SlideShare a Scribd company logo
1 of 154
F-1
Stat 423, Stat 523 Formulas
Chapter 7 Sections 7.1, 7.2, 7.3
We take a random sample X1, …, Xn from N(µ,s2)
Two-Sided 100(1-a)% Confidence Intervals for µ
Requirements Confidence Interval
Normal, s known
Normal, s unknown
Chapter 8 Sections 8.1, 8.2, 8.4
Steps in Testing Hypotheses
1. null hypothesis H0 and alternative hypothesis Ha
H0: µ = µ0 Ha: µ > µ0, µ < µ0 or µ ¹ µ0
where µ0 is the known hypothesized value of µ.
2. test statistic
Requirements Test Statistic Reference Distribution
Normal, s known
N(0,1)
Normal, s unknown
tn-1
3. rejection region or P-value (a = level of significance)
Ha
Rejection Region (RR)
Z test T test
µ > µ0 z ³ za t ³ ta,n-1
µ < µ0 z £ -za t £ -ta,n-1
µ ¹ µ0 z ³ za/2 or z £ -za/2 t ³ ta/2,n-1 or t £ -ta/2,n-1
Ha
P-value
Z test R Command T test R Command
µ > µ0 1 - P(Z £ z) 1-pnorm(z) P(tn-1 ³ t) 1-pt(t,n-1)
µ < µ0 P(Z £ z) pnorm(z) P(tn-1 £ t) pt(t,n-1)
µ ¹ µ0 2[1 - P(Z £ |z|)] 2*(1-pnorm(abs(z))) 2P(tn-1 ³ |t|) 2*(1-
pt(abs(t),n-1))
4. Conclusion: Reject H0 at the a level of significance if:
• test statistic is inside the RR or P-value < a.
÷÷
ø
ö
çç
è
æ s
×+
s
×- aa
n
zx ,
n
zx
22
÷÷
ø
ö
çç
è
æ
×+×- -- aa n
s
tx,
n
s
tx 1n,1n, 22
n
x
z 0
s
µ-
=
n
s
x
t 0
µ-
=
g zg
0.100 1.282
0.050 1.645
0.025 1.960
0.010 2.326
0.005 2.576
0.001 3.09
F-2
Chapter 9 Section 9.1 z Tests and CIs
Assumptions
• X1, X2, ..., Xm = data from population 1 with mean µ1 and
variance s12
• Y1, Y2, ..., Yn = data from population 2 with mean µ2 and
variance s22
• data:
Case I Normal Populations with Known Variances
Hypothesis Test:
1. H0: µ1 - µ2 = D0 vs. Ha: where D0 is a known constant
(zero usually).
2. Test statistic:
3. Rejection region and P-value
Ha Rejection Region P-value P-value in R
µ1 - µ2 > D0 z ³ za 1 - P(Z £ z) 1-pnorm(z)
µ1 - µ2 < D0 z £ -za P(Z £ z) pnorm(z)
µ1 - µ2 ¹ D0 z £ -za/2 or z ³ za/2 2[1 - P(Z £ |z|)] 2*(1-
pnorm(abs(z)))
100(1-a)% Confidence Intervals for µ1 - µ2:
2-sided CI:
1-sided CIs: ,
where za is defined like in Chapters 7 and 8.
Case II Large-Sample Procedures (s1 and s2 are unknown,
m>30, n>30)
Replace s1 and s2 in Case I with standard deviations s1 and s2.
ïî
ï
í
ì
===
===
nsize sample ,sdeviation standard ,y mean:2 Sample
msize sample ,sdeviation standard ,x mean:1 Sample
2
1
ï
î
ï
í
ì
D¹µ-µ
D<µ-µ
D>µ-µ
021
021
021
)1,0(N~
nm
)yx(
z
2
2
2
1
0
s
+
s
D--
=
nm
z)yx(
2
2
2
1
2
s
+
s
±- a
,
nm
z)yx(
2
2
2
1
÷
÷
ø
ö
ç
ç
è
æ
¥+
s
+
s
-- a
nm
z)yx( ,
2
2
2
1
÷
÷
ø
ö
ç
ç
è
æ s
+
s
+-¥- a
9A
9B
F-3
Section 9.2 t Test and Confidence Interval
• Normal populations, s1 and s2 are unknown, and sample sizes
are small.
Case III t-based Procedures
, round down to the nearest integer.
t Test:
1. H0: µ1 - µ2 = D0 vs. Ha: 2. Test statistic:
3. Rejection region and P-value
Ha Rejection Region P-value P-value in R
µ1 - µ2 > D0 t ³ ta, n P(tn ³ t) 1-pt(t,n)
µ1 - µ2 < D0 t £ -ta, n P(tn £ t) pt(t,n)
µ1 - µ2 ¹ D0 t £ -ta/2, n or t ³ ta/2, n 2P(tn ³ |t|) 2*(1-
pt(abs(t),n))
100(1-a)% Confidence Intervals for µ1 - µ2:
2-sided CI:
1-sided CI: ,
1n
n
s
1m
m
s
n
s
m
s
22
2
22
1
22
2
2
1
-
÷÷
ø
ö
çç
è
æ
+
-
÷÷
ø
ö
çç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
+
=n
ï
î
ï
í
ì
D¹µ-µ
D<µ-µ
D>µ-µ
021
021
021
2
2
2
1
0 t~
n
s
m
s
yx
t n
+
D--
= !
n
s
m
s
t)yx(
2
2
2
1
,2 +±- na
,
n
s
m
s
t)yx(
2
2
2
1
, ÷
÷
ø
ö
ç
ç
è
æ
¥++-- na
n
s
m
s
t)yx( ,
2
2
2
1
, ÷
÷
ø
ö
ç
ç
è
æ
++-¥- na
9C
F-4
Chapter 10 Section 10.1 Single-Factor ANOVA (Equal Sample
Sizes)
• I = total number of treatments
• J = common number of replications of each treatment
• µi = mean of treatment i (for i = 1, 2, ..., I)
• Xij = random variable that represents the measurement from
the jth EU under
treatment i (for i = 1, ..., I and j = 1, ..., J)
The One-Way Fixed Model: Xij = µi + Îij
where Îi1, Îi2, ..., ÎiJ are iid N(0,s2).
Definition Sums of Squares (SS)
Treatment i average: Grand Average:
• Total SS = Treatment i standard deviation = si
• Treatment (Among) SS =
• Error (Within) SS =
Þ ,
---------------------------------------------------------------------------
-----------
Alternative (Working) Formulas
Let , .
•
•
• SSE = SST – SSTr
Remarks:
• is called a residual and eij estimates Îij.
• SST = SSTr + SSE Þ SSE = SST – SSTr.
---------------------------------------------------------------------------
-----------
ANOVA table:
J
x
x
J
1j
ij
.i
å
=
=
IJ
x
x
I
1i
J
1j
ij
..
å å
= =
=
( )å å
= =
-=
I
1i
J
1j
2
..ij xxSST
( )å
=
-=
I
1i
2
...i xxJSSTr
( )å å
= =
-=
I
1i
J
1j
2
.iij xxSSE
( ) )1/(
1
.
2 --= å
=
Jxxs
J
j
iiji å
=
-=
I
1i
2
is)1J(SSE I/sMSE Error Squared Mean
I
1i
2
i ÷÷
ø
ö
çç
è
æ
== å
=
åå å
== =
==
J
1j
ij.i
I
1i
J
1j
ij.. xx ,xx IJ
x
CF factor correction
2
..==
CFxSST
I
1i
J
1j
2
ij -= å å
= =
CF
J
x
SSTr
I
1i
2
.i
-=
å
=
.iijij xxe -=
Source of
Variation
degrees of
freedom (df)
Sum of
Squares (SS)
Mean Square
(MS)
Test
Statistic F
P-value
P-value in R
Treatments
(Among)
I-1
SSTr
1-pf(F,I-1,I(J-1))
Error
(Within)
I(J-1) SSE
Total IJ-1 SST
1I
SSTr
MSTr
-
=
MSE
MSTr
F =
( )FFP )1J(I,1I >--
)1J(I
SSE
MSE
-
=
10A
10B
10C
F-5
When H0: µ1 = µ2 = ... = µI is true, ~ FI-1,I(J-1).
Hypothesis Testing
H0: µ1 = µ2 = ... = µI vs. Ha: H0 is false
• F-statistic:
• P-value: P-value = (In R: 1-pf(F,I-1,I*(J-1)))
• rejection region: RR = {F > Fa,I-1,I(J-1)}
---------------------------------------------------------------------------
----------
Section 10.2 Multiple Comparison in ANOVA (Equal
Treatment Reps J)
Tukey's Procedure for Simultaneous 100(1-a)% CIs for µi-µj:
T Method for Significant Differences
1. Compute .
2. List the sample means in increasing order.
3. Underline groups of means that do not differ by more than w.
---------------------------------------------------------------------------
-----------
Contrast where .
Hypothesis Test (Equal Sample Sizes J)
1. H0: C = c0 vs. Ha:
2. Test Statistic
3. Rejection Region and P-value
Ha Rejection Region P-value P-value in R
C > c0 t ³ ta, I(J-1) P(tI(J-1) ³ t) 1-pt(t,I*(J-1))
C < c0 t £ -ta, I(J-1) P(tI(J-1) £ t) pt(t,I*(J-1))
C ¹ c0 t £ -ta/2, I(J-1) or t ³ ta/2, I(J-1) 2P(tI(J-1) ³ |t|) 2*(1-
pt(abs(t),I*(J-1)))
----
F Test for H0: C = 0 vs. Ha: C ¹ 0
, Test Statistic
• Rejection Region ;
• P-value = , (in R) 1-pf(F,1,I*(J-1)))
MSE
MSTr
F =
MSE
MSTr
F =
( )FFP )J(I,I >-- 11
( )
J
MSE
Qxx )1J(I,I,ji -a±-
J
MSE
Qw )1J(I,I, -a=
.ix
å
=
µ=
I
1i
iicC 0c
I
1i
i =å
=
ï
î
ï
í
ì
¹
<
>
0
0
0
cC
cC
cC
)1J(I
I
1i
2
i
0 t~
J
cMSE
cĈ
t -
=
å
-
=
å
=
´=
I
1i
2
i
2
c
Ĉ
J)C(SS )1J(I,1F~
MSE
)C(SS
F -=
}FF{RR )1J(I,1, -a>=
( )1, ( 1)I JP F F- >
10D
10E
10F
In R: qtukey(1-a,I,I*(J-1))
F-6
100(1-a)% CIs for Contrast C (Equal Sample Sizes)
2-sided:
1-sided:
---------------------------------------------------------------------------
----------
Section 10.3 ANOVA for Unequal Sample Sizes
Ji = sample size for treatment i, n = SJi (total sample size).
Treatment i total: , Treatment i average:
Grand Average:
• Total Sum of Squares:
• Treatment Sum of Squares:
• Error Sum of Squares: SSE = SST – SSTr Treatment i
standard deviation = si
ANOVA table:
Source df SS MS F P-value P-value in R
Treatments
I-1
SSTr
1-pf(F,I-1,n-I)
Error n-I SSE
Total n-1 SST
• Reject Region = {F ³ Fa,I-1,n-I}
---------------------------------------------------------------------------
-----------
T Method for Significant Differences (Unequal Treatment Reps)
1. Compute for all pairs i,j where i¹j.
2. List the sample means in increasing order.
3. Underline and if they do not differ by more than wij.
J
cMSE
tĈ
I
1i
2
i
)1J(I,2
å
=
-a
±
J
cMSE
tĈ ,, ,
J
cMSE
tĈ
I
1i
2
i
)1J(I,
I
1i
2
i
)1J(I,
÷
÷
÷
÷
÷
÷
ø
ö
ç
ç
ç
ç
ç
ç
è
æ
+¥-
÷
÷
÷
÷
÷
÷
ø
ö
ç
ç
ç
ç
ç
ç
è
æ
¥+-
åå
=
-a
=
-a
å
=
=
iJ
1j
ij.i xx
i
.i
.i
J
x
x =
n
x
x
I
1i
J
1j
ij
..
i
å å
= =
=
( )å å
= =
-=
I
1i
J
1j
2
..ij
i
xxSST
n
x
x
2
..
I
1i
J
1j
2
ij
i
-= å å
= =
( )å
=
-=
I
1i
2
...ii xxJSSTr
n
x
J
x 2..
I
1i i
2
.i -= å
=
å
=
-=
I
1i
2
ii s)1J(SSE
1I
SSTr
MSTr
-
=
MSE
MSTr
F =
( )FFP In,1I >--
In
SSE
MSE
-
=
J
1
J
1
2
MSE
Qw
ji
In,I,ij ÷
÷
ø
ö
ç
ç
è
æ
+= -a
.ix
.ix .jx
10G
10H
10I
F-7
F-8
Hypothesis Test with Contrasts (Unequal Sample Sizes)
1. H0: C = c0 vs. Ha:
2. Test Statistic
3. Rejection Region and P-value
Ha Rejection Region P-value P-value in R
C > c0 t ³ ta, n-I P(tn-I ³ t) 1-pt(t,n-I))
C < c0 t £ -ta, n-I P(tn-I ³ |t|) pt(t,n-I)
C ¹ c0 t £ -ta/2, n-I or t ³ ta/2, n-I 2P(tn-I ³ |t|) 2*(1-pt(abs(t),n-
I))
100(1-a)% CIs for Contrast C (Unequal Sample Sizes)
2-sided:
1-sided:
Special Case:
---------------------------------------------------------------------------
-----------
A Random Effects Model: Xij = µ + Ai + Îij
where A1, A2, ..., AI are iid N(0,sA2) and Îi1, Îi2, ..., ÎiJ are iid
N(0,s2).
E(MSTr) = s2 + rsA2, E(MSE) = s2 where r=(n-SJi2/n)/(I-1).
• F=MSTr/MSE tests H0: sA2 = 0 versus Ha: sA2 ¹ 0.
• Estimates: and where r=(n-SJi2/n)/(I-1).
• V(Xij) = s2 + sA2 = total variance observed in measurements
• Estimate of V(Xij) =
• % of total variance explained by differences among treatments
= %
ï
î
ï
í
ì
¹
<
>
0
0
0
cC
cC
cC
In
I
1i i
2
i
0 t~
J
c
MSE
cĈ
t -
=
å
-
=
}FF{RR
F~tF
0C:H vs. 0C:H
In,1,
In,1
2
a0
-a
-
>=
=
¹=
å
=
-a
±
I
1i i
2
i
In,2 J
c
MSEtĈ
,
J
c
MSEtĈ,
J
c
MSEtĈ ,
I
1i i
2
i
In,
I
1i i
2
i
In,
÷÷
÷
ø
ö
çç
ç
è
æ
¥+-
÷÷
÷
ø
ö
çç
ç
è
æ
+¥- åå
=
-a
=
-a
.
J
1
with
J
c
replace,C If
j
I
1i i
2
i
j å
=
µ=
MSEˆ2 =s
r
MSEMSTr
ˆ2A
-
=s
( ) 2A2ij ˆˆXV
̂ s+s=
2
A
2
2
A
ˆˆ
ˆ
100
s+s
s
´
10J
10K
F-9
Chapter 11 Formulas Set Section 11.1 Two-Factor ANOVA
with No Replications
Notation
• A = 1st factor, I = number of levels of A
• B = 2nd factor, J = number of levels of B
• Xij = the measurement from the combination of the ith level of
A and jth level of B
• xij = actual (observed) value of Xij
Two-Way Additive Fixed Model
Model equation and assumptions are
Xij = µ + ai + bj + Îij
where , and Îij's are iid N(0,s2). The average response at the
level i of A and level j of B is
µij = E(Xij) = µ + ai + bj .
---------------------------------------------------------------------------
-----------
Parameter Estimates
Factor A, level i total and average:
Factor B, level j total and average: ,
Grand Average:
Parameter Estimate
µ
ai
bj
= + + is the predicted or fitted value.
eij = xij - is a residual which estimates Îij.
0 ,0
J
1j
j
I
1i
i åå
==
=b=a
J
x
x ,xx .i.i
J
1j
ij.i == å
=
I
x
x ,xx
j.
j.
I
1i
ijj. == å
=
IJ
x
x
I
1i
J
1j
ij
..
å å
= =
=
..xˆ =µ
...ii xxˆ -=a
..j.j xx
ˆ -=b
ijx̂ µ̂ iâ jb̂
ijx̂
11A
11B
F-10
Hypothesis Tests
• Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai
¹ 0
• Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj
¹ 0
Sums of Squares df
IJ-1
I-1
J-1
(I-1)(J-1)
ANOVA Table
Source df SS MS F P-value P-value in R
Factor
A
I-1
SSA
1-pf(F,I-1,(I-1)*(J-1))
Factor
B
J-1 SSB
1-pf(F,J-1,(I-1)*(J-1))
Error (I-1)(J-
1)
SSE
Total IJ-1 SST
, SSE = SST - SSA – SSB
• Factor A: RR = {F=MSA/MSE > Fa,I-1,(I-1)(J-1)}
• Factor B: RR = {F=MSB/MSE > Fa,J-1,(I-1)(J-1)}
---------------------------------------------------------------------------
----------
T Method for Significant Differences
Compute
.
Apply
• wA to
or
• wB to
Block designs: ANOVA, T Method the same as above with
Factor A = Blocks.
Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij
( ) å åå å
= == =
-=-=
I
1i
2
..
J
1j
2
ij
I
1i
J
1j
2
..ij
IJ
x
xxxSST
( )
IJ
x
x
J
1
xxJSSA
2
..
I
1i
2
.i
I
1i
2
...i -=-= åå
==
( )
IJ
x
x
I
1
xxISSB
2
..
J
1j
2
j.
J
1j
2
..j. -=-= åå
==
( )å å
= =
+--=
I
1i
J
1j
2
..j..iij xxxxSSE
1I
SSA
MSA
-
=
MSE
MSA
F =
( )FFP )1J)(1I(,1I >---
1J
SSB
MSB
-
=
MSE
MSB
F =
( )FFP )1J)(1I(,1J >---
)1J)(1I(
SSE
MSE
--
=
å å
= =
=
I
1i
J
1j
2
ijeSSE
åå
==
b
-
+s=a
-
+s=s=
J
1j
2
j
2
I
1i
2
i
22
1J
I
)MSB(E ,
1I
J
)MSA(E ,)MSE(E
scomparison B factor for
I
MSE
Qw
scomparison Afactor for
J
MSE
Qw
)1J)(1I(,J,B
)1J)(1I(,I,A
--a
--a
=
=
.I.2.1 x,...,x,x
J.2.1. x,...,x,x
11C
11D
F-11
Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij
where the Ai's are iid N(0,sA2), the Bj's are iid N(0,sB2), and
Îij's are iid N(0,s2).
tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0.
tests H0: sB2 = 0 vs. Ha: sB2 ¹ 0.
Estimates:
total variance = .
---
Two-Way Additive Mixed Model: Xij = µ + Ai + bj + Îij
where the Ai's are iid N(0,sA2), Sbj=0, and Îij's are iid N(0,s2).
tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0.
tests H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0.
Estimates: , total variance =
---------------------------------------------------------------------------
-----------
Section 11.2 Two-Way ANOVA with Replications
Two-Way Interaction Fixed Effects Model
Xijk = kth observation for level i of A and level j of B.
Xijk = µ + ai + bj + gij + Îijk
for i=1, ..., I, j=1, ...,J, k=1, ..., K and where
, for all i, for all j,
and Îij's are iid N(0,s2). The mean response at the level i of A
and level j of B is
µij = E(Xij) = µ + ai + bj + gij .
---------------------------------------------------------------------------
-----------
Estimates
, ,
, ,
Parameter Estimate
fitted value
residual
µ
ai
bj
gij
2
B
22
A
22 I)MSB(E ,J)MSA(E ,)MSE(E s+s=s+s=s=
MSE
MSA
F =
MSE
MSB
F =
I
MSEMSB
ˆ,
J
MSEMSA
ˆ,MSEˆ 2B
2
A
2 -=s
-
=s=s
( ) 2B2A2ij ˆˆˆXV
̂ s+s+s=
å
=
b
-
+s=s+s=s=
J
1j
2
j
22
A
22
1J
I
)MSB(E ,J)MSA(E ,)MSE(E
MSE
MSA
F =
MSE
MSB
F =
J
MSEMSA
ˆ,MSEˆ 2A
2 -=s=s ( ) 2A2ij ˆˆXV
̂ s+s=
0 ,0
J
1j
j
I
1i
i åå
==
=b=a 0
J
1j
ijå
=
=g 0
I
1i
ijå
=
=g
å å å
= = =
=
I
1i
J
1j
K
1k
ijk... xx
IJK
x
x ...... =
K
x
x
K
1k
ijk
.ij
å
==
J
x
x ,xx
J
1j
.ij
..i
J
1j
K
1k
ijk..i
å
å å =
= =
==
I
x
x ,xx
I
1j
.ij
.j.
I
1i
K
1k
ijk.j.
å
å å =
= =
==
.ijijjiij xˆ
ˆˆˆx̂ =g+b+a+µ=
ijijkijk x̂ xe -=
...xˆ =µ
.....ii xxˆ -=a
....j.j xx
ˆ -=b
....j...i.ijij xxxxˆ +--=g
11E
11F
11G
F-12
Hypothesis Tests
• Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai
¹ 0
• Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj
¹ 0
• Interaction: H0: gij = 0 for all i,j vs. Ha: at least one gij ¹
0
ANOVA Table (Two-Way Interaction Fixed Model)
Source df SS MS F P-value P-value in R
A
I-1
SSA
1-pf(F,I-1,I*J*(K-1))
B J-1 SSB
1-pf(F,J-1,I*J*(K-1))
Interaction (I-
1)(J-1)
SSAB
1-pf(F,(I-1)*(J-1),I*J*(K-1))
Error IJ(K-1) SSE
Total IJK-1 SST
• Factor A: RR = {F=MSA/MSE > Fa,I-1,IJ{K-1)}
• Factor B: RR = {F=MSB/MSE > Fa,J-1,IJ(K-1)}
• Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJ(K-1)}
---------------------------------------------------------------------------
-----------
T Method for Factor Levels (Use only when interactions are not
significant.)
Note that I=# of A levels, J=# of B levels, K=# of replications.
Section 11.3 Three-Factor Fixed Effects ANOVA
Xijkl = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk + Îijk
for i=1, ..., I, j=1, ...,J, k=1, ..., K, l=1, ..., L, where Îijk's are
iid N(0,s2) and
the sum of parameters over any subscript is 0:
= = = =
= = = = .
The mean response at level i of A, j of B and k of C is
µijk = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk .
1I
SSA
MSA
-
=
MSE
MSA
F =
( )FFP )1K(IJ,1I >--
1J
SSB
MSB
-
=
MSE
MSB
F =
( )FFP )1K(IJ,1J >--
)1J)(1I(
SSAB
MSAB
--
=
MSE
MSAB
F =
( )FFP )1K(IJ),1J)(1I( >---
)1K(IJ
SSE
MSE
-
=
ï
ï
î
ïï
í
ì
=
=
-a
-a
.J..2..1.)1K(IJ,J,B
I..2..1..)1K(IJ,I,A
x,...,x,x to apply
IK
MSE
Qw
x,...,x,x to apply
JK
MSE
Qw
=d=b=a ååå
===
K
1k
k
J
1j
j
I
1i
i
I
1i
AB
ijå
=
g
J
1j
AB
ijå
=
g
I
1i
AC
ikå
=
g å
=
g
K
1k
AC
ik
J
1j
BC
jkå
=
g
K
1k
BC
jkå
=
g
I
1i
ijkå
=
g
J
1j
ijkå
=
g 0
K
1k
ijkå
=
=g
11I
11J
11H
F-13
Test of Hypotheses
• Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai
¹ 0
• Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj
¹ 0
• Factor C: H0: d1 = d2 = ... = dK = 0 vs. Ha: at least one
dk ¹ 0
• AB Interaction: H0: all gABij = 0 vs. Ha: at least one gABij
¹ 0
• AC Interaction: H0: all gACik = 0 vs. Ha: at least one
gACik ¹ 0
• BC Interaction: H0: all gBCjk = 0 vs. Ha: at least one
gBCjk ¹ 0
• ABC Interaction: H0: all gijk = 0 vs. Ha: at least one gijk ¹
0
Assume that there are L observations from each ABC level
combination (balanced data).
Total sample size is IJKL.
ANOVA Table (3 Factors Fixed Effects Model)
Source df SS MS F P-value*
A
I-1
SSA
B J-1 SSB
C K-1 SSC
AB
Interaction
(I-1)(J-1) SSAB
AC
Interaction
(I-1)(K-1) SSAC
BC
Interaction
(J-1)(K-1) SSBC
ABC
Interaction
(I-1)
´(J-1)(K-1)
SSABC
Error IJK(L-1) SSE
* In R, 1-pf(F,m,n) gives P(Fm,n > F).
Total IJKL-1 SST
! There should be at least L=2 observations per treatment to test
for all interactions. If L=1,
there is no MSE and, hence, no F-test of interactions. !
• Factor A: RR = {F=MSA/MSE > Fa,I-1,IJK{L-1)}
• Factor B: RR = {F=MSB/MSE > Fa,J-1,IJK(L-1)}
• Factor C: RR = {F=MSC/MSE > Fa,K-1,IJK(L-1)}
• AB Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJK(L-
1)}
• AC Interaction: RR = {F=MSAC/MSE > Fa,(I-1)(K-1),IJK(L-
1)}
• BC Interaction: RR = {F=MSBC/MSE > Fa,(J-1)(K-1),IJK(L-
1)}
• ABC Interaction: RR = {F=MSABC/MSE > Fa,(I-1)(J-1)(K-
1),IJK(L-1)}
T Method for Factor Levels (use when no interaction is
significant)
where {total reps per level} = JKL for factor A
= IKL for factor B
= IJL for factor C
Coefficient of Determination: , Adjusted R2:
1I
SSA
MSA
-
=
MSE
MSA
F =
( )FFP )1L(IJK,1I >--
1J
SSB
MSB
-
=
MSE
MSB
F =
( )FFP )1L(IJK,1J >--
1K
SSC
MSC
-
=
MSE
MSC
F =
( )FFP )1L(IJK,1K >--
)1J)(1I(
SSAB
MSAB
--
=
MSE
MSAB
F =
( )FFP )1L(IJK),1J)(1I( >---
)1K)(1I(
SSAC
MSAC
--
=
MSE
MSAC
F =
( )FFP )1L(IJK),1K)(1I( >---
)1K)(1J(
SSBC
MSBC
--
=
MSE
MSBC
F =
( )FFP )1L(IJK),1K)(1J( >---
)1K)(1J)(1I(
SSABC
MSBC
---
=
MSE
MSABC
F = ( )FFP )1L(IJK),1K)(1J)(1I( >----
)1L(IJK
SSE
MSE
-
=
level per reps total
MSE
Qw df} {MSE levels}, factor of {#, ´= a
SST
SSE
R -= 12
SST
SSE
Radj ´÷
ø
ö
ç
è
æ-=
df error
df total
12
11K
F-14
Latin Squares Design
Model Assumptions
Xij(k) = µ + ai + bj + dk + eij(k)
where and eij(k)’s are iid N(0,s2).
N = # of factor levels (note that N=I=J=K)
, , ,
, , ,
Sums of Squares (Latin Squares Design)
Sums of Squares df
N2-1
N-1
N-1
N-1
(N-1)(N-2)
Note: SSE = SST – SSA – SSB – SSC
T Method for Factor Levels: For all factors, use .
---------------------------------------------------------------------------
-----------
Section 11.4 2p Factorial Experiments, Factor Effects, Yates
Algorithm
23 Factorial Model: Xijkl = µ + ai + bj + dk + gABij + gACik +
gBCjk +gijk + Îijkl
for i=1,2, j=1,2, k=1,2, l=1, ..., L
Estimates
•
• Fitted main effects of factors A, B and C
• Fitted 2-way interactions
• Fitted 3-way interactions
0kji =d=b=aå åå
å=
j
)k(ij..i xx å=
i
)k(ij.j. xx å=
j,i
)k(ijk.. xx å=
j,i
)k(ij... xx
N
x
x ..i..i =
N
x
x
.j.
.j. =
N
x
x k..k.. = 2
...
...
N
x
x =
( )
2
2
...
N
1i
N
1j
2
)k(ij
N
1i
N
1j
2
...)k(ij
N
x
xxxSST -=-= å åå å
= == =
( )
2
2
...
N
1i
2
..i
N
1i
2
.....i
N
x
x
N
1
xxNSSA -=-= åå
==
( )
2
2
...
N
1j
2
.j.
N
1j
2
....j.
N
x
x
N
1
xxNSSB -=-= åå
==
( )
2
2
...
N
1k
2
k..
N
1k
2
...k..
N
x
x
N
1
xxNSSC -=-= åå
==
( )
2N
1i
N
1j
...k...j...i)k(ij x2xxxxSSE å å
= =
+---=
N
MSE
Qw df} {MSE N,, ´= a
....xˆ =µ
.....k..k......j.j.......ii xx
ˆ xxˆ xxˆ -=d-=b-=a
.....k....j..jk.
BC
jk
.....k.....i.k.i
AC
ik
......j....i..ij
AB
ij
xxxxˆ
xxxxˆ
xxxxˆ
+--=g
+--=g
+--=g
.....k....j....i.jk..k.i..ij.ijkijk xxxxxxxxˆ -+++---=g
11L
11M
F-15
Yates Algorithm
1. List sample means (xbars) in Yates standard order.
• Start with (1) then a.
• "Multiply by b" the previous treatments to get b and ab.
• "Multiply by c" the previous treatments to get c, ac, bc, abc.
etc.
There should be 2p treatments in the list.
2. The next column is obtained by adding the numbers in the
previous column in pairs
and subtracting in pairs (2nd minus 1st).
Repeat this process p times.
3. Divide the pth new column by 2p. The results are the overall
mean and fitted
effects (with all factors at the 2nd level).
Reverse the sign of the fitted effect if you change an odd
number of subscripts.
---------------------------------------------------------------------------
-----------
Section 11.4 Fractional Factorial Studies
A. Choice of 1/2q Fraction of a 2p Factorial
1. Pick any p-q factors and list all their level combinations
using -'s and +'s.
2. Pick q different groups of these "first" factors and multiply
the signs of the
members of each group. Use the q products to determine the
levels of the
remaining q factors.
B. Determining the "Alias Structure" of the 1/2q Fraction
Multiplication Rules:
• A*A = B*B = ... = I
• I*A = A, I*B = B, etc.
1. Take the q generators and apply multiplication so that I is on
the left-hand-side
of the equation.
2. Multiply (LHS x LHS and RHS x RHS) the new equations in
pairs, then in triples,
then in sets of four, etc.
(2q - 1) factor products are equivalent to I. Factor effects are
aliased in 2p-q
groups of 2q members.
C. Analyzing a 2p-q Fractional Factorial
1. Initially ignore the "last" q factors and treat the data as a full
factorial in
the "first" p-q factors. Estimate the factor effects (e.g. using
formulas in
Section 11.4 or by Yates algorithm = p-q cycles and divide last
cycle by 2p-q) and
judge their statistical significance.
a. (with replication)
• Compute
or get them from the ANOVA table.
• Compute .
A 100(1-a)% CI for an effect is .
Note that an effect is judged not statistically significant at the a
level
if .
b. If no replication, do a normal probability plot of fitted effects
(exclude ).
2. Interpret the estimates in the light of the alias structure.
1)- size (sample of sumdf
1)- size (sample of sum
]s ingcorrespond1)- size [(sample of sum
MSE
2
=
´
=
sizes sample all of sreciprocal of sum
2
1
MSEt)r(
q-pdf,2
´´=a a
)(r effect
^
a±
)(r effect
^
a<
µ̂
11N
11O
F-16
Chapter 12 Formulas
Linear Model: where e's are iid N(mean=0,variance=s2).
• b1 = average change in Y for every unit change in x
• µy•x* = b0 + b1x* = average response at x*
• s2y•x* = variance of Y at x=x*
---------------------------------------------------------------------------
-----------
Least-Squares Estimates:
Fitted Value:
Residual:
or .
Estimate of s2: mean square error = .
---------------------------------------------------------------------------
-----------
Numerical Diagnostics
Sample Correlation:
sx and sy are the sd's of x and y => .
Coefficient of Determination: , SSR = SST-SSE
Adjusted R2 = where MST = SST/(n-1)
ii10i xY e+b+b=
( )
( )
n
x
x
n
yx
yx
ˆ
2
i2
i
ii
ii
1
åå
ååå
-
-
=b xˆyˆ 10 b-=b
i10i x
ˆˆŷ b+b=
iii ŷye -=
( ) åå
==
=-=
n
1i
2
i
n
1i
2
ii eŷySSE ii1i0
2
i yx
ˆyˆySSE ååå b-b-=
2n
SSE
ˆMSE 2
-
=s=
( )
( )
( )
( )
( )( )
n
yx
yxyyxxS
n
y
yyyS or SST
n
x
xxxS
ii
iiiixy
2
i2
i
2
iyy
2
i2
i
2
ixx
åååå
ååå
ååå
-=--=
-=-=
-=-=
yyxx
xy
SS
S
r =
y
x
1
s
sˆr b=
SST
SSR
SST
SSE
1R2 =-=
MST
MSE
1
2n
1R)1n(
R
2
2
adj -=-
--
=
12A
12B
12C
F-17
Section 12.3 Inference for b1
, .
100(1-a)% CI for b1 :
Hypothesis Test
1. H0: b1 = b10, Ha: b1 > b10, b1 < b10 or b1 ¹ b10
2. test statistic
3. rejection region and P-value (a = level of significance)
Ha Rejection Region P-value P-value in R
b1 > b10 t ³ ta,n-2 1 - P(tn-2 £ t) 1-pt(t,n-2))
b1 < b10 t £ -ta,n-2 P(tn-2 £ t) pt(t,n-2)
b1 ¹ b10 t £ -ta/2,n-2 or t ³ ta/2,n-2 2[1 - P(tn-2 £ |t|)] 2*(1-
pt(abs(t),n-2))
ANOVA table with F-test to test H0: b1 = 0 versus b1 ¹ 0
(model utility test)
See Formulas 12B and 12C for SSR, SSE and SST.
Source df SS MS=SS/df F P-value P-value in R
Regression 1 SSR MSR F=MSR/MSE P(F1,n-2 > F) 1-pf(F,1,n-
2)
Error n-2 SSE MSE
Total n-1 SST
The rejection region is {F=MSR/MSE ³ Fa,1,n-2}
---------------------------------------------------------------------------
-----------
Section 12.4 CI for Mean Response µy.x and Prediction
Interval at x=x*
CI for Mean Response
At x=x*, the mean response is µy.x* = b0 + b1x*.
100(1-a)% CI for µy.x*:
where
Prediction Interval
100(1-a)% PI for a response Y at x=x*:
or
MSEˆ2 =s
xx
2
2
ˆ
S
ˆ
s
1
s
=
b
1
ˆ2n,2
1 st
ˆ
b-a
×±b
1
ˆ
101
s
ˆ
t
b
b-b
=
ŷ2n,2
stŷ ×±
-a
( )
xx
2*
ŷ
S
xx
n
1
ss
-
+=
( )
xx
2*
2n,2 S
xx
n
1
1stŷ
-
++×±
-a
2
ŷ
2
2n,2
sstŷ +×±
-a
12D
12E
F-18
Section 13.1 More on Residuals
ith residual (random version) is
•
where
• Standardized residual where
Diagnostic Plots
1. ei* (or ei) versus xi (no pattern)
2. ei* (or ei) versus yi (no pattern)
3. (linear)
4. normal probability plot of ei* (or ei) (linear)
Section 13.2 Transformed Variables
• intrinsically linear models - function of x and y that can be
transformed
as
y' = b0 + b1x'
where y' = {function of y only} and x' = {function of x only}
Sections 13.4, 13.3 Multiple and Polynomial Regression
Model: Y = b0 + b1x1 + b2x2 + ... + bkxk + e
where the e's are independently distributed N(0,s2)
Data: (x11 , x21, ..., xk1, y1), (x12 , x22, ..., xk2, y2), ..., (x1n
, x2n, ..., xkn, yn)
(Least-squares criterion) Find that minimize
.
Fitted model/value:
Estimate for s2:
where .
• n-k-1 is the SSE or MSE df.
• is the jth residual
iii ŶYE -=
( ) ( ) ( )
( )ii
xx
2
i2
ii
EV variance ,0mean(N~E
S
xx
n
1
1EV,0EE
==
ú
ú
û
ù
ê
ê
ë
é -
--s==
( )å -= 2ixx xxS
ie
ii
i
s
yy
e
ˆ* -=
( )
xx
i
e
S
xx
n
ss
i
21
1
-
--=
ii y versus ŷ
kk1100
ˆb,...,ˆb,ˆb b=b=b=
( )[ ]å
=
+++-=
n
1j
2
kjkj110j xb...xbbySSE
kjkj110j x
ˆ...xˆˆŷ b++b+b=
kjkj110j x
ˆ...xˆˆŷ b++b+b=
jjj ŷye -=
( )
1kn
ŷy
1kn
SSE
MSEs
2
jj2
--
-
=
--
== å
13A
13B
13C
F-19
Diagnostics: Assessing Model Fit to Data
1. Plots of Residuals
standardized residual
• Residual Plots. Plot ej* versus x1j, x2j, ..., xkj, .
• Normal Probability Plot of Residuals
2. Coefficient of Multiple Determination = R2
or
where and SSR = SST - SSE
3. Radj2 = Adjusted R2:
k = {number of predictor terms (x terms) in the
model}
4. Mallows Cp:
k = number of x’s (predictors) in the smaller model, n = sample
size
SSEk = {fitted/smaller model’s SSE}, = {MSE of the full
model}
Smaller values of Cp and close to k+1 indicate better models.
Analysis of Variance and Regression
, , and SSR = SST-SSE.
Source df SS MS F P-value P-value in R
Regression k SSR MSR MSR/MSE P(Fk,n-k-1 ³ F) 1-pf(F,k,n-k-
1)
Error n-k-1 SSE MSE
Total n-1 SST
Model-Utility Test:
H0: b1 = b2 = ... = bk = 0 versus Ha: at least one of the b's is
not 0
Rejection Region = {F ³ Fa,k,n-k-1}
Inference for Model Coefficients
1. Confidence Intervals
100(1-a)% CI for bi:
where is an estimate of the standard deviation of .
2. Test of Hypothesis
H0: bi = 0 versus Ha: bi ¹ 0
Test statistic ; P-value = 2*P(tn-k-1 ≥ |t|), (in R) 2*(1-
pt(abs(t),n-k-1))
RR = {t ³ ta/2,n-k-1 or t ≤ -ta/2,n-k-1}
jj e
jj
e
j*
j
s
ŷy
s
e
e
-
==
jŷ
SST
SSE
1R2 -=
SST
SSR
R2 =
( )2j yySST å -=
SST
SSE
df error
df total
1
)1k(n
kR)1n(
R
2
2
adj ´-=+-
--
=
n)1k(2
s
SSE
C
2
f
k
p -++=
2
fs
( )2j yySST å -= ( )
2
jj ŷySSE å -=
i
ˆ
1kn,
2
i st
ˆ
b--
a ×±b
i
ˆsb ib̂
i
ˆ
i
s
ˆ
t
b
b
=
13E
13D
F-20
More Intervals
1. Confidence Intervals for Mean Response at (x1*, x2* , ...,
xk*)
100(1-a)% CI for µy.x*:
where and is an estimate of the standard
deviation of .
2. Prediction Interval for New Observation
100(1-a)% PI for a new response Y at (x1*, x2* , ..., xk*):
where s2 = MSE.
N(0,1) 100pth Percentiles (p-Quantiles)
p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
.0 -2.33 -2.05 -1.88 -1.75 -1.64 -1.55 -1.48 -1.41 -1.34
.1 -1.28 -1.23 -1.17 -1.13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88
.2 -0.84 -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55
.3 -0.52 -0.50 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28
.4 -0.25 -0.23 -0.20 -0.18 -0.15 -0.13 -0.10 -0.08 -0.05 -0.03
.5 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23
.6 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50
.7 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81
.8 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.17 1.23
.9 1.28 1.34 1.41 1.48 1.55 1.64 1.75 1.88 2.05 2.33
ŷ1kn,2
stŷ ×±
--a
*
kk
*
110 x
ˆ...xˆˆŷ b++b+b= ŷs
ŷ
2
ŷ
2
1kn,2
sstŷ +×±
--a
13F
F-21
Standard Normal Probabilities (Part 1)
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003
.0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004
.0003
-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005
.0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007
.0007
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010
.0010
-2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014
.0014
-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020
.0019
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027
.0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037
.0036
-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049
.0048
-2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066
.0064
-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087
.0084
-2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113
.0110
-2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146
.0143
-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188
.0183
-1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239
.0233
-1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301
.0294
-1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375
.0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465
.0455
-1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571
.0559
-1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694
.0681
-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838
.0823
-1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003
.0985
-1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190
.1170
-1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401
.1379
-0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635
.1611
-0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894
.1867
-0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177
.2148
-0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483
.2451
-0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810
.2776
-0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156
.3121
-0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520
.3483
-0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897
.3859
-0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286
.4247
-0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681
.4641
F-22
Standard Normal Probabilities (Part 2)
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
+0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319
.5359
+0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714
.5753
+0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103
.6141
+0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480
.6517
+0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844
.6879
+0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190
.7224
+0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517
.7549
+0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823
.7852
+0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8079 .8106
.8133
+0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365
.8389
+1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599
.8621
+1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810
.8830
+1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997
.9015
+1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162
.9177
+1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306
.9319
+1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429
.9441
+1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535
.9545
+1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625
.9633
+1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699
.9706
+1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761
.9767
+2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812
.9817
+2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854
.9857
+2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887
.9890
+2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913
.9916
+2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934
.9936
+2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951
.9952
+2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963
.9964
+2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973
.9974
+2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980
.9981
+2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986
.9986
+3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990
.9990
+3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993
.9993
+3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995
.9995
+3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996
.9997
+3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
.9998
F-23
Table A.5 Critical Values for the t Distribution
n
α
0.1 0.05 0.025 0.01 0.005 0.001 0.0005
1 3.078 6.314 12.706 31.821 63.657 318.309 636.619
2 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
32 1.309 1.694 2.037 2.449 2.738 3.365 3.622
34 1.307 1.691 2.032 2.441 2.728 3.348 3.601
36 1.306 1.688 2.028 2.434 2.719 3.333 3.582
38 1.304 1.686 2.024 2.429 2.712 3.319 3.566
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 3.261 3.496
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
Inf 1.282 1.645 1.960 2.326 2.576 3.090 3.291
F-24
Table A.9 Critical Values for the F Distributions (part 1)
denom.
df
n2 α
n1 = numerator df
1 2 3 4 5 6 7 8 9
1 0.1 39.86 49.50 53.59 55.83 57.24 58.20
58.91 59.44 59.86
1 0.05 161.45 199.50 215.71 224.58 230.16 233.99
236.77 238.88 240.54
1 0.01 4052.18 4999.50 5403.35 5624.58 5763.65
5858.99 5928.36 5981.07 6022.47
1 0.001 405284.07 499999.50 540379.20 562499.58 576404.56
585937.11 592873.29 598144.16 602283.99
2 0.1 8.53 9.00 9.16 9.24 9.29 9.33 9.35
9.37 9.38
2 0.05 18.51 19.00 19.16 19.25 19.30 19.33
19.35 19.37 19.38
2 0.01 98.50 99.00 99.17 99.25 99.30 99.33
99.36 99.37 99.39
2 0.001 998.50 999.00 999.17 999.25 999.30 999.33
999.36 999.37 999.39
3 0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27
5.25 5.24
3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89
8.85 8.81
3 0.01 34.12 30.82 29.46 28.71 28.24 27.91
27.67 27.49 27.35
3 0.001 167.03 148.50 141.11 137.10 134.58 132.85
131.58 130.62 129.86
4 0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98
3.95 3.94
4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09
6.04 6.00
4 0.01 21.20 18.00 16.69 15.98 15.52 15.21
14.98 14.80 14.66
4 0.001 74.14 61.25 56.18 53.44 51.71 50.53
49.66 49.00 48.47
5 0.1 4.06 3.78 3.62 3.52 3.45 3.40 3.37
3.34 3.32
5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88
4.82 4.77
5 0.01 16.26 13.27 12.06 11.39 10.97 10.67
10.46 10.29 10.16
5 0.001 47.18 37.12 33.20 31.09 29.75 28.83
28.16 27.65 27.24
6 0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01
2.98 2.96
6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21
4.15 4.10
6 0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26
8.10 7.98
6 0.001 35.51 27.00 23.70 21.92 20.80 20.03
19.46 19.03 18.69
7 0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78
2.75 2.72
7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79
3.73 3.68
7 0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99
6.84 6.72
7 0.001 29.25 21.69 18.77 17.20 16.21 15.52
15.02 14.63 14.33
8 0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62
2.59 2.56
8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50
3.44 3.39
8 0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18
6.03 5.91
8 0.001 25.41 18.49 15.83 14.39 13.48 12.86
12.40 12.05 11.77
9 0.1 3.36 3.01 2.81 2.69 2.61 2.55 2.51
2.47 2.44
9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29
3.23 3.18
9 0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61
5.47 5.35
9 0.001 22.86 16.39 13.90 12.56 11.71 11.13
10.70 10.37 10.11
10 0.1 3.29 2.92 2.73 2.61 2.52 2.46 2.41
2.38 2.35
10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14
3.07 3.02
10 0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20
5.06 4.94
10 0.001 21.04 14.91 12.55 11.28 10.48 9.93
9.52 9.20 8.96
11 0.1 3.23 2.86 2.66 2.54 2.45 2.39 2.34
2.30 2.27
11 0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01
2.95 2.90
11 0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89
4.74 4.63
11 0.001 19.69 13.81 11.56 10.35 9.58 9.05
8.66 8.35 8.12
12 0.1 3.18 2.81 2.61 2.48 2.39 2.33 2.28
2.24 2.21
12 0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91
2.85 2.80
12 0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64
4.50 4.39
12 0.001 18.64 12.97 10.80 9.63 8.89 8.38
8.00 7.71 7.48
F-25
Table A.9 Critical Values for the F Distributions (part 2)
denom.
df
n2 α
n1 = numerator df
10 12 15 20 25 30 40 50
60 120 1000
1 0.1 60.19 60.71 61.22 61.74 62.05 62.26
62.53 62.69 62.79 63.06 63.30
1 0.05 241.88 243.91 245.95 248.01 249.26 250.10
251.14 251.77 252.20 253.25 254.19
1 0.01 6055.85 6106.32 6157.28 6208.73 6239.83
6260.65 6286.78 6302.52 6313.03 6339.39 6362.68
1 0.001 605620.97 610667.82 615763.66 620907.67 624016.83
626098.96 628712.03 630285.38 631336.56 633972.40
636301.21
2 0.1 9.39 9.41 9.42 9.44 9.45 9.46 9.47
9.47 9.47 9.48 9.49
2 0.05 19.40 19.41 19.43 19.45 19.46 19.46
19.47 19.48 19.48 19.49 19.49
2 0.01 99.40 99.42 99.43 99.45 99.46 99.47
99.47 99.48 99.48 99.49 99.50
2 0.001 999.40 999.42 999.43 999.45 999.46 999.47
999.47 999.48 999.48 999.49 999.50
3 0.1 5.23 5.22 5.20 5.18 5.17 5.17 5.16
5.15 5.15 5.14 5.13
3 0.05 8.79 8.74 8.70 8.66 8.63 8.62 8.59
8.58 8.57 8.55 8.53
3 0.01 27.23 27.05 26.87 26.69 26.58 26.50
26.41 26.35 26.32 26.22 26.14
3 0.001 129.25 128.32 127.37 126.42 125.84 125.45
124.96 124.66 124.47 123.97 123.53
4 0.1 3.92 3.90 3.87 3.84 3.83 3.82 3.80
3.80 3.79 3.78 3.76
4 0.05 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5.70 5.69 5.66 5.63
4 0.01 14.55 14.37 14.20 14.02 13.91 13.84
13.75 13.69 13.65 13.56 13.47
4 0.001 48.05 47.41 46.76 46.10 45.70 45.43
45.09 44.88 44.75 44.40 44.09
5 0.1 3.30 3.27 3.24 3.21 3.19 3.17 3.16
3.15 3.14 3.12 3.11
5 0.05 4.74 4.68 4.62 4.56 4.52 4.50 4.46
4.44 4.43 4.40 4.37
5 0.01 10.05 9.89 9.72 9.55 9.45 9.38 9.29
9.24 9.20 9.11 9.03
5 0.001 26.92 26.42 25.91 25.39 25.08 24.87
24.60 24.44 24.33 24.06 23.82
6 0.1 2.94 2.90 2.87 2.84 2.81 2.80 2.78
2.77 2.76 2.74 2.72
6 0.05 4.06 4.00 3.94 3.87 3.83 3.81 3.77
3.75 3.74 3.70 3.67
6 0.01 7.87 7.72 7.56 7.40 7.30 7.23 7.14
7.09 7.06 6.97 6.89
6 0.001 18.41 17.99 17.56 17.12 16.85 16.67
16.44 16.31 16.21 15.98 15.77
7 0.1 2.70 2.67 2.63 2.59 2.57 2.56 2.54
2.52 2.51 2.49 2.47
7 0.05 3.64 3.57 3.51 3.44 3.40 3.38 3.34
3.32 3.30 3.27 3.23
7 0.01 6.62 6.47 6.31 6.16 6.06 5.99 5.91
5.86 5.82 5.74 5.66
7 0.001 14.08 13.71 13.32 12.93 12.69 12.53
12.33 12.20 12.12 11.91 11.72
8 0.1 2.54 2.50 2.46 2.42 2.40 2.38 2.36
2.35 2.34 2.32 2.30
8 0.05 3.35 3.28 3.22 3.15 3.11 3.08 3.04
3.02 3.01 2.97 2.93
8 0.01 5.81 5.67 5.52 5.36 5.26 5.20 5.12
5.07 5.03 4.95 4.87
8 0.001 11.54 11.19 10.84 10.48 10.26 10.11
9.92 9.80 9.73 9.53 9.36
9 0.1 2.42 2.38 2.34 2.30 2.27 2.25 2.23
2.22 2.21 2.18 2.16
9 0.05 3.14 3.07 3.01 2.94 2.89 2.86 2.83
2.80 2.79 2.75 2.71
9 0.01 5.26 5.11 4.96 4.81 4.71 4.65 4.57
4.52 4.48 4.40 4.32
9 0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37
8.26 8.19 8.00 7.84
10 0.1 2.32 2.28 2.24 2.20 2.17 2.16 2.13
2.12 2.11 2.08 2.06
10 0.05 2.98 2.91 2.85 2.77 2.73 2.70 2.66
2.64 2.62 2.58 2.54
10 0.01 4.85 4.71 4.56 4.41 4.31 4.25 4.17
4.12 4.08 4.00 3.92
10 0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30
7.19 7.12 6.94 6.78
11 0.1 2.25 2.21 2.17 2.12 2.10 2.08 2.05
2.04 2.03 2.00 1.98
11 0.05 2.85 2.79 2.72 2.65 2.60 2.57 2.53
2.51 2.49 2.45 2.41
11 0.01 4.54 4.40 4.25 4.10 4.01 3.94 3.86
3.81 3.78 3.69 3.61
11 0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52
6.42 6.35 6.18 6.02
12 0.1 2.19 2.15 2.10 2.06 2.03 2.01 1.99
1.97 1.96 1.93 1.91
12 0.05 2.75 2.69 2.62 2.54 2.50 2.47 2.43
2.40 2.38 2.34 2.30
12 0.01 4.30 4.16 4.01 3.86 3.76 3.70 3.62
3.57 3.54 3.45 3.37
12 0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93
5.83 5.76 5.59 5.44
F-26
Table A.9 Critical Values for the F Distributions (part 3)
denom.
df
n2 α
n1 = numerator df
1 2 3 4 5 6 7 8 9
13 0.1 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16
13 0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
13 0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
13 0.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98
14 0.1 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
14 0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
14 0.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58
15 0.1 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09
15 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
15 0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
15 0.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26
16 0.1 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
16 0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
16 0.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98
17 0.1 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03
17 0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
17 0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
17 0.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75
18 0.1 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
18 0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
18 0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
18 0.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56
19 0.1 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98
19 0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
19 0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
19 0.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39
20 0.1 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96
20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
20 0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
20 0.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24
21 0.1 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95
21 0.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
21 0.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
21 0.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11
22 0.1 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
22 0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
22 0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
22 0.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99
23 0.1 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92
23 0.05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
23 0.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
23 0.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89
24 0.1 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91
24 0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
24 0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
24 0.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80
F-27
Table A.9 Critical Values for the F Distributions (part 4)
denom.
df
n2 α
n1 = numerator df
10 12 15 20 25 30 40 50 60 120 1000
13 0.1 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85
13 0.05 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30 2.25 2.21
13 0.01 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18
13 0.001 6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30 5.14 4.99
14 0.1 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80
14 0.05 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14
14 0.01 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02
14 0.001 6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94 4.77 4.62
15 0.1 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76
15 0.05 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16 2.11 2.07
15 0.01 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88
15 0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64 4.47 4.33
16 0.1 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72
16 0.05 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02
16 0.01 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93 2.84 2.76
16 0.001 5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39 4.23 4.08
17 0.1 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69
17 0.05 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06 2.01 1.97
17 0.01 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83 2.75 2.66
17 0.001 5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18 4.02 3.87
18 0.1 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72 1.69 1.66
18 0.05 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92
18 0.01 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58
18 0.001 5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00 3.84 3.69
19 0.1 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70 1.67 1.64
19 0.05 2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
19 0.01 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67 2.58 2.50
19 0.001 5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84 3.68 3.53
20 0.1 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61
20 0.05 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95 1.90 1.85
20 0.01 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43
20 0.001 5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70 3.54 3.40
21 0.1 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59
21 0.05 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92 1.87 1.82
21 0.01 3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37
21 0.001 4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58 3.42 3.28
22 0.1 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57
22 0.05 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79
22 0.01 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50 2.40 2.32
22 0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17
23 0.1 1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55
23 0.05 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86 1.81 1.76
23 0.01 3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27
23 0.001 4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08
24 0.1 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.54
24 0.05 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74
24 0.01 3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40 2.31 2.22
24 0.001 4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99
F-28
Table A.9 Critical Values for the F Distributions (part 5)
denom.
df
n2 α
n1 = numerator df
1 2 3 4 5 6 7 8 9
25 0.1 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89
25 0.05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
25 0.01 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
25 0.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71
26 0.1 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88
26 0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
26 0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
26 0.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64
27 0.1 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87
27 0.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
27 0.01 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
27 0.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57
28 0.1 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87
28 0.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
28 0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
28 0.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50
29 0.1 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86
29 0.05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
29 0.01 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
29 0.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45
30 0.1 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
30 0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
30 0.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39
40 0.1 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79
40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
40 0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
40 0.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02
50 0.1 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76
50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
50 0.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78
50 0.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82
60 0.1 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74
60 0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
60 0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
60 0.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69
100 0.1 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69
100 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
100 0.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59
100 0.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44
200 0.1 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66
200 0.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93
200 0.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50
200 0.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26
1000 0.1 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64
1000 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89
1000 0.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43
1000 0.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13
F-29
Table A.9 Critical Values for the F Distributions (part 6)
denom.
df
n2 α
n1 = numerator df
10 12 15 20 25 30 40 50 60 120 1000
25 0.1 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52
25 0.05 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72
25 0.01 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36 2.27 2.18
25 0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91
26 0.1 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51
26 0.05 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80 1.75 1.70
26 0.01 3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33 2.23 2.14
26 0.001 4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15 2.99 2.84
27 0.1 1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57 1.53 1.50
27 0.05 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68
27 0.01 3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.20 2.11
27 0.001 4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78
28 0.1 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48
28 0.05 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66
28 0.01 3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26 2.17 2.08
28 0.001 4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02 2.86 2.72
29 0.1 1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47
29 0.05 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.70 1.65
29 0.01 3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05
29 0.001 4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66
30 0.1 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.50 1.46
30 0.05 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63
30 0.01 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21 2.11 2.02
30 0.001 4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61
40 0.1 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38
40 0.05 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52
40 0.01 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02 1.92 1.82
40 0.001 3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25
50 0.1 1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42 1.38 1.33
50 0.05 2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58 1.51 1.45
50 0.01 2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91 1.80 1.70
50 0.001 3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05
60 0.1 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40 1.35 1.30
60 0.05 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40
60 0.01 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84 1.73 1.62
60 0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92
100 0.1 1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22
100 0.05 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30
100 0.01 2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.74 1.69 1.57 1.45
100 0.001 3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83
1.64
200 0.1 1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16
200 0.05 1.88 1.80 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.30 1.21
200 0.01 2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30
200 0.001 3.12 2.90 2.67 2.42 2.26 2.15 2.00 1.90 1.83 1.64
1.43
1000 0.1 1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.27 1.25 1.18 1.08
1000 0.05 1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24
1.11
1000 0.01 2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.54 1.50 1.35
1.16
1000 0.001 2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.77 1.69 1.49
1.22
F-30
Table A.10 Critical Values for Studentized Range Distribution
(Tukey's Q)
n α
m
2 3 4 5 6 7 8 9 10 11 12
5 0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32
5 0.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48
10.70
6 0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
6 0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48
7 0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43
7 0.01 4.95 5.92 6.54 7.00 7.37 7.68 7.94 8.17 8.37 8.55 8.71
8 0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18
8 0.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18
9 0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98
9 0.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78
10 0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83
10 0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49
11 0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71
11 0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25
12 0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61
12 0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06
13 0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
13 0.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90
14 0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
14 0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77
15 0.05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40
15 0.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66
16 0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35
16 0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56
17 0.05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31
17 0.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48
18 0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
18 0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41
19 0.05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23
19 0.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34
20 0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20
20 0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28
24 0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10
24 0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11
30 0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00
30 0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93
40 0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90
40 0.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76
60 0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
60 0.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60
120 0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
4.71
120 0.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37
5.44
Inf 0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
4.62
Inf 0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23
5.29
Stat 423 Section 02 Spring 2020
Name ______________________________________
Exam 3 (100 points)
ID Number __________________________
Part I. Workout Problems. Show solution in support of your
answers. Unsupported answers will not receive full
credit. (61 points)
1. A 2!"# fractional factorial involving factors A, B, C, D, E
and F is to be run. Practitioners have these two sets of
generators in mind:
Design 1 Generators: E=ABD and F=ACD
Design 2 Generators: E=ABCD and F=ABD
a. Consider Design 1. Which treatments in this experiment will
have both factors A and B at their high (+)
levels? [6 pts]
b. Consider Design 1. Derive its defining relation and
determine its resolution. [8 pts]
c. The defining relation for Design 2 is I=CEF=ABDF=ABCDE.
Which design (1 or 2) is better? Explain briefly
and give at least one reason for your choice. [3 pts]
2. A 2$"% fractional factorial was conducted to study the
effects of four factors on the bond strength of an
integrated circuit mounted on metallized glass substrate. The
four factors (and their levels) that engineers
identified as potentially important determiners of bond strength
are listed in the table below.
Factor Levels
A – Adhesive Type D2A (−) vs. H-1-E (+)
B – Conductor Material Copper (−) vs. Nickel (+)
C – Cure Time at 90°C 90 min (−) vs. 120 min (+)
D – Deposition Material Tin (−) vs. Silver (+)
Let �& = main effect of A, �'= main effect of B, �( = main
effect of C, �) = main effect of D, and � = interaction
effect. Summary statistics and the results of the Yates
algorithm for computing fitted effects are given below.
Treatment
Replication
Sample
Variance ��
Sample
Mean �+
Yates Algorithm
Cycle 1 Cycle 2 Cycle 3 Fitted Effect
(1) 5 2.452 73.48 157.36
314.54 650.84 81.355
ad 5 4.233 83.88 157.18
336.30 7.84 0.980
bd 5 0.647 81.58 166.60
4.42 2.92 0.365
ab 5 26.711 75.60 169.70
3.42 2.08 0.260
cd 5 0.503 87.06 10.40
−0.18 21.76 2.720
ac 5 8.562 79.54 −5.98
3.10 −1.00 −0.125
bc 5 1.982 79.38 −7.52
−16.38 3.28 0.410
abcd 5 3.977 90.32 10.94
18.46 34.84 4.355
a. The replications and the sample variances of the 8 treatment
combinations are given in the 2nd and 3rd
columns, respectively, in the table above. Compute �(0.05)
for judging if a fitted effect is statistically
significant at the � = 0.05 level. Note that the sum of the
variances is 49.067. [8 pts]
b. The generator and defining relation were D=ABC and
I=ABCD, respectively. If you have no answer in (a), use
�(�.��) = �.���.
i. Based on your answer in (a), is the fitted effect 0.980
statistically significant? [2 pts]
Select one: NO YES
ii. What sum of effects does the fitted effect 0.980 estimate?
Your answer should be a sum of
subscripted/superscripted Greek letters (e.g., �# + �##+,). [4
pts]
3. The diameter � of a tree at breast height (in cm, relatively
easy to measure) is used to predict the height � of a
tree (in m, difficult to measure). Summary data on � = 36
white spruce trees (in British Columbia) are given
below.
B� = 655.1, B�# = 12711.47, B� =
644.7, B�# = 11824.45,
B�� = 12112.34, �-- =
790.4697, ��� = �.. = 278.9475, �̅� =
18.1972, �G = 17.9083.
a. Do some calculations to show that the least-squares line is
�H = 9.1468 + 0.4815�. [10 pts]
b. Compute the sample correlation � between � and �. Give a
quick interpretation. [6 pts]
Interpretation:
c. Construct an interval with 95% confidence for the height of a
new spruce tree with a breast height diameter �
= 19 cm. Plug in numbers in a formula and do not simplify.
Use � = 36, �̅� = 18.1972, �-- = 790.4697,
�# = ��� = 2.815. [8 pts]
Problem 3 (continued).
d. A scatterplot of the data and ��� values for the linear and
quadratic model fits are given below. Also, the tota
l sum of squares for either model is ��� = 1824.45. Which of
the two models provides a better description o
f the data? Explain briefly. In your explanation, use both
graphical AND numeric results [6 pts]
Part II. Multiple Choice. Circle the letter of the correct/best
answer. (39 points)
1. Which of the following statements is NOT true?
A. The simple linear regression model is � = �/ + �%� + �
where the � is a random variable that is normally
distributed with mean 0 and variance �#.
B. In simple linear regression, the independent variable � is
also referred to as the predictor or explanatory
variable.
C. The goal of least-squares regression is to find the curve that
maximizes the sum of the squared distances
between the curve and the data points.
D. A first step in a regression analysis involving two variables
is to construct a scatter plot.
2. In fitting � = �/ + �%� + � through data, (1.7,2.5) is a 90%
confidence interval for �%. What is a 90%
confidence interval for the mean change in � when we reduce �
by 0.65.
A. (−1.625,−1.105)
B. (1.05,1.85)
C. (1.105,1.625)
D. (2.35,3.15)
3. Which of the following is/are TRUE about the correlation
coefficient � between � and �?
A. For the simple linear regression, 100% × �# = �# where �#
is the coefficient of determination (in %).
B. A correlation of � = −0.87 is weaker than a correlation of �
= 0.25.
C. The correlation � is a measure of the strength of the linear
relationship between � and �.
D. If � = −0.1, and we convert � (in inches) to centimeters (1
in = 2.54 cm), then the correlation becomes
2.54 × (−0.1) = −0.254.
E. Both (A) and (C).
Model ���
� = �/ + �%� + � 95.703
� = �/ + �%� + �#�# + � 63.007
5 10 15 20 25 30
8
10
12
14
16
18
20
22
Breast-Height Diameter x
H
ei
gh
t
y
4. Is � = �/ ⋅ �%0 intrinsically linear? If yes, what is
appropriate transformation to obtain a linear model?
Recall: log(��) = log(�) + log(�), log(�1) = � ⋅ log(�)
A. No.
B. Yes, log(�) = log(�/) + log(�%) ⋅ �
C. Yes, log(�) = log(�/) + �% ⋅ log (�)
D. Yes, log(�) = log(�/) + �% ⋅ �
For Problems 5 to 8: A study investigated the effects of �% =
Seal Temperature, �# = Cooling Bar Temperature, and
�2 = % Polyethylene Additive on the seal strength �. The
three models in column of the table below were fit to the
data.
There were � = 20 observations, and the total sum of squares
(for all 3 models) is ��� = 82.17 (total df = 19).
5. What is ��� for Model (1)?
A. 30.96
B. 51.21
C. 21.36
D. 60.81
6. What is �34'
# for Model (2)?
A. 49.42%
B. 76.66%
C. 23.34%
D. 84.03%
7. What is the F statistic for testing �/: {�% = �# = ⋯ = �5 =
0} versus �3: {�/ is false.} with model (3).
A. 6.59
B. 9.69
C. 3.23
D. 5.36
8. In the fit of Model (2), we get �̂�6 = −0.5 and �78! =
0.3552 and find that the P-value is 0.1827 for testing
�/:�6 = 0 versus �3: �6 ≠ 0. What are the � test statistic
and conclusion at � = 0.10 significance level?
A. � = −1.41. There is NO significant interaction between �%
and �2.
B. � = 1.41. The predictor �6 has NO significant effect on the
response �.
C. � = −0.84. There is NO significant interaction between �%
and �2.
D. � = −1.41. There is significant interaction between �% and
�2.
Model �� ����
� ���
(1) � = �/ + �%�% + �#�# + �2�2 + �
37.68%
25.99%
?
(2) � = �/ + �%�% + �2�2 + �$�%# + �<�## + �!�2# +
�6�%�2 + �
84.03%
?
13.1231
(3) � = �/ + �%�% + �#�# + �2�2 + �$�%# + �<�## +
�!�2#
+ �=�%�# +
�6�%�2 + �5�#�2 + �
85.57%
72.58%
11.8593
9. Which of the following is not true about 2>"? fractional
factorial studies?
A. The loss of information and ambiguity (confounding) can be
held to a minimum by careful planning and
wise analysis.
B. A loss of information is usually expected because we are
unable to observe responses at all of the 2>
factor combinations.
C. If two effects are aliased or confounded together, it means
that we can discuss their significance together
but not apart from each other.
D. None of the above.
10. A fitted multiple regression model is �H = 10 − 4�% +
3�#. If �% is decreased by 2, while holding �# fixed, then
then we can expect �
A. to increase by 8
B. to decrease by 6
C. to increase by 6
D. to decrease by 8
E. remain the same
11. Suppose that the least-squares line is �H = −2.12 + 15.75�.
If the � test statistic for testing �/: �% = 0
against �3: �% ≠ 0 is � = 2.1 (from the ANOVA table),
what is the � test statistic for testing the same
hypotheses?
A. � = 1.45
B. � = −4.41
C. � = −1.45
D. � = 4.41
12. Which of the following statements is true?
A. Model 1 with more predictor terms may not necessarily be a
better than Model 2 with fewer predictor
terms even though Model 1’s coefficient of multiple
determination �# is larger.
B. To balance the cost of using more parameters against the
gain in the coefficient of multiple determination
�#, many statisticians use �34'
# = {the adjusted �#}.
C. An objective of regression analysis is to find a model that is
simple (relatively few parameters) and provides
a good fit to the data.
D. All of the above.
13. A study investigated the effects of three explanatory
variables �%, �#, and �2 on the response �. The model � =
�/ + �%�% + �#�# + �2�2 + � provided a good �# value.
Which of the following is NOT appropriate in assessing
the (statistical) significance of the relationship between �2 and
�?
A. a � test of �/: �2 = 0 versus �3: �2 ≠ 0
B. a prediction interval
C. a confidence interval for �2
D. the sample correlation between �2 and �
E. a comparison of �34'
# values for � = �/ + �%�% + �#�# + �2�2 + � and � =
�/ + �%�% + �#�# + �

More Related Content

Similar to F-1 Stat 423, Stat 523 Formulas Chapter 7 Section.docx

Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptStavrovDule2
 
The Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorThe Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorAbhranil Das
 
3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdfMelakuDinku
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Waqas Tariq
 
Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionLisa Erkens
 
Model reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsModel reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsIJECEIAES
 

Similar to F-1 Stat 423, Stat 523 Formulas Chapter 7 Section.docx (20)

Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
Statistics
StatisticsStatistics
Statistics
 
Sample size estimation
Sample size estimationSample size estimation
Sample size estimation
 
Dsp case study
Dsp case studyDsp case study
Dsp case study
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
The Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorThe Moore-Spiegel Oscillator
The Moore-Spiegel Oscillator
 
3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
DSP.ppt
DSP.pptDSP.ppt
DSP.ppt
 
Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansion
 
Model reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specificationsModel reduction design for continuous systems with finite frequency specifications
Model reduction design for continuous systems with finite frequency specifications
 

More from mydrynan

CSIA 413 Cybersecurity Policy, Plans, and Programs.docx
CSIA 413 Cybersecurity Policy, Plans, and Programs.docxCSIA 413 Cybersecurity Policy, Plans, and Programs.docx
CSIA 413 Cybersecurity Policy, Plans, and Programs.docxmydrynan
 
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docx
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docxCSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docx
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docxmydrynan
 
CSI Paper Grading Rubric- (worth a possible 100 points) .docx
CSI Paper Grading Rubric- (worth a possible 100 points)   .docxCSI Paper Grading Rubric- (worth a possible 100 points)   .docx
CSI Paper Grading Rubric- (worth a possible 100 points) .docxmydrynan
 
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docx
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docxCSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docx
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docxmydrynan
 
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docx
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docxCSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docx
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docxmydrynan
 
CSE422 Section 002 – Computer Networking Fall 2018 Ho.docx
CSE422 Section 002 – Computer Networking Fall 2018  Ho.docxCSE422 Section 002 – Computer Networking Fall 2018  Ho.docx
CSE422 Section 002 – Computer Networking Fall 2018 Ho.docxmydrynan
 
CSCI  132  Practical  Unix  and  Programming   .docx
CSCI  132  Practical  Unix  and  Programming   .docxCSCI  132  Practical  Unix  and  Programming   .docx
CSCI  132  Practical  Unix  and  Programming   .docxmydrynan
 
CSCI 714 Software Project Planning and EstimationLec.docx
CSCI 714 Software Project Planning and EstimationLec.docxCSCI 714 Software Project Planning and EstimationLec.docx
CSCI 714 Software Project Planning and EstimationLec.docxmydrynan
 
CSCI 561Research Paper Topic Proposal and Outline Instructions.docx
CSCI 561Research Paper Topic Proposal and Outline Instructions.docxCSCI 561Research Paper Topic Proposal and Outline Instructions.docx
CSCI 561Research Paper Topic Proposal and Outline Instructions.docxmydrynan
 
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docx
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docxCSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docx
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docxmydrynan
 
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docx
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docxCryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docx
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docxmydrynan
 
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docx
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docxCSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docx
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docxmydrynan
 
CSCE 1040 Homework 2 For this assignment we are going to .docx
CSCE 1040 Homework 2  For this assignment we are going to .docxCSCE 1040 Homework 2  For this assignment we are going to .docx
CSCE 1040 Homework 2 For this assignment we are going to .docxmydrynan
 
CSCE509–Spring2019Assignment3updated01May19DU.docx
CSCE509–Spring2019Assignment3updated01May19DU.docxCSCE509–Spring2019Assignment3updated01May19DU.docx
CSCE509–Spring2019Assignment3updated01May19DU.docxmydrynan
 
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docxCSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docxmydrynan
 
CSCE 3110 Data Structures & Algorithms Summer 2019 1 of .docx
CSCE 3110 Data Structures & Algorithms Summer 2019   1 of .docxCSCE 3110 Data Structures & Algorithms Summer 2019   1 of .docx
CSCE 3110 Data Structures & Algorithms Summer 2019 1 of .docxmydrynan
 
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docx
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docxCSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docx
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docxmydrynan
 
CSC-321 Final Writing Assignment In this assignment, you .docx
CSC-321 Final Writing Assignment  In this assignment, you .docxCSC-321 Final Writing Assignment  In this assignment, you .docx
CSC-321 Final Writing Assignment In this assignment, you .docxmydrynan
 
Cryptography is the application of algorithms to ensure the confiden.docx
Cryptography is the application of algorithms to ensure the confiden.docxCryptography is the application of algorithms to ensure the confiden.docx
Cryptography is the application of algorithms to ensure the confiden.docxmydrynan
 
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docx
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docxCSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docx
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docxmydrynan
 

More from mydrynan (20)

CSIA 413 Cybersecurity Policy, Plans, and Programs.docx
CSIA 413 Cybersecurity Policy, Plans, and Programs.docxCSIA 413 Cybersecurity Policy, Plans, and Programs.docx
CSIA 413 Cybersecurity Policy, Plans, and Programs.docx
 
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docx
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docxCSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docx
CSIS 100CSIS 100 - Discussion Board Topic #1One of the object.docx
 
CSI Paper Grading Rubric- (worth a possible 100 points) .docx
CSI Paper Grading Rubric- (worth a possible 100 points)   .docxCSI Paper Grading Rubric- (worth a possible 100 points)   .docx
CSI Paper Grading Rubric- (worth a possible 100 points) .docx
 
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docx
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docxCSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docx
CSIA 413 Cybersecurity Policy, Plans, and ProgramsProject #4 IT .docx
 
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docx
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docxCSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docx
CSI 170 Week 3 AssingmentAssignment 1 Cyber Computer CrimeAss.docx
 
CSE422 Section 002 – Computer Networking Fall 2018 Ho.docx
CSE422 Section 002 – Computer Networking Fall 2018  Ho.docxCSE422 Section 002 – Computer Networking Fall 2018  Ho.docx
CSE422 Section 002 – Computer Networking Fall 2018 Ho.docx
 
CSCI  132  Practical  Unix  and  Programming   .docx
CSCI  132  Practical  Unix  and  Programming   .docxCSCI  132  Practical  Unix  and  Programming   .docx
CSCI  132  Practical  Unix  and  Programming   .docx
 
CSCI 714 Software Project Planning and EstimationLec.docx
CSCI 714 Software Project Planning and EstimationLec.docxCSCI 714 Software Project Planning and EstimationLec.docx
CSCI 714 Software Project Planning and EstimationLec.docx
 
CSCI 561Research Paper Topic Proposal and Outline Instructions.docx
CSCI 561Research Paper Topic Proposal and Outline Instructions.docxCSCI 561Research Paper Topic Proposal and Outline Instructions.docx
CSCI 561Research Paper Topic Proposal and Outline Instructions.docx
 
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docx
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docxCSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docx
CSCI 561 DB Standardized Rubric50 PointsCriteriaLevels of .docx
 
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docx
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docxCryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docx
CryptographyLesson 10© Copyright 2012-2013 (ISC)², Inc. Al.docx
 
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docx
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docxCSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docx
CSCI 352 - Digital Forensics Assignment #1 Spring 2020 .docx
 
CSCE 1040 Homework 2 For this assignment we are going to .docx
CSCE 1040 Homework 2  For this assignment we are going to .docxCSCE 1040 Homework 2  For this assignment we are going to .docx
CSCE 1040 Homework 2 For this assignment we are going to .docx
 
CSCE509–Spring2019Assignment3updated01May19DU.docx
CSCE509–Spring2019Assignment3updated01May19DU.docxCSCE509–Spring2019Assignment3updated01May19DU.docx
CSCE509–Spring2019Assignment3updated01May19DU.docx
 
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docxCSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
 
CSCE 3110 Data Structures & Algorithms Summer 2019 1 of .docx
CSCE 3110 Data Structures & Algorithms Summer 2019   1 of .docxCSCE 3110 Data Structures & Algorithms Summer 2019   1 of .docx
CSCE 3110 Data Structures & Algorithms Summer 2019 1 of .docx
 
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docx
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docxCSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docx
CSCI 340 Final Group ProjectNatalie Warden, Arturo Gonzalez, R.docx
 
CSC-321 Final Writing Assignment In this assignment, you .docx
CSC-321 Final Writing Assignment  In this assignment, you .docxCSC-321 Final Writing Assignment  In this assignment, you .docx
CSC-321 Final Writing Assignment In this assignment, you .docx
 
Cryptography is the application of algorithms to ensure the confiden.docx
Cryptography is the application of algorithms to ensure the confiden.docxCryptography is the application of algorithms to ensure the confiden.docx
Cryptography is the application of algorithms to ensure the confiden.docx
 
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docx
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docxCSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docx
CSc3320 Assignment 6 Due on 24th April, 2013 Socket programming .docx
 

Recently uploaded

Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 

Recently uploaded (20)

Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

F-1 Stat 423, Stat 523 Formulas Chapter 7 Section.docx

  • 1. F-1 Stat 423, Stat 523 Formulas Chapter 7 Sections 7.1, 7.2, 7.3 We take a random sample X1, …, Xn from N(µ,s2) Two-Sided 100(1-a)% Confidence Intervals for µ Requirements Confidence Interval Normal, s known Normal, s unknown Chapter 8 Sections 8.1, 8.2, 8.4 Steps in Testing Hypotheses 1. null hypothesis H0 and alternative hypothesis Ha H0: µ = µ0 Ha: µ > µ0, µ < µ0 or µ ¹ µ0 where µ0 is the known hypothesized value of µ.
  • 2. 2. test statistic Requirements Test Statistic Reference Distribution Normal, s known N(0,1) Normal, s unknown tn-1 3. rejection region or P-value (a = level of significance) Ha Rejection Region (RR) Z test T test µ > µ0 z ³ za t ³ ta,n-1 µ < µ0 z £ -za t £ -ta,n-1 µ ¹ µ0 z ³ za/2 or z £ -za/2 t ³ ta/2,n-1 or t £ -ta/2,n-1 Ha P-value
  • 3. Z test R Command T test R Command µ > µ0 1 - P(Z £ z) 1-pnorm(z) P(tn-1 ³ t) 1-pt(t,n-1) µ < µ0 P(Z £ z) pnorm(z) P(tn-1 £ t) pt(t,n-1) µ ¹ µ0 2[1 - P(Z £ |z|)] 2*(1-pnorm(abs(z))) 2P(tn-1 ³ |t|) 2*(1- pt(abs(t),n-1)) 4. Conclusion: Reject H0 at the a level of significance if: • test statistic is inside the RR or P-value < a. ÷÷ ø ö çç è æ s ×+ s ×- aa n zx , n zx 22
  • 4. ÷÷ ø ö çç è æ ×+×- -- aa n s tx, n s tx 1n,1n, 22 n x z 0 s µ- = n s x t 0 µ- =
  • 5. g zg 0.100 1.282 0.050 1.645 0.025 1.960 0.010 2.326 0.005 2.576 0.001 3.09 F-2 Chapter 9 Section 9.1 z Tests and CIs Assumptions • X1, X2, ..., Xm = data from population 1 with mean µ1 and variance s12 • Y1, Y2, ..., Yn = data from population 2 with mean µ2 and variance s22 • data: Case I Normal Populations with Known Variances Hypothesis Test: 1. H0: µ1 - µ2 = D0 vs. Ha: where D0 is a known constant (zero usually). 2. Test statistic: 3. Rejection region and P-value Ha Rejection Region P-value P-value in R
  • 6. µ1 - µ2 > D0 z ³ za 1 - P(Z £ z) 1-pnorm(z) µ1 - µ2 < D0 z £ -za P(Z £ z) pnorm(z) µ1 - µ2 ¹ D0 z £ -za/2 or z ³ za/2 2[1 - P(Z £ |z|)] 2*(1- pnorm(abs(z))) 100(1-a)% Confidence Intervals for µ1 - µ2: 2-sided CI: 1-sided CIs: , where za is defined like in Chapters 7 and 8. Case II Large-Sample Procedures (s1 and s2 are unknown, m>30, n>30) Replace s1 and s2 in Case I with standard deviations s1 and s2. ïî ï í ì === === nsize sample ,sdeviation standard ,y mean:2 Sample
  • 7. msize sample ,sdeviation standard ,x mean:1 Sample 2 1 ï î ï í ì D¹µ-µ D<µ-µ D>µ-µ 021 021 021 )1,0(N~ nm )yx( z 2 2 2
  • 10. ø ö ç ç è æ s + s +-¥- a 9A 9B F-3 Section 9.2 t Test and Confidence Interval • Normal populations, s1 and s2 are unknown, and sample sizes are small. Case III t-based Procedures , round down to the nearest integer. t Test:
  • 11. 1. H0: µ1 - µ2 = D0 vs. Ha: 2. Test statistic: 3. Rejection region and P-value Ha Rejection Region P-value P-value in R µ1 - µ2 > D0 t ³ ta, n P(tn ³ t) 1-pt(t,n) µ1 - µ2 < D0 t £ -ta, n P(tn £ t) pt(t,n) µ1 - µ2 ¹ D0 t £ -ta/2, n or t ³ ta/2, n 2P(tn ³ |t|) 2*(1- pt(abs(t),n)) 100(1-a)% Confidence Intervals for µ1 - µ2: 2-sided CI: 1-sided CI: , 1n n s 1m m s n s m s 22
  • 14. 0 t~ n s m s yx t n + D-- = ! n s m s t)yx( 2 2 2 1 ,2 +±- na
  • 16. s t)yx( , 2 2 2 1 , ÷ ÷ ø ö ç ç è æ ++-¥- na 9C F-4 Chapter 10 Section 10.1 Single-Factor ANOVA (Equal Sample Sizes) • I = total number of treatments
  • 17. • J = common number of replications of each treatment • µi = mean of treatment i (for i = 1, 2, ..., I) • Xij = random variable that represents the measurement from the jth EU under treatment i (for i = 1, ..., I and j = 1, ..., J) The One-Way Fixed Model: Xij = µi + Îij where Îi1, Îi2, ..., ÎiJ are iid N(0,s2). Definition Sums of Squares (SS) Treatment i average: Grand Average: • Total SS = Treatment i standard deviation = si • Treatment (Among) SS = • Error (Within) SS = Þ , --------------------------------------------------------------------------- ----------- Alternative (Working) Formulas Let , . • • • SSE = SST – SSTr Remarks: • is called a residual and eij estimates Îij.
  • 18. • SST = SSTr + SSE Þ SSE = SST – SSTr. --------------------------------------------------------------------------- ----------- ANOVA table: J x x J 1j ij .i å = = IJ x x I 1i J 1j ij
  • 19. .. å å = = = ( )å å = = -= I 1i J 1j 2 ..ij xxSST ( )å = -= I 1i 2 ...i xxJSSTr ( )å å = =
  • 20. -= I 1i J 1j 2 .iij xxSSE ( ) )1/( 1 . 2 --= å = Jxxs J j iiji å = -= I 1i 2 is)1J(SSE I/sMSE Error Squared Mean
  • 21. I 1i 2 i ÷÷ ø ö çç è æ == å = åå å == = == J 1j ij.i I 1i J 1j ij.. xx ,xx IJ
  • 22. x CF factor correction 2 ..== CFxSST I 1i J 1j 2 ij -= å å = = CF J x SSTr I 1i 2 .i -= å
  • 23. = .iijij xxe -= Source of Variation degrees of freedom (df) Sum of Squares (SS) Mean Square (MS) Test Statistic F P-value P-value in R Treatments (Among) I-1 SSTr 1-pf(F,I-1,I(J-1))
  • 24. Error (Within) I(J-1) SSE Total IJ-1 SST 1I SSTr MSTr - = MSE MSTr F = ( )FFP )1J(I,1I >-- )1J(I SSE MSE - = 10A 10B 10C
  • 25. F-5 When H0: µ1 = µ2 = ... = µI is true, ~ FI-1,I(J-1). Hypothesis Testing H0: µ1 = µ2 = ... = µI vs. Ha: H0 is false • F-statistic: • P-value: P-value = (In R: 1-pf(F,I-1,I*(J-1))) • rejection region: RR = {F > Fa,I-1,I(J-1)} --------------------------------------------------------------------------- ---------- Section 10.2 Multiple Comparison in ANOVA (Equal Treatment Reps J) Tukey's Procedure for Simultaneous 100(1-a)% CIs for µi-µj: T Method for Significant Differences 1. Compute . 2. List the sample means in increasing order. 3. Underline groups of means that do not differ by more than w. ---------------------------------------------------------------------------
  • 26. ----------- Contrast where . Hypothesis Test (Equal Sample Sizes J) 1. H0: C = c0 vs. Ha: 2. Test Statistic 3. Rejection Region and P-value Ha Rejection Region P-value P-value in R C > c0 t ³ ta, I(J-1) P(tI(J-1) ³ t) 1-pt(t,I*(J-1)) C < c0 t £ -ta, I(J-1) P(tI(J-1) £ t) pt(t,I*(J-1)) C ¹ c0 t £ -ta/2, I(J-1) or t ³ ta/2, I(J-1) 2P(tI(J-1) ³ |t|) 2*(1- pt(abs(t),I*(J-1))) ---- F Test for H0: C = 0 vs. Ha: C ¹ 0 , Test Statistic • Rejection Region ; • P-value = , (in R) 1-pf(F,1,I*(J-1))) MSE MSTr F = MSE MSTr F =
  • 27. ( )FFP )J(I,I >-- 11 ( ) J MSE Qxx )1J(I,I,ji -a±- J MSE Qw )1J(I,I, -a= .ix å = µ= I 1i iicC 0c I 1i i =å = ï î
  • 29. t - = å - = å = ´= I 1i 2 i 2 c Ĉ J)C(SS )1J(I,1F~ MSE )C(SS F -= }FF{RR )1J(I,1, -a>= ( )1, ( 1)I JP F F- > 10D
  • 30. 10E 10F In R: qtukey(1-a,I,I*(J-1)) F-6 100(1-a)% CIs for Contrast C (Equal Sample Sizes) 2-sided: 1-sided: --------------------------------------------------------------------------- ---------- Section 10.3 ANOVA for Unequal Sample Sizes Ji = sample size for treatment i, n = SJi (total sample size). Treatment i total: , Treatment i average: Grand Average: • Total Sum of Squares: • Treatment Sum of Squares: • Error Sum of Squares: SSE = SST – SSTr Treatment i standard deviation = si
  • 31. ANOVA table: Source df SS MS F P-value P-value in R Treatments I-1 SSTr 1-pf(F,I-1,n-I) Error n-I SSE Total n-1 SST • Reject Region = {F ³ Fa,I-1,n-I} --------------------------------------------------------------------------- ----------- T Method for Significant Differences (Unequal Treatment Reps) 1. Compute for all pairs i,j where i¹j. 2. List the sample means in increasing order. 3. Underline and if they do not differ by more than wij. J cMSE
  • 36. ( )å å = = -= I 1i J 1j 2 ..ij i xxSST n x x 2 .. I 1i J 1j 2
  • 37. ij i -= å å = = ( )å = -= I 1i 2 ...ii xxJSSTr n x J x 2.. I 1i i 2 .i -= å = å =
  • 38. -= I 1i 2 ii s)1J(SSE 1I SSTr MSTr - = MSE MSTr F = ( )FFP In,1I >-- In SSE MSE - = J 1 J 1
  • 40. F-8 Hypothesis Test with Contrasts (Unequal Sample Sizes) 1. H0: C = c0 vs. Ha: 2. Test Statistic 3. Rejection Region and P-value Ha Rejection Region P-value P-value in R C > c0 t ³ ta, n-I P(tn-I ³ t) 1-pt(t,n-I)) C < c0 t £ -ta, n-I P(tn-I ³ |t|) pt(t,n-I) C ¹ c0 t £ -ta/2, n-I or t ³ ta/2, n-I 2P(tn-I ³ |t|) 2*(1-pt(abs(t),n- I)) 100(1-a)% CIs for Contrast C (Unequal Sample Sizes) 2-sided: 1-sided: Special Case: --------------------------------------------------------------------------- ----------- A Random Effects Model: Xij = µ + Ai + Îij where A1, A2, ..., AI are iid N(0,sA2) and Îi1, Îi2, ..., ÎiJ are iid
  • 41. N(0,s2). E(MSTr) = s2 + rsA2, E(MSE) = s2 where r=(n-SJi2/n)/(I-1). • F=MSTr/MSE tests H0: sA2 = 0 versus Ha: sA2 ¹ 0. • Estimates: and where r=(n-SJi2/n)/(I-1). • V(Xij) = s2 + sA2 = total variance observed in measurements • Estimate of V(Xij) = • % of total variance explained by differences among treatments = % ï î ï í ì ¹ < > 0 0 0 cC cC
  • 42. cC In I 1i i 2 i 0 t~ J c MSE cĈ t - = å - = }FF{RR F~tF 0C:H vs. 0C:H In,1, In,1 2
  • 44. J c MSEtĈ , I 1i i 2 i In, I 1i i 2 i In, ÷÷ ÷ ø ö çç ç è æ
  • 46. 1i i 2 i j å = µ= MSEˆ2 =s r MSEMSTr ˆ2A - =s ( ) 2A2ij ˆˆXV ̂ s+s= 2 A 2 2 A ˆˆ ˆ 100 s+s
  • 47. s ´ 10J 10K F-9 Chapter 11 Formulas Set Section 11.1 Two-Factor ANOVA with No Replications Notation • A = 1st factor, I = number of levels of A • B = 2nd factor, J = number of levels of B • Xij = the measurement from the combination of the ith level of A and jth level of B • xij = actual (observed) value of Xij Two-Way Additive Fixed Model Model equation and assumptions are Xij = µ + ai + bj + Îij where , and Îij's are iid N(0,s2). The average response at the level i of A and level j of B is µij = E(Xij) = µ + ai + bj .
  • 48. --------------------------------------------------------------------------- ----------- Parameter Estimates Factor A, level i total and average: Factor B, level j total and average: , Grand Average: Parameter Estimate µ ai bj = + + is the predicted or fitted value. eij = xij - is a residual which estimates Îij. 0 ,0 J
  • 49. 1j j I 1i i åå == =b=a J x x ,xx .i.i J 1j ij.i == å = I x x ,xx j. j. I 1i ijj. == å
  • 50. = IJ x x I 1i J 1j ij .. å å = = = ..xˆ =µ ...ii xxˆ -=a ..j.j xx ˆ -=b ijx̂ µ̂ iâ jb̂ ijx̂
  • 51. 11A 11B F-10 Hypothesis Tests • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0 • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0 Sums of Squares df IJ-1 I-1 J-1 (I-1)(J-1) ANOVA Table Source df SS MS F P-value P-value in R Factor A
  • 52. I-1 SSA 1-pf(F,I-1,(I-1)*(J-1)) Factor B J-1 SSB 1-pf(F,J-1,(I-1)*(J-1)) Error (I-1)(J- 1) SSE Total IJ-1 SST , SSE = SST - SSA – SSB • Factor A: RR = {F=MSA/MSE > Fa,I-1,(I-1)(J-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,(I-1)(J-1)}
  • 53. --------------------------------------------------------------------------- ---------- T Method for Significant Differences Compute . Apply • wA to or • wB to Block designs: ANOVA, T Method the same as above with Factor A = Blocks. Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij ( ) å åå å = == = -=-= I 1i 2 .. J 1j 2
  • 55. .i I 1i 2 ...i -=-= åå == ( ) IJ x x I 1 xxISSB 2 .. J 1j 2 j. J 1j 2
  • 56. ..j. -=-= åå == ( )å å = = +--= I 1i J 1j 2 ..j..iij xxxxSSE 1I SSA MSA - = MSE MSA F = ( )FFP )1J)(1I(,1I >--- 1J SSB MSB
  • 57. - = MSE MSB F = ( )FFP )1J)(1I(,1J >--- )1J)(1I( SSE MSE -- = å å = = = I 1i J 1j 2 ijeSSE åå == b
  • 59. Qw scomparison Afactor for J MSE Qw )1J)(1I(,J,B )1J)(1I(,I,A --a --a = = .I.2.1 x,...,x,x J.2.1. x,...,x,x 11C 11D F-11 Two-Way Additive Random Model: Xij = µ + Ai + Bj + Îij where the Ai's are iid N(0,sA2), the Bj's are iid N(0,sB2), and Îij's are iid N(0,s2).
  • 60. tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0. tests H0: sB2 = 0 vs. Ha: sB2 ¹ 0. Estimates: total variance = . --- Two-Way Additive Mixed Model: Xij = µ + Ai + bj + Îij where the Ai's are iid N(0,sA2), Sbj=0, and Îij's are iid N(0,s2). tests H0: sA2 = 0 vs. Ha: sA2 ¹ 0. tests H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0. Estimates: , total variance = --------------------------------------------------------------------------- ----------- Section 11.2 Two-Way ANOVA with Replications Two-Way Interaction Fixed Effects Model Xijk = kth observation for level i of A and level j of B. Xijk = µ + ai + bj + gij + Îijk for i=1, ..., I, j=1, ...,J, k=1, ..., K and where , for all i, for all j, and Îij's are iid N(0,s2). The mean response at the level i of A and level j of B is µij = E(Xij) = µ + ai + bj + gij .
  • 61. --------------------------------------------------------------------------- ----------- Estimates , , , , Parameter Estimate fitted value residual µ ai bj gij 2 B 22 A 22 I)MSB(E ,J)MSA(E ,)MSE(E s+s=s+s=s= MSE MSA F =
  • 62. MSE MSB F = I MSEMSB ˆ, J MSEMSA ˆ,MSEˆ 2B 2 A 2 -=s - =s=s ( ) 2B2A2ij ˆˆˆXV ̂ s+s+s= å = b - +s=s+s=s= J 1j 2
  • 63. j 22 A 22 1J I )MSB(E ,J)MSA(E ,)MSE(E MSE MSA F = MSE MSB F = J MSEMSA ˆ,MSEˆ 2A 2 -=s=s ( ) 2A2ij ˆˆXV ̂ s+s= 0 ,0 J 1j j I
  • 64. 1i i åå == =b=a 0 J 1j ijå = =g 0 I 1i ijå = =g å å å = = = = I 1i J 1j K
  • 65. 1k ijk... xx IJK x x ...... = K x x K 1k ijk .ij å == J x x ,xx J 1j .ij
  • 66. ..i J 1j K 1k ijk..i å å å = = = == I x x ,xx I 1j .ij .j. I 1i K 1k
  • 67. ijk.j. å å å = = = == .ijijjiij xˆ ˆˆˆx̂ =g+b+a+µ= ijijkijk x̂ xe -= ...xˆ =µ .....ii xxˆ -=a ....j.j xx ˆ -=b ....j...i.ijij xxxxˆ +--=g 11E 11F 11G F-12 Hypothesis Tests • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0
  • 68. • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0 • Interaction: H0: gij = 0 for all i,j vs. Ha: at least one gij ¹ 0 ANOVA Table (Two-Way Interaction Fixed Model) Source df SS MS F P-value P-value in R A I-1 SSA 1-pf(F,I-1,I*J*(K-1)) B J-1 SSB 1-pf(F,J-1,I*J*(K-1)) Interaction (I- 1)(J-1) SSAB 1-pf(F,(I-1)*(J-1),I*J*(K-1))
  • 69. Error IJ(K-1) SSE Total IJK-1 SST • Factor A: RR = {F=MSA/MSE > Fa,I-1,IJ{K-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,IJ(K-1)} • Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJ(K-1)} --------------------------------------------------------------------------- ----------- T Method for Factor Levels (Use only when interactions are not significant.) Note that I=# of A levels, J=# of B levels, K=# of replications. Section 11.3 Three-Factor Fixed Effects ANOVA Xijkl = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk + Îijk for i=1, ..., I, j=1, ...,J, k=1, ..., K, l=1, ..., L, where Îijk's are iid N(0,s2) and the sum of parameters over any subscript is 0: = = = =
  • 70. = = = = . The mean response at level i of A, j of B and k of C is µijk = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk . 1I SSA MSA - = MSE MSA F = ( )FFP )1K(IJ,1I >-- 1J SSB MSB - = MSE MSB F = ( )FFP )1K(IJ,1J >-- )1J)(1I( SSAB MSAB --
  • 71. = MSE MSAB F = ( )FFP )1K(IJ),1J)(1I( >--- )1K(IJ SSE MSE - = ï ï î ïï í ì = = -a -a .J..2..1.)1K(IJ,J,B I..2..1..)1K(IJ,I,A
  • 72. x,...,x,x to apply IK MSE Qw x,...,x,x to apply JK MSE Qw =d=b=a ååå === K 1k k J 1j j I 1i i I 1i
  • 75. g 0 K 1k ijkå = =g 11I 11J 11H F-13 Test of Hypotheses • Factor A: H0: a1 = a2 = ... = aI = 0 vs. Ha: at least one ai ¹ 0 • Factor B: H0: b1 = b2 = ... = bJ = 0 vs. Ha: at least one bj ¹ 0 • Factor C: H0: d1 = d2 = ... = dK = 0 vs. Ha: at least one dk ¹ 0 • AB Interaction: H0: all gABij = 0 vs. Ha: at least one gABij ¹ 0 • AC Interaction: H0: all gACik = 0 vs. Ha: at least one gACik ¹ 0 • BC Interaction: H0: all gBCjk = 0 vs. Ha: at least one gBCjk ¹ 0 • ABC Interaction: H0: all gijk = 0 vs. Ha: at least one gijk ¹
  • 76. 0 Assume that there are L observations from each ABC level combination (balanced data). Total sample size is IJKL. ANOVA Table (3 Factors Fixed Effects Model) Source df SS MS F P-value* A I-1 SSA B J-1 SSB C K-1 SSC AB Interaction (I-1)(J-1) SSAB AC Interaction (I-1)(K-1) SSAC
  • 77. BC Interaction (J-1)(K-1) SSBC ABC Interaction (I-1) ´(J-1)(K-1) SSABC Error IJK(L-1) SSE * In R, 1-pf(F,m,n) gives P(Fm,n > F). Total IJKL-1 SST ! There should be at least L=2 observations per treatment to test for all interactions. If L=1, there is no MSE and, hence, no F-test of interactions. ! • Factor A: RR = {F=MSA/MSE > Fa,I-1,IJK{L-1)} • Factor B: RR = {F=MSB/MSE > Fa,J-1,IJK(L-1)} • Factor C: RR = {F=MSC/MSE > Fa,K-1,IJK(L-1)} • AB Interaction: RR = {F=MSAB/MSE > Fa,(I-1)(J-1),IJK(L- 1)} • AC Interaction: RR = {F=MSAC/MSE > Fa,(I-1)(K-1),IJK(L-
  • 78. 1)} • BC Interaction: RR = {F=MSBC/MSE > Fa,(J-1)(K-1),IJK(L- 1)} • ABC Interaction: RR = {F=MSABC/MSE > Fa,(I-1)(J-1)(K- 1),IJK(L-1)} T Method for Factor Levels (use when no interaction is significant) where {total reps per level} = JKL for factor A = IKL for factor B = IJL for factor C Coefficient of Determination: , Adjusted R2: 1I SSA MSA - = MSE MSA F = ( )FFP )1L(IJK,1I >-- 1J SSB MSB -
  • 79. = MSE MSB F = ( )FFP )1L(IJK,1J >-- 1K SSC MSC - = MSE MSC F = ( )FFP )1L(IJK,1K >-- )1J)(1I( SSAB MSAB -- = MSE MSAB F = ( )FFP )1L(IJK),1J)(1I( >--- )1K)(1I( SSAC
  • 80. MSAC -- = MSE MSAC F = ( )FFP )1L(IJK),1K)(1I( >--- )1K)(1J( SSBC MSBC -- = MSE MSBC F = ( )FFP )1L(IJK),1K)(1J( >--- )1K)(1J)(1I( SSABC MSBC --- = MSE MSABC F = ( )FFP )1L(IJK),1K)(1J)(1I( >----
  • 81. )1L(IJK SSE MSE - = level per reps total MSE Qw df} {MSE levels}, factor of {#, ´= a SST SSE R -= 12 SST SSE Radj ´÷ ø ö ç è æ-= df error df total 12 11K
  • 82. F-14 Latin Squares Design Model Assumptions Xij(k) = µ + ai + bj + dk + eij(k) where and eij(k)’s are iid N(0,s2). N = # of factor levels (note that N=I=J=K) , , , , , , Sums of Squares (Latin Squares Design) Sums of Squares df N2-1 N-1 N-1 N-1
  • 83. (N-1)(N-2) Note: SSE = SST – SSA – SSB – SSC T Method for Factor Levels: For all factors, use . --------------------------------------------------------------------------- ----------- Section 11.4 2p Factorial Experiments, Factor Effects, Yates Algorithm 23 Factorial Model: Xijkl = µ + ai + bj + dk + gABij + gACik + gBCjk +gijk + Îijkl for i=1,2, j=1,2, k=1,2, l=1, ..., L Estimates • • Fitted main effects of factors A, B and C • Fitted 2-way interactions • Fitted 3-way interactions 0kji =d=b=aå åå å= j )k(ij..i xx å= i )k(ij.j. xx å=
  • 84. j,i )k(ijk.. xx å= j,i )k(ij... xx N x x ..i..i = N x x .j. .j. = N x x k..k.. = 2 ... ... N x x = ( ) 2
  • 88. 1k 2 ...k.. N x x N 1 xxNSSC -=-= åå == ( ) 2N 1i N 1j ...k...j...i)k(ij x2xxxxSSE å å = = +---= N MSE Qw df} {MSE N,, ´= a
  • 89. ....xˆ =µ .....k..k......j.j.......ii xx ˆ xxˆ xxˆ -=d-=b-=a .....k....j..jk. BC jk .....k.....i.k.i AC ik ......j....i..ij AB ij xxxxˆ xxxxˆ xxxxˆ +--=g +--=g +--=g .....k....j....i.jk..k.i..ij.ijkijk xxxxxxxxˆ -+++---=g 11L 11M
  • 90. F-15 Yates Algorithm 1. List sample means (xbars) in Yates standard order. • Start with (1) then a. • "Multiply by b" the previous treatments to get b and ab. • "Multiply by c" the previous treatments to get c, ac, bc, abc. etc. There should be 2p treatments in the list. 2. The next column is obtained by adding the numbers in the previous column in pairs and subtracting in pairs (2nd minus 1st). Repeat this process p times. 3. Divide the pth new column by 2p. The results are the overall mean and fitted effects (with all factors at the 2nd level). Reverse the sign of the fitted effect if you change an odd number of subscripts. --------------------------------------------------------------------------- ----------- Section 11.4 Fractional Factorial Studies A. Choice of 1/2q Fraction of a 2p Factorial 1. Pick any p-q factors and list all their level combinations using -'s and +'s. 2. Pick q different groups of these "first" factors and multiply the signs of the
  • 91. members of each group. Use the q products to determine the levels of the remaining q factors. B. Determining the "Alias Structure" of the 1/2q Fraction Multiplication Rules: • A*A = B*B = ... = I • I*A = A, I*B = B, etc. 1. Take the q generators and apply multiplication so that I is on the left-hand-side of the equation. 2. Multiply (LHS x LHS and RHS x RHS) the new equations in pairs, then in triples, then in sets of four, etc. (2q - 1) factor products are equivalent to I. Factor effects are aliased in 2p-q groups of 2q members. C. Analyzing a 2p-q Fractional Factorial 1. Initially ignore the "last" q factors and treat the data as a full factorial in the "first" p-q factors. Estimate the factor effects (e.g. using formulas in Section 11.4 or by Yates algorithm = p-q cycles and divide last cycle by 2p-q) and judge their statistical significance. a. (with replication)
  • 92. • Compute or get them from the ANOVA table. • Compute . A 100(1-a)% CI for an effect is . Note that an effect is judged not statistically significant at the a level if . b. If no replication, do a normal probability plot of fitted effects (exclude ). 2. Interpret the estimates in the light of the alias structure. 1)- size (sample of sumdf 1)- size (sample of sum ]s ingcorrespond1)- size [(sample of sum MSE 2 = ´ = sizes sample all of sreciprocal of sum 2 1 MSEt)r(
  • 93. q-pdf,2 ´´=a a )(r effect ^ a± )(r effect ^ a< µ̂ 11N 11O F-16 Chapter 12 Formulas Linear Model: where e's are iid N(mean=0,variance=s2). • b1 = average change in Y for every unit change in x • µy•x* = b0 + b1x* = average response at x* • s2y•x* = variance of Y at x=x* ---------------------------------------------------------------------------
  • 94. ----------- Least-Squares Estimates: Fitted Value: Residual: or . Estimate of s2: mean square error = . --------------------------------------------------------------------------- ----------- Numerical Diagnostics Sample Correlation: sx and sy are the sd's of x and y => . Coefficient of Determination: , SSR = SST-SSE Adjusted R2 = where MST = SST/(n-1)
  • 95. ii10i xY e+b+b= ( ) ( ) n x x n yx yx ˆ 2 i2 i ii ii 1 åå ååå - - =b xˆyˆ 10 b-=b i10i x ˆˆŷ b+b=
  • 96. iii ŷye -= ( ) åå == =-= n 1i 2 i n 1i 2 ii eŷySSE ii1i0 2 i yx ˆyˆySSE ååå b-b-= 2n SSE ˆMSE 2 - =s= ( ) ( )
  • 97. ( ) ( ) ( )( ) n yx yxyyxxS n y yyyS or SST n x xxxS ii iiiixy 2 i2 i 2 iyy 2 i2 i 2
  • 100. 100(1-a)% CI for b1 : Hypothesis Test 1. H0: b1 = b10, Ha: b1 > b10, b1 < b10 or b1 ¹ b10 2. test statistic 3. rejection region and P-value (a = level of significance) Ha Rejection Region P-value P-value in R b1 > b10 t ³ ta,n-2 1 - P(tn-2 £ t) 1-pt(t,n-2)) b1 < b10 t £ -ta,n-2 P(tn-2 £ t) pt(t,n-2) b1 ¹ b10 t £ -ta/2,n-2 or t ³ ta/2,n-2 2[1 - P(tn-2 £ |t|)] 2*(1- pt(abs(t),n-2)) ANOVA table with F-test to test H0: b1 = 0 versus b1 ¹ 0 (model utility test) See Formulas 12B and 12C for SSR, SSE and SST. Source df SS MS=SS/df F P-value P-value in R Regression 1 SSR MSR F=MSR/MSE P(F1,n-2 > F) 1-pf(F,1,n- 2) Error n-2 SSE MSE Total n-1 SST The rejection region is {F=MSR/MSE ³ Fa,1,n-2} --------------------------------------------------------------------------- -----------
  • 101. Section 12.4 CI for Mean Response µy.x and Prediction Interval at x=x* CI for Mean Response At x=x*, the mean response is µy.x* = b0 + b1x*. 100(1-a)% CI for µy.x*: where Prediction Interval 100(1-a)% PI for a response Y at x=x*: or MSEˆ2 =s xx 2 2 ˆ S ˆ s 1 s = b 1
  • 104. 12E F-18 Section 13.1 More on Residuals ith residual (random version) is • where • Standardized residual where Diagnostic Plots 1. ei* (or ei) versus xi (no pattern) 2. ei* (or ei) versus yi (no pattern) 3. (linear) 4. normal probability plot of ei* (or ei) (linear) Section 13.2 Transformed Variables • intrinsically linear models - function of x and y that can be transformed as y' = b0 + b1x' where y' = {function of y only} and x' = {function of x only}
  • 105. Sections 13.4, 13.3 Multiple and Polynomial Regression Model: Y = b0 + b1x1 + b2x2 + ... + bkxk + e where the e's are independently distributed N(0,s2) Data: (x11 , x21, ..., xk1, y1), (x12 , x22, ..., xk2, y2), ..., (x1n , x2n, ..., xkn, yn) (Least-squares criterion) Find that minimize . Fitted model/value: Estimate for s2: where . • n-k-1 is the SSE or MSE df. • is the jth residual iii ŶYE -= ( ) ( ) ( ) ( )ii xx
  • 107. i s yy e ˆ* -= ( ) xx i e S xx n ss i 21 1 - --= ii y versus ŷ kk1100 ˆb,...,ˆb,ˆb b=b=b= ( )[ ]å =
  • 108. +++-= n 1j 2 kjkj110j xb...xbbySSE kjkj110j x ˆ...xˆˆŷ b++b+b= kjkj110j x ˆ...xˆˆŷ b++b+b= jjj ŷye -= ( ) 1kn ŷy 1kn SSE MSEs 2 jj2 -- - =
  • 109. -- == å 13A 13B 13C F-19 Diagnostics: Assessing Model Fit to Data 1. Plots of Residuals standardized residual • Residual Plots. Plot ej* versus x1j, x2j, ..., xkj, . • Normal Probability Plot of Residuals 2. Coefficient of Multiple Determination = R2 or where and SSR = SST - SSE 3. Radj2 = Adjusted R2: k = {number of predictor terms (x terms) in the model}
  • 110. 4. Mallows Cp: k = number of x’s (predictors) in the smaller model, n = sample size SSEk = {fitted/smaller model’s SSE}, = {MSE of the full model} Smaller values of Cp and close to k+1 indicate better models. Analysis of Variance and Regression , , and SSR = SST-SSE. Source df SS MS F P-value P-value in R Regression k SSR MSR MSR/MSE P(Fk,n-k-1 ³ F) 1-pf(F,k,n-k- 1) Error n-k-1 SSE MSE Total n-1 SST Model-Utility Test: H0: b1 = b2 = ... = bk = 0 versus Ha: at least one of the b's is not 0 Rejection Region = {F ³ Fa,k,n-k-1} Inference for Model Coefficients 1. Confidence Intervals 100(1-a)% CI for bi: where is an estimate of the standard deviation of .
  • 111. 2. Test of Hypothesis H0: bi = 0 versus Ha: bi ¹ 0 Test statistic ; P-value = 2*P(tn-k-1 ≥ |t|), (in R) 2*(1- pt(abs(t),n-k-1)) RR = {t ³ ta/2,n-k-1 or t ≤ -ta/2,n-k-1} jj e jj e j* j s ŷy s e e - == jŷ SST SSE 1R2 -=
  • 112. SST SSR R2 = ( )2j yySST å -= SST SSE df error df total 1 )1k(n kR)1n( R 2 2 adj ´-=+- -- = n)1k(2 s SSE C 2 f k
  • 113. p -++= 2 fs ( )2j yySST å -= ( ) 2 jj ŷySSE å -= i ˆ 1kn, 2 i st ˆ b-- a ×±b i ˆsb ib̂ i ˆ i s ˆ t b
  • 114. b = 13E 13D F-20 More Intervals 1. Confidence Intervals for Mean Response at (x1*, x2* , ..., xk*) 100(1-a)% CI for µy.x*: where and is an estimate of the standard deviation of . 2. Prediction Interval for New Observation 100(1-a)% PI for a new response Y at (x1*, x2* , ..., xk*): where s2 = MSE.
  • 115. N(0,1) 100pth Percentiles (p-Quantiles) p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 .0 -2.33 -2.05 -1.88 -1.75 -1.64 -1.55 -1.48 -1.41 -1.34 .1 -1.28 -1.23 -1.17 -1.13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88 .2 -0.84 -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55 .3 -0.52 -0.50 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28 .4 -0.25 -0.23 -0.20 -0.18 -0.15 -0.13 -0.10 -0.08 -0.05 -0.03 .5 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 .6 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50 .7 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81 .8 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.17 1.23 .9 1.28 1.34 1.41 1.48 1.55 1.64 1.75 1.88 2.05 2.33 ŷ1kn,2 stŷ ×± --a * kk
  • 116. * 110 x ˆ...xˆˆŷ b++b+b= ŷs ŷ 2 ŷ 2 1kn,2 sstŷ +×± --a 13F F-21 Standard Normal Probabilities (Part 1) z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 -3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007
  • 117. .0007 -3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 -2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 -2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 -2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 -2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 -2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 -2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 -1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 -1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 -1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 -1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 -1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 -1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838
  • 118. .0823 -1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 -1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 -1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 -0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 -0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 -0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 -0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 -0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 -0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 -0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 -0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 -0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 -0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 F-22 Standard Normal Probabilities (Part 2)
  • 119. z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 +0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 +0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 +0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 +0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 +0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 +0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 +0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 +0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 +0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8079 .8106 .8133 +0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 +1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 +1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 +1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 +1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 +1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 +1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 +1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535
  • 120. .9545 +1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 +1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 +1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 +2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 +2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 +2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 +2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 +2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 +2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 +2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 +2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 +2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 +2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986 +3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 +3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 +3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 +3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997 +3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
  • 121. .9998 F-23 Table A.5 Critical Values for the t Distribution
  • 122.
  • 123. n α 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 1 3.078 6.314 12.706 31.821 63.657 318.309 636.619 2 1.886 2.920 4.303 6.965 9.925 22.327 31.599 3 1.638 2.353 3.182 4.541 5.841 10.215 12.924 4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
  • 124. 23 1.319 1.714 2.069 2.500 2.807 3.485 3.768 24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 32 1.309 1.694 2.037 2.449 2.738 3.365 3.622 34 1.307 1.691 2.032 2.441 2.728 3.348 3.601 36 1.306 1.688 2.028 2.434 2.719 3.333 3.582 38 1.304 1.686 2.024 2.429 2.712 3.319 3.566 40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 50 1.299 1.676 2.009 2.403 2.678 3.261 3.496 60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 Inf 1.282 1.645 1.960 2.326 2.576 3.090 3.291 F-24 Table A.9 Critical Values for the F Distributions (part 1) denom. df n2 α n1 = numerator df 1 2 3 4 5 6 7 8 9 1 0.1 39.86 49.50 53.59 55.83 57.24 58.20
  • 125. 58.91 59.44 59.86 1 0.05 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 1 0.01 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 1 0.001 405284.07 499999.50 540379.20 562499.58 576404.56 585937.11 592873.29 598144.16 602283.99 2 0.1 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 2 0.01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 2 0.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 3 0.1 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 3 0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 3 0.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 4 0.1 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 4 0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 4 0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 5 0.1 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 5 0.01 16.26 13.27 12.06 11.39 10.97 10.67
  • 126. 10.46 10.29 10.16 5 0.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 6 0.1 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 6 0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 6 0.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 7 0.1 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 7 0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 7 0.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 8 0.1 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 8 0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 8 0.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 9 0.1 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 9 0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 9 0.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 10 0.1 3.29 2.92 2.73 2.61 2.52 2.46 2.41
  • 127. 2.38 2.35 10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 10 0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 10 0.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 11 0.1 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 11 0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 11 0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 11 0.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 12 0.1 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 12 0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 12 0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 12 0.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 F-25 Table A.9 Critical Values for the F Distributions (part 2) denom.
  • 128. df n2 α n1 = numerator df 10 12 15 20 25 30 40 50 60 120 1000 1 0.1 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30 1 0.05 241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20 253.25 254.19 1 0.01 6055.85 6106.32 6157.28 6208.73 6239.83 6260.65 6286.78 6302.52 6313.03 6339.39 6362.68 1 0.001 605620.97 610667.82 615763.66 620907.67 624016.83 626098.96 628712.03 630285.38 631336.56 633972.40 636301.21 2 0.1 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49 2 0.05 19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49 2 0.01 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50 2 0.001 999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 999.49 999.50 3 0.1 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13 3 0.05 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53 3 0.01 27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32 26.22 26.14 3 0.001 129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 123.97 123.53 4 0.1 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.76 4 0.05 5.96 5.91 5.86 5.80 5.77 5.75 5.72
  • 129. 5.70 5.69 5.66 5.63 4 0.01 14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47 4 0.001 48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75 44.40 44.09 5 0.1 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11 5 0.05 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43 4.40 4.37 5 0.01 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20 9.11 9.03 5 0.001 26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33 24.06 23.82 6 0.1 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76 2.74 2.72 6 0.05 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.70 3.67 6 0.01 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06 6.97 6.89 6 0.001 18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77 7 0.1 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47 7 0.05 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30 3.27 3.23 7 0.01 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66 7 0.001 14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12 11.91 11.72 8 0.1 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.30 8 0.05 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93 8 0.01 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03 4.95 4.87 8 0.001 11.54 11.19 10.84 10.48 10.26 10.11
  • 130. 9.92 9.80 9.73 9.53 9.36 9 0.1 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21 2.18 2.16 9 0.05 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79 2.75 2.71 9 0.01 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 4.40 4.32 9 0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19 8.00 7.84 10 0.1 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11 2.08 2.06 10 0.05 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62 2.58 2.54 10 0.01 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 4.00 3.92 10 0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12 6.94 6.78 11 0.1 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 1.98 11 0.05 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49 2.45 2.41 11 0.01 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78 3.69 3.61 11 0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 6.18 6.02 12 0.1 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96 1.93 1.91 12 0.05 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38 2.34 2.30 12 0.01 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54 3.45 3.37 12 0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76 5.59 5.44
  • 131. F-26 Table A.9 Critical Values for the F Distributions (part 3) denom. df n2 α n1 = numerator df 1 2 3 4 5 6 7 8 9 13 0.1 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 13 0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 13 0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 13 0.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98 14 0.1 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 14 0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 14 0.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 15 0.1 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 15 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 15 0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 15 0.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 16 0.1 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 16 0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 16 0.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 17 0.1 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 17 0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 17 0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 17 0.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 18 0.1 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
  • 132. 18 0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 18 0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 18 0.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 19 0.1 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 19 0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 19 0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 19 0.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39 20 0.1 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 20 0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 20 0.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 21 0.1 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 21 0.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 21 0.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 21 0.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 22 0.1 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 22 0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 22 0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 22 0.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 23 0.1 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 23 0.05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 23 0.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 23 0.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 24 0.1 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 24 0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 24 0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 24 0.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 F-27 Table A.9 Critical Values for the F Distributions (part 4)
  • 133. denom. df n2 α n1 = numerator df 10 12 15 20 25 30 40 50 60 120 1000 13 0.1 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85 13 0.05 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30 2.25 2.21 13 0.01 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18 13 0.001 6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30 5.14 4.99 14 0.1 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80 14 0.05 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14 14 0.01 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02 14 0.001 6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94 4.77 4.62 15 0.1 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76 15 0.05 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16 2.11 2.07 15 0.01 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88 15 0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64 4.47 4.33 16 0.1 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72 16 0.05 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02 16 0.01 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93 2.84 2.76 16 0.001 5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39 4.23 4.08 17 0.1 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69 17 0.05 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06 2.01 1.97 17 0.01 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83 2.75 2.66 17 0.001 5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18 4.02 3.87 18 0.1 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72 1.69 1.66 18 0.05 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92 18 0.01 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58 18 0.001 5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00 3.84 3.69 19 0.1 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70 1.67 1.64 19 0.05 2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
  • 134. 19 0.01 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67 2.58 2.50 19 0.001 5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84 3.68 3.53 20 0.1 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61 20 0.05 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95 1.90 1.85 20 0.01 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43 20 0.001 5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70 3.54 3.40 21 0.1 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59 21 0.05 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92 1.87 1.82 21 0.01 3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37 21 0.001 4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58 3.42 3.28 22 0.1 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57 22 0.05 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79 22 0.01 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50 2.40 2.32 22 0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17 23 0.1 1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55 23 0.05 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86 1.81 1.76 23 0.01 3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27 23 0.001 4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08 24 0.1 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.54 24 0.05 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74 24 0.01 3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40 2.31 2.22 24 0.001 4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99 F-28 Table A.9 Critical Values for the F Distributions (part 5) denom. df n2 α
  • 135. n1 = numerator df 1 2 3 4 5 6 7 8 9 25 0.1 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 25 0.05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 25 0.01 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 25 0.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 26 0.1 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 26 0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 26 0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 26 0.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64 27 0.1 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 27 0.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 27 0.01 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 27 0.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57 28 0.1 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 28 0.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 28 0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 28 0.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50 29 0.1 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 29 0.05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 29 0.01 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 29 0.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45 30 0.1 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 30 0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 30 0.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 40 0.1 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 40 0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 40 0.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 50 0.1 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 50 0.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 50 0.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82
  • 136. 60 0.1 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 60 0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 60 0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 60 0.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 100 0.1 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 100 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 100 0.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 100 0.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44 200 0.1 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 200 0.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 200 0.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 200 0.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26 1000 0.1 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1000 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1000 0.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 1000 0.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13 F-29 Table A.9 Critical Values for the F Distributions (part 6) denom. df n2 α n1 = numerator df 10 12 15 20 25 30 40 50 60 120 1000
  • 137. 25 0.1 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52 25 0.05 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72 25 0.01 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36 2.27 2.18 25 0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91 26 0.1 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51 26 0.05 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80 1.75 1.70 26 0.01 3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33 2.23 2.14 26 0.001 4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15 2.99 2.84 27 0.1 1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57 1.53 1.50 27 0.05 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68 27 0.01 3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.20 2.11 27 0.001 4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78 28 0.1 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48 28 0.05 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66 28 0.01 3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26 2.17 2.08 28 0.001 4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02 2.86 2.72 29 0.1 1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47 29 0.05 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.70 1.65 29 0.01 3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05 29 0.001 4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66 30 0.1 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.50 1.46 30 0.05 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63 30 0.01 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21 2.11 2.02 30 0.001 4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61 40 0.1 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38 40 0.05 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52 40 0.01 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02 1.92 1.82 40 0.001 3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25 50 0.1 1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42 1.38 1.33 50 0.05 2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58 1.51 1.45 50 0.01 2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91 1.80 1.70 50 0.001 3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05 60 0.1 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40 1.35 1.30 60 0.05 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40 60 0.01 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84 1.73 1.62 60 0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92
  • 138. 100 0.1 1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22 100 0.05 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30 100 0.01 2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.74 1.69 1.57 1.45 100 0.001 3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83 1.64 200 0.1 1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16 200 0.05 1.88 1.80 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.30 1.21 200 0.01 2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30 200 0.001 3.12 2.90 2.67 2.42 2.26 2.15 2.00 1.90 1.83 1.64 1.43 1000 0.1 1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.27 1.25 1.18 1.08 1000 0.05 1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24 1.11 1000 0.01 2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.54 1.50 1.35 1.16 1000 0.001 2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.77 1.69 1.49 1.22 F-30 Table A.10 Critical Values for Studentized Range Distribution (Tukey's Q) n α m 2 3 4 5 6 7 8 9 10 11 12 5 0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 5 0.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 6 0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
  • 139. 6 0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48 7 0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 7 0.01 4.95 5.92 6.54 7.00 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8 0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 8 0.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18 9 0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 9 0.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78 10 0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 10 0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49 11 0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 11 0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 12 0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 12 0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 13 0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 13 0.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 14 0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 14 0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 15 0.05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 15 0.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 16 0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 16 0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 17 0.05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 17 0.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 18 0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 18 0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 19 0.05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 19 0.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 20 0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 20 0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28 24 0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 24 0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 30 0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 30 0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 40 0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 40 0.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76 60 0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
  • 140. 60 0.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 120 0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 120 0.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44 Inf 0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 Inf 0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 Stat 423 Section 02 Spring 2020 Name ______________________________________ Exam 3 (100 points) ID Number __________________________ Part I. Workout Problems. Show solution in support of your answers. Unsupported answers will not receive full credit. (61 points) 1. A 2!"# fractional factorial involving factors A, B, C, D, E and F is to be run. Practitioners have these two sets of generators in mind: Design 1 Generators: E=ABD and F=ACD Design 2 Generators: E=ABCD and F=ABD a. Consider Design 1. Which treatments in this experiment will have both factors A and B at their high (+) levels? [6 pts]
  • 141. b. Consider Design 1. Derive its defining relation and determine its resolution. [8 pts] c. The defining relation for Design 2 is I=CEF=ABDF=ABCDE. Which design (1 or 2) is better? Explain briefly and give at least one reason for your choice. [3 pts]
  • 142. 2. A 2$"% fractional factorial was conducted to study the effects of four factors on the bond strength of an integrated circuit mounted on metallized glass substrate. The four factors (and their levels) that engineers identified as potentially important determiners of bond strength are listed in the table below. Factor Levels A – Adhesive Type D2A (−) vs. H-1-E (+) B – Conductor Material Copper (−) vs. Nickel (+) C – Cure Time at 90°C 90 min (−) vs. 120 min (+) D – Deposition Material Tin (−) vs. Silver (+) Let �& = main effect of A, �'= main effect of B, �( = main effect of C, �) = main effect of D, and � = interaction effect. Summary statistics and the results of the Yates algorithm for computing fitted effects are given below. Treatment Replication Sample Variance �� Sample Mean �+ Yates Algorithm
  • 143. Cycle 1 Cycle 2 Cycle 3 Fitted Effect (1) 5 2.452 73.48 157.36 314.54 650.84 81.355 ad 5 4.233 83.88 157.18 336.30 7.84 0.980 bd 5 0.647 81.58 166.60 4.42 2.92 0.365 ab 5 26.711 75.60 169.70 3.42 2.08 0.260 cd 5 0.503 87.06 10.40 −0.18 21.76 2.720 ac 5 8.562 79.54 −5.98 3.10 −1.00 −0.125 bc 5 1.982 79.38 −7.52 −16.38 3.28 0.410 abcd 5 3.977 90.32 10.94 18.46 34.84 4.355 a. The replications and the sample variances of the 8 treatment combinations are given in the 2nd and 3rd columns, respectively, in the table above. Compute �(0.05) for judging if a fitted effect is statistically significant at the � = 0.05 level. Note that the sum of the variances is 49.067. [8 pts]
  • 144. b. The generator and defining relation were D=ABC and I=ABCD, respectively. If you have no answer in (a), use �(�.��) = �.���. i. Based on your answer in (a), is the fitted effect 0.980 statistically significant? [2 pts] Select one: NO YES ii. What sum of effects does the fitted effect 0.980 estimate? Your answer should be a sum of subscripted/superscripted Greek letters (e.g., �# + �##+,). [4 pts] 3. The diameter � of a tree at breast height (in cm, relatively easy to measure) is used to predict the height � of a tree (in m, difficult to measure). Summary data on � = 36 white spruce trees (in British Columbia) are given below. B� = 655.1, B�# = 12711.47, B� = 644.7, B�# = 11824.45, B�� = 12112.34, �-- = 790.4697, ��� = �.. = 278.9475, �̅� = 18.1972, �G = 17.9083.
  • 145. a. Do some calculations to show that the least-squares line is �H = 9.1468 + 0.4815�. [10 pts] b. Compute the sample correlation � between � and �. Give a quick interpretation. [6 pts] Interpretation: c. Construct an interval with 95% confidence for the height of a new spruce tree with a breast height diameter �
  • 146. = 19 cm. Plug in numbers in a formula and do not simplify. Use � = 36, �̅� = 18.1972, �-- = 790.4697, �# = ��� = 2.815. [8 pts] Problem 3 (continued). d. A scatterplot of the data and ��� values for the linear and quadratic model fits are given below. Also, the tota l sum of squares for either model is ��� = 1824.45. Which of the two models provides a better description o f the data? Explain briefly. In your explanation, use both graphical AND numeric results [6 pts]
  • 147. Part II. Multiple Choice. Circle the letter of the correct/best answer. (39 points) 1. Which of the following statements is NOT true? A. The simple linear regression model is � = �/ + �%� + � where the � is a random variable that is normally distributed with mean 0 and variance �#. B. In simple linear regression, the independent variable � is also referred to as the predictor or explanatory variable. C. The goal of least-squares regression is to find the curve that maximizes the sum of the squared distances between the curve and the data points. D. A first step in a regression analysis involving two variables is to construct a scatter plot. 2. In fitting � = �/ + �%� + � through data, (1.7,2.5) is a 90% confidence interval for �%. What is a 90% confidence interval for the mean change in � when we reduce � by 0.65. A. (−1.625,−1.105) B. (1.05,1.85) C. (1.105,1.625) D. (2.35,3.15) 3. Which of the following is/are TRUE about the correlation coefficient � between � and �?
  • 148. A. For the simple linear regression, 100% × �# = �# where �# is the coefficient of determination (in %). B. A correlation of � = −0.87 is weaker than a correlation of � = 0.25. C. The correlation � is a measure of the strength of the linear relationship between � and �. D. If � = −0.1, and we convert � (in inches) to centimeters (1 in = 2.54 cm), then the correlation becomes 2.54 × (−0.1) = −0.254. E. Both (A) and (C). Model ��� � = �/ + �%� + � 95.703 � = �/ + �%� + �#�# + � 63.007 5 10 15 20 25 30 8 10 12 14 16 18 20 22 Breast-Height Diameter x H ei
  • 149. gh t y 4. Is � = �/ ⋅ �%0 intrinsically linear? If yes, what is appropriate transformation to obtain a linear model? Recall: log(��) = log(�) + log(�), log(�1) = � ⋅ log(�) A. No. B. Yes, log(�) = log(�/) + log(�%) ⋅ � C. Yes, log(�) = log(�/) + �% ⋅ log (�) D. Yes, log(�) = log(�/) + �% ⋅ � For Problems 5 to 8: A study investigated the effects of �% = Seal Temperature, �# = Cooling Bar Temperature, and �2 = % Polyethylene Additive on the seal strength �. The three models in column of the table below were fit to the data. There were � = 20 observations, and the total sum of squares (for all 3 models) is ��� = 82.17 (total df = 19). 5. What is ��� for Model (1)? A. 30.96 B. 51.21 C. 21.36 D. 60.81
  • 150. 6. What is �34' # for Model (2)? A. 49.42% B. 76.66% C. 23.34% D. 84.03% 7. What is the F statistic for testing �/: {�% = �# = ⋯ = �5 = 0} versus �3: {�/ is false.} with model (3). A. 6.59 B. 9.69 C. 3.23 D. 5.36 8. In the fit of Model (2), we get �̂�6 = −0.5 and �78! = 0.3552 and find that the P-value is 0.1827 for testing �/:�6 = 0 versus �3: �6 ≠ 0. What are the � test statistic and conclusion at � = 0.10 significance level? A. � = −1.41. There is NO significant interaction between �% and �2. B. � = 1.41. The predictor �6 has NO significant effect on the response �. C. � = −0.84. There is NO significant interaction between �% and �2. D. � = −1.41. There is significant interaction between �% and �2. Model �� ���� � ���
  • 151. (1) � = �/ + �%�% + �#�# + �2�2 + � 37.68% 25.99% ? (2) � = �/ + �%�% + �2�2 + �$�%# + �<�## + �!�2# + �6�%�2 + � 84.03% ? 13.1231 (3) � = �/ + �%�% + �#�# + �2�2 + �$�%# + �<�## + �!�2# + �=�%�# + �6�%�2 + �5�#�2 + �
  • 152. 85.57% 72.58% 11.8593 9. Which of the following is not true about 2>"? fractional factorial studies? A. The loss of information and ambiguity (confounding) can be held to a minimum by careful planning and wise analysis. B. A loss of information is usually expected because we are unable to observe responses at all of the 2> factor combinations. C. If two effects are aliased or confounded together, it means that we can discuss their significance together but not apart from each other. D. None of the above. 10. A fitted multiple regression model is �H = 10 − 4�% + 3�#. If �% is decreased by 2, while holding �# fixed, then then we can expect � A. to increase by 8 B. to decrease by 6 C. to increase by 6 D. to decrease by 8 E. remain the same
  • 153. 11. Suppose that the least-squares line is �H = −2.12 + 15.75�. If the � test statistic for testing �/: �% = 0 against �3: �% ≠ 0 is � = 2.1 (from the ANOVA table), what is the � test statistic for testing the same hypotheses? A. � = 1.45 B. � = −4.41 C. � = −1.45 D. � = 4.41 12. Which of the following statements is true? A. Model 1 with more predictor terms may not necessarily be a better than Model 2 with fewer predictor terms even though Model 1’s coefficient of multiple determination �# is larger. B. To balance the cost of using more parameters against the gain in the coefficient of multiple determination �#, many statisticians use �34' # = {the adjusted �#}. C. An objective of regression analysis is to find a model that is simple (relatively few parameters) and provides a good fit to the data. D. All of the above. 13. A study investigated the effects of three explanatory variables �%, �#, and �2 on the response �. The model � = �/ + �%�% + �#�# + �2�2 + � provided a good �# value.
  • 154. Which of the following is NOT appropriate in assessing the (statistical) significance of the relationship between �2 and �? A. a � test of �/: �2 = 0 versus �3: �2 ≠ 0 B. a prediction interval C. a confidence interval for �2 D. the sample correlation between �2 and � E. a comparison of �34' # values for � = �/ + �%�% + �#�# + �2�2 + � and � = �/ + �%�% + �#�# + �