  length	
  for	
  force	
  production	
  in	
  this	
  position,	
  
and	
  there	
  is	
  increased	
  torque	
  on	
  the	
  femoral	
  neck.	
  This	
  can	
  result	
  in	
  
a	
  fracture.	
  In	
  coxa	
  valga,	
  the	
  moment	
  arm	
  of	
  the	
  abductors	
  
decreases,	
  which	
  allows	
  the	
  muscles	
  to	
  be	
  at	
  a	
  more	
  optimal	
  length	
  
for	
  force	
  production.	
  This	
  also	
  decreases	
  the	
  torque	
  on	
  the	
  femoral	
  
neck.	
  Since	
  the	
  moment	
  arm	
  is	
  decreased	
  in	
  this	
  position,	
  the	
  abductors	
  
must	
  work	
  harder	
  to	
  produce	
  the	
  same	
  amount	
  of	
  force	
  needed	
  to	
  keep	
  
the	
  pelvis	
  in	
  a	
  neutral	
  position	
  (Figure	
  5).	
  	
  
	
  
Muscular	
  Effects	
  on	
  Kinetics	
  
Muscles	
  play	
  a	
  large	
  role	
  in	
  the	
  biomechanics	
  of	
  the	
  hip.	
  How	
  
they	
  influence	
  the	
  hip	
  depends	
  on	
  where	
  they	
  are	
  located	
  in	
  relation	
  to	
  
the	
  joint	
  and	
  their	
  line	
  of	
  pull.	
  For	
  this	
  reason,	
  a	
  muscle	
  may	
  be	
  an	
  
internal	
  rotator	
  in	
  one	
  position	
  but	
  an	
  external	
  rotator	
  in	
  a	
  different	
  
position.	
  	
  
	
  
	
  
Hip	
  Flexors	
  
The	
  hip	
  flexors	
  are	
  located	
  anterior	
  to	
  the	
  joint.	
  Flexion	
  can	
  occur	
  in	
  a	
  pelvic-­‐on-­‐
femur	
  situation	
  or	
  a	
  femur-­‐on-­‐pelvic	
  situation.	
  The	
  movement	
  in	
  pelvis-­‐on-­‐femur	
  is	
  an	
  
anterior	
  tilt.	
  A	
  force-­‐couple	
  relationship	
  between	
  the	
  back	
  extensors	
  and	
  the	
  hip	
  flexors	
  
create	
  the	
  pelvic	
  tilt.	
  The	
  hip	
  flexors	
  rotate	
  around	
  the	
  medial/lateral	
  axis	
  of	
  the	
  hip	
  while	
  
the	
  back	
  extensors	
  extend	
  resulting	
  in	
  lumbar	
  lordosis.	
  In	
  a	
  femur-­‐on-­‐pelvis	
  situation,	
  the	
  
muscles	
  contract	
  and	
  the	
  femur	
  is	
  brought	
  up	
  towards	
  the	
  trunk	
  while	
  the	
  abdominal	
  
muscles	
  contract	
  to	
  stabilize	
  the	
  pelvis	
  and	
  counter	
  the	
  anterior	
  tilt.	
  The	
  primary	
  and	
  
secondary	
  movers	
  of	
  hip	
  flexion	
  can	
  be	
  found	
  in	
  Table	
  3.	
  Iliopsoas	
  is	
  the	
  major	
  hip	
  flexor	
  
and	
  is	
  a	
  combination	
  of	
  two	
  muscles.	
  It’s	
  position	
  along	
  with	
  its	
  cross	
  sectional	
  area	
  makes	
  
it	
  a	
  strong	
  hip	
  flexor.	
  Iliopsoas	
  is	
  located	
  to	
  have	
  optimal	
  pull	
  to	
  flex	
  the	
  hip	
  both	
  in	
  an	
  
anatomical	
  start	
  position	
  as	
  well	
  as	
  when	
  the	
  hip	
  is	
  flexed	
  to	
  90°.	
  When	
  the	
  hip	
  is	
  flexed	
  at	
  
90°	
  (as	
  in	
  a	
  sitting	
  position),	
  all	
  other	
  primary	
  hip	
  flexors	
  are	
  insufficient	
  to	
  flex	
  the	
  hip	
  
further.	
  Because	
  iliopsoas	
  has	
  many	
  points	
  of	
  origin,	
  and	
  it	
  has	
  a	
  large	
  cross	
  sectional	
  area,	
  
it	
  is	
  able	
  to	
  flex	
  the	
  hip	
  past	
  90°	
  from	
  a	
  sitting	
  position.	
  
	
  
Hip	
  Extension	
  
The	
  primary	
  hip	
  extensors	
  are	
  gluteus	
  maximus	
  and	
  the	
  hamstrings.	
  Gluteus	
  
maximus	
  has	
  the	
  most	
  hip	
  extension	
  power,	
  due	
  to	
  its	
  large	
  cross	
  sectional	
  area,	
  along	
  with	
  
its	
  large	
  moment	
  arm.	
  The	
  optimal	
  position	
  for	
  it	
  to	
  be	
  able	
  to	
  produce	
  the	
  most	
  extension	
  
force	
  is	
  starting	
  in	
  the	
  neutral	
  position,	
  and	
  peaks	
  at	
  70°.	
  Although	
  it	
  is	
  a	
  strong	
  hip	
  
extensor,	
  it	
  is	
  activate	
  predominately	
  when	
  it	
  is	
  up	
  against	
  resistance	
  that	
  is	
  greater	
  than	
  
the	
  weight	
  of	
  the	
  limb.	
  Unlike	
  gluteus	
  maximus,	
  the	
  hamstrings	
  have	
  a	
  smaller	
  moment	
  
arm,	
  and	
  a	
  cross	
  sectional	
  area	
  that	
  is	
  significantly	
  smaller.	
  It	
  is	
  a	
  two-­‐joint	
  muscle	
  that	
  
consists	
  of	
  three	
  muscle	
  bellies.	
  The	
  hamstrings	
  group	
  differs	
  from	
  gluteus	
  maximus	
  in	
  that	
  
Figure	
  5.	
  Decreased	
  moment	
  
arm	
  due	
  to	
  coxa	
  valga	
  
12
its	
  moment	
  arm	
  for	
  extension	
  increases	
  with	
  hip	
  flexion	
  up	
  until	
  35°,	
  and	
  then	
  decreases	
  
thereafter.	
  Once	
  the	
  hip	
  flexes	
  past	
  90°,	
  the	
  hamstrings	
  contribute	
  very	
  little	
  to	
  hip	
  
extension.	
  	
  
	
  
Hip	
  Adductors	
  
The	
  hip	
  adductors	
  function	
  in	
  three	
  different	
  planes,	
  but	
  they	
  do	
  not	
  adduct	
  within	
  
all	
  planes.	
  As	
  mentioned	
  earlier,	
  the	
  muscle’s	
  line	
  of	
  pull	
  along	
  with	
  joint	
  position	
  will	
  
determine	
  the	
  motion	
  at	
  the	
  joint.	
  The	
  hip	
  adductors	
  move	
  in	
  the	
  frontal	
  plane,	
  the	
  sagittal	
  
plane,	
  and	
  the	
  transverse	
  plane.	
  In	
  the	
  frontal	
  plane,	
  the	
  adductors	
  adduct	
  the	
  femur.	
  	
  
In	
  the	
  sagittal	
  plane,	
  the	
  adductors	
  act	
  as	
  hip	
  flexors	
  and	
  extensors.	
  Which	
  
movement	
  it	
  will	
  elicit	
  is	
  dependent	
  on	
  where	
  the	
  muscle’s	
  line	
  of	
  pull	
  is,	
  relative	
  to	
  the	
  
joint	
  axis.	
  For	
  example,	
  when	
  the	
  hip	
  is	
  extended,	
  the	
  line	
  of	
  pull	
  falls	
  anterior	
  to	
  the	
  joint	
  
axis,	
  which	
  gives	
  the	
  muscle	
  a	
  flexion	
  moment.	
  When	
  the	
  hip	
  is	
  flexed	
  to	
  approximately	
  
100°,	
  the	
  line	
  of	
  pull	
  falls	
  posterior	
  to	
  the	
  joint	
  axis,	
  and	
  this	
  gives	
  the	
  muscle	
  an	
  extension	
  
moment.	
  For	
  this	
  reason,	
  the	
  hip	
  adductors	
  are	
  considered	
  to	
  be	
  one	
  of	
  the	
  primary	
  and	
  
secondary	
  movers	
  for	
  hip	
  flexion,	
  and	
  a	
  secondary	
  mover	
  for	
  hip	
  extension.	
  	
  
	
  
Hip	
  Abductors	
  
Hip	
  abductors	
  are	
  very	
  important,	
  as	
  they	
  are	
  the	
  primary	
  muscles	
  that	
  produce	
  the	
  
counterforce	
  necessary	
  to	
  keep	
  the	
  pelvis	
  in	
  a	
  neutral	
  position	
  during	
  single	
  limb	
  stance.	
  
See	
  Table	
  3	
  for	
  a	
  list	
  of	
  primary	
  and	
  secondary	
  hip	
  abductors.	
  The	
  primary	
  hip	
  abductors	
  
are	
  gluteus	
  medius	
  and	
  gluteus	
  minimis.	
  Along	
  with	
  abducting	
  the	
  femur,	
  they	
  work	
  to	
  
stabilize	
  the	
  pelvis	
  a	
  mentioned	
  above	
  in	
  the	
  kinetics	
  section.	
  	
  
	
  
Hip	
  External	
  Rotators	
  
The	
  primary	
  external	
  rotators	
  are	
  mostly	
  all	
  short	
  muscles	
  and	
  are	
  listed	
  in	
  the	
  table	
  
above	
  in	
  Table	
  3.	
  These	
  muscles	
  are	
  predominately	
  used	
  in	
  a	
  closed-­‐chain	
  position	
  which	
  
involves	
  cutting	
  and	
  pivoting.	
  Since	
  the	
  muscles	
  are	
  positioned	
  almost	
  perpendicular	
  to	
  the	
  
shaft	
  of	
  the	
  femur,	
  their	
  optimal	
  position	
  to	
  perform	
  external	
  rotation	
  is	
  in	
  the	
  neutral	
  
position.	
  When	
  the	
  hip	
  is	
  flexed,	
  obturator	
  internus	
  and	
  the	
  gluteus	
  muscles	
  external	
  
moment	
  arm	
  decreases.	
  However,	
  due	
  to	
  the	
  origin	
  and	
  insertion	
  sites	
  of	
  piriformis,	
  hip	
  
flexion	
  pass	
  90°	
  turns	
  piriformis	
  into	
  an	
  internal	
  rotator.	
  
	
  
Hip	
  Internal	
  Rotators	
  
The	
  hip	
  joint	
  does	
  not	
  have	
  any	
  primary	
  internal	
  rotators.	
  The	
  secondary	
  rotators	
  
are	
  listed	
  in	
  Table	
  3,	
  which	
  is	
  mainly	
  comprised	
  of	
  the	
  adductors.	
  These	
  muscles	
  have	
  three	
  
times	
  the	
  medial	
  rotation	
  torque	
  when	
  the	
  hip	
  is	
  flexed	
  compared	
  to	
  extended.	
  
	
  
Joint	
  Configuration	
  of	
  the	
  Femoroacetabular	
  Joint	
  
The	
  femoroacetabular	
  joint	
  is	
  synovial	
  ball	
  and	
  socket	
  joint	
  that	
  consists	
  of	
  the	
  
union	
  of	
  the	
  head	
  of	
  the	
  femur	
  and	
  the	
  acetabulum.	
  Synovial	
  joints	
  have	
  specific	
  
characteristics.	
  The	
  joint	
  usually	
  includes	
  a	
  surrounding	
  joint	
  capsule,	
  a	
  joint	
  cavity	
  with	
  
synovial	
  fluid,	
  and	
  articular	
  cartilage	
  covering	
  the	
  bone.	
  The	
  femoroacetabular	
  joint	
  has	
  a	
  
thick	
  joint	
  capsule	
  that	
  includes	
  the	
  merging	
  of	
  the	
  iliofemoral	
  ligament,	
  ischiofemoral	
  
ligament,	
  and	
  the	
  pubofemoral	
  ligament.	
  The	
  joint	
  also	
  contains	
  synovial	
  membranes	
  that	
  
secrete	
  synovial	
  fluid	
  into	
  the	
  joint	
  cavity	
  and	
  act	
  as	
  lubrication.	
  Finally,	
  both	
  the	
  
acetabulum	
  and	
  the	
  head	
  of	
  the	
  femur	
  are	
  covered	
  with	
  articular	
  cartilage.	
  	
  
13
The	
  lunate	
  surface	
  of	
  acetabulum	
  is	
  covered	
  in	
  hyaline	
  cartilage	
  that	
  creates	
  a	
  
horseshoe	
  surface.	
  This	
  is	
  the	
  area	
  that	
  has	
  direct	
  contact	
  with	
  the	
  head	
  of	
  the	
  femur.	
  The	
  
transverse	
  acetabular	
  ligament	
  attaches	
  to	
  both	
  ends	
  to	
  complete	
  the	
  circle.	
  Lastly,	
  in	
  order	
  
to	
  deepen	
  the	
  acetabulum	
  and	
  to	
  create	
  more	
  surface	
  area,	
  the	
  acetabular	
  labrum	
  spans	
  the	
  
entire	
  rim	
  of	
  the	
  socket.	
  It	
  also	
  helps	
  to	
  enhance	
  joint	
  stability	
  by	
  creating	
  a	
  sealing	
  effect,	
  
maintaining	
  negative	
  intra-­‐capsular	
  pressure.	
  	
  
	
   The	
  configuration	
  of	
  the	
  femur	
  also	
  impacts	
  the	
  joint	
  and	
  the	
  type	
  of	
  forces	
  that	
  act	
  
upon	
  it.	
  The	
  angle	
  of	
  inclination	
  is	
  the	
  angle	
  between	
  the	
  head	
  of	
  the	
  femur	
  and	
  the	
  neck	
  of	
  
the	
  femur	
  in	
  the	
  frontal	
  plane.	
  
Normally,	
  this	
  angle	
  is	
  
approximately	
  125°.	
  When	
  the	
  angle	
  
is	
  smaller	
  than	
  125°,	
  this	
  is	
  known	
  
as	
  coxa	
  vara	
  while	
  an	
  angle	
  larger	
  
than	
  125°is	
  known	
  as	
  coxa	
  valga	
  
(Figure	
  6).	
  This	
  angle	
  difference	
  
changes	
  the	
  amount	
  of	
  force	
  as	
  well	
  
as	
  where	
  the	
  force	
  acts	
  upon	
  the	
  hip	
  
(see	
  biomechanics	
  section).	
  	
  
Another	
  angle	
  formed	
  by	
  the	
  
head	
  and	
  neck	
  of	
  the	
  femur	
  is	
  the	
  angle	
  
of	
  torsion.	
  The	
  normal	
  degree	
  for	
  an	
  
adult	
  is	
  approximately	
  10°-­‐15°.	
  When	
  the	
  angle	
  is	
  smaller,	
  it	
  is	
  called	
  femoral	
  retroversion,	
  
and	
  when	
  the	
  angle	
  is	
  larger	
  it	
  is	
  called	
  anteversion.	
  (Figure	
  7).	
  Changes	
  in	
  this	
  angle	
  also	
  
have	
  implications	
  on	
  biomechanics.	
  For	
  
example,	
  femoral	
  anteversion	
  may	
  have	
  a	
  
negative	
  effect	
  on	
  hip	
  biomechanics	
  by	
  
decreasing	
  the	
  joint	
  stability.	
  The	
  head	
  of	
  
the	
  femur	
  is	
  more	
  exposed	
  anteriorly	
  and	
  
this	
  puts	
  the	
  abductors	
  in	
  a	
  less	
  than	
  
optimal	
  position	
  for	
  force	
  production.	
  	
  
	
   As	
  mentioned	
  previously,	
  the	
  
femoroacetabular	
  joint	
  is	
  known	
  for	
  its	
  
ability	
  to	
  provide	
  stability	
  while	
  being	
  able	
  
to	
  perform	
  a	
  wide	
  range	
  of	
  motions.	
  The	
  
arthrokinematics	
  and	
  osteokinematics	
  of	
  
the	
  hip	
  joint	
  allow	
  for	
  this	
  wide	
  variety	
  of	
  
movement.	
  This	
  is	
  described	
  in	
  the	
  biomechanics	
  section.	
  	
  
	
  
Ligaments	
  of	
  the	
  Femoroacetabular	
  Joint	
  
The	
  ligaments	
  of	
  the	
  hip	
  joint	
  are	
  the	
  strongest	
  in	
  the	
  body.	
  This	
  is	
  due	
  to	
  the	
  fact	
  
that	
  the	
  hip	
  must	
  be	
  able	
  to	
  support	
  the	
  weight	
  of	
  the	
  body	
  and	
  not	
  dislocate.	
  One	
  of	
  the	
  
strongest	
  ligaments	
  of	
  the	
  hip	
  is	
  the	
  iliofemoral	
  ligament,	
  also	
  known	
  as	
  the	
  Y	
  ligament.	
  The	
  
Y	
  ligament,	
  along	
  with	
  the	
  other	
  ligaments,	
  spans	
  the	
  entire	
  joint.	
  The	
  thickest	
  areas	
  of	
  the	
  
Y	
  ligament	
  are	
  located	
  anterior	
  to	
  the	
  hip	
  to	
  prevent	
  hyperextension	
  of	
  the	
  joint.	
  	
  
	
  
	
  
Figure	
  7.	
  Femoral	
  anteversion	
  and	
  retroversion	
  
Figure	
  6.	
  Femoral	
  angle	
  of	
  inclination	
  
14
Table	
  4.	
  Ligaments	
  of	
  the	
  Femoroacetabular	
  Joint	
  
	
  
Along	
  with	
  the	
  ligaments	
  of	
  the	
  hip	
  joint,	
  there	
  are	
  other	
  structures	
  that	
  constrain	
  
the	
  joint.	
  The	
  acetabular	
  labrum	
  increases	
  the	
  surface	
  area	
  that	
  the	
  head	
  of	
  the	
  femur	
  has	
  
direct	
  contact	
  with.	
  This	
  increase	
  in	
  surface	
  area	
  helps	
  decrease	
  a	
  possibility	
  of	
  dislocation.	
  
The	
  joint	
  capsule	
  is	
  also	
  another	
  structure	
  that	
  constrains	
  the	
  joint	
  and	
  lies	
  under	
  the	
  
ligaments.	
  The	
  three	
  main	
  ligaments	
  of	
  the	
  hip	
  joint	
  merge	
  together	
  to	
  help	
  contribute	
  to	
  
the	
  joint	
  capsule.	
  The	
  joint	
  capsule	
  covers	
  the	
  head	
  and	
  neck	
  of	
  the	
  femur.	
  It	
  is	
  thickest	
  in	
  
the	
  superior	
  anterior	
  portion	
  of	
  the	
  hip	
  and	
  thinnest	
  on	
  the	
  posterior	
  hip.	
  It	
  helps	
  constrain	
  
the	
  joint	
  in	
  all	
  directions	
  but	
  is	
  most	
  effective	
  with	
  anterior	
  hip	
  dislocation.	
  Many	
  layers	
  of	
  
large	
  muscles	
  also	
  surround	
  the	
  hip.	
  The	
  muscle	
  not	
  moves	
  the	
  hip	
  joint	
  but	
  serves	
  as	
  an	
  
extra	
  barrier	
  to	
  contain	
  the	
  hip	
  within	
  the	
  joint.	
  The	
  most	
  muscle	
  bulk	
  around	
  the	
  hip	
  
includes	
  the	
  gluteus	
  muscles	
  located	
  on	
  the	
  posterior	
  aspect	
  of	
  the	
  joint.	
  They	
  help	
  prevent	
  
a	
  posterior	
  dislocation.	
  
	
  
Common	
  Pathology	
  of	
  the	
  Femoroacetabular	
  Joint	
  	
  
Femoroacetabular	
  Impingement	
  (FAI)	
  
Femoroacetabular	
  Impingement	
  is	
  a	
  problem	
  with	
  the	
  acetabulum	
  and	
  the	
  femoral	
  
head	
  not	
  fitting	
  properly.	
  It	
  may	
  lead	
  to	
  reduced	
  range	
  of	
  motion	
  and	
  hip	
  and	
  groin	
  pain.	
  
There	
  are	
  two	
  types	
  of	
  FAI:	
  Cam	
  impingement	
  and	
  Pincer	
  Impingement.	
  Cam	
  impingement	
  
Ligament	
   Attachments	
   Function	
  
Iliofemoral	
  Ligament	
  
Anterior	
  inferior	
  iliac	
  spine	
  to	
  
intertrochanteric	
  line	
  of	
  the	
  femur	
  
Prevents	
  hyperextension	
  of	
  hip	
  	
  
Ischiofemoral	
  
Ligament	
  
ischium	
  posterior	
  to	
  the	
  
acetabulum	
  to	
  greater	
  trochanter	
  &	
  
iliofemoral	
  ligament	
  
Helps	
  limit	
  extension	
  of	
  the	
  
femur	
  
Pubofemoral	
  
Ligament	
  
Iliopubic	
  eminence	
  and	
  superior	
  
pubic	
  ramus	
  and	
  merges	
  in	
  with	
  the	
  
joint	
  capsule/fibers	
  of	
  iliofemoral	
  
ligament	
  
Limits	
  extension	
  and	
  abduction	
  
of	
  the	
  hip.	
  Primary	
  role	
  is	
  to	
  
prevent	
  over	
  abduction	
  of	
  the	
  
hip.	
  	
  
Ligamentum	
  Teres	
  
Fovea	
  of	
  the	
  femoral	
  head	
  to	
  
acetabular	
  notch	
  and	
  transverse	
  
acetabular	
  ligament	
  
When	
  hip	
  flexed	
  10º,	
  tightens	
  
with	
  lateral	
  rotation.	
  Conduit	
  for	
  
blood	
  supply	
  to	
  head	
  of	
  femur.	
  	
  
Transverse	
  ligament	
  
Lateral	
  inferior	
  boundary	
  of	
  the	
  
acetabular	
  labrum	
  to	
  medial	
  
inferior	
  boundary	
  of	
  the	
  acetabular	
  
labrum	
  
Completes	
  acetabular	
  labrum	
  
rim	
  and	
  prevents	
  inferior	
  
displacement	
  of	
  the	
  head	
  of	
  the	
  
femur	
  
15
involves	
  the	
  abnormal	
  shape	
  of	
  the	
  femoral	
  head,	
  sometimes	
  called	
  a	
  “pistol-­‐grip”	
  
deformity.	
  The	
  cause	
  is	
  unknown,	
  although	
  some	
  propose	
  that	
  it	
  has	
  to	
  do	
  with	
  a	
  
recalcification	
  of	
  the	
  proximal	
  femoral	
  epiphysis.	
  Others	
  suggest	
  that	
  it	
  is	
  from	
  abnormal	
  
stresses	
  on	
  the	
  femur.	
  This	
  extra	
  protuberance	
  on	
  the	
  head	
  of	
  the	
  femur	
  does	
  not	
  allow	
  for	
  
good	
  clearance	
  of	
  the	
  acetabulum	
  when	
  flexion	
  or	
  abduction	
  occurs	
  at	
  the	
  joint.	
  If	
  this	
  is	
  
repeated	
  over	
  long	
  periods	
  of	
  time,	
  wearing	
  of	
  the	
  articular	
  cartilage	
  and	
  labrum	
  may	
  
occur.	
  Labral	
  tears	
  and	
  injury	
  usually	
  accompany	
  FAI	
  for	
  this	
  reason.	
  The	
  labrum	
  is	
  
innervated,	
  so	
  as	
  a	
  result,	
  the	
  person	
  may	
  experience	
  pain	
  in	
  the	
  hip	
  and	
  groin	
  area.	
  
Pincer	
  impingement	
  occurs	
  when	
  the	
  acetabulum	
  is	
  too	
  large	
  for	
  the	
  femoral	
  head.	
  
This	
  can	
  be	
  due	
  to	
  having	
  a	
  deeper	
  acetabular	
  fossa,	
  or	
  the	
  acetabulum	
  being	
  in	
  a	
  
retroverted	
  position.	
  When	
  the	
  hip	
  is	
  flexed	
  or	
  abducted,	
  the	
  femoral	
  head	
  may	
  compress	
  
surrounding	
  soft	
  tissue	
  or	
  the	
  superior	
  labrum,	
  causing	
  pain	
  in	
  the	
  hip	
  and	
  groin	
  area.	
  If	
  the	
  
impingement	
  persists	
  for	
  longer	
  periods	
  of	
  time,	
  the	
  labrum	
  may	
  undergo	
  ossification	
  
making	
  the	
  overhang	
  worse.	
  	
  
	
  
Osteoarthritis	
  (OA)	
  
Osteoarthritis	
  is	
  the	
  most	
  common	
  condition	
  of	
  the	
  hip.	
  It	
  occurs	
  when	
  the	
  articular	
  
surfaces	
  of	
  the	
  joint	
  are	
  worn	
  down	
  and	
  there	
  is	
  a	
  rubbing	
  of	
  bone	
  on	
  bone	
  during	
  
movements.	
  There	
  are	
  many	
  ways	
  OA	
  can	
  develop.	
  A	
  history	
  of	
  labral	
  tears	
  or	
  CAM	
  
impingement	
  will	
  increase	
  the	
  likelihood	
  of	
  developing	
  OA.	
  Jaypee	
  mentions	
  that	
  two	
  
predictive	
  factors	
  of	
  developing	
  OA	
  include	
  having	
  previous	
  musculoskeletal	
  injuries	
  and	
  a	
  
work	
  history	
  that	
  is	
  physically	
  demanding	
  such	
  as	
  manual	
  labor.	
  It	
  is	
  also	
  mentioned	
  that	
  
the	
  two	
  factors	
  related	
  to	
  idiopathic	
  hip	
  OA	
  is	
  aging	
  and	
  weight	
  gain.	
  OA	
  is	
  a	
  degeneration	
  
of	
  the	
  cartilage	
  within	
  the	
  joint	
  and	
  it	
  is	
  commonly	
  thought	
  that	
  repetitive	
  weight	
  bearing	
  
may	
  contribute	
  to	
  its	
  progression.	
  Jaypee	
  mentions	
  that	
  it	
  is	
  not	
  the	
  repetitive	
  weight	
  
bearing	
  but	
  rather	
  the	
  lack	
  of	
  joint	
  forces	
  on	
  the	
  joint	
  that	
  may	
  play	
  a	
  role	
  in	
  developing	
  OA.	
  
This	
  is	
  due	
  to	
  the	
  fact	
  that	
  compression	
  on	
  the	
  articular	
  cartilage	
  actually	
  nourishes	
  the	
  
joint.	
  Symptoms	
  of	
  hip	
  OA	
  include	
  hip	
  stiffness,	
  anterior	
  groin	
  pain,	
  and	
  decreased	
  range	
  of	
  
motion	
  in	
  extension	
  and	
  internal	
  rotation.	
  
	
  
Fractures	
  of	
  the	
  Pelvis	
  
Hip	
  fractures	
  in	
  older	
  adults	
  are	
  very	
  common	
  and	
  occur	
  at	
  a	
  rate	
  of	
  98/100,000	
  
people	
  a	
  year.	
  Older	
  adults	
  are	
  at	
  a	
  higher	
  risk	
  for	
  fractures	
  due	
  to	
  their	
  increase	
  in	
  fall	
  risk.	
  
Hip	
  fractures	
  can	
  occur	
  for	
  a	
  variety	
  of	
  reasons.	
  As	
  mentioned	
  earlier	
  in	
  the	
  biomechanics	
  
section,	
  the	
  hip	
  takes	
  on	
  a	
  compression	
  force	
  of	
  2-­‐3	
  times	
  the	
  body	
  weight	
  when	
  standing	
  
on	
  one	
  limb,	
  which	
  occurs	
  during	
  walking.	
  The	
  femur	
  must	
  be	
  healthy	
  enough	
  to	
  withstad	
  
the	
  force	
  on	
  the	
  neck	
  of	
  the	
  femur.	
  Unfortunately,	
  as	
  a	
  person	
  ages,	
  there	
  is	
  a	
  decrease	
  in	
  
trabecular	
  density	
  as	
  well	
  as	
  cortical	
  bone	
  mass.	
  This	
  may	
  result	
  in	
  a	
  proximal	
  fracture	
  to	
  
the	
  femur.	
  Also,	
  due	
  to	
  the	
  decreased	
  integrity	
  of	
  the	
  bone,	
  a	
  fall	
  could	
  easily	
  cause	
  a	
  
fracture.	
  Another	
  factor	
  that	
  may	
  cause	
  a	
  fracture	
  is	
  loss	
  of	
  arterial	
  supply	
  to	
  the	
  head	
  of	
  
the	
  femur	
  (avascular	
  necrosis).	
  The	
  head	
  of	
  the	
  femur	
  is	
  mainly	
  supplied	
  by	
  the	
  medial	
  
circumflex	
  artery.	
  If	
  there	
  is	
  any	
  trauma	
  to	
  the	
  area	
  that	
  disrupts	
  the	
  blood	
  supply,	
  bone	
  
death	
  may	
  occur	
  making	
  it	
  more	
  susceptible	
  to	
  injury.	
  	
  
16
The	
  Pubic	
  Symphysis	
  Joint	
  	
  
The	
  pubic	
  symphysis	
  (Figure	
  8)	
  is	
  located	
  
in	
  the	
  anterior	
  midline	
  of	
  the	
  pelvis	
  and	
  consists	
  of	
  
the	
  medial	
  articulating	
  surfaces	
  of	
  the	
  right	
  and	
  
left	
  pubic	
  bones	
  united	
  by	
  a	
  fibrocartilaginous	
  
interpubic	
  disc.	
  In	
  addition	
  to	
  the	
  sacroiliac	
  joint,	
  
the	
  pubic	
  symphysis	
  serves	
  as	
  an	
  articulation	
  site	
  
of	
  the	
  right	
  and	
  left	
  innominates.	
  	
  
The	
  pubic	
  symphysis	
  is	
  sometimes	
  referred	
  
to	
  as	
  the	
  symphysis	
  pubis.	
  This	
  joint	
  is	
  relatively	
  
immobile	
  and	
  is	
  classified	
  as	
  a	
  secondary	
  
cartilaginous	
  joint.	
  	
  	
  The	
  pubic	
  symphysis	
  
functions	
  to	
  resist	
  tension,	
  shearing,	
  and	
  
compression	
  of	
  the	
  pelvis	
  during	
  weight	
  bearing	
  
activities,	
  such	
  as	
  walking	
  and	
  during	
  childbirth	
  in	
  
women.	
  	
  
Research	
  regarding	
  the	
  precise	
  innervation	
  of	
  the	
  pubic	
  symphysis	
  is	
  lacking.	
  
However,	
  in	
  a	
  systematic	
  review,	
  Becker	
  et	
  al	
  (2010)	
  found	
  the	
  innervation	
  described	
  as	
  
coming	
  from	
  the	
  pudendal	
  and	
  genitofemoral	
  nerves,	
  and	
  branches	
  of	
  the	
  iliohypograstric,	
  
ilioinguinal	
  nerves.	
  Becker	
  also	
  found	
  the	
  joint	
  to	
  be	
  supplied	
  by	
  the	
  pubic	
  branch	
  of	
  the	
  
obturator	
  artery	
  and	
  branches	
  of	
  the	
  inferior	
  epigastric	
  artery	
  and	
  external	
  pudendal	
  
artery.	
  As	
  most	
  fibrocartilaginous	
  tissues	
  depend	
  on	
  diffusion	
  of	
  nutrients	
  from	
  adjacent	
  
blood	
  vessels	
  (Neumann	
  2010),	
  the	
  center	
  of	
  the	
  fibrocartilaginous	
  disc	
  will	
  rely	
  on	
  
diffusion	
  from	
  the	
  obturator,	
  inferior	
  epigastric,	
  or	
  external	
  pudendal	
  arteries.	
  	
  
	
  
Tissue	
  Layers	
  from	
  Superficial	
  to	
  Deep	
  
• Integumentary	
  
o Epidermis	
  
o Dermis	
  
• Subcutaneous	
  
o Fascia	
  
o Adipose	
  
• Muscles	
  
o Rectus	
  Abdominis	
  
o External	
  Oblique	
  
o Internal	
  Oblique	
  
o Transversus	
  Abdominis	
  
o Adductor	
  longus	
  
o Adductor	
  Magnus	
  
o Adductor	
  Brevis	
  
• Neurovascular	
  
o Nervous	
  Tissue	
  
! Iliohypogastric	
  nerve	
  
! Ilioinguinal	
  nerve	
  
! Pudendal	
  nerve	
  
! Genitofemoral	
  nerve	
  
Figure	
  8.	
  The	
  Pubic	
  Symphysis	
  
17
o Vascular	
  Tissue	
  
! Pubic	
  branches	
  of	
  obturator	
  artery	
  
! Inferior	
  epigastric	
  artery	
  
! External	
  pudendal	
  artery	
  	
  
• Ligaments	
  
o Superior	
  Pubic	
  Ligament	
  
o Arcuate	
  Pubic	
  Ligament	
  
o Anterior	
  Pubic	
  Ligament	
  
o Posterior	
  Pubic	
  Ligament	
  
• Joint	
  Capsule/Tissue	
  
o Hyaline	
  articular	
  cartilage	
  
o Fibrocartilaginous	
  disc	
  
• Bone	
  
o Pubis	
  bones	
  of	
  the	
  Innominates	
  	
  
	
  
Table	
  5.	
  Joint	
  Motions	
  at	
  the	
  Pubic	
  Symphysis	
  
Joint	
  Motion	
   Primary	
  Movers	
   Secondary	
  Movers	
  
Superior/Inferior	
  
Translation	
  
Rectus	
  abdominis,	
  internal	
  oblique,	
  
external	
  oblique,	
  transversus	
  
abdominis,	
  adductor	
  longus	
  
N/A	
  
Rotation	
  
Rectus	
  abdominis,	
  internal	
  oblique,	
  
external	
  oblique,	
  transversus	
  
abdominis,	
  adductor	
  longus	
  
N/A	
  
Compression/Traction	
  
Rectus	
  abdominis,	
  internal	
  oblique,	
  
external	
  oblique,	
  transversus	
  
abdominis,	
  adductor	
  longus	
  	
  
N/A	
  
****The	
  muscles	
  listed	
  act	
  indirectly	
  on	
  the	
  relatively	
  rigid	
  pubic	
  symphysis.	
  However,	
  the	
  
muscles	
  included	
  in	
  the	
  table	
  reinforce	
  the	
  joint	
  via	
  attachment	
  of	
  the	
  aponeuroses	
  from	
  
muscles	
  of	
  the	
  anterior	
  abdominal	
  wall	
  and	
  muscles	
  of	
  the	
  lower	
  extremities	
  to	
  the	
  pubic	
  
bones.	
  	
  
	
  
Biomechanics	
  of	
  the	
  Pubic	
  Symphysis	
  
The	
  pubic	
  symphysis	
  is	
  a	
  relatively	
  immobile	
  cartilaginous	
  joint	
  that	
  is	
  subjected	
  to	
  
a	
  variety	
  of	
  forces.	
  For	
  example,	
  during	
  standing	
  activities,	
  the	
  inferior	
  portion	
  of	
  the	
  
symphysis	
  is	
  subjected	
  to	
  traction	
  forces	
  while	
  the	
  superior	
  region	
  is	
  subjected	
  to	
  
compression	
  forces.	
  The	
  pubic	
  symphysis	
  withstands	
  compression	
  forces	
  with	
  sitting	
  and	
  
simultaneous	
  compression	
  and	
  shearing	
  forces	
  during	
  single-­‐leg	
  stance	
  (Becker,	
  2010).	
  
The	
  pubic	
  symphysis	
  can	
  experience	
  translation	
  in	
  the	
  sagittal	
  and	
  transverse	
  plane.	
  
However,	
  Neumann	
  describes	
  the	
  joint	
  as	
  only	
  having	
  up	
  to	
  2	
  mm	
  of	
  translation.	
  Becker	
  et	
  
al	
  describe	
  rotation	
  of	
  up	
  to	
  3°	
  at	
  the	
  pubic	
  symphysis	
  in	
  the	
  frontal	
  and	
  sagittal	
  planes.	
  The	
  
pubic	
  symphysis	
  primary	
  function	
  is	
  stabilization	
  and	
  functions	
  to	
  transfer	
  forces	
  from	
  the	
  
trunk	
  to	
  the	
  lower	
  extremities.	
  There	
  are	
  no	
  muscles	
  that	
  act	
  as	
  primary	
  movers	
  for	
  the	
  
18
stable	
  pubic	
  symphysis.	
  The	
  anterior	
  surface	
  of	
  the	
  adjacent	
  pubic	
  bones	
  serve	
  as	
  an	
  
attachment	
  site	
  for	
  the	
  rectus	
  abdominus,	
  internal	
  abdominal	
  oblique,	
  transversus	
  
abdominus,	
  and	
  the	
  adductor	
  longus,	
  but	
  these	
  muscles	
  do	
  not	
  directly	
  initiate	
  movement	
  
at	
  the	
  pubic	
  symphysis	
  joint.	
  Accessory	
  motions	
  and	
  open/closed	
  pack	
  positions	
  are	
  not	
  
experienced	
  at	
  this	
  joint	
  due	
  to	
  the	
  high	
  degree	
  of	
  stability	
  offered	
  by	
  the	
  pubic	
  ligaments.	
  	
  
	
  
Joint	
  Configuration	
  of	
  the	
  Pubic	
  Symphysis	
  
The	
  articular	
  surfaces	
  of	
  the	
  right	
  and	
  left	
  pubic	
  bones	
  are	
  lined	
  with	
  hyaline	
  
cartilage	
  and	
  are	
  joined	
  by	
  the	
  fibrocartilaginous	
  interpubic	
  disc.	
  The	
  surfaces	
  are	
  slight	
  
convex	
  in	
  shape,	
  likely	
  designed	
  to	
  resist	
  shearing	
  forces.	
  Due	
  to	
  the	
  relative	
  immobility	
  of	
  
the	
  joint,	
  the	
  motion	
  that	
  occurs	
  pubic	
  symphysis	
  is	
  not	
  dependent	
  on	
  the	
  convexity	
  of	
  the	
  
articulating	
  surfaces	
  but	
  on	
  the	
  tensile,	
  shear	
  and	
  compressive	
  forces	
  experienced	
  at	
  the	
  
joint.	
  Arthokinematic	
  movements	
  of	
  superior	
  or	
  inferior	
  glide	
  of	
  the	
  pubis	
  bones	
  up	
  to	
  2	
  
mm	
  occur	
  in	
  relation	
  to	
  the	
  forces	
  experienced	
  at	
  the	
  joint.	
  	
  
	
  
Table	
  6.	
  Ligaments	
  of	
  the	
  Pubic	
  Symphysis	
  (Figures	
  9	
  &	
  10)	
  
Ligament	
   Attachments	
   Function	
  
Associated	
  
Constraints	
  
Superior	
  pubic	
  
ligament	
  
Lateral	
  pubic	
  crest	
  and	
  
pubic	
  tubercle	
  to	
  
contralateral	
  lateral	
  pubic	
  
crest	
  and	
  tubercle,	
  
bridging	
  superior	
  margin	
  
of	
  symphysis	
  
Reinforce	
  superior	
  
aspect	
  of	
  joint	
  
N/A	
  
Arcuate	
  (inferior)	
  
pubic	
  ligament	
  	
  
Inferior	
  rami	
  of	
  pubis	
  to	
  
contralateral	
  inferior	
  rami	
  
of	
  pubis	
  
Reinforce	
  inferior	
  
aspect	
  of	
  joint	
  
N/A	
  
Anterior	
  pubic	
  
ligament	
  
Joins	
  with	
  interpubic	
  disc	
  
and	
  aponeurotic	
  
expansions	
  of	
  rectus	
  
abdominus,	
  transversus	
  
abdominus,	
  internal	
  
abdominal	
  oblique,	
  and	
  
adductor	
  longus	
  	
  
Reinforce	
  anterior	
  
aspect	
  of	
  joint	
  
Adductor	
  longs,	
  
rectus	
  abdominis	
  
aponeurosis,	
  
internal	
  oblique	
  
aponeurosis,	
  and	
  
transversus	
  
abdominis	
  
aponeurosis	
  	
  
Posterior	
  pubic	
  
ligament	
  	
  
Continuous	
  with	
  
periosteum	
  of	
  posterior	
  
aspect	
  of	
  pubic	
  bones	
  	
  
Reinforce	
  posterior	
  
aspect	
  of	
  joint	
  
N/A	
  
19
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
Common	
  Pathology	
  of	
  the	
  Pubic	
  Symphysis	
  
Osteitis	
  Pubis	
  
Osteitis	
  pubis	
  is	
  a	
  common	
  pathology	
  of	
  the	
  pubic	
  symphysis	
  that	
  results	
  from	
  
overuse	
  or	
  shear	
  injuries	
  and	
  subsequent	
  inflammation	
  around	
  the	
  joint.	
  This	
  injury	
  is	
  
common	
  among	
  the	
  athlete	
  population.	
  Osteitis	
  pubis	
  often	
  needs	
  to	
  be	
  distinguished	
  
between	
  an	
  inguinal	
  hernia	
  and	
  an	
  adductor	
  strain	
  as	
  these	
  injuries	
  present	
  similarly	
  and	
  
tend	
  to	
  occur	
  in	
  similar	
  populations.	
  For	
  differential	
  diagnosis	
  purposes,	
  tenderness	
  
directly	
  over	
  the	
  pubic	
  symphysis	
  may	
  be	
  the	
  best	
  indicator	
  of	
  osteitis	
  pubis.	
  	
  
	
  
Symphysis	
  Pubis	
  Dysfunction	
  
Symphysis	
  pubis	
  dysfunction	
  occurs	
  in	
  women	
  during	
  pregnancy.	
  Becker	
  describes	
  
how	
  the	
  hormones	
  associated	
  with	
  pregnancy	
  can	
  increase	
  the	
  laxity	
  at	
  the	
  pubic	
  
symphysis.	
  Resulting	
  pubic	
  instability	
  can	
  cause	
  pain	
  and	
  difficulty	
  with	
  weight-­‐bearing	
  
activities	
  and	
  bed	
  mobility	
  for	
  pregnant	
  women.	
  The	
  joint	
  may	
  also	
  be	
  disrupted	
  and	
  
widened	
  during	
  childbirth	
  leading	
  to	
  impaired	
  pelvic	
  stability	
  in	
  the	
  postpartum	
  period.	
  	
  
Figure	
  10:	
  Superior	
  view	
  pubic	
  
ligaments
Figure	
  9:	
  Anterior	
  view	
  of	
  pubic	
  
symphysis	
  ligaments	
  
20
The	
  Sacroiliac	
  Joint	
  
The	
  sacroiliac	
  (SI)	
  joints	
  (Figure	
  11)	
  mark	
  the	
  transition	
  from	
  the	
  caudal	
  axial	
  
skeleton	
  to	
  the	
  lower	
  appendicular	
  skeleton.	
  The	
  SI	
  joint	
  is	
  located	
  anterior	
  to	
  the	
  posterior	
  
superior	
  iliac	
  spine	
  of	
  the	
  ilium.	
  	
   	
  
	
   The	
  relatively	
  rigid	
  joint	
  is	
  formed	
  by	
  the	
  
articulation	
  between	
  the	
  auricular	
  	
  (ear-­‐shaped)	
  
surface	
  on	
  the	
  lateral	
  aspect	
  of	
  the	
  sacrum	
  that	
  
corresponds	
  with	
  sacral	
  levels	
  S1,	
  S2,	
  S3	
  (Vleeming	
  
2012)	
  and	
  the	
  auricular	
  surface	
  of	
  the	
  medial	
  aspect	
  
of	
  the	
  ilium.	
  Both	
  articulating	
  surfaces	
  are	
  covered	
  
with	
  hyaline	
  cartilage.	
  The	
  articular	
  surface	
  of	
  the	
  SI	
  
joint	
  has	
  been	
  described	
  as	
  having	
  a	
  boomerang	
  shape	
  
with	
  the	
  open	
  angle	
  facing	
  posteriorly	
  (Figure	
  12).	
  	
  
	
  
	
   	
  
	
  
	
  
During	
  early	
  childhood,	
  the	
  SI	
  
demonstrates	
  the	
  classical	
  characteristics	
  of	
  a	
  
diarthrodial	
  synovial	
  joint	
  with	
  smooth	
  surfaces	
  
and	
  considerable	
  mobility.	
  However,	
  over	
  time,	
  
between	
  puberty	
  and	
  adulthood	
  the	
  joint	
  
transforms	
  from	
  a	
  diarthrodial	
  joint	
  to	
  a	
  modified	
  
synarthrodial	
  joint,	
  as	
  explained	
  by	
  Neumann.	
  	
  
The	
  articular	
  surfaces	
  become	
  rough	
  and	
  
irregular,	
  embedding	
  the	
  subchondral	
  bone	
  
within	
  the	
  articular	
  cartilage	
  of	
  the	
  joint	
  
order	
  to	
  resist	
  excessive	
  movements	
  
between	
  the	
  sacrum	
  and	
  ilium.	
  Several	
  
ligaments,	
  some	
  of	
  which	
  are	
  the	
  strongest	
  in	
  the	
  body,	
  reinforce	
  the	
  rigidity	
  of	
  the	
  joint.	
  
The	
  SI	
  joint	
  is	
  primarily	
  designed	
  for	
  stability.	
  The	
  joints	
  transfer	
  loads	
  between	
  the	
  
vertebral	
  column	
  and	
  the	
  lower	
  extremities.	
  The	
  SI	
  joints	
  relieve	
  the	
  stress	
  experienced	
  by	
  
the	
  pelvic	
  ring	
  secondary	
  to	
  trunk	
  and	
  lower	
  extremity	
  movement	
  and	
  ground	
  reaction	
  
forces.	
  	
  
	
   Specific	
  innervation	
  of	
  the	
  sacroiliac	
  joint	
  has	
  not	
  been	
  verified	
  in	
  the	
  literature.	
  
However,	
  Vleeming	
  (2012)	
  reports	
  dorsal	
  rami	
  L5-­‐S3	
  to	
  be	
  consistently	
  included	
  in	
  various	
  
studies	
  of	
  SI	
  joint	
  innervation.	
  	
  Nociceptive	
  axons	
  (C-­‐fibers	
  and	
  A-­‐delta	
  fibers)	
  have	
  been	
  
found	
  in	
  the	
  joint,	
  responsible	
  for	
  pain	
  perception	
  from	
  the	
  SI	
  joint	
  (Vleeming	
  2012).	
  The	
  
posterior	
  division	
  of	
  the	
  internal	
  iliac	
  artery,	
  namely	
  iliolumbar,	
  lateral	
  sacral,	
  and	
  superior	
  
gluteal	
  arteries,	
  provide	
  blood	
  supply	
  to	
  the	
  sacroiliac	
  joint.	
  	
  
	
  
Tissue	
  Layers	
  from	
  Superficial	
  to	
  Deep	
  
• Integumentary	
  
o Epidermis	
  
o Dermis	
  
Figure	
  11.	
  Anterior	
  view	
  of	
  SI	
  
joint
Figure	
  12.	
  Boomerang	
  shape	
  of	
  
auricular	
  surfaces	
  of	
  ilium	
  and	
  sacrum	
  
21
• Subcutaneous	
  
o Adipose	
  
o Thoracolumbar	
  fascia	
  
! Anterior	
  layer	
  
! Middle	
  layer	
  
! Posterior	
  layer	
  
• Muscles	
  
o Latissimus	
  Dorsi	
  
o Gluteus	
  Maximus	
  
o External	
  Oblique	
  
o Internal	
  Oblique	
  
o Erector	
  Spinae	
  muscles	
  
o Transversus	
  Abdominis	
  	
  
o Lumbar	
  Multifidus	
  
o Quadratus	
  lumborum	
  
o Gluteus	
  Medius	
  
o Piriformis	
  
o Iliacus	
  (covering	
  anterior	
  SI	
  joint)	
  
• Ligaments	
  
o Anterior/Ventral	
  sacroiliac	
  ligament	
  	
  
o Posterior	
  Sacroiliac	
  ligament	
  
o Interspinous	
  ligament	
  
o Sacrotuberous	
  ligament	
  
o Sacrospinous	
  ligament	
  
o Iliolumbar	
  ligament	
  
• Joint	
  Capsule	
  
o Fibrous	
  capsule	
  
o Synovial	
  membrane	
  
o Synovial	
  fluid	
  
o Hyaline	
  cartilage	
  
• Bone	
  
o Tuberosity	
  and	
  auricular	
  surface	
  of	
  ilium	
  
o Tuberosity	
  and	
  auricular	
  surface	
  of	
  the	
  sacrum	
  
	
  
Table	
  7.	
  Joint	
  Motions	
  at	
  the	
  Sacroiliac	
  Joint	
  
Joint	
  Motion	
   Primary	
  Movers	
   Secondary	
  Movers	
  
Nutation	
  
(Gravity	
  creates	
  nutation	
  torque),	
  
Latissimus	
  dorsi,	
  biceps	
  femoris,	
  
rectus	
  abdominus,	
  internal	
  and	
  
external	
  oblique,	
  transversus	
  
abdominus	
  
N/A	
  
Counternutation	
  
Iliopsoas,	
  rectus	
  femoris,	
  erector	
  
spinae	
  
N/A	
  
Stability	
  
Erector	
  spinae,	
  quadratus	
  lumborum,	
  
lumbar	
  multifidus,	
  rectus	
  
Muscle	
  activation	
  causes	
  
tension	
  in	
  ligaments,	
  
22
abdominus,	
  internal	
  oblique,	
  
external	
  oblique,	
  transversus	
  
abdominus,	
  biceps	
  femoris,	
  gluteus	
  
maximus,	
  latissimus	
  dorsi,	
  iliacus,	
  
piriformis	
  
compressing	
  surfaces	
  of	
  SI	
  
joint	
  
**The	
  muscles	
  listed	
  act	
  indirectly	
  on	
  the	
  relatively	
  rigid	
  SI	
  joint.	
  However,	
  the	
  muscles	
  
included	
  in	
  the	
  table	
  reinforce	
  and	
  stabilize	
  the	
  SI	
  joint	
  during	
  dynamic	
  activities	
  such	
  as	
  
lifting,	
  running,	
  and	
  carrying	
  via	
  attachments	
  to	
  the	
  thoracolumbar	
  fascia	
  and	
  sacrospinous	
  
and	
  sacrotuberous	
  ligaments.	
  	
  
	
  
Biomechanics	
  of	
  the	
  Sacroiliac	
  Joint	
  
The	
  sacroiliac	
  joint	
  has	
  relatively	
  limited	
  mobility,	
  and	
  unlike	
  most	
  joints	
  in	
  the	
  
body,	
  there	
  are	
  no	
  muscles	
  acting	
  directly	
  across	
  the	
  SI	
  joint.	
  	
  The	
  rotational	
  and	
  
translational	
  movements	
  that	
  occur	
  at	
  the	
  SI	
  joint	
  are	
  complex.	
  The	
  motions	
  do	
  not	
  occur	
  
about	
  a	
  fixed	
  axis,	
  but	
  rather	
  include	
  a	
  combination	
  of	
  parallel	
  and	
  angular	
  movements	
  
(Gordon	
  1991).	
  The	
  motion	
  at	
  the	
  SI	
  joint	
  has	
  best	
  been	
  described	
  as	
  nutation	
  and	
  
counternutation,	
  which	
  occur	
  in	
  a	
  near-­‐sagittal	
  plane	
  about	
  a	
  near	
  medial-­‐lateral	
  axis	
  of	
  
rotation	
  that	
  traverses	
  the	
  interosseous	
  ligament.	
  Nutation	
  (sometimes	
  called	
  sacral	
  
flexion)	
  refers	
  to	
  an	
  anterior,	
  inferior	
  motion	
  of	
  the	
  sacral	
  promontory	
  and	
  a	
  posterior,	
  
superior	
  movement	
  of	
  the	
  sacral	
  apex.	
  Counternutation	
  (sacral	
  extension)	
  is	
  defined	
  as	
  a	
  
posterior,	
  superior	
  movement	
  of	
  the	
  sacral	
  promontory	
  and	
  anterior,	
  superior	
  move	
  of	
  the	
  
sacral	
  apex.	
  	
  Nutation	
  and	
  counternutation	
  can	
  be	
  described	
  as	
  either	
  sacral-­‐on-­‐iliac	
  
rotation,	
  by	
  iliac-­‐on-­‐sacral	
  rotation,	
  or	
  by	
  both	
  motions	
  simultaneously	
  (Figure	
  13).	
  For	
  
example,	
  nutation	
  can	
  be	
  described	
  as	
  anterior	
  sacral-­‐on-­‐iliac	
  rotation	
  or	
  posterior	
  iliac-­‐on-­‐
sacral	
  rotation	
  or	
  anterior	
  sacral	
  rotation	
  with	
  posterior	
  iliac	
  rotation.	
  
	
  
Gordon	
  and	
  Alderink	
  describe	
  the	
  role	
  of	
  SI	
  
joint	
  motion	
  in	
  lumbopelvic	
  rhythm	
  during	
  
functional	
  activities.	
  During	
  trunk	
  flexion,	
  the	
  
lumbar	
  spine	
  moves	
  into	
  flexion,	
  the	
  pelvis	
  
anteriorly	
  rotates,	
  and	
  the	
  sacrum	
  follows	
  with	
  
nutation	
  or	
  sacral	
  flexion.	
  Upon	
  returning	
  to	
  stand,	
  
the	
  sacrum	
  counternutates	
  (extends)	
  as	
  it	
  follows	
  
the	
  lumbar	
  spine	
  and	
  pelvis.	
  	
  
The	
  magnitude	
  movement	
  at	
  the	
  SI	
  joint	
  is	
  
significantly	
  limited.	
  Translation	
  at	
  the	
  SI	
  joint	
  is	
  
limited	
  to	
  1-­‐4	
  mm	
  and	
  Foley	
  (2006)	
  found	
  the	
  
joint	
  motion	
  in	
  the	
  transverse	
  or	
  longitudinal	
  
planes	
  does	
  not	
  exceed	
  2-­‐3	
  degrees.	
  	
  Strong	
  
ligaments	
  surround	
  the	
  joint	
  to	
  limit	
  excessive	
  
motion	
  and	
  reinforce	
  the	
  joint’s	
  stability.	
  
Slight	
  motion	
  with	
  reinforced	
  stability	
  at	
  the	
  
SI	
  joints	
  is	
  vital	
  for	
  attenuating	
  forces	
  between	
  
the	
  axial	
  skeleton	
  and	
  the	
  lower	
  extremities.	
  
	
  
Figure	
  13.	
  Nutation	
  and	
  Counternutation	
  
of	
  the	
  SI	
  joint	
  
23
Joint	
  Configuration	
  of	
  the	
  Sacroiliac	
  Joint	
  
The	
  articulation	
  between	
  the	
  sacrum	
  and	
  the	
  ilium	
  contains	
  elevations	
  and	
  
depressions	
  of	
  the	
  articulating	
  surfaces,	
  creating	
  an	
  interlocking	
  mechanism	
  between	
  the	
  
two	
  bones.	
  Foley	
  (2006)	
  describes	
  the	
  ilium	
  to	
  have	
  a	
  relative	
  convex	
  surface	
  and	
  the	
  
sacrum	
  to	
  have	
  a	
  more	
  concave	
  shape	
  at	
  the	
  SI	
  articulation	
  site.	
  	
  Because	
  the	
  plane	
  of	
  
articular	
  surfaces	
  is	
  mostly	
  vertical	
  in	
  orientation,	
  nutation	
  at	
  the	
  SI	
  joint	
  increases	
  
compression	
  and	
  consequential	
  stability	
  between	
  the	
  joint	
  surfaces.	
  Therefore,	
  full	
  
nutation	
  is	
  considered	
  to	
  be	
  the	
  close-­‐packed	
  position	
  of	
  the	
  SI	
  joint.	
  Gravity,	
  ligaments,	
  
and	
  activation	
  of	
  surrounding	
  muscles	
  create	
  nutation	
  torque.	
  Load	
  transfer	
  through	
  the	
  
pelvic	
  girdle	
  is	
  more	
  effective	
  when	
  the	
  sacrum	
  is	
  in	
  a	
  nutated	
  position.	
  	
  
	
  
Table	
  8.	
  Ligaments	
  of	
  the	
  Sacroiliac	
  Joint	
  (Figure	
  14)	
  
Ligament	
   Attachments	
   Function	
  
Anterior/Ventral	
  
Sacroiliac	
  Ligament	
  
Anterior	
  and	
  inferior	
  borders	
  of	
  
the	
  iliac	
  auricular	
  surface	
  to	
  
anterolateral	
  sacrum	
  
Resists	
  anterior	
  movement	
  and	
  
nutation	
  of	
  the	
  sacral	
  promontory	
  
Posterior/Dorsal	
  
Sacroiliac	
  Ligament	
  
Posterolateral	
  border	
  of	
  3rd	
  and	
  
4th	
  segment	
  of	
  sacrum	
  to	
  lateral	
  
ilium	
  near	
  iliac	
  tuberosity	
  and	
  
posterior-­‐superior	
  iliac	
  spine;	
  
thoracolumbar	
  fascia,	
  erector	
  
spinae	
  aponeurosis,	
  blends	
  with	
  
sacrotuberous	
  ligament	
  to	
  
attach	
  to	
  ischial	
  tuberosity	
  
Resists	
  counter-­‐nutation	
  of	
  sacrum	
  
Interosseous	
  
Ligaments	
  
Fills	
  space	
  that	
  is	
  posterior	
  and	
  
superior	
  to	
  joint	
  between	
  lateral	
  
sacral	
  crest	
  and	
  iliac	
  tuberosity	
  
Considered	
  most	
  important	
  
ligaments	
  directly	
  associated	
  with	
  
SI	
  joint;	
  Resists	
  excessive	
  
movement	
  	
  
Iliolumbar	
  Ligament	
  
Transverse	
  process	
  of	
  L5	
  to	
  
medial	
  iliac	
  crest	
  
Restricts	
  sagittal	
  plane	
  movement	
  
Sacrotuberous	
  
Ligament	
  
Posterior-­‐superior	
  iliac	
  spine,	
  
lateral	
  sacrum	
  and	
  coccyx,	
  
blends	
  with	
  posterior	
  sacroiliac	
  
ligament	
  to	
  attach	
  to	
  ischial	
  
tuberosity	
  
Secondary	
  source	
  of	
  stability;	
  
restricts	
  nutation	
  
Sacrospinous	
  
Ligament	
  
Inferior	
  lateral	
  border	
  of	
  sacrum	
  
and	
  coccyx	
  to	
  ischial	
  spine	
  
Secondary	
  source	
  of	
  stability;	
  
restricts	
  nutation	
  
An	
  associated	
  constraint	
  to	
  the	
  SI	
  joint	
  is	
  the	
  thoracolumbar	
  fascia,	
  which	
  restricts	
  
excessive	
  movement	
  in	
  all	
  directions	
  of	
  motion.	
  	
  
24
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Common	
  Pathology	
  of	
  the	
  Sacroiliac	
  Joint	
  	
  
Low	
  Back	
  Pain	
  
The	
  sacroiliac	
  joints	
  have	
  been	
  found	
  to	
  the	
  source	
  of	
  pain	
  in	
  15%-­‐30%	
  of	
  the	
  
population	
  of	
  people	
  who	
  experience	
  chronic	
  low	
  back	
  pain.	
  	
  Pain	
  originating	
  from	
  the	
  SI	
  
joint	
  can	
  refer	
  to	
  multiple	
  areas	
  of	
  the	
  body	
  (Figure	
  15)	
  
including	
  the	
  low	
  back	
  and	
  gluteal	
  region,	
  making	
  SI	
  joint	
  
dysfunction	
  difficult	
  to	
  identify	
  and	
  to	
  treat.	
  	
  
	
  
SI	
  Dysfunction	
  
	
   SI	
  dysfunction	
  and	
  subsequent	
  pain	
  is	
  the	
  result	
  of	
  
impaired	
  load	
  transfer	
  through	
  the	
  SI	
  joints.	
  	
  Dysfunction	
  
of	
  the	
  joint	
  can	
  be	
  secondary	
  to	
  trauma,	
  leg	
  length	
  
discrepancies,	
  excessive	
  lumbar	
  lordosis,	
  joint	
  
degeneration,	
  joint	
  stiffness,	
  or	
  displacement	
  such	
  as	
  an	
  
upslip	
  or	
  downslip	
  of	
  the	
  joint.	
  The	
  SI	
  dysfunction	
  is	
  also	
  
common	
  in	
  women	
  who	
  are	
  pregnant.	
  The	
  hormone	
  
relaxin	
  is	
  released	
  in	
  pregnancy,	
  which	
  increases	
  laxity	
  of	
  
the	
  ligaments	
  that	
  support	
  and	
  reinforce	
  joint.	
  A	
  widening	
  effect	
  at	
  the	
  SI	
  joint	
  occurs	
  in	
  
preparation	
  for	
  childbirth.	
  However,	
  the	
  excessive	
  motion	
  available	
  at	
  the	
  joint	
  is	
  often	
  a	
  
source	
  of	
  pain	
  and	
  aberrant	
  movement	
  patterns	
  for	
  the	
  mother.	
  Also,	
  athletes	
  involved	
  in	
  
sports	
  that	
  require	
  frequent	
  unilateral	
  loading	
  of	
  the	
  lower	
  extremities	
  (such	
  as	
  in	
  kicking)	
  
are	
  at	
  increased	
  risk	
  for	
  SI	
  dysfunction	
  (Foley).	
  	
  Physical	
  therapists	
  can	
  test	
  for	
  SI	
  
dysfunction	
  using	
  a	
  battery	
  of	
  motion	
  palpation	
  tests	
  such	
  as	
  the	
  sacral	
  thrust	
  and	
  Gillet	
  
test.	
  Strengthening	
  of	
  surrounding	
  muscles	
  (especially	
  muscles	
  attaching	
  to	
  the	
  
thoracolumbar	
  fascia)	
  can	
  help	
  improve	
  the	
  stability	
  of	
  the	
  SI	
  joint	
  and	
  reduce	
  pain	
  related	
  
to	
  SI	
  dysfunction.	
  	
  
Figure	
  14.	
  Posterior	
  ligaments	
  of	
  the	
  SI	
  joint	
  
(note:	
  interosseous	
  ligaments	
  are	
  deep	
  to	
  
pictured	
  posterior	
  sacroiliac	
  ligament)	
  
Figure	
  15.	
  SI	
  joint	
  
referred	
  pain	
  patterns	
  
25
Introduction	
  to	
  the	
  Knee	
  Joint	
  Complex	
  
	
  
The	
  knee	
  joint	
  is	
  the	
  largest	
  joint	
  in	
  
the	
  body.	
  It	
  is	
  subject	
  to	
  compression	
  and	
  
torque	
  during	
  activities	
  such	
  as	
  walking,	
  
running,	
  jumping,	
  bending	
  and	
  squatting.	
  
Bony	
  articulation	
  at	
  the	
  knee	
  joint	
  complex	
  is	
  
relatively	
  unstable	
  and	
  must	
  rely	
  on	
  several	
  
muscles	
  and	
  ligaments	
  for	
  structural	
  support	
  
(Figure	
  1).	
  	
  Located	
  in	
  the	
  middle	
  of	
  the	
  
chain,	
  the	
  knee	
  is	
  highly	
  impacted	
  by	
  the	
  
motions	
  occurring	
  at	
  the	
  hip	
  and	
  ankle	
  joints.	
  
Due	
  to	
  it’s	
  location	
  in	
  the	
  chain,	
  and	
  its	
  
unstable	
  boney	
  articulation,	
  the	
  knee	
  joint	
  
complex	
  is	
  the	
  most	
  frequently	
  injured	
  joint	
  
in	
  the	
  body.	
  	
  
The	
  knee	
  joint	
  complex	
  is	
  comprised	
  
of	
  two	
  different	
  articulations,	
  the	
  
tibiofemoral	
  joint	
  and	
  the	
  patellofemoral	
  
joint.	
  These	
  two	
  joints	
  are	
  held	
  within	
  the	
  
joint	
  capsule,	
  forming	
  a	
  synovial	
  hinge	
  joint.	
  Although	
  the	
  proximal	
  aspect	
  of	
  the	
  fibula	
  
articulates	
  with	
  the	
  tibia	
  just	
  lateral	
  the	
  knee	
  joint,	
  it	
  is	
  not	
  involved	
  in	
  movement	
  at	
  the	
  
knee.	
  	
  	
  
The	
  tibiofemoral	
  and	
  patellofemoral	
  joints	
  work	
  together	
  to	
  allow	
  movement	
  in	
  two	
  
planes	
  of	
  motion:	
  flexion	
  and	
  extension	
  in	
  the	
  sagittal	
  plane,	
  and	
  internal	
  and	
  external	
  
rotation	
  in	
  the	
  transverse	
  plane.	
  Superior	
  and	
  inferior	
  gliding	
  at	
  the	
  patellofemoral	
  joint	
  
are	
  necessary	
  to	
  allow	
  flexion	
  and	
  extension	
  at	
  the	
  tibiofemoral	
  joint.	
  During	
  extension,	
  the	
  
patella	
  functions	
  to	
  increase	
  force	
  produced	
  by	
  the	
  quadriceps	
  femoris.	
  Various	
  pathologies	
  
or	
  lack	
  of	
  proper	
  functioning	
  of	
  the	
  joints	
  and	
  associated	
  
structures	
  can	
  lead	
  to	
  impairments	
  and	
  decreased	
  
participation.	
  	
  	
  
	
  
Neurovascular	
  Supply	
  
Much	
  of	
  the	
  knee	
  joint	
  is	
  highly	
  vascularized	
  with	
  the	
  
exception	
  of	
  a	
  portion	
  of	
  the	
  meniscus.	
  	
  The	
  main	
  blood	
  
supply	
  comes	
  from	
  branches	
  of	
  the	
  femoral	
  artery	
  which	
  
then	
  becomes	
  the	
  popliteal	
  artery.	
  A	
  large	
  genicular	
  
anastomosis	
  is	
  responsible	
  to	
  supply	
  blood	
  to	
  majority	
  of	
  the	
  
knee	
  structures	
  and	
  surrounding	
  muscles.	
  	
  However,	
  the	
  
exception	
  is	
  the	
  inner	
  portion	
  of	
  the	
  menisci.	
  	
  These	
  
avascular	
  sections	
  then	
  have	
  inhibited	
  tissue	
  healing	
  after	
  an	
  
injury	
  to	
  the	
  inner	
  portion	
  of	
  the	
  lateral	
  or	
  medial	
  meniscus.	
  	
  
The	
  femoral	
  artery	
  passes	
  down	
  the	
  posterior	
  aspect	
  of	
  the	
  
thigh	
  and	
  transitions	
  into	
  the	
  popliteal	
  artery	
  to	
  supply	
  the	
  
hamstring,	
  gastrocnemius,	
  soleus,	
  and	
  plantaris	
  musculature.	
  	
  
This	
  artery	
  runs	
  most	
  anterior	
  in	
  the	
  joint	
  before	
  splitting	
  into	
  
Figure	
  1.	
  The	
  knee	
  
Figure	
  2.	
  Anastomosis	
  
around	
  the	
  knee	
  
26
the	
  anterior	
  and	
  posterior	
  tibial	
  arteries	
  at	
  the	
  distal	
  aspect	
  of	
  the	
  joint	
  capsule.	
  	
  The	
  
capsule	
  and	
  ligaments	
  of	
  the	
  knee	
  joint	
  are	
  supplied	
  by	
  five	
  collateral	
  branches	
  originating	
  
from	
  the	
  popliteal	
  artery.	
  These	
  branches	
  form	
  the	
  genicular	
  anastomosis	
  (Figure	
  2)	
  which	
  
surrounds	
  the	
  knee	
  joint	
  and	
  provides	
  adequate	
  blood	
  supply.	
  The	
  branches	
  include	
  the	
  
superior	
  medial	
  and	
  lateral	
  geniculars,	
  the	
  inferior	
  medial	
  and	
  lateral	
  geniculars,	
  and	
  the	
  
middle	
  genicular	
  artery.	
  	
  In	
  the	
  case	
  that	
  the	
  popliteal	
  artery	
  is	
  obstructed,	
  such	
  as	
  in	
  a	
  long	
  
duration	
  of	
  knee	
  extension,	
  the	
  anastomotic	
  branches	
  will	
  continue	
  to	
  provide	
  sufficient	
  
blood	
  supply	
  to	
  the	
  knee.	
  	
  	
  
	
   Venous	
  return	
  is	
  transported	
  by	
  the	
  posterior	
  tibial	
  vein,	
  which	
  transitions	
  into	
  the	
  
popliteal	
  vein	
  in	
  the	
  popliteal	
  fossa.	
  	
  The	
  popliteal	
  vein	
  traverses	
  the	
  knee	
  joint	
  alongside	
  
the	
  popliteal	
  artery	
  before	
  becoming	
  the	
  femoral	
  vein.	
  The	
  small	
  saphenous	
  vein	
  is	
  also	
  a	
  
tributary	
  into	
  the	
  popliteal	
  vein	
  and	
  transports	
  blood	
  from	
  the	
  posterior	
  aspect	
  of	
  the	
  
malleolus	
  superiorly	
  into	
  the	
  popliteal	
  fossa.	
  
The	
  knee	
  and	
  surrounding	
  muscle	
  innervations	
  can	
  be	
  
broken	
  up	
  into	
  four	
  different	
  compartments	
  supplied	
  by	
  
separate	
  nerves:	
  anterior,	
  posterior,	
  medial	
  and	
  lateral	
  
(Figure	
  3).	
  The	
  anterior	
  aspect	
  of	
  the	
  knee	
  and	
  thigh	
  muscles	
  
are	
  innervated	
  through	
  the	
  femoral	
  nerve	
  while	
  muscles	
  of	
  
the	
  posterior	
  and	
  lateral	
  aspects	
  receive	
  innervation	
  from	
  
branches	
  of	
  the	
  sciatic	
  nerve	
  known	
  as	
  the	
  common	
  fibular	
  
branch	
  and	
  the	
  tibial	
  branch	
  respectively.	
  	
  The	
  medial	
  aspect	
  
is	
  innervated	
  via	
  the	
  obturator	
  nerve	
  with	
  cutaneous	
  
innervation	
  from	
  the	
  saphenous	
  cutaneous	
  nerve.	
  	
  
	
   The	
  posterior	
  
aspect	
  of	
  the	
  knee,	
  the	
  
popliteal	
  fossa,	
  is	
  the	
  
point	
  where	
  the	
  sciatic	
  
nerve	
  splits	
  into	
  the	
  
tibial	
  division	
  and	
  the	
  
common	
  fibular	
  
division	
  (Figure	
  4).	
  The	
  
tibial	
  nerve	
  supplies	
  
muscles	
  found	
  posterior	
  to	
  the	
  knee	
  joint	
  such	
  as	
  the	
  
soleus,	
  gastrocnemius,	
  plantaris,	
  and	
  popliteus.	
  	
  The	
  
common	
  fibular	
  nerve	
  runs	
  on	
  the	
  lateral	
  aspect	
  of	
  
the	
  joint,	
  following	
  the	
  medial	
  aspect	
  of	
  the	
  biceps	
  
femoris,	
  and	
  wraps	
  closely	
  around	
  the	
  neck	
  of	
  the	
  
fibular	
  where	
  it	
  is	
  subject	
  to	
  injury.	
  	
  The	
  common	
  
fibular	
  nerve	
  supplies	
  the	
  short	
  head	
  of	
  the	
  biceps	
  femoris.	
  	
  The	
  posterior	
  cutaneous	
  nerve	
  
of	
  the	
  thigh	
  provides	
  innervation	
  to	
  the	
  skin	
  posterior	
  to	
  the	
  knee	
  joint.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  3.	
  Nerve	
  supply	
  
Figure	
  4.	
  Popliteal	
  fossa	
  structures	
  
27
Table	
  1.	
  Muscles	
  Acting	
  on	
  the	
  Tibiofemoral	
  and	
  Patellofemoral	
  Joints	
  (Figure	
  5	
  &	
  6)	
  
Muscle	
  
Proximal	
  
Attachment	
  
Distal	
  Attachment	
  
Segmental	
  
Innervation	
  
Peripheral	
  
Innervation	
  
Anterior	
  Region	
  
Rectus	
  femoris	
  
Anterior	
  inferior	
  iliac	
  
spine	
  and	
  ilium	
  
superior	
  to	
  
acetabulum	
  
Vastus	
  lateralis	
  
Greater	
  trochanter	
  
and	
  lateral	
  lip	
  of	
  linea	
  
aspera	
  of	
  femur	
  
Vastus	
  medialis	
  
Intertrochanteric	
  line	
  
and	
  medial	
  lip	
  of	
  linea	
  
aspera	
  of	
  femur	
  
Vastus	
  
intermedius	
  
Anterior	
  and	
  lateral	
  
surfaces	
  of	
  shaft	
  of	
  
femur	
  
Quadriceps	
  tendon	
  and	
  
attachments	
  to	
  base	
  of	
  
patella	
  forming	
  
patellar	
  ligament	
  to	
  
tibial	
  tuberosity;	
  
medial	
  and	
  lateral	
  vasti	
  
also	
  attach	
  tibia	
  and	
  
patella	
  via	
  patellar	
  
retinacula	
  
L2,	
  L3,	
  L4	
  	
  
Femoral	
  
nerve	
  
Articularis	
  Genu	
  
Distal	
  anterior	
  shaft	
  of	
  
femur	
  
Proximal	
  portion	
  of	
  
synovial	
  membrane	
  of	
  
the	
  knee	
  
L2,	
  L3,	
  L4	
  
Femoral	
  
nerve	
  
Medial	
  Region	
  
Sartorius	
  	
  
Anterior	
  superior	
  iliac	
  
spine	
  and	
  superior	
  
part	
  of	
  notch	
  inferior	
  
to	
  it	
  
Superior	
  portion	
  of	
  
medial	
  surface	
  of	
  tibia	
  	
  
L2,	
  L3	
  
Femoral	
  
nerve	
  
Gracilis	
  	
  
Body	
  and	
  inferior	
  
ramus	
  of	
  pubis	
  	
  
Superior	
  portion	
  of	
  
medial	
  surface	
  of	
  tibia	
  
L2,	
  L3	
  
Obturator	
  
nerve	
  	
  
Lateral	
  Region	
  	
  
Tensor	
  fascia	
  
latae	
  
Anterior	
  superior	
  iliac	
  
spine	
  and	
  external	
  lip	
  
of	
  iliac	
  crest	
  
Iliotibial	
  tract	
  	
   L4,	
  L5,	
  S1	
  
Superior	
  
gluteal	
  nerve	
  
Posterior	
  region	
  
Semitendinosus	
  
Medial	
  surface	
  of	
  
superior	
  part	
  of	
  tibia	
  
Semimembrano
-­‐sus	
  
Ischial	
  tuberosity	
  
Posterior	
  part	
  of	
  
medial	
  condyle	
  of	
  tibia	
  
L5,	
  S1,	
  S2	
  
Tibial	
  division	
  
of	
  sciatic	
  
nerve	
  
Biceps	
  femoris:	
  
Long	
  head	
  
Short	
  head	
  
Long	
  head:	
  
Ischial	
  tuberosity	
  
Short	
  head:	
  
linea	
  aspera	
  and	
  
lateral	
  	
  supracondylar	
  
line	
  of	
  femur	
  
Lateral	
  side	
  of	
  head	
  of	
  
fibula	
  
L5,	
  S1,	
  S2	
  
Long	
  head:	
  	
  
Tibial	
  division	
  
of	
  sciatic	
  
nerve	
  
	
  
Short	
  head:	
  	
  
Common	
  
fibular	
  
division	
  of	
  
sciatic	
  nerve	
  
28
	
  	
  	
  
Tissue	
  Layers	
  from	
  Superficial	
  to	
  Deep	
  (Figure	
  7)	
  
• Skin	
  
o Epidermis	
  
o Dermis	
  
• Adipose	
  	
  
• Fascia	
  
o Fascia	
  Latae	
  
! Iliotibial	
  tract	
  
! Intermuscular	
  septa	
  
o Patellar	
  retinaculum,	
  medial	
  and	
  lateral	
  	
  
• Muscles	
  and	
  tendons	
  
o Anteriorly	
  
! Quadriceps	
  tendon	
  
! Patellar	
  tendon	
  
! Articularis	
  Genu	
  
o Medially	
  
! Semitendinosus	
  
! Semimembranosus	
  	
  
! Sartorius	
  
! Gracilis	
  
o Posteriorly	
  
! Gastrocnemius	
  
! Plantaris	
  	
  
! Popliteus	
  
o Laterally	
  
! Biceps	
  femoris	
  	
  
• Bursa	
  	
  
o Anteriorly	
  	
  
! Suprapatellar	
  	
  
! Prepatellar	
  
! Infrapatellar	
  	
  
o Medially	
  
! Anserine	
  	
  
! Semimembranosus	
  	
  
o Laterally	
  
! Subtendinosus	
  of	
  biceps	
  femoris	
  	
  
! Bursa	
  deep	
  to	
  Iliotibial	
  tract	
  	
  
• Neurovasculature	
  
Gastrocnemius	
   Lateral	
  head:	
  lateral	
  
aspect	
  of	
  lateral	
  
condyle	
  of	
  femur	
  
Medial	
  head:	
  popliteal	
  
surface	
  of	
  femur	
  
superior	
  to	
  medial	
  
condyle	
  
Posterior	
  surface	
  of	
  
calcaneus	
  via	
  Achilles	
  
tendon	
  
Plantaris	
  
Inferior	
  end	
  of	
  lateral	
  
supracondylar	
  line	
  of	
  
femur,	
  oblique	
  
popliteal	
  ligament	
  
Posterior	
  surface	
  of	
  
calcaneus	
  via	
  Achilles	
  
tendon	
  
S1,	
  S2	
  
	
  
	
  
Tibial	
  Nerve	
  
Figure	
  7.	
  Sagittal	
  cut	
  of	
  the	
  knee	
  
29
o Common	
  fibular	
  nerve	
  	
  
o Tibial	
  nerve	
  	
  
o Sural	
  nerve	
  	
  
o Popliteal	
  artery	
  	
  
! Superior	
  medial	
  genicular	
  artery	
  	
  
! Superior	
  lateral	
  genicular	
  artery	
  	
  
! Middle	
  genicular	
  artery	
  	
  
! Inferior	
  medial	
  genicular	
  artery	
  	
  
! Inferior	
  lateral	
  genicular	
  artery	
  	
  
• Extracapsular	
  ligaments	
  	
  
o Anterolateral	
  ligament	
  	
  
o Lateral	
  collateral	
  ligament	
  	
  
o Medial	
  collateral	
  ligament	
  	
  
• Joint	
  Capsule	
  	
  
• Intracapsular	
  ligaments	
  
o Posterior	
  cruciate	
  ligament	
  
o Anterior	
  cruciate	
  ligament	
  	
  
• Menisci:	
  medial	
  and	
  lateral	
  	
  
• Articular	
  cartilage	
  of	
  femur	
  	
  
• Articular	
  cartilage	
  of	
  tibia	
  	
  
• Bones	
  
o Patella	
  
o Tibia	
  
o Femur	
  
30
The	
  Tibiofemoral	
  Joint	
  
	
  
The	
  tibiofemoral	
  joint	
  is	
  the	
  largest	
  of	
  
the	
  knee	
  joint	
  complex	
  and	
  produces	
  most	
  of	
  
the	
  movement	
  at	
  the	
  knee.	
  	
  This	
  joint	
  
undergoes	
  a	
  great	
  deal	
  of	
  impact	
  during	
  
daily	
  activities.	
  	
  Function	
  at	
  the	
  tibiofemoral	
  
joint	
  is	
  vital	
  for	
  shock	
  absorption	
  in	
  closed-­‐
chain	
  activities	
  such	
  as	
  walking,	
  running,	
  
squatting,	
  and	
  jumping.	
  	
  
The	
  tibiofemoral	
  joint	
  and	
  its	
  
associated	
  structures	
  are	
  surrounded	
  by	
  a	
  
thin	
  layer	
  of	
  fibrous	
  connective	
  tissue	
  called	
  
the	
  joint	
  capsule.	
  	
  This	
  capsule	
  is	
  lined	
  with	
  
an	
  extensive,	
  thick	
  synovial	
  membrane	
  and	
  
synovial	
  fluid,	
  giving	
  the	
  joint	
  its	
  classification	
  as	
  the	
  largest	
  synovial	
  joint	
  in	
  the	
  body.	
  	
  The	
  
synovial	
  fluid	
  allows	
  for	
  very	
  low	
  friction	
  within	
  this	
  mobile	
  joint.	
  	
  Deep	
  to	
  the	
  joint	
  capsule	
  
are	
  as	
  many	
  as	
  14	
  bursae	
  (Figure	
  8).	
  	
  These	
  are	
  found	
  at	
  areas	
  producing	
  high	
  friction	
  with	
  
movement	
  where	
  tissues	
  articulate.	
  	
  	
  
The	
  tibiofemoral	
  articulation	
  forms	
  a	
  hinge	
  joint	
  with	
  the	
  distal	
  femur	
  and	
  the	
  
proximal	
  aspect	
  of	
  the	
  tibia.	
  	
  The	
  distal	
  end	
  of	
  the	
  femur	
  includes	
  two	
  major	
  projections	
  
known	
  as	
  the	
  medial	
  and	
  lateral	
  femoral	
  condyles.	
  	
  The	
  intercondylar	
  notch	
  separates	
  the	
  
joint	
  into	
  the	
  medial	
  and	
  lateral	
  compartments.	
  	
  The	
  medial	
  condyle	
  is	
  positioned	
  more	
  
anteriorly	
  and	
  has	
  a	
  larger	
  articulation	
  with	
  thicker	
  articular	
  cartilage,	
  while	
  the	
  lateral	
  
condyle	
  is	
  bigger	
  in	
  shape.	
  	
  These	
  large,	
  asymmetrical	
  condyles	
  articulate	
  with	
  the	
  
relatively	
  flat	
  and	
  shallow	
  medial	
  and	
  lateral	
  tibial	
  condyles.	
  	
  This	
  creates	
  an	
  incongruent	
  
articulation	
  at	
  the	
  joint	
  that	
  is	
  mechanically	
  weak	
  and	
  lacks	
  overall	
  structural	
  stability.	
  	
  
Therefore,	
  the	
  surrounding	
  muscles	
  and	
  ligaments	
  are	
  crucial	
  for	
  providing	
  stabilization	
  at	
  
the	
  joint.	
  	
  	
  
Unlike	
  other	
  structures	
  in	
  the	
  lower	
  extremity,	
  these	
  surfaces	
  are	
  highly	
  unstable	
  in	
  
effort	
  to	
  allow	
  a	
  large	
  range	
  of	
  motion	
  to	
  occur	
  at	
  the	
  joint.	
  	
  Due	
  to	
  the	
  incongruent	
  
surfaces,	
  much	
  of	
  the	
  stability	
  and	
  strength	
  of	
  the	
  knee	
  is	
  provided	
  less	
  by	
  bony	
  articulation	
  
and	
  is	
  instead	
  provided	
  by	
  the	
  numerous	
  ligamentous	
  structures	
  and	
  the	
  muscles	
  and	
  
tendons	
  acting	
  at	
  the	
  joint.	
  	
  The	
  knee	
  joint	
  reaches	
  its	
  greatest	
  stability	
  in	
  a	
  position	
  of	
  full	
  
extension	
  with	
  slight	
  external	
  rotation.	
  	
  This	
  point	
  of	
  maximal	
  contact	
  and	
  congruency	
  is	
  
the	
  close-­‐packed	
  position.	
  	
  	
  In	
  this	
  position,	
  the	
  ligaments	
  are	
  in	
  full	
  tension,	
  and	
  range	
  of	
  
motion	
  is	
  limited	
  in	
  all	
  directions.	
  	
  In	
  order	
  for	
  motion	
  to	
  occur	
  at	
  the	
  joint,	
  the	
  knee	
  must	
  
be	
  in	
  some	
  degree	
  of	
  flexion.	
  	
  The	
  joint	
  will	
  reach	
  its	
  greatest	
  amount	
  of	
  motion	
  in	
  25	
  
degrees	
  of	
  flexion,	
  the	
  most	
  non-­‐congruent	
  position,	
  known	
  as	
  loose-­‐packed.	
  With	
  
movement	
  into	
  flexion,	
  the	
  joint	
  will	
  rely	
  on	
  ligaments	
  and	
  tendons	
  to	
  provide	
  joint	
  
stability.	
  	
  Increasing	
  muscle	
  strength	
  also	
  provides	
  increased	
  stability	
  and	
  decreased	
  
likeliness	
  of	
  injury.	
  	
  
	
   In	
  order	
  to	
  achieve	
  maximal	
  articulation	
  at	
  this	
  incongruent	
  joint,	
  small	
  
fibrocartilaginous	
  structures,	
  the	
  menisci,	
  are	
  attached	
  to	
  the	
  articular	
  surfaces	
  between	
  
the	
  femoral	
  and	
  tibial	
  condyles	
  (Figure	
  9).	
  	
  With	
  forces	
  at	
  the	
  tibiofemoral	
  joint	
  that	
  are	
  2-­‐4	
  
times	
  the	
  amount	
  of	
  body	
  weight,	
  the	
  menisci	
  function	
  to	
  add	
  depth	
  to	
  this	
  shallow	
  
Figure	
  8.	
  Tibiofemoral	
  joint	
  
31
articulation.	
  The	
  menisci	
  increase	
  the	
  surface	
  
area,	
  shock	
  absorption,	
  and	
  stability,	
  while	
  
decreasing	
  friction.	
  	
  These	
  structures	
  also	
  
function	
  to	
  provide	
  proprioception	
  at	
  the	
  joint	
  
and	
  assist	
  with	
  accessory	
  motion.	
  	
  The	
  lateral	
  
meniscus	
  is	
  O-­‐shaped.	
  	
  It	
  has	
  less	
  surface	
  area,	
  
does	
  not	
  have	
  a	
  strong	
  attachment	
  to	
  the	
  tibia,	
  
and	
  has	
  fewer	
  attaching	
  structures	
  than	
  the	
  
medial	
  meniscus.	
  	
  The	
  C-­‐shaped	
  medial	
  
meniscus	
  attaches	
  to	
  the	
  anterior	
  cruciate	
  
ligament,	
  posterior	
  cruciate	
  ligament,	
  medial	
  
collateral	
  ligament,	
  and	
  the	
  semimembranosus.	
  
With	
  stronger	
  attachments	
  to	
  the	
  tibial	
  plateau,	
  
it	
  is	
  less	
  movable	
  within	
  the	
  joint,	
  placing	
  it	
  at	
  higher	
  risk	
  for	
  injury.	
  
	
  
Table	
  2.	
  Joint	
  Motions	
  of	
  the	
  Tibiofemoral	
  Joint	
  	
  
Joint	
  Motion	
   Primary	
  Movers	
   Secondary	
  Movers	
  
Knee	
  flexion	
  
Hamstring	
  muscles:	
  
Semimembranosus	
  
Semitendinosus,	
  
	
  Long	
  head	
  of	
  biceps	
  femoris	
  
Sartorius	
  
Gracilis	
  
Popliteus	
  
Gastrocnemius	
  
Plantaris	
  
Knee	
  
extension	
  
Quadriceps	
  femoris:	
  
Rectus	
  femoris	
  
Vastus	
  lateralis	
  
Vastus	
  intermedius,	
  
Vastus	
  medialis	
  
Tensor	
  fascia	
  latae	
  assists	
  	
  
in	
  maintaining	
  knee	
  extension	
  
Internal	
  
rotation	
  
Semimembranosus	
  
Semitendinosus	
  with	
  knee	
  flexed;	
  
Popliteus	
  in	
  non-­‐weight	
  bearing	
  activity	
  
with	
  knee	
  extended	
  
Gracilis,	
  Sartorius	
  
Popliteus	
  (in	
  non-­‐weight	
  
bearing)	
  	
  
External	
  
rotation	
  
Biceps	
  femoris:	
  short	
  &	
  long	
  head	
  when	
  
knee	
  is	
  flexed	
  
Popliteus	
  (in	
  weight	
  bearing)	
  	
  
	
  
Biomechanics	
  of	
  the	
  Tibiofemoral	
  Joint	
  	
  
	
   The	
  tibiofemoral	
  joint	
  is	
  a	
  shallow,	
  
hinge	
  joint	
  with	
  two	
  degrees	
  of	
  freedom.	
  	
  
The	
  primary	
  motions	
  are	
  flexion	
  and	
  
extension,	
  with	
  some	
  rotational	
  movement	
  
occurring	
  in	
  knee	
  flexion	
  (Figure	
  10).	
  	
  The	
  
surrounding	
  tendons	
  and	
  ligaments	
  
restrict	
  these	
  motions.	
  	
  
Muscles	
  are	
  referred	
  to	
  as	
  two	
  main	
  
groups	
  acting	
  at	
  this	
  joint:	
  the	
  knee	
  
Figure	
  9.	
  Menisci	
  of	
  the	
  knee	
  
Figure	
  10.	
  Motions	
  of	
  the	
  knee	
  
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide
Lower Extremity Arthrology Guide

More Related Content

What's hot

Arm muscles ppt
Arm muscles pptArm muscles ppt
Arm muscles pptnihattt
 
The Pelvis and Hip: Function and Anatomy
The Pelvis and Hip: Function and Anatomy The Pelvis and Hip: Function and Anatomy
The Pelvis and Hip: Function and Anatomy Jill Costley
 
Muscles moving lower extremity.anat
Muscles moving lower extremity.anatMuscles moving lower extremity.anat
Muscles moving lower extremity.anatguestc5fd8d
 
Muscle labeling for students
Muscle labeling for studentsMuscle labeling for students
Muscle labeling for studentsmannywoodward
 
Anatomy (anatomy of bone, joint & muscles of upper limb)
Anatomy (anatomy of bone, joint & muscles of upper limb)Anatomy (anatomy of bone, joint & muscles of upper limb)
Anatomy (anatomy of bone, joint & muscles of upper limb)Osama Al-Zahrani
 
Appendicular skeleton
Appendicular skeletonAppendicular skeleton
Appendicular skeletonabhay joshi
 
Muscular Anatomy (labeling packet)
Muscular Anatomy (labeling packet)Muscular Anatomy (labeling packet)
Muscular Anatomy (labeling packet)anniemartinez
 
Appendicular skeleton
Appendicular skeletonAppendicular skeleton
Appendicular skeletonMichael Wrock
 
Final appendicular skeleton(upper limbs).
Final appendicular skeleton(upper limbs).Final appendicular skeleton(upper limbs).
Final appendicular skeleton(upper limbs).Shahzadshams shams
 
Muscles of abdomen, pelvis and lower limbs
Muscles of abdomen, pelvis and lower limbsMuscles of abdomen, pelvis and lower limbs
Muscles of abdomen, pelvis and lower limbsDarmian Masese
 
Kin191 A.Ch.6.Knee.Patellofemoral.Anatomy
Kin191 A.Ch.6.Knee.Patellofemoral.AnatomyKin191 A.Ch.6.Knee.Patellofemoral.Anatomy
Kin191 A.Ch.6.Knee.Patellofemoral.AnatomyJLS10
 

What's hot (20)

Bones of Trunk (Human Anatomy)
Bones of Trunk (Human Anatomy)Bones of Trunk (Human Anatomy)
Bones of Trunk (Human Anatomy)
 
Slideshow: Shoulder Joint
Slideshow: Shoulder JointSlideshow: Shoulder Joint
Slideshow: Shoulder Joint
 
Arm muscles ppt
Arm muscles pptArm muscles ppt
Arm muscles ppt
 
Thigh muscles
Thigh musclesThigh muscles
Thigh muscles
 
The Pelvis and Hip: Function and Anatomy
The Pelvis and Hip: Function and Anatomy The Pelvis and Hip: Function and Anatomy
The Pelvis and Hip: Function and Anatomy
 
Muscles moving lower extremity.anat
Muscles moving lower extremity.anatMuscles moving lower extremity.anat
Muscles moving lower extremity.anat
 
Muscle labeling for students
Muscle labeling for studentsMuscle labeling for students
Muscle labeling for students
 
Muscles 2
Muscles 2Muscles 2
Muscles 2
 
Anatomy (anatomy of bone, joint & muscles of upper limb)
Anatomy (anatomy of bone, joint & muscles of upper limb)Anatomy (anatomy of bone, joint & muscles of upper limb)
Anatomy (anatomy of bone, joint & muscles of upper limb)
 
Appendicular skeleton
Appendicular skeletonAppendicular skeleton
Appendicular skeleton
 
Muscular Anatomy (labeling packet)
Muscular Anatomy (labeling packet)Muscular Anatomy (labeling packet)
Muscular Anatomy (labeling packet)
 
Appendicular skeleton
Appendicular skeletonAppendicular skeleton
Appendicular skeleton
 
Muscles 3
Muscles 3Muscles 3
Muscles 3
 
Pelvic, hip knee, Bones, Joints and Muscles
Pelvic, hip knee, Bones, Joints and MusclesPelvic, hip knee, Bones, Joints and Muscles
Pelvic, hip knee, Bones, Joints and Muscles
 
Slideshow: Ankle Joint
Slideshow: Ankle JointSlideshow: Ankle Joint
Slideshow: Ankle Joint
 
Final appendicular skeleton(upper limbs).
Final appendicular skeleton(upper limbs).Final appendicular skeleton(upper limbs).
Final appendicular skeleton(upper limbs).
 
Muscles of abdomen, pelvis and lower limbs
Muscles of abdomen, pelvis and lower limbsMuscles of abdomen, pelvis and lower limbs
Muscles of abdomen, pelvis and lower limbs
 
Knee joint
Knee joint   Knee joint
Knee joint
 
Kin191 A.Ch.6.Knee.Patellofemoral.Anatomy
Kin191 A.Ch.6.Knee.Patellofemoral.AnatomyKin191 A.Ch.6.Knee.Patellofemoral.Anatomy
Kin191 A.Ch.6.Knee.Patellofemoral.Anatomy
 
Rotator cuff muscles
Rotator cuff musclesRotator cuff muscles
Rotator cuff muscles
 

Similar to Lower Extremity Arthrology Guide

Arthrology Guide of the Lower Extremity
Arthrology Guide of the Lower Extremity Arthrology Guide of the Lower Extremity
Arthrology Guide of the Lower Extremity Tanna Chandler
 
Kin191 A. Ch.8. Pelvis. Thigh. Anatomy
Kin191 A. Ch.8. Pelvis. Thigh. AnatomyKin191 A. Ch.8. Pelvis. Thigh. Anatomy
Kin191 A. Ch.8. Pelvis. Thigh. AnatomyJLS10
 
knee joint
knee jointknee joint
knee jointhanan777
 
Lesson 8 (The Shoulder).pptx
Lesson 8 (The Shoulder).pptxLesson 8 (The Shoulder).pptx
Lesson 8 (The Shoulder).pptxJohnneErikaLarosa
 
Pelvic girdle, Femur, Sacroiliac joint and Hip Joint
Pelvic girdle, Femur, Sacroiliac joint and Hip JointPelvic girdle, Femur, Sacroiliac joint and Hip Joint
Pelvic girdle, Femur, Sacroiliac joint and Hip JointSado Anatomist
 
Muscle Attachment Table (Compartment Wise)
Muscle Attachment Table (Compartment Wise)Muscle Attachment Table (Compartment Wise)
Muscle Attachment Table (Compartment Wise)Updesh Yadav
 
Gluteal region by insha ur rahman
Gluteal region by insha ur rahmanGluteal region by insha ur rahman
Gluteal region by insha ur rahmanINSHAURRAHMAN
 
Anatomy of hip and lower limb bones
Anatomy of hip and lower limb bonesAnatomy of hip and lower limb bones
Anatomy of hip and lower limb bonesAlio Hersi
 
1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt
1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt
1- BONES OF LOWER LIMB WITH MORE DETAILS.pptZAlaattSn
 
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docx
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docxANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docx
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docxmarrahmohamed33
 
Popliteal fossa & back of thigh
Popliteal fossa & back of thigh  Popliteal fossa & back of thigh
Popliteal fossa & back of thigh Prabhakar Yadav
 
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdf
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdfMUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdf
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdfFrancis887800
 
Anatomy of the Lower Limb.pdf
Anatomy of the Lower Limb.pdfAnatomy of the Lower Limb.pdf
Anatomy of the Lower Limb.pdfWalubitaWalubita1
 
UL upper limb-1.pdfassignment presentation 123
UL upper limb-1.pdfassignment presentation 123UL upper limb-1.pdfassignment presentation 123
UL upper limb-1.pdfassignment presentation 123AmanuelIbrahim
 
UL upper limb-1 anatomy,bonemuscle and neurovusculatur
UL upper limb-1 anatomy,bonemuscle and neurovusculaturUL upper limb-1 anatomy,bonemuscle and neurovusculatur
UL upper limb-1 anatomy,bonemuscle and neurovusculaturDiribaErko
 
Slideshow: Posterior Thigh Hamstrings
Slideshow: Posterior Thigh HamstringsSlideshow: Posterior Thigh Hamstrings
Slideshow: Posterior Thigh HamstringsThe Funky Professor
 

Similar to Lower Extremity Arthrology Guide (20)

Arthrology Guide of the Lower Extremity
Arthrology Guide of the Lower Extremity Arthrology Guide of the Lower Extremity
Arthrology Guide of the Lower Extremity
 
Kin191 A. Ch.8. Pelvis. Thigh. Anatomy
Kin191 A. Ch.8. Pelvis. Thigh. AnatomyKin191 A. Ch.8. Pelvis. Thigh. Anatomy
Kin191 A. Ch.8. Pelvis. Thigh. Anatomy
 
knee joint
knee jointknee joint
knee joint
 
Anatomy of spine
Anatomy of spineAnatomy of spine
Anatomy of spine
 
Pelvic and hip anatomy
Pelvic and hip anatomyPelvic and hip anatomy
Pelvic and hip anatomy
 
Lesson 8 (The Shoulder).pptx
Lesson 8 (The Shoulder).pptxLesson 8 (The Shoulder).pptx
Lesson 8 (The Shoulder).pptx
 
Pelvic girdle, Femur, Sacroiliac joint and Hip Joint
Pelvic girdle, Femur, Sacroiliac joint and Hip JointPelvic girdle, Femur, Sacroiliac joint and Hip Joint
Pelvic girdle, Femur, Sacroiliac joint and Hip Joint
 
Muscle Attachment Table (Compartment Wise)
Muscle Attachment Table (Compartment Wise)Muscle Attachment Table (Compartment Wise)
Muscle Attachment Table (Compartment Wise)
 
Gluteal region by insha ur rahman
Gluteal region by insha ur rahmanGluteal region by insha ur rahman
Gluteal region by insha ur rahman
 
Anatomy of hip and lower limb bones
Anatomy of hip and lower limb bonesAnatomy of hip and lower limb bones
Anatomy of hip and lower limb bones
 
1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt
1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt
1- BONES OF LOWER LIMB WITH MORE DETAILS.ppt
 
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docx
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docxANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docx
ANATOMY TEST QUESTIONS FOR UPPER AND LOWER LIMB - Copy.docx
 
Popliteal fossa & back of thigh
Popliteal fossa & back of thigh  Popliteal fossa & back of thigh
Popliteal fossa & back of thigh
 
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdf
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdfMUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdf
MUSCLE_ILLUSTRATION_DESCRIPTION_ORIGIN_I.pdf
 
Anatomy of the Lower Limb.pdf
Anatomy of the Lower Limb.pdfAnatomy of the Lower Limb.pdf
Anatomy of the Lower Limb.pdf
 
UL upper limb-1.pdfassignment presentation 123
UL upper limb-1.pdfassignment presentation 123UL upper limb-1.pdfassignment presentation 123
UL upper limb-1.pdfassignment presentation 123
 
UL upper limb-1 anatomy,bonemuscle and neurovusculatur
UL upper limb-1 anatomy,bonemuscle and neurovusculaturUL upper limb-1 anatomy,bonemuscle and neurovusculatur
UL upper limb-1 anatomy,bonemuscle and neurovusculatur
 
Anatomy of back
Anatomy of backAnatomy of back
Anatomy of back
 
Slideshow: Posterior Thigh Hamstrings
Slideshow: Posterior Thigh HamstringsSlideshow: Posterior Thigh Hamstrings
Slideshow: Posterior Thigh Hamstrings
 
Mnalla tkun steph
Mnalla tkun stephMnalla tkun steph
Mnalla tkun steph
 

More from performanceenhancingdrugs (11)

TGMD 2
TGMD 2TGMD 2
TGMD 2
 
Human Growth and Development
Human Growth and DevelopmentHuman Growth and Development
Human Growth and Development
 
Mcml project
Mcml projectMcml project
Mcml project
 
Andy's argument
Andy's argumentAndy's argument
Andy's argument
 
Connor's Argument
Connor's ArgumentConnor's Argument
Connor's Argument
 
Karlee's Argument
Karlee's ArgumentKarlee's Argument
Karlee's Argument
 
Andrew's Argument
Andrew's ArgumentAndrew's Argument
Andrew's Argument
 
Jo Jo's Argument
Jo Jo's ArgumentJo Jo's Argument
Jo Jo's Argument
 
Keith's argument
Keith's argumentKeith's argument
Keith's argument
 
Timeline
TimelineTimeline
Timeline
 
Side Effects
Side EffectsSide Effects
Side Effects
 

Recently uploaded

Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...parulsinha
 
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service AvailableGENUINE ESCORT AGENCY
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Availableperfect solution
 
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...BhumiSaxena1
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...chetankumar9855
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...chandars293
 
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Namrata Singh
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...chennailover
 
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...khalifaescort01
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...mahaiklolahd
 
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableGENUINE ESCORT AGENCY
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...chandars293
 
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...hotbabesbook
 
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service AvailableTrichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service AvailableGENUINE ESCORT AGENCY
 

Recently uploaded (20)

Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
 
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 9667172968 Top Class Call Girl Service Available
 
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
Saket * Call Girls in Delhi - Phone 9711199012 Escorts Service at 6k to 50k a...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 9332606886 ⟟ Call Me For Genuine ...
 
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
Coimbatore Call Girls in Coimbatore 7427069034 genuine Escort Service Girl 10...
 
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Ahmedabad Just Call 9630942363 Top Class Call Girl Service Available
 
Call Girls in Gagan Vihar (delhi) call me [🔝 9953056974 🔝] escort service 24X7
Call Girls in Gagan Vihar (delhi) call me [🔝  9953056974 🔝] escort service 24X7Call Girls in Gagan Vihar (delhi) call me [🔝  9953056974 🔝] escort service 24X7
Call Girls in Gagan Vihar (delhi) call me [🔝 9953056974 🔝] escort service 24X7
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
 
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service AvailableTrichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
 

Lower Extremity Arthrology Guide

  • 1.                                                                   Lower  Extremity  Arthrology  Guide   Summer  2015   Derya  Anderson     Scott  Bentley     Bow  Decker       Ashley  Haight     Cynthia  Hobbs     Jennifer  Rogers     Jill  Stephenson     Andrew  Trevino     Table  18  
  • 2. 2 Arthrology  Guide:  Table  of  Contents       Introduction  to  the  Pelvic  Region………………………………………………………….………..3     Femoroacetabular  Joint………………………………………………………………………..…7     Pubic  Sympyhsis  ………………………………………………………………………….............16     Sacroiliac  Joint…………………………………………………………………………………..….20     Introduction  to  the  Knee  Complex…………………………………………………………………25     Tibofemoral  Joint……………………………………………………………………………......…30     Patellofemoral  Joint………………………………………………………………….……...….…37     Introduction  to  the  Ankle  Joint………………………………………………………………………42     Proximal  Tibiofibular  Joint  …………………………………………………………...….……45     Distal  Tibiofibular  Joint  ……………………………………………………………….………...47     Talocrural  Joint……………………………………………………………………………………...50     Subtalar  Joint………………………………………………………………………………………...56     Introduction  to  the  Foot  Complex………………………………………………………….………62     Transverse  Tarsal  Joints  ………………………………………………………….…………….65     Distal  Intertarsal  Joints  ………………………………………………………………………….73     Tarsometarsal  Joints……………………………………………………..……………………….79     Intermetarsal  Joints……………………………………………………………………………….84     Metatarsophalangeal  Joints…………………………………………………………………….87     Interphalangeal  Joints…………………………………………………………………………….93                                            
  • 3. 3 Introduction  to  the  Pelvic  Region     The  pelvic  region  contains  three  major  joints.  It  includes  the  femoroacetabular  joint   (hip  joint),  the  sacroiliac  joint  (SI),  and  the  pubic  symphysis.  These  three  joints  work   together  for  the  purpose  of  weight  bearing,  stability,  and  shock  absorption/weight   distribution.  The  joint’s  second  but  equally  important  purpose  is  to  allow  dynamic   movement  such  as  walking,  running,  and  jumping.  These  joints  have  to  be  able  to  work   together  to  provide  the  stability  required  so   dynamic  movements  can  occur  effectively  and  pain   free.     The  pelvis  is  comprised  of  the  sacrum  and  an   innominate  bone  on  each  side.  The  union  of  these   bones  creates  the  sacroiliac  joint  and  the  pubic   symphysis.  As  mentioned  above,  the  pelvis  serves  to   distribute  weight  from  the  upper  body  down  to  the   lower  extremities.  This  is  done  very  effectively  due   to  the  ring  that  is  created  from  the  joining  of  these   three  bones.  The  pelvis  is  also  important  due  to  the   many  muscle  attachment  sites  from  both  the  lower   extremity  and  the  trunk.     The  last  component  of  the  pelvic  region   includes  the  femur  bone.  The  head  of  the  femur   articulates  with  the  acetabulum  to  create  the  femoroacetabular  joint.  The  innominate  is   comprised  of  three  parts:  the  ilium,  the  ischium,  and  the  pubis.  These  three  components  of   the  innominate  come  together  to  form  the  acetabulum  (Figure  1).  It  is  at  this  joint  that  most   of  the  weight  bearing  occurs.     The  pelvic  region  receives  its  main  blood  supply  from  the  internal  and  external  iliac   arteries  which  ultimately  originate  from  the  split  of  the  abdominal  aorta.  The  internal  iliac   artery  supplies  blood  to  the  organs  of  the  pelvis  and  the  surrounding  muscles,  and  the   external  iliac  artery  travels  laterally  to  supply  blood  to  the  femoroacetabular  joint  and  the   lower  extremities.  The  pelvic   region  is  innervated  by  the   lumbosacral  plexus.  The  plexus   arises  from  the  ventral  root  of   T12-­‐S4  (Figure  2).  The  lumbar   portion  of  the  plexus  goes  to   innervate  the  anterior  and  lateral   aspect  of  the  pelvis  while  the   sacral  portion  innervates  the   posterior  and  lateral  aspect  of  the   pelvis.                 Figure  1.  Bones  of  the  acetabulum   Figure  2.  Nervous  supply  of  pelvis  
  • 4. 4 Table  1.  Muscles  Acting  on  the  Pelvic  Joints     Muscle   Proximal  Attachment   Distal  Attachment   Segmental   Innervations   Peripheral   Innervations   Gluteus  max   Aponeurosis  of  the   erector  spinae,  sacrum,   sacrotuberous  ligament  &   posterior  gluteal  line   (innominate)   Greater  trochanter,   gluteal  tuberosity  of   the  femur  &  the   iliotibial  tract   L5-­‐S1-­‐2   Inferior   Gluteal  Nerve   Gluteus   medius   External  iliac  surface   Oblique  ridge  on  the   lateral  aspect  of  the   greater  trochanter;   gluteal  aponeurosis   L4-­‐5-­‐S1   Superior   Gluteal  Nerve   Gluteus   minimis   External  iliac  surface  and   margin  of  the  greater   sciatic  notch   Anterolateral  aspect   of  the  greater   trochanter   L4-­‐5-­‐S1   Superior   Gluteal  Nerve   Piriformis   Anterolateral  sacrum  &   posterior  inferior  iliac   spine   Upper  border  of  the   greater  trochanter   (L5)  S1-­‐2   Nerve  to  the   piriformis   Superior   gemellus   Xternal  surface  spine  of   ischium  via  obturator     internus  tendon  to   greater  trochanter   Greater  trochanter   L5-­‐S1-­‐S2   Sacral  Plexus   Obturator   internus   Anterolateral  wall  of  the   pelvis  &  obturator   membrane   Medial  surface  of   the  greater   trochanter   L5-­‐S1-­‐2   Nerve  to  the   obturator   internus   (from  sacral   plexus)   Obturator   externus   Rami  of  pubis  and   ischium;  external  surface   obturator  membrane   Trochanteric  fossa   L3-­‐4   Obturator   Nerve   Inferior   gemellus   Proximal  ischial   tuberosity  via  obturator   internus  tendon   Greater  trochanter   L4-­‐5-­‐S1  (S2)   Sacral  Plexus  
  • 5. 5 Quadratus   femoris   Ischial  tuberosity   Quadrate  tubercle  of   the  femur   L4-­‐5-­‐S1,  (S2)   Nerve  to   quadratus   femoris  from   sacral  plexus   Hamstring   (Semimembra n-­‐osus,   Semitendinos us,  Biceps   femoris)   SM:  ischial  tuberosity   ST:  ischial  tuberosity   BF:  ischial  tuberosity    &   sacrotuberous  lig.  (long   head)  ;  lateral  lip  of  linea   aspera  &  lateral   supracondylar  line  (short   head)   SM:  posterior  aspect   of  the  medial  tibial   condyle   ST:  proximal,  medial   tibia   BF:  the  lateral  side   of  fibular  head   SM:  L4-­‐5-­S1-­‐2   ST:  L4-­‐5-­S1-­2   BF:  L5-­‐S1-­2-­‐3   to  long  head;   L5-­S1-­2  to   short  head   SM:  tibial   division  of  the   sciatic  nerve   ST:  tibial   division  of  the   sciatic  nerve   BF:  tibial   branch  of   sciatic  (long   head)  &   fibular  branch   of  sciatic   nerve  (short   head)   Adductor   magnus   Inferior  pubic  ramus,   ischial  ramus  &   tuberosity   Gluteal  tuberosity,   linea  aspera,  medial   supracondylar  ridge   &  adductor  tubercle   of  the  femur   L2-­‐3-­‐4  &  L4-­‐ 5-­‐S1   Obturator   nerve   (adductor   region)  &   tibial  division   of  the  sciatic   nerve   Adductor   longus   Pubic  crest   Medial  lip  of  linea   aspera   L2,  L3,  L4   Obturator   nerve   Adductor   brevis   Inferior  pubic  ramus   Distal  2/3  pectineal   line  and  medial  lip   linea  aspera   L2,  L3,  L4   Obturator   nerve   Adductor   minimus   Inferior  Rami   Linea  Aspera  of  the   femur   L2,  L3,  L4   Obturator  and   Tibial  nerve   TFL   Anterior  superior  iliac   spine  &  external  lip  iliac   crest   Iliotibial  tract   L4,  L4,  S1   Superior   gluteal  nerve   Quadriceps   (Vastus   Lateralis,   VL:  intertrochanteric  line,   greater  trochanter,   gluteal  tuberosity  &  linea   VL:  base  &  lateral   border  of  the  patella   VM:  medial  border   L2,  L3,  L4   Femoral  nerve  
  • 6. 6 Vastus   Medialis,   Vastus   intermedius)   aspera   VM:  intertrochanteric   line,  spiral  line,  linea   aspera  &  medial   supracondylar  line   VI:  anterior  aspect  of  the   proximal  2/3rds  of  the   femoral  shaft   of  the  patella   VI:  lateral  border  of   the  patella   Rectus   femoris   Anterior  inferior  Iliac   Spine   Base  of  the  patella   L2,  L3,  L4   Femoral  nerve   Sartorius   Anterior  Superior  Iliac   Spine   Medial  aspect  of  the   proximal  tibia   L2-­‐L3  (L4)   Femoral  nerve   Pectineus   Superior  pubic  ramus   Femur  between  the   lesser  trochanter  &   linea  aspera   (pectineal  line)   L2-­‐3-­‐4   Femoral  nerve   &  obturator   nerve   Gracilis   Body  of  the  pubis  &   inferior  pubic  ramus   Medial  surface  of   tibia,  distal  to   condyle,  proximal  to   insertion  of   semitendinosus,   lateral  to  insertion   of  sartorius   L2-­‐3-­‐4   Obturator   nerve   Iliopsoas   ·            Iliacus   ·            Psoas   major   Iliacus:  iliac  fossa,  iliac   crest,  sacral  ala  &  SI   ligaments   Psoas  Major:  anterior   transverse  processes,   vertebral  bodies  &  discs     Iliacus:  femur  just   distal  to  lesser   trochanter   Psoas:  lesser   trochanter   Iliacus:  (L1)   L2-­‐3-­‐4   Psoas:  L1-­‐2-­‐3-­‐ 4   Iliacus:   Lumbar   plexus    
  • 7. 7 Femoroacetabular  Joint     The  femoroacetabular  joint  is  the  articulation  of  the  acetabulum  and  the  head  of  the   femur.  The  main  purpose  of  the  joint  is  to  bear  the  weight  of  the  trunk  and  upper  extremity   in  static  positions  as  well  as  with  dynamic  movements.  The  joint  must  be  stable  enough  to   bear  the  weight  of  the  body  as  well  as  mobile  enough  to  allow  dynamic  movement  to  occur.   Stability  is  achieved  through  the  many  ligaments  and  muscles  surrounding  the  joint.   Mobility  is  achieved  through  the  nature  of  the  joint  being  a  ball  and  socket  joint.       Neurovascular  Supply  (Figure  3)   The  hip  joint  receives  its  arterial   supply  from  the  medial  circumflex  artery   and   the  lateral  circumflex  artery.  These  two   arteries  arise  from  the  profunda  femoris   artery  and  supply  the  head  and  neck  of  the   femur.  Specifically,  branches  off  the  medial   circumflex  artery  called  retinacular   arteries  are  the  most  abundant  and  its   main   supplier.  An  artery  call  the  ‘artery  to  the   head   of  the  femur’  is  located  inside  the   ligamentum  teres.  It  is  a  branch  from  the   obturator  artery  and  supplies  the  head  of   the   femur  as  well  but  very  minimally.   Moore  mentions  that  a  nerve   innervating  any  muscles  that  crosses  a   joint  also  innervates  the  joint  itself.  This  is  known  as  Hilton’s  Law.  Taking  this  into  account,   the  hip  flexors  are  innervated  by  the  femoral  nerve,  lateral  rotators  by  the  obturator  nerve   and  the  nerve  to  quadratus  femoris,  and  abductors  by  superior  gluteal  nerve.  These  nerves   all  originate  from  the  ventral  rami  of  the  lumbosacral  plexus.       Tissue  Layers  from  Superficial  to  Deep   • Integumentary   o epidermis   o dermis   o hypodermis   • Neurovascular   o Nervous  Tissue   ! Femoral  nerve   ! Obturator  nerve   ! Sciatic  nerve   ! Superior  gluteal  nerve   ! Inferior  gluteal  nerve   o Vascular  Tissue   ! Femoral  artery   ! Medial  femoral  circumflex  artery   Figure  3.  Blood  supply  to  the  proximal  femur  
  • 8. 8 ! Superior  and  inferior  gluteal  (minor  contributions)   ! Lateral  femoral  circumflex  artery   ! Artery  of  ligamentum  teres   • Muscle   o Hip  extensor  muscles   o Hip  adductor  muscles   o Hip  flexor  muscles   • Ligaments   o Iliofemoral  ligament   o Ischiofemoral  ligament   o Pubofemoral  ligament   • Joint  Capsule/Tissue   o Fibrous  capsule   o Synovial  membrane   o Synovial  fluid   • Articular  cartilage     • Labrum   • Bone   o Head  of  the  femur   o Acetabulum     Biomechanics  of  the  Femoroacetabular  Joint     The  hip  joint  is  a  classic  ball  and  socket  joint.  A  ball  and  socket  joint  is  known  to   allow  the  greatest  amount  of  movement.  Even  so,  the  number  one  priority  of  the  hip  joint  is   stability  followed  by  movement.  The  hip  receives  its  stability  from  the  large  amount  of   muscles  and  ligaments  that  surround  it.  Mobility  comes  from  the  three  degrees  of  freedom   of  the  joint.  Before  discussing  the  movements  in  each  plane,  one  must  look  at  the   kinematics  of  the  hip.  When  the  femur  is  moving  in  a  stable  pelvis,  it  is  described  as  femur-­‐ on-­‐pelvis.  When  the  pelvis  is  moving  on  a  stable  femur,  it  is  known  as  pelvis-­‐on-­‐femur.   Different  motions  and  movements  occur  depending  on  which  scenario  one  considers.   Below  is  a  description  of  movements  in  each  plane:   Pelvis-­‐on-­‐Femur:   Sagittal  plane:  Posterior  and  anterior  tilt   Transverse  Plane:  Internal  and  external  rotation  of  the  hip   Frontal  Plane:  Abduction  and  adduction  of  the  hip   Femur-­‐on-­‐Pelvis   Sagittal  Plane:  Flexion  and  extension     Transverse  Plane:  Internal/external  rotation  of  femur   Frontal  Plane:  Abduction  and  adduction  of  hip     Joint  Configuration  of  the  Femoroacetabular  Joint   As  mentioned  above,  the  hip  joint  is  a  ball  and  socket  joint.  A  ball  and  socket  joint  is   a  synovial  joint  that  allows  the  most  amount  of  freedom  as  it  has  movements  in  all  three   planes.  It  consists  of  a  convex  surface  moving  on  a  concave  surface  or  vice  versa.  The  table   below  summarizes  the  osteokinematics,  arthrokinematics,  and  planes  the  hip  joint   functions  in.  The  movements  are  described  in  open-­‐chain  position.  
  • 9. 9 Table  2.  Movements  of  the  Femoroacetabular  Joint   Plane   Osteokinematics   Arthrokinematics   Sagittal   Flexion  (120°)   Roll  anteriorly,  glide  posteriorly   Sagittal   Extension  (20°)   Rolls  posteriorly  and  glides   anteriorly   Transverse   Internal  Rotation  (45°)   Rolls  medially  and  glides  laterally   Transverse   External  Rotation  (45°)   Rolls  laterally  and  glides  medially   Frontal   Abduction  (45°)   Rolls  laterally  and  glides  medially   Frontal   Adduction  (30°)   Rolls  medially  and  glides  laterally   The  degrees  of  motion  are  according  to  the  AAOS  guideline       The  roll  allows  for  the  joint  to  move  into  the  proper  position  while  the  glide   prevents  the  head  of  the  femur  from  falling  out  of  the  acetabulum.  The  table  below  lists  the   primary  and  secondary  movers  of  specific  motions.     Table  3.  Joint  Motions  of  the  Femoroacetabular  Joint     Joint  Motion   Primary  Movers   Secondary  Movers   Flexion   iliopsoas,  sartorius,  TFL,  Rectus   femoris,  Adductor  Longus,   pectineus   Adductor  Brevis,  Gracilis,  Gluteus   Minimus  (anterior  fibers)   Extension   Gluteus  Maximus,  Biceps  Femoris   (long  head),  Semitendinosus,   Semimembranosus,  Adductor   Magnus  (posterior  head)   Gluteus  Medius  (posterior  fibers),   Adductor  Magnus  (anterior  head)   Abduction   Gluteus  Medius,  Gluteus  Minimus,   TFL   Piriformis,  Sartorius   Adduction   Pectineus,  Adductor  Longus,   Gracilis,  Adductor  Brevis,   Adductor  Magnus   Biceps  Femoris  (long  head),  Gluteus   Maximus  (lower  fibers),  Quadratus   Femoris  
  • 10. 10 Internal   Rotation   N/A   Gluteus  Minimus  (anterior  fibers),   Gluteus  Medius  (anterior  fibers),  TFL,   Adductor  Longus,  Adductor  Brevis,   Pectineus   External   Rotation   Gluteus  Maximus,  Piriformis,   Obturator  Internus,  Gemellus   Superior,  Gemellus  Inferior,   Quadratus  Femoris   Gluteus  Medius  (posterior  fibers),   Gluteus  Minimus  (posterior  fibers),   Obturator  Externus,  Sartorius,  Biceps   Femoris  (long  head)     Kinetics  of  the  Hip   The  forces  going  through  the  hip  joint  vary  depending  on  the  activity.  In  bilateral   stance,  the  hips  are  in  an  extended  and  relatively  relaxed  position.  There  are  no  muscles   that  are  actively  working  to  keep  the  hips  extended.  This  is  due  to  the  fact  that  the  line  of   gravity  is  posterior  to  the  hip  joint,  thereby  putting  an  extension  moment  on  the  joint.  The   ligaments  located  anterior  to  the  joint  (iliofemoral,  ischiofemoral,  and  pubofemoral)   tighten  up  and  prevent  it  from  going  into  hyperextension.  In  reference  to  the  forces  at  the   hip,  there  is  an  equal  distribution  at  both  joints.  The  line  of  gravity  is  directed  downward   going  through  the  center  of  the  pelvis  (Figure  4).  Since  this  is  an  equal  distance  away  from   both  hip  joints,  the  moment  arms  are  identical,  thereby  distributing  equal  compression   forces  across  both  joints.       During  unilateral  stance,  the  forces  at  the  hip   joint  change.  As  one  leg  is  lifted  off  the  ground,  the   line  of  gravity  does  not  go  through  the  center  of  the   pelvis  anymore,  but  is  shifted  towards  the  stance   limb.  Because  of  this  shift,  the  pelvis  goes  into  an   adduction  moment  in  relation  to  the  stance  limb.  In   order  to  keep  the  pelvis  in  a  neutral  position,  the  hip   abductors  of  the  stance  limb  must  generate  enough   force  to  counterbalance  the  adduction  torque   moment.  This  puts  all  of  the  compression  force  on  the   joint,  which  amounts  to  approximately  3-­‐4  times  the   body  weight.  If  the  hip  abductors  are  incapable  of   producing  enough  force  to  counterbalance  the   adduction  moment  of  the  hip,  a  trendelenburg  gait   may  occur.  One  way  to  compensate  for  this  is  a  lateral   trunk  lean  towards  the  stance  limb.  The  moment  arm   of  the  abductors  remains  the  same,  but  the  moment  arm  of  the  line  of  gravity  is  decreased.   This  decreases  the  gravitational  pull  of  the  pelvis  into  an  adduction  moment,  thereby   decreasing  the  amount  of  counterforce  needed  from  the  hip  abductors.             Figure  4.  Weight  vector   through  the  pelvis  
  • 11. 11   The  biomechanics  of  the  hip  will  also  change  depending  on  the  amount  of  coxa  vara   or  coxa  valga  present.  In  a  normal  hip  joint,  the  angle  of  inclination  of  the  femoral  neck  is   approximately  125°.  With  coxa  vara,  the  angle  of  inclination  is  less  than  125°,  and  in  coxa   valga,  the  angle  is  greater  than  125°.  In  coxa  vara,  the  moment  arm  for  the  abductors   increases.  The  abductors  have  a  longer  lever  arm  to  work  with  and  can  create  more  torque.   However,  the  abductors  are  not  at  their  optimal  length  for  force  production  in  this  position,   and  there  is  increased  torque  on  the  femoral  neck.  This  can  result  in   a  fracture.  In  coxa  valga,  the  moment  arm  of  the  abductors   decreases,  which  allows  the  muscles  to  be  at  a  more  optimal  length   for  force  production.  This  also  decreases  the  torque  on  the  femoral   neck.  Since  the  moment  arm  is  decreased  in  this  position,  the  abductors   must  work  harder  to  produce  the  same  amount  of  force  needed  to  keep   the  pelvis  in  a  neutral  position  (Figure  5).       Muscular  Effects  on  Kinetics   Muscles  play  a  large  role  in  the  biomechanics  of  the  hip.  How   they  influence  the  hip  depends  on  where  they  are  located  in  relation  to   the  joint  and  their  line  of  pull.  For  this  reason,  a  muscle  may  be  an   internal  rotator  in  one  position  but  an  external  rotator  in  a  different   position.         Hip  Flexors   The  hip  flexors  are  located  anterior  to  the  joint.  Flexion  can  occur  in  a  pelvic-­‐on-­‐ femur  situation  or  a  femur-­‐on-­‐pelvic  situation.  The  movement  in  pelvis-­‐on-­‐femur  is  an   anterior  tilt.  A  force-­‐couple  relationship  between  the  back  extensors  and  the  hip  flexors   create  the  pelvic  tilt.  The  hip  flexors  rotate  around  the  medial/lateral  axis  of  the  hip  while   the  back  extensors  extend  resulting  in  lumbar  lordosis.  In  a  femur-­‐on-­‐pelvis  situation,  the   muscles  contract  and  the  femur  is  brought  up  towards  the  trunk  while  the  abdominal   muscles  contract  to  stabilize  the  pelvis  and  counter  the  anterior  tilt.  The  primary  and   secondary  movers  of  hip  flexion  can  be  found  in  Table  3.  Iliopsoas  is  the  major  hip  flexor   and  is  a  combination  of  two  muscles.  It’s  position  along  with  its  cross  sectional  area  makes   it  a  strong  hip  flexor.  Iliopsoas  is  located  to  have  optimal  pull  to  flex  the  hip  both  in  an   anatomical  start  position  as  well  as  when  the  hip  is  flexed  to  90°.  When  the  hip  is  flexed  at   90°  (as  in  a  sitting  position),  all  other  primary  hip  flexors  are  insufficient  to  flex  the  hip   further.  Because  iliopsoas  has  many  points  of  origin,  and  it  has  a  large  cross  sectional  area,   it  is  able  to  flex  the  hip  past  90°  from  a  sitting  position.     Hip  Extension   The  primary  hip  extensors  are  gluteus  maximus  and  the  hamstrings.  Gluteus   maximus  has  the  most  hip  extension  power,  due  to  its  large  cross  sectional  area,  along  with   its  large  moment  arm.  The  optimal  position  for  it  to  be  able  to  produce  the  most  extension   force  is  starting  in  the  neutral  position,  and  peaks  at  70°.  Although  it  is  a  strong  hip   extensor,  it  is  activate  predominately  when  it  is  up  against  resistance  that  is  greater  than   the  weight  of  the  limb.  Unlike  gluteus  maximus,  the  hamstrings  have  a  smaller  moment   arm,  and  a  cross  sectional  area  that  is  significantly  smaller.  It  is  a  two-­‐joint  muscle  that   consists  of  three  muscle  bellies.  The  hamstrings  group  differs  from  gluteus  maximus  in  that   Figure  5.  Decreased  moment   arm  due  to  coxa  valga  
  • 12. 12 its  moment  arm  for  extension  increases  with  hip  flexion  up  until  35°,  and  then  decreases   thereafter.  Once  the  hip  flexes  past  90°,  the  hamstrings  contribute  very  little  to  hip   extension.       Hip  Adductors   The  hip  adductors  function  in  three  different  planes,  but  they  do  not  adduct  within   all  planes.  As  mentioned  earlier,  the  muscle’s  line  of  pull  along  with  joint  position  will   determine  the  motion  at  the  joint.  The  hip  adductors  move  in  the  frontal  plane,  the  sagittal   plane,  and  the  transverse  plane.  In  the  frontal  plane,  the  adductors  adduct  the  femur.     In  the  sagittal  plane,  the  adductors  act  as  hip  flexors  and  extensors.  Which   movement  it  will  elicit  is  dependent  on  where  the  muscle’s  line  of  pull  is,  relative  to  the   joint  axis.  For  example,  when  the  hip  is  extended,  the  line  of  pull  falls  anterior  to  the  joint   axis,  which  gives  the  muscle  a  flexion  moment.  When  the  hip  is  flexed  to  approximately   100°,  the  line  of  pull  falls  posterior  to  the  joint  axis,  and  this  gives  the  muscle  an  extension   moment.  For  this  reason,  the  hip  adductors  are  considered  to  be  one  of  the  primary  and   secondary  movers  for  hip  flexion,  and  a  secondary  mover  for  hip  extension.       Hip  Abductors   Hip  abductors  are  very  important,  as  they  are  the  primary  muscles  that  produce  the   counterforce  necessary  to  keep  the  pelvis  in  a  neutral  position  during  single  limb  stance.   See  Table  3  for  a  list  of  primary  and  secondary  hip  abductors.  The  primary  hip  abductors   are  gluteus  medius  and  gluteus  minimis.  Along  with  abducting  the  femur,  they  work  to   stabilize  the  pelvis  a  mentioned  above  in  the  kinetics  section.       Hip  External  Rotators   The  primary  external  rotators  are  mostly  all  short  muscles  and  are  listed  in  the  table   above  in  Table  3.  These  muscles  are  predominately  used  in  a  closed-­‐chain  position  which   involves  cutting  and  pivoting.  Since  the  muscles  are  positioned  almost  perpendicular  to  the   shaft  of  the  femur,  their  optimal  position  to  perform  external  rotation  is  in  the  neutral   position.  When  the  hip  is  flexed,  obturator  internus  and  the  gluteus  muscles  external   moment  arm  decreases.  However,  due  to  the  origin  and  insertion  sites  of  piriformis,  hip   flexion  pass  90°  turns  piriformis  into  an  internal  rotator.     Hip  Internal  Rotators   The  hip  joint  does  not  have  any  primary  internal  rotators.  The  secondary  rotators   are  listed  in  Table  3,  which  is  mainly  comprised  of  the  adductors.  These  muscles  have  three   times  the  medial  rotation  torque  when  the  hip  is  flexed  compared  to  extended.     Joint  Configuration  of  the  Femoroacetabular  Joint   The  femoroacetabular  joint  is  synovial  ball  and  socket  joint  that  consists  of  the   union  of  the  head  of  the  femur  and  the  acetabulum.  Synovial  joints  have  specific   characteristics.  The  joint  usually  includes  a  surrounding  joint  capsule,  a  joint  cavity  with   synovial  fluid,  and  articular  cartilage  covering  the  bone.  The  femoroacetabular  joint  has  a   thick  joint  capsule  that  includes  the  merging  of  the  iliofemoral  ligament,  ischiofemoral   ligament,  and  the  pubofemoral  ligament.  The  joint  also  contains  synovial  membranes  that   secrete  synovial  fluid  into  the  joint  cavity  and  act  as  lubrication.  Finally,  both  the   acetabulum  and  the  head  of  the  femur  are  covered  with  articular  cartilage.    
  • 13. 13 The  lunate  surface  of  acetabulum  is  covered  in  hyaline  cartilage  that  creates  a   horseshoe  surface.  This  is  the  area  that  has  direct  contact  with  the  head  of  the  femur.  The   transverse  acetabular  ligament  attaches  to  both  ends  to  complete  the  circle.  Lastly,  in  order   to  deepen  the  acetabulum  and  to  create  more  surface  area,  the  acetabular  labrum  spans  the   entire  rim  of  the  socket.  It  also  helps  to  enhance  joint  stability  by  creating  a  sealing  effect,   maintaining  negative  intra-­‐capsular  pressure.       The  configuration  of  the  femur  also  impacts  the  joint  and  the  type  of  forces  that  act   upon  it.  The  angle  of  inclination  is  the  angle  between  the  head  of  the  femur  and  the  neck  of   the  femur  in  the  frontal  plane.   Normally,  this  angle  is   approximately  125°.  When  the  angle   is  smaller  than  125°,  this  is  known   as  coxa  vara  while  an  angle  larger   than  125°is  known  as  coxa  valga   (Figure  6).  This  angle  difference   changes  the  amount  of  force  as  well   as  where  the  force  acts  upon  the  hip   (see  biomechanics  section).     Another  angle  formed  by  the   head  and  neck  of  the  femur  is  the  angle   of  torsion.  The  normal  degree  for  an   adult  is  approximately  10°-­‐15°.  When  the  angle  is  smaller,  it  is  called  femoral  retroversion,   and  when  the  angle  is  larger  it  is  called  anteversion.  (Figure  7).  Changes  in  this  angle  also   have  implications  on  biomechanics.  For   example,  femoral  anteversion  may  have  a   negative  effect  on  hip  biomechanics  by   decreasing  the  joint  stability.  The  head  of   the  femur  is  more  exposed  anteriorly  and   this  puts  the  abductors  in  a  less  than   optimal  position  for  force  production.       As  mentioned  previously,  the   femoroacetabular  joint  is  known  for  its   ability  to  provide  stability  while  being  able   to  perform  a  wide  range  of  motions.  The   arthrokinematics  and  osteokinematics  of   the  hip  joint  allow  for  this  wide  variety  of   movement.  This  is  described  in  the  biomechanics  section.       Ligaments  of  the  Femoroacetabular  Joint   The  ligaments  of  the  hip  joint  are  the  strongest  in  the  body.  This  is  due  to  the  fact   that  the  hip  must  be  able  to  support  the  weight  of  the  body  and  not  dislocate.  One  of  the   strongest  ligaments  of  the  hip  is  the  iliofemoral  ligament,  also  known  as  the  Y  ligament.  The   Y  ligament,  along  with  the  other  ligaments,  spans  the  entire  joint.  The  thickest  areas  of  the   Y  ligament  are  located  anterior  to  the  hip  to  prevent  hyperextension  of  the  joint.         Figure  7.  Femoral  anteversion  and  retroversion   Figure  6.  Femoral  angle  of  inclination  
  • 14. 14 Table  4.  Ligaments  of  the  Femoroacetabular  Joint     Along  with  the  ligaments  of  the  hip  joint,  there  are  other  structures  that  constrain   the  joint.  The  acetabular  labrum  increases  the  surface  area  that  the  head  of  the  femur  has   direct  contact  with.  This  increase  in  surface  area  helps  decrease  a  possibility  of  dislocation.   The  joint  capsule  is  also  another  structure  that  constrains  the  joint  and  lies  under  the   ligaments.  The  three  main  ligaments  of  the  hip  joint  merge  together  to  help  contribute  to   the  joint  capsule.  The  joint  capsule  covers  the  head  and  neck  of  the  femur.  It  is  thickest  in   the  superior  anterior  portion  of  the  hip  and  thinnest  on  the  posterior  hip.  It  helps  constrain   the  joint  in  all  directions  but  is  most  effective  with  anterior  hip  dislocation.  Many  layers  of   large  muscles  also  surround  the  hip.  The  muscle  not  moves  the  hip  joint  but  serves  as  an   extra  barrier  to  contain  the  hip  within  the  joint.  The  most  muscle  bulk  around  the  hip   includes  the  gluteus  muscles  located  on  the  posterior  aspect  of  the  joint.  They  help  prevent   a  posterior  dislocation.     Common  Pathology  of  the  Femoroacetabular  Joint     Femoroacetabular  Impingement  (FAI)   Femoroacetabular  Impingement  is  a  problem  with  the  acetabulum  and  the  femoral   head  not  fitting  properly.  It  may  lead  to  reduced  range  of  motion  and  hip  and  groin  pain.   There  are  two  types  of  FAI:  Cam  impingement  and  Pincer  Impingement.  Cam  impingement   Ligament   Attachments   Function   Iliofemoral  Ligament   Anterior  inferior  iliac  spine  to   intertrochanteric  line  of  the  femur   Prevents  hyperextension  of  hip     Ischiofemoral   Ligament   ischium  posterior  to  the   acetabulum  to  greater  trochanter  &   iliofemoral  ligament   Helps  limit  extension  of  the   femur   Pubofemoral   Ligament   Iliopubic  eminence  and  superior   pubic  ramus  and  merges  in  with  the   joint  capsule/fibers  of  iliofemoral   ligament   Limits  extension  and  abduction   of  the  hip.  Primary  role  is  to   prevent  over  abduction  of  the   hip.     Ligamentum  Teres   Fovea  of  the  femoral  head  to   acetabular  notch  and  transverse   acetabular  ligament   When  hip  flexed  10º,  tightens   with  lateral  rotation.  Conduit  for   blood  supply  to  head  of  femur.     Transverse  ligament   Lateral  inferior  boundary  of  the   acetabular  labrum  to  medial   inferior  boundary  of  the  acetabular   labrum   Completes  acetabular  labrum   rim  and  prevents  inferior   displacement  of  the  head  of  the   femur  
  • 15. 15 involves  the  abnormal  shape  of  the  femoral  head,  sometimes  called  a  “pistol-­‐grip”   deformity.  The  cause  is  unknown,  although  some  propose  that  it  has  to  do  with  a   recalcification  of  the  proximal  femoral  epiphysis.  Others  suggest  that  it  is  from  abnormal   stresses  on  the  femur.  This  extra  protuberance  on  the  head  of  the  femur  does  not  allow  for   good  clearance  of  the  acetabulum  when  flexion  or  abduction  occurs  at  the  joint.  If  this  is   repeated  over  long  periods  of  time,  wearing  of  the  articular  cartilage  and  labrum  may   occur.  Labral  tears  and  injury  usually  accompany  FAI  for  this  reason.  The  labrum  is   innervated,  so  as  a  result,  the  person  may  experience  pain  in  the  hip  and  groin  area.   Pincer  impingement  occurs  when  the  acetabulum  is  too  large  for  the  femoral  head.   This  can  be  due  to  having  a  deeper  acetabular  fossa,  or  the  acetabulum  being  in  a   retroverted  position.  When  the  hip  is  flexed  or  abducted,  the  femoral  head  may  compress   surrounding  soft  tissue  or  the  superior  labrum,  causing  pain  in  the  hip  and  groin  area.  If  the   impingement  persists  for  longer  periods  of  time,  the  labrum  may  undergo  ossification   making  the  overhang  worse.       Osteoarthritis  (OA)   Osteoarthritis  is  the  most  common  condition  of  the  hip.  It  occurs  when  the  articular   surfaces  of  the  joint  are  worn  down  and  there  is  a  rubbing  of  bone  on  bone  during   movements.  There  are  many  ways  OA  can  develop.  A  history  of  labral  tears  or  CAM   impingement  will  increase  the  likelihood  of  developing  OA.  Jaypee  mentions  that  two   predictive  factors  of  developing  OA  include  having  previous  musculoskeletal  injuries  and  a   work  history  that  is  physically  demanding  such  as  manual  labor.  It  is  also  mentioned  that   the  two  factors  related  to  idiopathic  hip  OA  is  aging  and  weight  gain.  OA  is  a  degeneration   of  the  cartilage  within  the  joint  and  it  is  commonly  thought  that  repetitive  weight  bearing   may  contribute  to  its  progression.  Jaypee  mentions  that  it  is  not  the  repetitive  weight   bearing  but  rather  the  lack  of  joint  forces  on  the  joint  that  may  play  a  role  in  developing  OA.   This  is  due  to  the  fact  that  compression  on  the  articular  cartilage  actually  nourishes  the   joint.  Symptoms  of  hip  OA  include  hip  stiffness,  anterior  groin  pain,  and  decreased  range  of   motion  in  extension  and  internal  rotation.     Fractures  of  the  Pelvis   Hip  fractures  in  older  adults  are  very  common  and  occur  at  a  rate  of  98/100,000   people  a  year.  Older  adults  are  at  a  higher  risk  for  fractures  due  to  their  increase  in  fall  risk.   Hip  fractures  can  occur  for  a  variety  of  reasons.  As  mentioned  earlier  in  the  biomechanics   section,  the  hip  takes  on  a  compression  force  of  2-­‐3  times  the  body  weight  when  standing   on  one  limb,  which  occurs  during  walking.  The  femur  must  be  healthy  enough  to  withstad   the  force  on  the  neck  of  the  femur.  Unfortunately,  as  a  person  ages,  there  is  a  decrease  in   trabecular  density  as  well  as  cortical  bone  mass.  This  may  result  in  a  proximal  fracture  to   the  femur.  Also,  due  to  the  decreased  integrity  of  the  bone,  a  fall  could  easily  cause  a   fracture.  Another  factor  that  may  cause  a  fracture  is  loss  of  arterial  supply  to  the  head  of   the  femur  (avascular  necrosis).  The  head  of  the  femur  is  mainly  supplied  by  the  medial   circumflex  artery.  If  there  is  any  trauma  to  the  area  that  disrupts  the  blood  supply,  bone   death  may  occur  making  it  more  susceptible  to  injury.    
  • 16. 16 The  Pubic  Symphysis  Joint     The  pubic  symphysis  (Figure  8)  is  located   in  the  anterior  midline  of  the  pelvis  and  consists  of   the  medial  articulating  surfaces  of  the  right  and   left  pubic  bones  united  by  a  fibrocartilaginous   interpubic  disc.  In  addition  to  the  sacroiliac  joint,   the  pubic  symphysis  serves  as  an  articulation  site   of  the  right  and  left  innominates.     The  pubic  symphysis  is  sometimes  referred   to  as  the  symphysis  pubis.  This  joint  is  relatively   immobile  and  is  classified  as  a  secondary   cartilaginous  joint.      The  pubic  symphysis   functions  to  resist  tension,  shearing,  and   compression  of  the  pelvis  during  weight  bearing   activities,  such  as  walking  and  during  childbirth  in   women.     Research  regarding  the  precise  innervation  of  the  pubic  symphysis  is  lacking.   However,  in  a  systematic  review,  Becker  et  al  (2010)  found  the  innervation  described  as   coming  from  the  pudendal  and  genitofemoral  nerves,  and  branches  of  the  iliohypograstric,   ilioinguinal  nerves.  Becker  also  found  the  joint  to  be  supplied  by  the  pubic  branch  of  the   obturator  artery  and  branches  of  the  inferior  epigastric  artery  and  external  pudendal   artery.  As  most  fibrocartilaginous  tissues  depend  on  diffusion  of  nutrients  from  adjacent   blood  vessels  (Neumann  2010),  the  center  of  the  fibrocartilaginous  disc  will  rely  on   diffusion  from  the  obturator,  inferior  epigastric,  or  external  pudendal  arteries.       Tissue  Layers  from  Superficial  to  Deep   • Integumentary   o Epidermis   o Dermis   • Subcutaneous   o Fascia   o Adipose   • Muscles   o Rectus  Abdominis   o External  Oblique   o Internal  Oblique   o Transversus  Abdominis   o Adductor  longus   o Adductor  Magnus   o Adductor  Brevis   • Neurovascular   o Nervous  Tissue   ! Iliohypogastric  nerve   ! Ilioinguinal  nerve   ! Pudendal  nerve   ! Genitofemoral  nerve   Figure  8.  The  Pubic  Symphysis  
  • 17. 17 o Vascular  Tissue   ! Pubic  branches  of  obturator  artery   ! Inferior  epigastric  artery   ! External  pudendal  artery     • Ligaments   o Superior  Pubic  Ligament   o Arcuate  Pubic  Ligament   o Anterior  Pubic  Ligament   o Posterior  Pubic  Ligament   • Joint  Capsule/Tissue   o Hyaline  articular  cartilage   o Fibrocartilaginous  disc   • Bone   o Pubis  bones  of  the  Innominates       Table  5.  Joint  Motions  at  the  Pubic  Symphysis   Joint  Motion   Primary  Movers   Secondary  Movers   Superior/Inferior   Translation   Rectus  abdominis,  internal  oblique,   external  oblique,  transversus   abdominis,  adductor  longus   N/A   Rotation   Rectus  abdominis,  internal  oblique,   external  oblique,  transversus   abdominis,  adductor  longus   N/A   Compression/Traction   Rectus  abdominis,  internal  oblique,   external  oblique,  transversus   abdominis,  adductor  longus     N/A   ****The  muscles  listed  act  indirectly  on  the  relatively  rigid  pubic  symphysis.  However,  the   muscles  included  in  the  table  reinforce  the  joint  via  attachment  of  the  aponeuroses  from   muscles  of  the  anterior  abdominal  wall  and  muscles  of  the  lower  extremities  to  the  pubic   bones.       Biomechanics  of  the  Pubic  Symphysis   The  pubic  symphysis  is  a  relatively  immobile  cartilaginous  joint  that  is  subjected  to   a  variety  of  forces.  For  example,  during  standing  activities,  the  inferior  portion  of  the   symphysis  is  subjected  to  traction  forces  while  the  superior  region  is  subjected  to   compression  forces.  The  pubic  symphysis  withstands  compression  forces  with  sitting  and   simultaneous  compression  and  shearing  forces  during  single-­‐leg  stance  (Becker,  2010).   The  pubic  symphysis  can  experience  translation  in  the  sagittal  and  transverse  plane.   However,  Neumann  describes  the  joint  as  only  having  up  to  2  mm  of  translation.  Becker  et   al  describe  rotation  of  up  to  3°  at  the  pubic  symphysis  in  the  frontal  and  sagittal  planes.  The   pubic  symphysis  primary  function  is  stabilization  and  functions  to  transfer  forces  from  the   trunk  to  the  lower  extremities.  There  are  no  muscles  that  act  as  primary  movers  for  the  
  • 18. 18 stable  pubic  symphysis.  The  anterior  surface  of  the  adjacent  pubic  bones  serve  as  an   attachment  site  for  the  rectus  abdominus,  internal  abdominal  oblique,  transversus   abdominus,  and  the  adductor  longus,  but  these  muscles  do  not  directly  initiate  movement   at  the  pubic  symphysis  joint.  Accessory  motions  and  open/closed  pack  positions  are  not   experienced  at  this  joint  due  to  the  high  degree  of  stability  offered  by  the  pubic  ligaments.       Joint  Configuration  of  the  Pubic  Symphysis   The  articular  surfaces  of  the  right  and  left  pubic  bones  are  lined  with  hyaline   cartilage  and  are  joined  by  the  fibrocartilaginous  interpubic  disc.  The  surfaces  are  slight   convex  in  shape,  likely  designed  to  resist  shearing  forces.  Due  to  the  relative  immobility  of   the  joint,  the  motion  that  occurs  pubic  symphysis  is  not  dependent  on  the  convexity  of  the   articulating  surfaces  but  on  the  tensile,  shear  and  compressive  forces  experienced  at  the   joint.  Arthokinematic  movements  of  superior  or  inferior  glide  of  the  pubis  bones  up  to  2   mm  occur  in  relation  to  the  forces  experienced  at  the  joint.       Table  6.  Ligaments  of  the  Pubic  Symphysis  (Figures  9  &  10)   Ligament   Attachments   Function   Associated   Constraints   Superior  pubic   ligament   Lateral  pubic  crest  and   pubic  tubercle  to   contralateral  lateral  pubic   crest  and  tubercle,   bridging  superior  margin   of  symphysis   Reinforce  superior   aspect  of  joint   N/A   Arcuate  (inferior)   pubic  ligament     Inferior  rami  of  pubis  to   contralateral  inferior  rami   of  pubis   Reinforce  inferior   aspect  of  joint   N/A   Anterior  pubic   ligament   Joins  with  interpubic  disc   and  aponeurotic   expansions  of  rectus   abdominus,  transversus   abdominus,  internal   abdominal  oblique,  and   adductor  longus     Reinforce  anterior   aspect  of  joint   Adductor  longs,   rectus  abdominis   aponeurosis,   internal  oblique   aponeurosis,  and   transversus   abdominis   aponeurosis     Posterior  pubic   ligament     Continuous  with   periosteum  of  posterior   aspect  of  pubic  bones     Reinforce  posterior   aspect  of  joint   N/A  
  • 19. 19                                                                 Common  Pathology  of  the  Pubic  Symphysis   Osteitis  Pubis   Osteitis  pubis  is  a  common  pathology  of  the  pubic  symphysis  that  results  from   overuse  or  shear  injuries  and  subsequent  inflammation  around  the  joint.  This  injury  is   common  among  the  athlete  population.  Osteitis  pubis  often  needs  to  be  distinguished   between  an  inguinal  hernia  and  an  adductor  strain  as  these  injuries  present  similarly  and   tend  to  occur  in  similar  populations.  For  differential  diagnosis  purposes,  tenderness   directly  over  the  pubic  symphysis  may  be  the  best  indicator  of  osteitis  pubis.       Symphysis  Pubis  Dysfunction   Symphysis  pubis  dysfunction  occurs  in  women  during  pregnancy.  Becker  describes   how  the  hormones  associated  with  pregnancy  can  increase  the  laxity  at  the  pubic   symphysis.  Resulting  pubic  instability  can  cause  pain  and  difficulty  with  weight-­‐bearing   activities  and  bed  mobility  for  pregnant  women.  The  joint  may  also  be  disrupted  and   widened  during  childbirth  leading  to  impaired  pelvic  stability  in  the  postpartum  period.     Figure  10:  Superior  view  pubic   ligaments Figure  9:  Anterior  view  of  pubic   symphysis  ligaments  
  • 20. 20 The  Sacroiliac  Joint   The  sacroiliac  (SI)  joints  (Figure  11)  mark  the  transition  from  the  caudal  axial   skeleton  to  the  lower  appendicular  skeleton.  The  SI  joint  is  located  anterior  to  the  posterior   superior  iliac  spine  of  the  ilium.         The  relatively  rigid  joint  is  formed  by  the   articulation  between  the  auricular    (ear-­‐shaped)   surface  on  the  lateral  aspect  of  the  sacrum  that   corresponds  with  sacral  levels  S1,  S2,  S3  (Vleeming   2012)  and  the  auricular  surface  of  the  medial  aspect   of  the  ilium.  Both  articulating  surfaces  are  covered   with  hyaline  cartilage.  The  articular  surface  of  the  SI   joint  has  been  described  as  having  a  boomerang  shape   with  the  open  angle  facing  posteriorly  (Figure  12).               During  early  childhood,  the  SI   demonstrates  the  classical  characteristics  of  a   diarthrodial  synovial  joint  with  smooth  surfaces   and  considerable  mobility.  However,  over  time,   between  puberty  and  adulthood  the  joint   transforms  from  a  diarthrodial  joint  to  a  modified   synarthrodial  joint,  as  explained  by  Neumann.     The  articular  surfaces  become  rough  and   irregular,  embedding  the  subchondral  bone   within  the  articular  cartilage  of  the  joint   order  to  resist  excessive  movements   between  the  sacrum  and  ilium.  Several   ligaments,  some  of  which  are  the  strongest  in  the  body,  reinforce  the  rigidity  of  the  joint.   The  SI  joint  is  primarily  designed  for  stability.  The  joints  transfer  loads  between  the   vertebral  column  and  the  lower  extremities.  The  SI  joints  relieve  the  stress  experienced  by   the  pelvic  ring  secondary  to  trunk  and  lower  extremity  movement  and  ground  reaction   forces.       Specific  innervation  of  the  sacroiliac  joint  has  not  been  verified  in  the  literature.   However,  Vleeming  (2012)  reports  dorsal  rami  L5-­‐S3  to  be  consistently  included  in  various   studies  of  SI  joint  innervation.    Nociceptive  axons  (C-­‐fibers  and  A-­‐delta  fibers)  have  been   found  in  the  joint,  responsible  for  pain  perception  from  the  SI  joint  (Vleeming  2012).  The   posterior  division  of  the  internal  iliac  artery,  namely  iliolumbar,  lateral  sacral,  and  superior   gluteal  arteries,  provide  blood  supply  to  the  sacroiliac  joint.       Tissue  Layers  from  Superficial  to  Deep   • Integumentary   o Epidermis   o Dermis   Figure  11.  Anterior  view  of  SI   joint Figure  12.  Boomerang  shape  of   auricular  surfaces  of  ilium  and  sacrum  
  • 21. 21 • Subcutaneous   o Adipose   o Thoracolumbar  fascia   ! Anterior  layer   ! Middle  layer   ! Posterior  layer   • Muscles   o Latissimus  Dorsi   o Gluteus  Maximus   o External  Oblique   o Internal  Oblique   o Erector  Spinae  muscles   o Transversus  Abdominis     o Lumbar  Multifidus   o Quadratus  lumborum   o Gluteus  Medius   o Piriformis   o Iliacus  (covering  anterior  SI  joint)   • Ligaments   o Anterior/Ventral  sacroiliac  ligament     o Posterior  Sacroiliac  ligament   o Interspinous  ligament   o Sacrotuberous  ligament   o Sacrospinous  ligament   o Iliolumbar  ligament   • Joint  Capsule   o Fibrous  capsule   o Synovial  membrane   o Synovial  fluid   o Hyaline  cartilage   • Bone   o Tuberosity  and  auricular  surface  of  ilium   o Tuberosity  and  auricular  surface  of  the  sacrum     Table  7.  Joint  Motions  at  the  Sacroiliac  Joint   Joint  Motion   Primary  Movers   Secondary  Movers   Nutation   (Gravity  creates  nutation  torque),   Latissimus  dorsi,  biceps  femoris,   rectus  abdominus,  internal  and   external  oblique,  transversus   abdominus   N/A   Counternutation   Iliopsoas,  rectus  femoris,  erector   spinae   N/A   Stability   Erector  spinae,  quadratus  lumborum,   lumbar  multifidus,  rectus   Muscle  activation  causes   tension  in  ligaments,  
  • 22. 22 abdominus,  internal  oblique,   external  oblique,  transversus   abdominus,  biceps  femoris,  gluteus   maximus,  latissimus  dorsi,  iliacus,   piriformis   compressing  surfaces  of  SI   joint   **The  muscles  listed  act  indirectly  on  the  relatively  rigid  SI  joint.  However,  the  muscles   included  in  the  table  reinforce  and  stabilize  the  SI  joint  during  dynamic  activities  such  as   lifting,  running,  and  carrying  via  attachments  to  the  thoracolumbar  fascia  and  sacrospinous   and  sacrotuberous  ligaments.       Biomechanics  of  the  Sacroiliac  Joint   The  sacroiliac  joint  has  relatively  limited  mobility,  and  unlike  most  joints  in  the   body,  there  are  no  muscles  acting  directly  across  the  SI  joint.    The  rotational  and   translational  movements  that  occur  at  the  SI  joint  are  complex.  The  motions  do  not  occur   about  a  fixed  axis,  but  rather  include  a  combination  of  parallel  and  angular  movements   (Gordon  1991).  The  motion  at  the  SI  joint  has  best  been  described  as  nutation  and   counternutation,  which  occur  in  a  near-­‐sagittal  plane  about  a  near  medial-­‐lateral  axis  of   rotation  that  traverses  the  interosseous  ligament.  Nutation  (sometimes  called  sacral   flexion)  refers  to  an  anterior,  inferior  motion  of  the  sacral  promontory  and  a  posterior,   superior  movement  of  the  sacral  apex.  Counternutation  (sacral  extension)  is  defined  as  a   posterior,  superior  movement  of  the  sacral  promontory  and  anterior,  superior  move  of  the   sacral  apex.    Nutation  and  counternutation  can  be  described  as  either  sacral-­‐on-­‐iliac   rotation,  by  iliac-­‐on-­‐sacral  rotation,  or  by  both  motions  simultaneously  (Figure  13).  For   example,  nutation  can  be  described  as  anterior  sacral-­‐on-­‐iliac  rotation  or  posterior  iliac-­‐on-­‐ sacral  rotation  or  anterior  sacral  rotation  with  posterior  iliac  rotation.     Gordon  and  Alderink  describe  the  role  of  SI   joint  motion  in  lumbopelvic  rhythm  during   functional  activities.  During  trunk  flexion,  the   lumbar  spine  moves  into  flexion,  the  pelvis   anteriorly  rotates,  and  the  sacrum  follows  with   nutation  or  sacral  flexion.  Upon  returning  to  stand,   the  sacrum  counternutates  (extends)  as  it  follows   the  lumbar  spine  and  pelvis.     The  magnitude  movement  at  the  SI  joint  is   significantly  limited.  Translation  at  the  SI  joint  is   limited  to  1-­‐4  mm  and  Foley  (2006)  found  the   joint  motion  in  the  transverse  or  longitudinal   planes  does  not  exceed  2-­‐3  degrees.    Strong   ligaments  surround  the  joint  to  limit  excessive   motion  and  reinforce  the  joint’s  stability.   Slight  motion  with  reinforced  stability  at  the   SI  joints  is  vital  for  attenuating  forces  between   the  axial  skeleton  and  the  lower  extremities.     Figure  13.  Nutation  and  Counternutation   of  the  SI  joint  
  • 23. 23 Joint  Configuration  of  the  Sacroiliac  Joint   The  articulation  between  the  sacrum  and  the  ilium  contains  elevations  and   depressions  of  the  articulating  surfaces,  creating  an  interlocking  mechanism  between  the   two  bones.  Foley  (2006)  describes  the  ilium  to  have  a  relative  convex  surface  and  the   sacrum  to  have  a  more  concave  shape  at  the  SI  articulation  site.    Because  the  plane  of   articular  surfaces  is  mostly  vertical  in  orientation,  nutation  at  the  SI  joint  increases   compression  and  consequential  stability  between  the  joint  surfaces.  Therefore,  full   nutation  is  considered  to  be  the  close-­‐packed  position  of  the  SI  joint.  Gravity,  ligaments,   and  activation  of  surrounding  muscles  create  nutation  torque.  Load  transfer  through  the   pelvic  girdle  is  more  effective  when  the  sacrum  is  in  a  nutated  position.       Table  8.  Ligaments  of  the  Sacroiliac  Joint  (Figure  14)   Ligament   Attachments   Function   Anterior/Ventral   Sacroiliac  Ligament   Anterior  and  inferior  borders  of   the  iliac  auricular  surface  to   anterolateral  sacrum   Resists  anterior  movement  and   nutation  of  the  sacral  promontory   Posterior/Dorsal   Sacroiliac  Ligament   Posterolateral  border  of  3rd  and   4th  segment  of  sacrum  to  lateral   ilium  near  iliac  tuberosity  and   posterior-­‐superior  iliac  spine;   thoracolumbar  fascia,  erector   spinae  aponeurosis,  blends  with   sacrotuberous  ligament  to   attach  to  ischial  tuberosity   Resists  counter-­‐nutation  of  sacrum   Interosseous   Ligaments   Fills  space  that  is  posterior  and   superior  to  joint  between  lateral   sacral  crest  and  iliac  tuberosity   Considered  most  important   ligaments  directly  associated  with   SI  joint;  Resists  excessive   movement     Iliolumbar  Ligament   Transverse  process  of  L5  to   medial  iliac  crest   Restricts  sagittal  plane  movement   Sacrotuberous   Ligament   Posterior-­‐superior  iliac  spine,   lateral  sacrum  and  coccyx,   blends  with  posterior  sacroiliac   ligament  to  attach  to  ischial   tuberosity   Secondary  source  of  stability;   restricts  nutation   Sacrospinous   Ligament   Inferior  lateral  border  of  sacrum   and  coccyx  to  ischial  spine   Secondary  source  of  stability;   restricts  nutation   An  associated  constraint  to  the  SI  joint  is  the  thoracolumbar  fascia,  which  restricts   excessive  movement  in  all  directions  of  motion.    
  • 24. 24                                 Common  Pathology  of  the  Sacroiliac  Joint     Low  Back  Pain   The  sacroiliac  joints  have  been  found  to  the  source  of  pain  in  15%-­‐30%  of  the   population  of  people  who  experience  chronic  low  back  pain.    Pain  originating  from  the  SI   joint  can  refer  to  multiple  areas  of  the  body  (Figure  15)   including  the  low  back  and  gluteal  region,  making  SI  joint   dysfunction  difficult  to  identify  and  to  treat.       SI  Dysfunction     SI  dysfunction  and  subsequent  pain  is  the  result  of   impaired  load  transfer  through  the  SI  joints.    Dysfunction   of  the  joint  can  be  secondary  to  trauma,  leg  length   discrepancies,  excessive  lumbar  lordosis,  joint   degeneration,  joint  stiffness,  or  displacement  such  as  an   upslip  or  downslip  of  the  joint.  The  SI  dysfunction  is  also   common  in  women  who  are  pregnant.  The  hormone   relaxin  is  released  in  pregnancy,  which  increases  laxity  of   the  ligaments  that  support  and  reinforce  joint.  A  widening  effect  at  the  SI  joint  occurs  in   preparation  for  childbirth.  However,  the  excessive  motion  available  at  the  joint  is  often  a   source  of  pain  and  aberrant  movement  patterns  for  the  mother.  Also,  athletes  involved  in   sports  that  require  frequent  unilateral  loading  of  the  lower  extremities  (such  as  in  kicking)   are  at  increased  risk  for  SI  dysfunction  (Foley).    Physical  therapists  can  test  for  SI   dysfunction  using  a  battery  of  motion  palpation  tests  such  as  the  sacral  thrust  and  Gillet   test.  Strengthening  of  surrounding  muscles  (especially  muscles  attaching  to  the   thoracolumbar  fascia)  can  help  improve  the  stability  of  the  SI  joint  and  reduce  pain  related   to  SI  dysfunction.     Figure  14.  Posterior  ligaments  of  the  SI  joint   (note:  interosseous  ligaments  are  deep  to   pictured  posterior  sacroiliac  ligament)   Figure  15.  SI  joint   referred  pain  patterns  
  • 25. 25 Introduction  to  the  Knee  Joint  Complex     The  knee  joint  is  the  largest  joint  in   the  body.  It  is  subject  to  compression  and   torque  during  activities  such  as  walking,   running,  jumping,  bending  and  squatting.   Bony  articulation  at  the  knee  joint  complex  is   relatively  unstable  and  must  rely  on  several   muscles  and  ligaments  for  structural  support   (Figure  1).    Located  in  the  middle  of  the   chain,  the  knee  is  highly  impacted  by  the   motions  occurring  at  the  hip  and  ankle  joints.   Due  to  it’s  location  in  the  chain,  and  its   unstable  boney  articulation,  the  knee  joint   complex  is  the  most  frequently  injured  joint   in  the  body.     The  knee  joint  complex  is  comprised   of  two  different  articulations,  the   tibiofemoral  joint  and  the  patellofemoral   joint.  These  two  joints  are  held  within  the   joint  capsule,  forming  a  synovial  hinge  joint.  Although  the  proximal  aspect  of  the  fibula   articulates  with  the  tibia  just  lateral  the  knee  joint,  it  is  not  involved  in  movement  at  the   knee.       The  tibiofemoral  and  patellofemoral  joints  work  together  to  allow  movement  in  two   planes  of  motion:  flexion  and  extension  in  the  sagittal  plane,  and  internal  and  external   rotation  in  the  transverse  plane.  Superior  and  inferior  gliding  at  the  patellofemoral  joint   are  necessary  to  allow  flexion  and  extension  at  the  tibiofemoral  joint.  During  extension,  the   patella  functions  to  increase  force  produced  by  the  quadriceps  femoris.  Various  pathologies   or  lack  of  proper  functioning  of  the  joints  and  associated   structures  can  lead  to  impairments  and  decreased   participation.         Neurovascular  Supply   Much  of  the  knee  joint  is  highly  vascularized  with  the   exception  of  a  portion  of  the  meniscus.    The  main  blood   supply  comes  from  branches  of  the  femoral  artery  which   then  becomes  the  popliteal  artery.  A  large  genicular   anastomosis  is  responsible  to  supply  blood  to  majority  of  the   knee  structures  and  surrounding  muscles.    However,  the   exception  is  the  inner  portion  of  the  menisci.    These   avascular  sections  then  have  inhibited  tissue  healing  after  an   injury  to  the  inner  portion  of  the  lateral  or  medial  meniscus.     The  femoral  artery  passes  down  the  posterior  aspect  of  the   thigh  and  transitions  into  the  popliteal  artery  to  supply  the   hamstring,  gastrocnemius,  soleus,  and  plantaris  musculature.     This  artery  runs  most  anterior  in  the  joint  before  splitting  into   Figure  1.  The  knee   Figure  2.  Anastomosis   around  the  knee  
  • 26. 26 the  anterior  and  posterior  tibial  arteries  at  the  distal  aspect  of  the  joint  capsule.    The   capsule  and  ligaments  of  the  knee  joint  are  supplied  by  five  collateral  branches  originating   from  the  popliteal  artery.  These  branches  form  the  genicular  anastomosis  (Figure  2)  which   surrounds  the  knee  joint  and  provides  adequate  blood  supply.  The  branches  include  the   superior  medial  and  lateral  geniculars,  the  inferior  medial  and  lateral  geniculars,  and  the   middle  genicular  artery.    In  the  case  that  the  popliteal  artery  is  obstructed,  such  as  in  a  long   duration  of  knee  extension,  the  anastomotic  branches  will  continue  to  provide  sufficient   blood  supply  to  the  knee.         Venous  return  is  transported  by  the  posterior  tibial  vein,  which  transitions  into  the   popliteal  vein  in  the  popliteal  fossa.    The  popliteal  vein  traverses  the  knee  joint  alongside   the  popliteal  artery  before  becoming  the  femoral  vein.  The  small  saphenous  vein  is  also  a   tributary  into  the  popliteal  vein  and  transports  blood  from  the  posterior  aspect  of  the   malleolus  superiorly  into  the  popliteal  fossa.   The  knee  and  surrounding  muscle  innervations  can  be   broken  up  into  four  different  compartments  supplied  by   separate  nerves:  anterior,  posterior,  medial  and  lateral   (Figure  3).  The  anterior  aspect  of  the  knee  and  thigh  muscles   are  innervated  through  the  femoral  nerve  while  muscles  of   the  posterior  and  lateral  aspects  receive  innervation  from   branches  of  the  sciatic  nerve  known  as  the  common  fibular   branch  and  the  tibial  branch  respectively.    The  medial  aspect   is  innervated  via  the  obturator  nerve  with  cutaneous   innervation  from  the  saphenous  cutaneous  nerve.       The  posterior   aspect  of  the  knee,  the   popliteal  fossa,  is  the   point  where  the  sciatic   nerve  splits  into  the   tibial  division  and  the   common  fibular   division  (Figure  4).  The   tibial  nerve  supplies   muscles  found  posterior  to  the  knee  joint  such  as  the   soleus,  gastrocnemius,  plantaris,  and  popliteus.    The   common  fibular  nerve  runs  on  the  lateral  aspect  of   the  joint,  following  the  medial  aspect  of  the  biceps   femoris,  and  wraps  closely  around  the  neck  of  the   fibular  where  it  is  subject  to  injury.    The  common   fibular  nerve  supplies  the  short  head  of  the  biceps  femoris.    The  posterior  cutaneous  nerve   of  the  thigh  provides  innervation  to  the  skin  posterior  to  the  knee  joint.                 Figure  3.  Nerve  supply   Figure  4.  Popliteal  fossa  structures  
  • 27. 27 Table  1.  Muscles  Acting  on  the  Tibiofemoral  and  Patellofemoral  Joints  (Figure  5  &  6)   Muscle   Proximal   Attachment   Distal  Attachment   Segmental   Innervation   Peripheral   Innervation   Anterior  Region   Rectus  femoris   Anterior  inferior  iliac   spine  and  ilium   superior  to   acetabulum   Vastus  lateralis   Greater  trochanter   and  lateral  lip  of  linea   aspera  of  femur   Vastus  medialis   Intertrochanteric  line   and  medial  lip  of  linea   aspera  of  femur   Vastus   intermedius   Anterior  and  lateral   surfaces  of  shaft  of   femur   Quadriceps  tendon  and   attachments  to  base  of   patella  forming   patellar  ligament  to   tibial  tuberosity;   medial  and  lateral  vasti   also  attach  tibia  and   patella  via  patellar   retinacula   L2,  L3,  L4     Femoral   nerve   Articularis  Genu   Distal  anterior  shaft  of   femur   Proximal  portion  of   synovial  membrane  of   the  knee   L2,  L3,  L4   Femoral   nerve   Medial  Region   Sartorius     Anterior  superior  iliac   spine  and  superior   part  of  notch  inferior   to  it   Superior  portion  of   medial  surface  of  tibia     L2,  L3   Femoral   nerve   Gracilis     Body  and  inferior   ramus  of  pubis     Superior  portion  of   medial  surface  of  tibia   L2,  L3   Obturator   nerve     Lateral  Region     Tensor  fascia   latae   Anterior  superior  iliac   spine  and  external  lip   of  iliac  crest   Iliotibial  tract     L4,  L5,  S1   Superior   gluteal  nerve   Posterior  region   Semitendinosus   Medial  surface  of   superior  part  of  tibia   Semimembrano -­‐sus   Ischial  tuberosity   Posterior  part  of   medial  condyle  of  tibia   L5,  S1,  S2   Tibial  division   of  sciatic   nerve   Biceps  femoris:   Long  head   Short  head   Long  head:   Ischial  tuberosity   Short  head:   linea  aspera  and   lateral    supracondylar   line  of  femur   Lateral  side  of  head  of   fibula   L5,  S1,  S2   Long  head:     Tibial  division   of  sciatic   nerve     Short  head:     Common   fibular   division  of   sciatic  nerve  
  • 28. 28       Tissue  Layers  from  Superficial  to  Deep  (Figure  7)   • Skin   o Epidermis   o Dermis   • Adipose     • Fascia   o Fascia  Latae   ! Iliotibial  tract   ! Intermuscular  septa   o Patellar  retinaculum,  medial  and  lateral     • Muscles  and  tendons   o Anteriorly   ! Quadriceps  tendon   ! Patellar  tendon   ! Articularis  Genu   o Medially   ! Semitendinosus   ! Semimembranosus     ! Sartorius   ! Gracilis   o Posteriorly   ! Gastrocnemius   ! Plantaris     ! Popliteus   o Laterally   ! Biceps  femoris     • Bursa     o Anteriorly     ! Suprapatellar     ! Prepatellar   ! Infrapatellar     o Medially   ! Anserine     ! Semimembranosus     o Laterally   ! Subtendinosus  of  biceps  femoris     ! Bursa  deep  to  Iliotibial  tract     • Neurovasculature   Gastrocnemius   Lateral  head:  lateral   aspect  of  lateral   condyle  of  femur   Medial  head:  popliteal   surface  of  femur   superior  to  medial   condyle   Posterior  surface  of   calcaneus  via  Achilles   tendon   Plantaris   Inferior  end  of  lateral   supracondylar  line  of   femur,  oblique   popliteal  ligament   Posterior  surface  of   calcaneus  via  Achilles   tendon   S1,  S2       Tibial  Nerve   Figure  7.  Sagittal  cut  of  the  knee  
  • 29. 29 o Common  fibular  nerve     o Tibial  nerve     o Sural  nerve     o Popliteal  artery     ! Superior  medial  genicular  artery     ! Superior  lateral  genicular  artery     ! Middle  genicular  artery     ! Inferior  medial  genicular  artery     ! Inferior  lateral  genicular  artery     • Extracapsular  ligaments     o Anterolateral  ligament     o Lateral  collateral  ligament     o Medial  collateral  ligament     • Joint  Capsule     • Intracapsular  ligaments   o Posterior  cruciate  ligament   o Anterior  cruciate  ligament     • Menisci:  medial  and  lateral     • Articular  cartilage  of  femur     • Articular  cartilage  of  tibia     • Bones   o Patella   o Tibia   o Femur  
  • 30. 30 The  Tibiofemoral  Joint     The  tibiofemoral  joint  is  the  largest  of   the  knee  joint  complex  and  produces  most  of   the  movement  at  the  knee.    This  joint   undergoes  a  great  deal  of  impact  during   daily  activities.    Function  at  the  tibiofemoral   joint  is  vital  for  shock  absorption  in  closed-­‐ chain  activities  such  as  walking,  running,   squatting,  and  jumping.     The  tibiofemoral  joint  and  its   associated  structures  are  surrounded  by  a   thin  layer  of  fibrous  connective  tissue  called   the  joint  capsule.    This  capsule  is  lined  with   an  extensive,  thick  synovial  membrane  and   synovial  fluid,  giving  the  joint  its  classification  as  the  largest  synovial  joint  in  the  body.    The   synovial  fluid  allows  for  very  low  friction  within  this  mobile  joint.    Deep  to  the  joint  capsule   are  as  many  as  14  bursae  (Figure  8).    These  are  found  at  areas  producing  high  friction  with   movement  where  tissues  articulate.       The  tibiofemoral  articulation  forms  a  hinge  joint  with  the  distal  femur  and  the   proximal  aspect  of  the  tibia.    The  distal  end  of  the  femur  includes  two  major  projections   known  as  the  medial  and  lateral  femoral  condyles.    The  intercondylar  notch  separates  the   joint  into  the  medial  and  lateral  compartments.    The  medial  condyle  is  positioned  more   anteriorly  and  has  a  larger  articulation  with  thicker  articular  cartilage,  while  the  lateral   condyle  is  bigger  in  shape.    These  large,  asymmetrical  condyles  articulate  with  the   relatively  flat  and  shallow  medial  and  lateral  tibial  condyles.    This  creates  an  incongruent   articulation  at  the  joint  that  is  mechanically  weak  and  lacks  overall  structural  stability.     Therefore,  the  surrounding  muscles  and  ligaments  are  crucial  for  providing  stabilization  at   the  joint.       Unlike  other  structures  in  the  lower  extremity,  these  surfaces  are  highly  unstable  in   effort  to  allow  a  large  range  of  motion  to  occur  at  the  joint.    Due  to  the  incongruent   surfaces,  much  of  the  stability  and  strength  of  the  knee  is  provided  less  by  bony  articulation   and  is  instead  provided  by  the  numerous  ligamentous  structures  and  the  muscles  and   tendons  acting  at  the  joint.    The  knee  joint  reaches  its  greatest  stability  in  a  position  of  full   extension  with  slight  external  rotation.    This  point  of  maximal  contact  and  congruency  is   the  close-­‐packed  position.      In  this  position,  the  ligaments  are  in  full  tension,  and  range  of   motion  is  limited  in  all  directions.    In  order  for  motion  to  occur  at  the  joint,  the  knee  must   be  in  some  degree  of  flexion.    The  joint  will  reach  its  greatest  amount  of  motion  in  25   degrees  of  flexion,  the  most  non-­‐congruent  position,  known  as  loose-­‐packed.  With   movement  into  flexion,  the  joint  will  rely  on  ligaments  and  tendons  to  provide  joint   stability.    Increasing  muscle  strength  also  provides  increased  stability  and  decreased   likeliness  of  injury.       In  order  to  achieve  maximal  articulation  at  this  incongruent  joint,  small   fibrocartilaginous  structures,  the  menisci,  are  attached  to  the  articular  surfaces  between   the  femoral  and  tibial  condyles  (Figure  9).    With  forces  at  the  tibiofemoral  joint  that  are  2-­‐4   times  the  amount  of  body  weight,  the  menisci  function  to  add  depth  to  this  shallow   Figure  8.  Tibiofemoral  joint  
  • 31. 31 articulation.  The  menisci  increase  the  surface   area,  shock  absorption,  and  stability,  while   decreasing  friction.    These  structures  also   function  to  provide  proprioception  at  the  joint   and  assist  with  accessory  motion.    The  lateral   meniscus  is  O-­‐shaped.    It  has  less  surface  area,   does  not  have  a  strong  attachment  to  the  tibia,   and  has  fewer  attaching  structures  than  the   medial  meniscus.    The  C-­‐shaped  medial   meniscus  attaches  to  the  anterior  cruciate   ligament,  posterior  cruciate  ligament,  medial   collateral  ligament,  and  the  semimembranosus.   With  stronger  attachments  to  the  tibial  plateau,   it  is  less  movable  within  the  joint,  placing  it  at  higher  risk  for  injury.     Table  2.  Joint  Motions  of  the  Tibiofemoral  Joint     Joint  Motion   Primary  Movers   Secondary  Movers   Knee  flexion   Hamstring  muscles:   Semimembranosus   Semitendinosus,    Long  head  of  biceps  femoris   Sartorius   Gracilis   Popliteus   Gastrocnemius   Plantaris   Knee   extension   Quadriceps  femoris:   Rectus  femoris   Vastus  lateralis   Vastus  intermedius,   Vastus  medialis   Tensor  fascia  latae  assists     in  maintaining  knee  extension   Internal   rotation   Semimembranosus   Semitendinosus  with  knee  flexed;   Popliteus  in  non-­‐weight  bearing  activity   with  knee  extended   Gracilis,  Sartorius   Popliteus  (in  non-­‐weight   bearing)     External   rotation   Biceps  femoris:  short  &  long  head  when   knee  is  flexed   Popliteus  (in  weight  bearing)       Biomechanics  of  the  Tibiofemoral  Joint       The  tibiofemoral  joint  is  a  shallow,   hinge  joint  with  two  degrees  of  freedom.     The  primary  motions  are  flexion  and   extension,  with  some  rotational  movement   occurring  in  knee  flexion  (Figure  10).    The   surrounding  tendons  and  ligaments   restrict  these  motions.     Muscles  are  referred  to  as  two  main   groups  acting  at  this  joint:  the  knee   Figure  9.  Menisci  of  the  knee   Figure  10.  Motions  of  the  knee