SlideShare a Scribd company logo
1 of 52
Edit this text to create aa 16:9 media
      This slide has Heading
    Computational Light Field window
                              Displays
   This subtitle is 20 points
   Bullets are blue
   They have 110% line spacing, 2 points before & after
   Longer bullets in the form of a paragraph are harder to
    read if there is insufficient line spacing. This is the
    maximum recommended number of lines per slide
    (seven).
                Douglas Lanman      Matthew Hirsch
     Sub bulletsMIT Media Lab
                  look like this   MIT Media Lab
Is “glasses-free 3D” ready?




   Nintendo 3DS                    MasterImage 3D                         Asus Eee Pad MeMO 3D                LG Optimus 3D
      E3 2010                      Computex 2011                              Computex 2011             Mobile World Congress 2011




          Toshiba 3DTV Prototype                    Sony 3DTV Prototype                          LG 3DTV Prototype
                 CES 2011                                 CES 2011                                   CES 2011
Taxonomy of Direct 3D Displays:
     Glasses-bound vs. Unencumbered Designs
                                                                           Immersive
                                                                           (blocks direct-viewing of real world)
                            Head-mounted
                            (eyepiece-objective and microdisplay)
                                                                           See-through
                                                                           (superimposes synthetic images onto real world)
   Glasses-bound
    Stereoscopic
                                                                           Spatially-multiplexed (field-concurrent)
                                                                           (color filters, polarizers, autostereograms, etc.)
                            Multiplexed
                            (stereo pair with same display surface)
                                                                           Temporally-multiplexed (field-sequential)
                                                                           (LCD shutter glasses)



                                                                           Parallax Barriers
                                                                           (uniform array of 1D slits or 2D pinhole arrays)
                            Parallax-based
                            (2D display with light-directing elements)     Integral Imaging
                                                                           (lenticular sheets or fly’s eye lenslet arrays)

                                                                           Multi-planar
  Unencumbered                                                             (time-sequential projection onto swept surfaces)
                            Volumetric
                            (directly illuminate points within a volume)   Transparent Substrates
  Automultiscopic                                                          (intersecting laser beams, fog layers, etc.)

                                                                           Static
                                                                           (holographic films)
                            Holographic
                            (reconstructs wavefront using 2D element)      Dynamic
                                                                           (holovideo)
Taxonomy adapted from Hong Hua
Taxonomy of Direct 3D Displays:
  Parallax Barriers




                                                                          NewSight MV-42AD3 42''
                                                                           (1920x1080, 1x8 views)
                                                                 Parallax Barriers
                                                                 (uniform array of 1D slits or 2D pinhole arrays)
                  Parallax-based
                  (2D display with light-directing elements)



Unencumbered      Volumetric
                  (directly illuminate points within a volume)
Automultiscopic


                  Holographic
                  (reconstructs wavefront using 2D element)
Taxonomy of Direct 3D Displays:
  Integral Imaging




                                                                               Alioscopy 3DHD 42''
                                                                             (1920x1200, 1x8 views)
                                                                 Parallax Barriers
                                                                 (uniform array of 1D slits or 2D pinhole arrays)
                  Parallax-based
                  (2D display with light-directing elements)     Integral Imaging
                                                                 (lenticular sheets or fly’s eye lenslet arrays)


Unencumbered      Volumetric
                  (directly illuminate points within a volume)
Automultiscopic


                  Holographic
                  (reconstructs wavefront using 2D element)
Directional Backlighting




                                                                         Nelson and Brott, 2010
                                                                          US Patent 7,847,869
 Currently promoted by 3M
 Requires a high-speed (120 Hz) LCD panel, an additional double-sided prism film, and a pair of LEDs
 Allows multi-view display, but requires higher-speed LCD and additional light sources for each view
Taxonomy of Direct 3D Displays:
  Multi-planar Volumetric Displays




                                                                 Parallax Barriers
                                                                 (uniform array of 1D slits or 2D pinhole arrays)
                  Parallax-based
                  (2D display with light-directing elements)     Integral Imaging
                                                                 (lenticular sheets or fly’s eye lenslet arrays)

                                                                 Multi-planar
Unencumbered                                                     (time-sequential projection onto swept surfaces)
                  Volumetric
                  (directly illuminate points within a volume)
Automultiscopic


                  Holographic
                  (reconstructs wavefront using 2D element)
Taxonomy of Direct 3D Displays:
  Transparent-substrate Volumetric Displays




                                                                 Parallax Barriers
                                                                 (uniform array of 1D slits or 2D pinhole arrays)
                  Parallax-based
                  (2D display with light-directing elements)     Integral Imaging
                                                                 (lenticular sheets or fly’s eye lenslet arrays)

                                                                 Multi-planar
Unencumbered                                                     (time-sequential projection onto swept surfaces)
                  Volumetric
                  (directly illuminate points within a volume)   Transparent Substrates
Automultiscopic                                                  (intersecting laser beams, fog layers, etc.)


                  Holographic
                  (reconstructs wavefront using 2D element)
Taxonomy of Direct 3D Displays:
  Static Holograms




                  capture                                    reconstruction
                                                                          Parallax Barriers
                                                                          (uniform array of 1D slits or 2D pinhole arrays)
                      Parallax-based
                      (2D display with light-directing elements)          Integral Imaging
                                                                          (lenticular sheets or fly’s eye lenslet arrays)

                                                                          Multi-planar
Unencumbered                                                              (time-sequential projection onto swept surfaces)
                      Volumetric
                      (directly illuminate points within a volume)        Transparent Substrates
Automultiscopic                                                           (intersecting laser beams, fog layers, etc.)

                                                                          Static
                                                                          (holographic films)
                      Holographic
                      (reconstructs wavefront using 2D element)
Taxonomy of Direct 3D Displays:
  Dynamic Holograms (Holovideo)




      Tay et al.                                            MIT Media Lab Spatial Imaging Group
    [Nature, 2008]                                                  [Holovideo, 1989 – present]
                                                                                Parallax Barriers
                                                                                (uniform array of 1D slits or 2D pinhole arrays)
                     Parallax-based
                     (2D display with light-directing elements)                 Integral Imaging
                                                                                (lenticular sheets or fly’s eye lenslet arrays)

                                                                                Multi-planar
Unencumbered                                                                    (time-sequential projection onto swept surfaces)
                     Volumetric
                     (directly illuminate points within a volume)               Transparent Substrates
Automultiscopic                                                                 (intersecting laser beams, fog layers, etc.)

                                                                                Static
                                                                                (holographic films)
                     Holographic
                     (reconstructs wavefront using 2D element)                  Dynamic
                                                                                (holovideo)
What is meant by “glasses-free 3D”?




binocular disparity               convergence       motion parallax   accommodation/blur
current glasses-based (stereoscopic) displays

near-term glasses-free (automultiscopic) displays

longer-term volumetric and holographic displays
Design Trade-offs




   Integral Imaging             Parallax Barriers                 Directional Backlighting

                        Integral Imaging    Parallax Barriers       Directional Backlighting
   Spatial Resolution         low                   low                       high
       Brightness            high                   low                    moderate
          Cost                low            low – moderate             moderate – high
   Full-resolution 2D         no           yes (dual-layer LCD)                yes
    Motion Parallax           yes                   yes                        no
Generalizing Parallax Barriers

                                                                            mask K




                                                                              …
                                                                            mask 3

  mask 2                               mask 2                               mask 2

  mask 1                               mask 1                               mask 1

  light box                            light box                            light box
   Conventional Parallax Barrier            High-Rank 3D (HR3D)           Layered 3D and Polarization Fields


 Parallax barriers use heuristic design: front mask with slits/pinholes, rear mask with interlaced views
 High-Rank 3D (HR3D) considers dual-layer design with arbitrary opacity and temporal multiplexing
 Layered 3D and Polarization Fields considers multi-layer design without temporal multiplexing
Outline
 Automultiscopic Displays
    Multi-Layer Displays
       Layered 3D
      - Polarization Fields
    Dual-Layer Displays
      - High-Rank 3D (HR3D)
Layered 3D: Multi-Layer Displays



                                   mask K




                                     …
                                   mask 3

                                   mask 2

                                   mask 1

                                   light box
                                               Layered 3D
Tomographic Light Field Synthesis

            virtual plane



                                             q   attenuator

                                                              x



                                                 backlight
       q




                                                                  x
                            2D Light Field
Tomographic Light Field Synthesis

            virtual plane


                                             attenuator

                                                          x



                                             backlight
       q




                                                              x
                            2D Light Field
Tomographic Light Field Synthesis

            virtual plane


                                             attenuator

                                                          x



                                             backlight
       q




                                                              x
                            2D Light Field
Tomographic Light Field Synthesis

   virtual plane
                                                 Image formation model:
                                                                                      ò
                                                                                  - m (r )dr
                                    attenuator
                                                               L(x, q ) = I 0 e       C




                                                                 æ L(x, q ) ö
                                                   L(x, q ) = ln ç          ÷ = - ò m (r)dr
                                                                 è I0 ø           C



                                    backlight                         l = -Pa

                                                 Tomographic synthesis:
                                                                                  2
                                                       arg min l + Pa , for a ³ 0
                                                           a

                   2D Light Field
Tomographic Light Field Synthesis

   virtual plane
                                                 Image formation model:
                                                                                      ò
                                                                                  - m (r )dr
                                    attenuator
                                                               L(x, q ) = I 0 e       C




                                                                 æ L(x, q ) ö
                                                   L(x, q ) = ln ç          ÷ = - ò m (r)dr
                                                                 è I0 ø           C



                                    backlight                         l = -Pa

                                                 Tomographic synthesis:
                                                                                  2
                                                       arg min l + Pa , for a ³ 0
                                                           a

                   2D Light Field
Multi-Layer Light Field Decomposition




                                                Reconstructed Views
   Target 4D Light Field




                           Multi-Layer Decomposition
Prototype Layered 3D Display




  Transparency stack with acrylic spacers   Prototype in front of LCD (backlight source)
Outline
 Automultiscopic Displays
    Multi-Layer Displays
      - Layered 3D
       Polarization Fields
    Dual-Layer Displays
      - High-Rank 3D (HR3D)
Barco E-2320
     PA
 Grayscale IPS LCD
1600x1200 @ 60 Hz
Four Stacked Liquid Crystal Panels




                        Two Crossed Polarizers
Overview of LCDs
                                                                             I
          vertical polarizer
          color filter array
        liquid crystal cells
       horizontal polarizer
                                                                      I0
                               backlight




                         Malus’ Law                   Intensity Modulation with Liquid Crystal Cells


                                           I = I0 sin2 (q )
Extending Layered 3D to Multi-Layer LCDs

                       Virtual Planes
                                                 Design Optimization
           LCD 3                                 • Eliminate redundant polarizers
                                                  Sequentially-crossed design
                                         q
           LCD 2                             x

           LCD 1




           backlight

                        2D Light Field


       q


                                             x
Extending Layered 3D to Multi-Layer LCDs

                       Virtual Planes
                                                 Design Optimization
           LCD 3                                 • Eliminate redundant polarizers
                                                  Use sequentially-crossed
                                         q
           LCD 2                             x   • Exploit field-sequential color
                                                  0.33 = 2.7% brightness

           LCD 1




           backlight

                        2D Light Field


       q


                                             x
Polarization Field Displays
                       Virtual Planes
                                                 Design Optimization
           LCD 3                                 • Eliminate redundant polarizers
                                                  Use sequentially-crossed
                                         q
           LCD 2                             x   • Exploit field-sequential color
                                                  0.33 = 2.7% brightness

           LCD 1                                 • Further optimize polarizers
                                                  Minimum is a crossed pair



           backlight

                        2D Light Field


       q


                                             x
Polarization Field Displays
                       Virtual Planes

           LCD 3
                                                   f3
                                                                 Image Formation
                                         q    f2                                 K
           LCD 2                                        x       Q(x, q ) = åfk (x, q )
                                                                                 k=1

                                             f1                L(x, q ) = sin 2 (Q(x,q ))
           LCD 1




           backlight                                         Tomographic Synthesis

                        2D Light Field
                                                            Q(x,q ) = ±sin-1     (           )
                                                                                       L(x, q ) mod p

                                                                        Q = Pf
       q                                                         argmin Q - Pf
                                                                                                 2
                                                                                                 2
                                                                 fmin £f £fmax

                                                        x
Tomographic Image Synthesis
                            Projection Matrix
   Target Light Field                               LCD Pixel Values



                        =                       *



                            b=Ax
SART [Simultaneous Algebraic Reconstruction Technique]

                                                            b=Ax
                                          pre-compute some weights

                                         initial guess
                          ATv          Ax                update
                                                         clamp
Efficient GPU Implementation


          Ax                                           ATv




Forward Projection (Multiview Rendering)   Back Projection (Projective Texture Mapping)
Polarization Field Displaysviewer moves right




       viewer moves down




                                                                               Stacked Polarization
                                         Input 4D Light Field                    Rotating Layers

                                                                                                      90°



                                                                                                      0°
                                                Optimized Rotation Angles for Each Layer
Polarization Field Displaysviewer moves right




       viewer moves down




                                         Input 4D Light Field




                                                                Reconstruction Results
Outline
 Automultiscopic Displays
    Multi-Layer Displays
      - Layered 3D
      - Polarization Fields
    Dual-Layer Displays
       High-Rank 3D (HR3D)
Input 4D Light Field
Parallax Barrier: Front Layer
Parallax Barrier: Rear Layer
Analysis of Parallax Barriers

                                        k
                 L[i,k]
                                    i
        k
g[k]
 f[i]
        i
                                               L[i,k]
                                                    `



                 light box
            L[i, k] = f [i]× g[k]       L[i, k ]  f [i]  g[k ]
Analysis of Parallax Barriers

                                      L[i,k]

                 k
    g[k]
                  i
     f[i]                                                                                    `



                                     light box
                                                                         T
Ken Perlin et al. An Autosteroscopic Display. 2000.            L[i, k] = å ft [i] Ä gt [k]
Yunhee Kim et al. Electrically Movable Pinhole Arrays. 2007.
                                                                         t=1
Content-Adaptive Parallax Barriers

            L[i,k]
                                     G

        k
g[k]
        i                            ~`
 f[i]                       F        L

            light box
                        ~
                        L  FG
Content-Adaptive Parallax Barriers



                                                  G
        ~`
        L               =      F



                arg min L - FG W , for F, G ³ 0
                                2

                  F,G
Content-Adaptive Parallax Barrier: Front Layer
Content-Adaptive Parallax Barrier: Rear Layer
Simulation Results
Prototype High-Rank 3D (HR3D) Display




                                                    http://cameraculture.media.mit.edu/byo3d
Matthew Hirsch and Douglas Lanman. Build Your Own 3D Display. SIGGRAPH 2010, SIGGRAPH Asia 2010, SIGGRAPH 2011.
Experimental Results




   Time-Multiplexed Parallax Barrier   High-Rank 3D (HR3D)
Outline
 Automultiscopic Displays
    Multi-Layer Displays
      - Layered 3D
      - Polarization Fields
    Dual-Layer Displays
      - High-Rank 3D (HR3D)
High-Rank 3D (HR3D)                 Layered 3D               Polarization Fields
    www.hr3d.info                 www.layered3d.info      tinyurl.com/polarization-fields




                    BiDi Screen                        Tensor Displays
              www.bidiscreen.com                 tinyurl.com/tensordisplays

More Related Content

What's hot

Viva3D Stereo Vision user manual en 2016-06
Viva3D Stereo Vision user manual en 2016-06Viva3D Stereo Vision user manual en 2016-06
Viva3D Stereo Vision user manual en 2016-06
Robin Colclough
 
IGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptxIGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptx
grssieee
 
Estimating Human Pose from Occluded Images (ACCV 2009)
Estimating Human Pose from Occluded Images (ACCV 2009)Estimating Human Pose from Occluded Images (ACCV 2009)
Estimating Human Pose from Occluded Images (ACCV 2009)
Jia-Bin Huang
 
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
Jia-Bin Huang
 
Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...
Chen-Han Hsiao
 
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิกการสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
jibbie23
 
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิกการสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
jibbie23
 
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated RenderingPractical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Mark Kilgard
 

What's hot (17)

Keynote at 23rd International Display Workshop
Keynote at 23rd International Display WorkshopKeynote at 23rd International Display Workshop
Keynote at 23rd International Display Workshop
 
Real-time Shadowing Techniques: Shadow Volumes
Real-time Shadowing Techniques: Shadow VolumesReal-time Shadowing Techniques: Shadow Volumes
Real-time Shadowing Techniques: Shadow Volumes
 
Shadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL HardwareShadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL Hardware
 
Viva3D Stereo Vision user manual en 2016-06
Viva3D Stereo Vision user manual en 2016-06Viva3D Stereo Vision user manual en 2016-06
Viva3D Stereo Vision user manual en 2016-06
 
3D Display Technology: VDC-Whitepaper
3D Display Technology: VDC-Whitepaper3D Display Technology: VDC-Whitepaper
3D Display Technology: VDC-Whitepaper
 
IGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptxIGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptx
 
CS 354 Shadows
CS 354 ShadowsCS 354 Shadows
CS 354 Shadows
 
Estimating Human Pose from Occluded Images (ACCV 2009)
Estimating Human Pose from Occluded Images (ACCV 2009)Estimating Human Pose from Occluded Images (ACCV 2009)
Estimating Human Pose from Occluded Images (ACCV 2009)
 
Accommodation-invariant Computational Near-eye Displays - SIGGRAPH 2017
Accommodation-invariant Computational Near-eye Displays - SIGGRAPH 2017Accommodation-invariant Computational Near-eye Displays - SIGGRAPH 2017
Accommodation-invariant Computational Near-eye Displays - SIGGRAPH 2017
 
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
A Physical Approach to Moving Cast Shadow Detection (ICASSP 2009)
 
Svr Raskar
Svr RaskarSvr Raskar
Svr Raskar
 
CS 354 Shadows (cont'd) and Scene Graphs
CS 354 Shadows (cont'd) and Scene GraphsCS 354 Shadows (cont'd) and Scene Graphs
CS 354 Shadows (cont'd) and Scene Graphs
 
Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...
 
Stereo vision
Stereo visionStereo vision
Stereo vision
 
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิกการสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
 
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิกการสอนครั้งที่ 2   intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
การสอนครั้งที่ 2 intro ความรู้เบื้องต้นเกี่ยวกับคอมพิวเตอร์กราฟิก
 
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated RenderingPractical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
 

Viewers also liked

SIGGRAPH 2012 Computational Display Course - 2 Computational Displays
SIGGRAPH 2012 Computational Display Course - 2 Computational DisplaysSIGGRAPH 2012 Computational Display Course - 2 Computational Displays
SIGGRAPH 2012 Computational Display Course - 2 Computational Displays
Matt Hirsch - MIT Media Lab
 
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
Matt Hirsch - MIT Media Lab
 
SIGGRAPH 2012 Computational Display Course - 1 introduction
SIGGRAPH 2012 Computational Display Course - 1 introductionSIGGRAPH 2012 Computational Display Course - 1 introduction
SIGGRAPH 2012 Computational Display Course - 1 introduction
Matt Hirsch - MIT Media Lab
 

Viewers also liked (9)

SIGGRAPH 2012 Computational Display Course - 2 Computational Displays
SIGGRAPH 2012 Computational Display Course - 2 Computational DisplaysSIGGRAPH 2012 Computational Display Course - 2 Computational Displays
SIGGRAPH 2012 Computational Display Course - 2 Computational Displays
 
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
SIGGRAPH 2012 Computational Display Course - 4 Perceptually Driven Computatio...
 
SIGGRAPH 2012 Computational Display Course - 1 introduction
SIGGRAPH 2012 Computational Display Course - 1 introductionSIGGRAPH 2012 Computational Display Course - 1 introduction
SIGGRAPH 2012 Computational Display Course - 1 introduction
 
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 3 Spectral Imaging
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 3 Spectral ImagingSIGGRAPH 2012 Computational Plenoptic Imaging Course - 3 Spectral Imaging
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 3 Spectral Imaging
 
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 4 Light Fields
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 4 Light FieldsSIGGRAPH 2012 Computational Plenoptic Imaging Course - 4 Light Fields
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 4 Light Fields
 
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 1 Introduction
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 1 IntroductionSIGGRAPH 2012 Computational Plenoptic Imaging Course - 1 Introduction
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 1 Introduction
 
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 7 Schlieren Imaging
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 7 Schlieren ImagingSIGGRAPH 2012 Computational Plenoptic Imaging Course - 7 Schlieren Imaging
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 7 Schlieren Imaging
 
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 2 High Dynamic Range I...
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 2 High Dynamic Range I...SIGGRAPH 2012 Computational Plenoptic Imaging Course - 2 High Dynamic Range I...
SIGGRAPH 2012 Computational Plenoptic Imaging Course - 2 High Dynamic Range I...
 
The Light Field Stereoscope | SIGGRAPH 2015
The Light Field Stereoscope | SIGGRAPH 2015The Light Field Stereoscope | SIGGRAPH 2015
The Light Field Stereoscope | SIGGRAPH 2015
 

Similar to SIGGRAPH 2012 Computational Display Course - 3 Computational Light Field Displays (11)

Stereo and 3D Displays - Matt Hirsch
Stereo and 3D Displays - Matt HirschStereo and 3D Displays - Matt Hirsch
Stereo and 3D Displays - Matt Hirsch
 
Representation
RepresentationRepresentation
Representation
 
Presentatie Willem En Kevin
Presentatie Willem En KevinPresentatie Willem En Kevin
Presentatie Willem En Kevin
 
Screenless displays seminar report
Screenless displays seminar reportScreenless displays seminar report
Screenless displays seminar report
 
Natural Interfaces for Augmented Reality
Natural Interfaces for Augmented RealityNatural Interfaces for Augmented Reality
Natural Interfaces for Augmented Reality
 
GameDraw Pricing and Comparision
GameDraw Pricing and ComparisionGameDraw Pricing and Comparision
GameDraw Pricing and Comparision
 
Chapter.3
Chapter.3Chapter.3
Chapter.3
 
Scz 3370 p
Scz 3370 pScz 3370 p
Scz 3370 p
 
Scz 3370 p
Scz 3370 pScz 3370 p
Scz 3370 p
 
Phase-Modulation Based 3D technology
Phase-Modulation Based 3D technologyPhase-Modulation Based 3D technology
Phase-Modulation Based 3D technology
 
iMinds The Conference 2012: Adrian Munteanu
iMinds The Conference 2012: Adrian MunteanuiMinds The Conference 2012: Adrian Munteanu
iMinds The Conference 2012: Adrian Munteanu
 

More from Matt Hirsch - MIT Media Lab

BYO3D 2011: Emerging Technology
BYO3D 2011: Emerging TechnologyBYO3D 2011: Emerging Technology
BYO3D 2011: Emerging Technology
Matt Hirsch - MIT Media Lab
 
BYO3D 2011: Interlacing
BYO3D 2011: InterlacingBYO3D 2011: Interlacing
BYO3D 2011: Interlacing
Matt Hirsch - MIT Media Lab
 
BYO3D 2011: Rendering
BYO3D 2011: RenderingBYO3D 2011: Rendering
BYO3D 2011: Rendering
Matt Hirsch - MIT Media Lab
 
BYO3D 2011: Construction
BYO3D 2011: ConstructionBYO3D 2011: Construction
BYO3D 2011: Construction
Matt Hirsch - MIT Media Lab
 
BYO3D 2011: History
BYO3D 2011: HistoryBYO3D 2011: History
BYO3D 2011: History
Matt Hirsch - MIT Media Lab
 
BYO3D 2011: Welcome
BYO3D 2011: WelcomeBYO3D 2011: Welcome
BYO3D 2011: Welcome
Matt Hirsch - MIT Media Lab
 

More from Matt Hirsch - MIT Media Lab (13)

>A Switchable Light Field Camera Architecture with Angle SEnsitive Pixels and...
>A Switchable Light Field Camera Architecture with Angle SEnsitive Pixels and...>A Switchable Light Field Camera Architecture with Angle SEnsitive Pixels and...
>A Switchable Light Field Camera Architecture with Angle SEnsitive Pixels and...
 
BYO3D 2011: Emerging Technology
BYO3D 2011: Emerging TechnologyBYO3D 2011: Emerging Technology
BYO3D 2011: Emerging Technology
 
BYO3D 2011: Interlacing
BYO3D 2011: InterlacingBYO3D 2011: Interlacing
BYO3D 2011: Interlacing
 
BYO3D 2011: Rendering
BYO3D 2011: RenderingBYO3D 2011: Rendering
BYO3D 2011: Rendering
 
BYO3D 2011: Construction
BYO3D 2011: ConstructionBYO3D 2011: Construction
BYO3D 2011: Construction
 
BYO3D 2011: History
BYO3D 2011: HistoryBYO3D 2011: History
BYO3D 2011: History
 
BYO3D 2011: Welcome
BYO3D 2011: WelcomeBYO3D 2011: Welcome
BYO3D 2011: Welcome
 
BYO3D 2011: Content
BYO3D 2011: ContentBYO3D 2011: Content
BYO3D 2011: Content
 
Glasses Based 3D Displays
Glasses Based 3D DisplaysGlasses Based 3D Displays
Glasses Based 3D Displays
 
Emerging 3D Display Technologies
Emerging 3D Display TechnologiesEmerging 3D Display Technologies
Emerging 3D Display Technologies
 
Capture and Rendering
Capture and RenderingCapture and Rendering
Capture and Rendering
 
Unencumbered 3D Displays
Unencumbered 3D DisplaysUnencumbered 3D Displays
Unencumbered 3D Displays
 
Introduction and History
Introduction and HistoryIntroduction and History
Introduction and History
 

Recently uploaded

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 

SIGGRAPH 2012 Computational Display Course - 3 Computational Light Field Displays

  • 1. Edit this text to create aa 16:9 media This slide has Heading Computational Light Field window Displays  This subtitle is 20 points  Bullets are blue  They have 110% line spacing, 2 points before & after  Longer bullets in the form of a paragraph are harder to read if there is insufficient line spacing. This is the maximum recommended number of lines per slide (seven). Douglas Lanman Matthew Hirsch  Sub bulletsMIT Media Lab look like this MIT Media Lab
  • 2. Is “glasses-free 3D” ready? Nintendo 3DS MasterImage 3D Asus Eee Pad MeMO 3D LG Optimus 3D E3 2010 Computex 2011 Computex 2011 Mobile World Congress 2011 Toshiba 3DTV Prototype Sony 3DTV Prototype LG 3DTV Prototype CES 2011 CES 2011 CES 2011
  • 3. Taxonomy of Direct 3D Displays: Glasses-bound vs. Unencumbered Designs Immersive (blocks direct-viewing of real world) Head-mounted (eyepiece-objective and microdisplay) See-through (superimposes synthetic images onto real world) Glasses-bound Stereoscopic Spatially-multiplexed (field-concurrent) (color filters, polarizers, autostereograms, etc.) Multiplexed (stereo pair with same display surface) Temporally-multiplexed (field-sequential) (LCD shutter glasses) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Multi-planar Unencumbered (time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Transparent Substrates Automultiscopic (intersecting laser beams, fog layers, etc.) Static (holographic films) Holographic (reconstructs wavefront using 2D element) Dynamic (holovideo) Taxonomy adapted from Hong Hua
  • 4. Taxonomy of Direct 3D Displays: Parallax Barriers NewSight MV-42AD3 42'' (1920x1080, 1x8 views) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Unencumbered Volumetric (directly illuminate points within a volume) Automultiscopic Holographic (reconstructs wavefront using 2D element)
  • 5. Taxonomy of Direct 3D Displays: Integral Imaging Alioscopy 3DHD 42'' (1920x1200, 1x8 views) Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Unencumbered Volumetric (directly illuminate points within a volume) Automultiscopic Holographic (reconstructs wavefront using 2D element)
  • 6. Directional Backlighting Nelson and Brott, 2010 US Patent 7,847,869  Currently promoted by 3M  Requires a high-speed (120 Hz) LCD panel, an additional double-sided prism film, and a pair of LEDs  Allows multi-view display, but requires higher-speed LCD and additional light sources for each view
  • 7. Taxonomy of Direct 3D Displays: Multi-planar Volumetric Displays Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Multi-planar Unencumbered (time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Automultiscopic Holographic (reconstructs wavefront using 2D element)
  • 8. Taxonomy of Direct 3D Displays: Transparent-substrate Volumetric Displays Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Multi-planar Unencumbered (time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Transparent Substrates Automultiscopic (intersecting laser beams, fog layers, etc.) Holographic (reconstructs wavefront using 2D element)
  • 9. Taxonomy of Direct 3D Displays: Static Holograms capture reconstruction Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Multi-planar Unencumbered (time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Transparent Substrates Automultiscopic (intersecting laser beams, fog layers, etc.) Static (holographic films) Holographic (reconstructs wavefront using 2D element)
  • 10. Taxonomy of Direct 3D Displays: Dynamic Holograms (Holovideo) Tay et al. MIT Media Lab Spatial Imaging Group [Nature, 2008] [Holovideo, 1989 – present] Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Parallax-based (2D display with light-directing elements) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays) Multi-planar Unencumbered (time-sequential projection onto swept surfaces) Volumetric (directly illuminate points within a volume) Transparent Substrates Automultiscopic (intersecting laser beams, fog layers, etc.) Static (holographic films) Holographic (reconstructs wavefront using 2D element) Dynamic (holovideo)
  • 11. What is meant by “glasses-free 3D”? binocular disparity convergence motion parallax accommodation/blur current glasses-based (stereoscopic) displays near-term glasses-free (automultiscopic) displays longer-term volumetric and holographic displays
  • 12. Design Trade-offs Integral Imaging Parallax Barriers Directional Backlighting Integral Imaging Parallax Barriers Directional Backlighting Spatial Resolution low low high Brightness high low moderate Cost low low – moderate moderate – high Full-resolution 2D no yes (dual-layer LCD) yes Motion Parallax yes yes no
  • 13. Generalizing Parallax Barriers mask K … mask 3 mask 2 mask 2 mask 2 mask 1 mask 1 mask 1 light box light box light box Conventional Parallax Barrier High-Rank 3D (HR3D) Layered 3D and Polarization Fields  Parallax barriers use heuristic design: front mask with slits/pinholes, rear mask with interlaced views  High-Rank 3D (HR3D) considers dual-layer design with arbitrary opacity and temporal multiplexing  Layered 3D and Polarization Fields considers multi-layer design without temporal multiplexing
  • 14. Outline  Automultiscopic Displays  Multi-Layer Displays  Layered 3D - Polarization Fields  Dual-Layer Displays - High-Rank 3D (HR3D)
  • 15. Layered 3D: Multi-Layer Displays mask K … mask 3 mask 2 mask 1 light box Layered 3D
  • 16. Tomographic Light Field Synthesis virtual plane q attenuator x backlight q x 2D Light Field
  • 17. Tomographic Light Field Synthesis virtual plane attenuator x backlight q x 2D Light Field
  • 18. Tomographic Light Field Synthesis virtual plane attenuator x backlight q x 2D Light Field
  • 19. Tomographic Light Field Synthesis virtual plane Image formation model: ò - m (r )dr attenuator L(x, q ) = I 0 e C æ L(x, q ) ö L(x, q ) = ln ç ÷ = - ò m (r)dr è I0 ø C backlight l = -Pa Tomographic synthesis: 2 arg min l + Pa , for a ³ 0 a 2D Light Field
  • 20. Tomographic Light Field Synthesis virtual plane Image formation model: ò - m (r )dr attenuator L(x, q ) = I 0 e C æ L(x, q ) ö L(x, q ) = ln ç ÷ = - ò m (r)dr è I0 ø C backlight l = -Pa Tomographic synthesis: 2 arg min l + Pa , for a ³ 0 a 2D Light Field
  • 21. Multi-Layer Light Field Decomposition Reconstructed Views Target 4D Light Field Multi-Layer Decomposition
  • 22. Prototype Layered 3D Display Transparency stack with acrylic spacers Prototype in front of LCD (backlight source)
  • 23.
  • 24. Outline  Automultiscopic Displays  Multi-Layer Displays - Layered 3D  Polarization Fields  Dual-Layer Displays - High-Rank 3D (HR3D)
  • 25. Barco E-2320 PA Grayscale IPS LCD 1600x1200 @ 60 Hz
  • 26. Four Stacked Liquid Crystal Panels Two Crossed Polarizers
  • 27. Overview of LCDs I vertical polarizer color filter array liquid crystal cells horizontal polarizer I0 backlight Malus’ Law Intensity Modulation with Liquid Crystal Cells I = I0 sin2 (q )
  • 28. Extending Layered 3D to Multi-Layer LCDs Virtual Planes Design Optimization LCD 3 • Eliminate redundant polarizers  Sequentially-crossed design q LCD 2 x LCD 1 backlight 2D Light Field q x
  • 29. Extending Layered 3D to Multi-Layer LCDs Virtual Planes Design Optimization LCD 3 • Eliminate redundant polarizers  Use sequentially-crossed q LCD 2 x • Exploit field-sequential color  0.33 = 2.7% brightness LCD 1 backlight 2D Light Field q x
  • 30. Polarization Field Displays Virtual Planes Design Optimization LCD 3 • Eliminate redundant polarizers  Use sequentially-crossed q LCD 2 x • Exploit field-sequential color  0.33 = 2.7% brightness LCD 1 • Further optimize polarizers  Minimum is a crossed pair backlight 2D Light Field q x
  • 31. Polarization Field Displays Virtual Planes LCD 3 f3 Image Formation q f2 K LCD 2 x Q(x, q ) = åfk (x, q ) k=1 f1 L(x, q ) = sin 2 (Q(x,q )) LCD 1 backlight Tomographic Synthesis 2D Light Field Q(x,q ) = ±sin-1 ( ) L(x, q ) mod p Q = Pf q argmin Q - Pf 2 2 fmin £f £fmax x
  • 32. Tomographic Image Synthesis Projection Matrix Target Light Field LCD Pixel Values = * b=Ax
  • 33. SART [Simultaneous Algebraic Reconstruction Technique] b=Ax pre-compute some weights initial guess ATv Ax update clamp
  • 34. Efficient GPU Implementation Ax ATv Forward Projection (Multiview Rendering) Back Projection (Projective Texture Mapping)
  • 35. Polarization Field Displaysviewer moves right viewer moves down Stacked Polarization Input 4D Light Field Rotating Layers 90° 0° Optimized Rotation Angles for Each Layer
  • 36. Polarization Field Displaysviewer moves right viewer moves down Input 4D Light Field Reconstruction Results
  • 37.
  • 38. Outline  Automultiscopic Displays  Multi-Layer Displays - Layered 3D - Polarization Fields  Dual-Layer Displays  High-Rank 3D (HR3D)
  • 39. Input 4D Light Field
  • 42. Analysis of Parallax Barriers k L[i,k] i k g[k] f[i] i L[i,k] ` light box L[i, k] = f [i]× g[k] L[i, k ]  f [i]  g[k ]
  • 43. Analysis of Parallax Barriers L[i,k] k g[k] i f[i] ` light box T Ken Perlin et al. An Autosteroscopic Display. 2000. L[i, k] = å ft [i] Ä gt [k] Yunhee Kim et al. Electrically Movable Pinhole Arrays. 2007. t=1
  • 44. Content-Adaptive Parallax Barriers L[i,k] G k g[k] i ~` f[i] F L light box ~ L  FG
  • 45. Content-Adaptive Parallax Barriers G ~` L = F arg min L - FG W , for F, G ³ 0 2 F,G
  • 49. Prototype High-Rank 3D (HR3D) Display http://cameraculture.media.mit.edu/byo3d Matthew Hirsch and Douglas Lanman. Build Your Own 3D Display. SIGGRAPH 2010, SIGGRAPH Asia 2010, SIGGRAPH 2011.
  • 50. Experimental Results Time-Multiplexed Parallax Barrier High-Rank 3D (HR3D)
  • 51. Outline  Automultiscopic Displays  Multi-Layer Displays - Layered 3D - Polarization Fields  Dual-Layer Displays - High-Rank 3D (HR3D)
  • 52. High-Rank 3D (HR3D) Layered 3D Polarization Fields www.hr3d.info www.layered3d.info tinyurl.com/polarization-fields BiDi Screen Tensor Displays www.bidiscreen.com tinyurl.com/tensordisplays

Editor's Notes

  1. Basically, the tomographic light field synthesis then boils down to solving a linear equation system of the form Ax=b. b is the target light field, A the projection matrix, and the unknowns x are the LCD pixel values
  2. This equation system can be solved with SART – a technique developed, tested, and refined over decades in the medical imaging community.Algorithm is very simple:Initialize some data and find an initial guess of the pixel valuesIteratively update and clamp the solutionUpdate rules require two important operations: a function computing the matrix-vector multiplication Ax, and a function computing the transpose matrix-vector multiplication ATv