SlideShare a Scribd company logo
1 of 86
PREPARATION AND
CHARACTERIZATION OF
POLY(LACTIC ACID)/POLY(BUTYLENE
ADIPATE-CO-THEREPTHTHALATE)
NANOCOMPOSITES
by
Mohd Junaedy Osman (GS21850)
Dr Nor Azowa Ibrahim
Prof Dato’ Dr Wan Md Zin Wan Yunus
Dr Jamaliah Sharif (Nuclear Agency Malaysia)
Introduction.
• Environmental problem has been arising ever since the usage
of plastic was introduced. For this reason, there is an urgent
need to study and to develop renewable source-based
biopolymers (able to degrade via a natural composting
process).
• One of the ways to diminish the effect of these problems was
to use biodegradable polymer or also called Green Polymer.
Poly(lactic acid) (PLA)
• PLA is a biodegradable, thermoplastic, aliphatic polyester derived
from renewable resources, (corn starch or sugarcanes).
• Standard grade PLA has high modulus and strength comparable to
that many petroleum based plastics (brittle).
PLA monomer
Poly(butylene adipate-co-therephtlate) (PBAT)
• PBAT (Ecoflex ) is an aliphatic-aromatic copolyester, which is fully
biodegradable. (Jiang et al. 2006).
• It is a flexible plastic designed for film extrusion and extrusion
coating.
PBAT monomer.
Objectives.
• To prepare organoclay through ion exchange technique
process with various type of alkyl ammonium ion.
• To characterize the organoclay produced.
• To study the effect of adding PBAT on the mechanical
and thermal properties of PLA/PBAT nanocomposites.
• To investigate the effect of organoclay on mechanical,
thermal and morphology of PLA/PBAT nanocomposites.
•The production of polymer materials has grown rapidly in the past 50 years. The
versatility of plastics is not exceeded by any other class of materials, guarantees that
polymers will continue to be very important in the future.
•The problem was the creation of phase separated mixture or immiscible blends. The
immiscible blends can be easily classified by looking through its morphology and
dynamics mechanical analysis.
Literature Review
Method and Result
•Preparation of organoclay
•Preparation of PLA/PBAT blends
•Preparation of PLA/PBAT nanocomposites
•Effect of type of clay
•Effect of clay loading
Methodology
Preparation of organoclay
• 2 types of organoclay prepared.
–ODA-MMT
–DDOA-MMT
• The organoclay were prepared according to the
published method with slight modification (Tabtiang
et al., 2000; Pospisil et al., 2004; Capkova et al.,
2006)
Schematic Diagram
Na-MMT Organofiller
(ODA & DDOA)
Organoclay
ODA-MMT & DDOA-MMT
Characterization
•XRD
•FTIR
•TGA
•Elemental analyzer
Cation Exchange
Technique
Characterization
• X-ray Diffraction study
• Fourier Transform Infrared spectroscopy
• Thermogravimetric Analysis
• Elemental Analysis
Preparation of PLA/PBAT blends
• PLA/PBAT blends were prepared by using melt
blending technique.
PLA + PBAT
PLA/PBAT composites
sheet
Characterization
Melt Blending
PLA/PBAT blends
Hot Pressing
Schematic Diagram
Characterization
• Tensile Properties study
• Fourier Transform Infrared spectroscopy
• Dynamic Mechanical Analysis
• Scanning Electron Microscopy
• Water Absorption Test
• Biodegradable Test
Preparation of PLA/PBAT nanocomposites
• PLA/PBAT nanocomposites were prepared by
using melt blending technique.
Preparation of PLA/PBAT blends
PLA + PBAT
PLA/PBAT nanocomposites
sheet
Characterization
Melt Blending
PLA/PBAT blends
Hot Pressing
Schematic Diagram
Organoclay
Characterization
• X-ray Diffraction study
• Tensile Properties study
• Fourier Transform Infrared spectroscopy
• Dynamic Mechanical Analysis
• Thermogravimetric Analysis
• Scanning Electron Microscopy
• Transmission Electron Microscopy
• Water Absorption Test
• Biodegradable Test
Results
Preparation of organoclay
Clay galleries of montmorillonite
0
1000
2000
3000
4000
5000
6000
2 3 4 5 6 7 8 9 10
2θ (degree)
Intersitya.u.
XRD curve for (a) Na-MMT, (b) C 20A, (c) ODA-MMT and (d) DDOA-MMT
(a)
(c)
(b)
(d)
Summary
Type of Clay Exchange Cation 2θ Interlayer Spacing
(Å) d001
Na-MMT Na+
7.46 11.85
DDOA-MMT (CH3
(CH2
)17
)2
N+
(CH3
)2 2.66 33.22
ODA-MMT C18
H37
NH3
+
2.92 30.26
C 20A (CH3
)2
N+
(HT)2
3.40 26.00
100020003000
(d)
(c)
(b)
(a)
Wavenumber cm
-1
%T
Asymmetric
CH3
stretching
Symmetric CH3
stretching
-CH2
-
bending
Free water
molecule and
water-water
hydrogen bond
Si-O-Si
stretching
Al-O
bending
Si-O
bending
OH
bending
FTIR spectra for (a) Na-MMT, (b) ODA-MMT, (c) DDOA-MMT and (d) C 20A
40
50
60
70
80
90
100
110
35 135 235 335 435 535 635 735
Temperature (
o
C)
Weight%(%)
(a)
(b)
(c)
(d)
TGA thermograms of (a) Na-MMT, (b) ODA-MMT, (c) C20A and (d) DDOA-MMT
Type of Clay Exchange Cation Percent of
Surfactant
Intercalated (%)
Quantity of
Water (%)
Na-MMT Na+ - 11.99
ODA-MMT C18
H37
NH3
+
14.57 9.02
DDOA-MMT (CH3
(CH2
)17
)2
N+
(CH3
)2
25.89 3.41
C 20A (CH3
)2
N+
(HT)2
18.64 3.22
Carbon content and the amount of surfactant intercalated into the clay galleries
Type of Clay
Exchange Cation C (%) Weight of
sample (mg)
Percentage
Surfactant
intercalate
(%)
Na-MMT Na+
0.513 1.919 -
ODA-MMT C18
H37
NH3
+
15.913 2.088 19.193
DDOA-MMT (CH3
(CH2
)17
)2
N+
(CH3
)2
20.455 2.060 26.552
C 20A (CH3
)2
N+
(HT)2
19.571 2.031 23.464
CHNS analyzer
Results
Preparation of PLA/PBAT blends
0
10
20
30
40
50
60
0 5 10 15 20 25 30
PBAT content (%)
TensileStrength(Mpa)
Determination of tensile strength with various PBAT content.
0
200
400
600
800
1000
1200
1400
0 5 10 15 20 25 30
PBAT content (%)
TensileModulus(Mpa)
Determination of tensile modulus with various PBAT content.
-5
0
5
10
15
20
25
30
35
40
45
0 5 10 15 20 25 30
PBAT content (%)
Elongationatbreak(%)
Elongation at break of PLA/PBAT with various PBAT content
0
5
10
15
20
25
30
35
40
45
0 5 10 15 20 25 30
PBAT content (%)
Elongationatbreak(%)
0
200
400
600
800
1000
1200
1400
TensileModulus(MPa)
Comparison of elongation at break and tensile modulus with
various PBAT content
0
100
200
300
1000200030004000
(a)
(b)
(c)
Wavenumber cm
-1
%T
2997 cm-1
Alkane stretch C – H 1750 cm-1
C = O
1081 cm-1
C – O
1450 cm-1
-CH3
bending
2953 cm-1
2996 cm-1
1749 cm-1
1714 cm-1
1450 cm-1
1450 cm-1
C = C
aromatic
1081 cm-1
1090 cm-1
FTIR spectra of (a) PLA, (b) PBAT and (c) 85PLA/15PBAT blends
0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Temperature (°C)
LossModulusG"(Pa)
PLA
PBAT
95PLA/5PBAT
85PLA/15PBAT
75PLA/25PBAT
0.00E+00
1.00E+08
2.00E+08
3.00E+08
4.00E+08
5.00E+08
6.00E+08
-50 -40 -30 -20 -10 0
Temperature (°C)
LossModulusG"(Pa)
PLA
PBAT
95PLA/5PBAT
85PLA/15PBAT
75PLA/25PBAT
Temperature dependence of G” of
PLA/PBAT with various
amount of PBAT content
0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
4.00E+09
4.50E+09
5.00E+09
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
Temperature (
o
C)
StorageModulusG'(Pa)
PLA
PBAT
95PLA/5PBAT
85PLA/15PBAT
75PLA/25PBAT
Temperature dependence of G’ of PLA/PBAT with
various amount of PBAT
(a) (b)
(c)
PBAT
SEM images of (a) PLA, (b) PBAT and (c) PLA/PBAT blends
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (days)
Waterabsorption
percentage(%)
PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT
Water absorption of PLA, PBAT, PLA/PBAT blends
with various amount of PBAT
0
2
4
6
8
10
12
0 1 2 3 4 5 6 7 8 9 10 11 12
Time (weeks)
Weightlosspercentage(%)
PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT
Weight loss percentage of PLA, PBAT, PLA/PBAT blends
with various amount of PBAT
Results
Preparation of PLA/PBAT nanocomposites
(Effect of surfactant type)
0
50
100
150
200
250
300
350
400
450
2 3 4 5 6 7 8 9 10
2θ (degree)
Intensitya.u.
(a)
(b)
(c)
(d)
XRD curve for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/C 20A,
(c) PLA/PBAT/ODA-MMT and (d) PLA/PBAT/DDOA-MMT
XRD peak and interlayer spacing of various type of clay
Type of clay
2θ (°) Interlayer
spacing (Å)
Interlayer
spacing
without
PLA/PBAT
(Å)
Shift
extant (Å)
PLA/PBAT/Na-MMT 6.42 13.67 11.85 1.82
PLA/PBAT/ODA-MMT 2.54 34.79 30.26 4.53
PLA/PBAT/DDOA-MMT 2.00 44.18 33.22 10.96
PLA/PBAT/C 20A 2.40 36.82 26.00 10.82
100020003000
(e)
(d)
(c)
(b)
(a)
Wavenumber cm
-1
%T
C - O
1081 cm-1
1082 cm-1
1083 cm-1
1083 cm-1
1083 cm-1
FTIR curve for (a) PLA/PBAT, (b) PLA/PBAT Na-MMT, (c) PLA/PBAT/C 20A,
(d) PLA/PBAT/ODA-MMT and (e) PLA/PBAT/DDOA-MMT
Hydrogen
Bonding
PLA
PBAT
CLAY
OH
Expected hydrogen bonding between the OMMT and PLA/PBAT blends
37.56
39.68
43.58
42.11
40.99
34
36
38
40
42
44
46
Organoclay
TensileStrength(MPa)
PLA/PBAT + Na-MMT + ODA-MMT + DDOA-MMT + C 20A
Tensile strength of PLA/PBAT/organoclay
1013.32
1020.02
1022.11
1021.52 1021.00
1008
1010
1012
1014
1016
1018
1020
1022
1024
Organoclay
TensileModulus(MPa)
PLA/PBAT + Na-MMT + ODA-MMT + DDOA-MMT + C 20A
Tensile modulus of PLA/PBAT/organoclay
0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
StorageModulusG'(Pa)
PLA/PBAT
PLA/PBAT/Na-MMT
PLA/PBAT/ODA-MMT
PLA/PBAT/DDOA-MMT
PLA/PBAT/C 20A
The effect of type of clay on storage modulus
0.00E+00
1.00E+08
2.00E+08
3.00E+08
4.00E+08
5.00E+08
6.00E+08
7.00E+08
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
LossModulusG"(Pa)
PLA/PBAT
PLA/PBAT/Na-MMT
PLA/PBAT/ODA-MMT
PLA/PBAT/DDOA-MMT
PLA/PBAT/C 20A
0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08
1.80E+08
2.00E+08
-30 -25 -20 -15 -10 -5 0 5 10
Temperature (
o
C)
LossModulusG"(Pa)
PLA/PBAT
PLA/PBAT/Na-MMT
PLA/PBAT/ODA-MMT
PLA/PBAT/DDOA-MMT
PLA/PBAT/C 20A
The effect of type of clay on loss modulus
Tg for different type of clay
Sample Identification Tg PLA (o
C) Tg PBAT (o
C)
PLA/PBAT 68.1 -23.0
PLA/PBAT/Na-MMT 64.3 -10.1
PLA/PBAT/ODA-MMT 62.3 -15.5
PLA/PBAT/DDOA-MMT 61.7 -12.2
PLA/PBAT/C 20A 63.4 -12.5
0
20
40
60
80
100
200 250 300 350 400 450 500 550
Temperature (o
C)
Weight%(%)
(a)
(b)
(c)
(d)
(e)
TGA curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A
(d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT
-22
-17
-12
-7
-2
200 250 300 350 400 450 500 550
Temperature (o
C)
DerivativesWeight%(%/m)
(a)
(b)
(c)
(d)
(e)
DTG curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A,
(d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT
The thermal degradation for PLA/PBAT and PLA/PBAT/nanocomposites
with various type of clay
Sample
Tonset
(o
C) T50
(ºC) Tmax
(ºC)
PLA/PBAT 275.39 318.78 321.52
PLA/PBAT/Na-MMT 286.71 325.27 329.38
PLA/PBAT/ C 20A 300.36 332.13 334.93
PLA/PBAT/DDOA-MMT 307.52 334.19 335.37
PLA/PBAT/ ODA-MMT 310.36 336.09 336.98
(a) (b)
(c) (d)
SEM images of (a) PLA/PBAT/ODA-MMT, (b) PLA/PBAT/DDOA-MMT,
(c) PLA/PBAT/C 20A and (d) PLA/PBAT/Na-MMT
(a) (b)
(c) (d)
200 nm200 nm
200 nm 200 nm
TEM images for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/ODA-MMT,
(c) PLA/PBAT/DDOA-MMT and (d) PLA/PBAT/C 20A (Magnification 10000x)
0
0.5
1
1.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (days)
Waterabsorption
percentage(%)
PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT
PLA/PBAT/DDOA-MMT PLA/PBAT/C20A
Water absorption percentage of PLA/PBAT incorporation with different type of clay
Percentage water uptake PLA/PBAT incorporation with different type of clay
Time (days)
Sample 0 2 4 8 16
PLA/PBAT 0 1.22 1.45 1.45 1.45
PLA/PBAT/Na-MMT 0 1.32 1.51 1.52 1.52
PLA/PBAT/ODA-MMT 0 1.20 1.44 1.44 1.44
PLA/PBAT/DDOA-MMT 0 1.21 1.45 1.45 1.45
PLA/PBAT/C 20A 0 1.21 1.44 1.44 1.44
0
2
4
6
8
10
12
14
16
0 2 4 6 8 10 12
Time (weeks)
Weightlosspencentage(%)
PLA/PBAT PLA/PBAT/Na-MMT
PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT
PLA/PBAT/C 20A
Weight loss percentage of PLA/PBAT incorporation with different type of clay
Percentage weight loss PLA/PBAT incorporation with different type of clay
Time (weeks)
Samples 0 3 6 9 12
PLA/PBAT 0.00 2.33 2.52 2.69 2.76
PLA/PBAT/Na-MMT 0.00 2.39 2.62 2.75 2.82
PLA/PBAT/ODA-MMT 0.00 2.23 3.77 5.63 8.41
PLA/PBAT/DDOA-MMT 0.00 2.03 3.56 5.25 7.96
PLA/PBAT/C 20A 0.00 2.00 3.56 4.81 7.62
Results
Preparation of PLA/PBAT nanocomposites
(Effect of clay loading)
0
50
100
150
200
250
300
2 3 4 5 6 7 8 9 10
2θ (degree)
Intensity,a.u.
PLA/PBAT/0.1 Na-MMT
PLA/PBAT/0.3 Na-MMT
PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT
PLA/PBAT/3.0 Na-MMT
6.02°
6.42°
XRD patterns of PLA/PBAT/Na-MMT
0
50
100
150
200
250
300
350
400
2 3 4 5 6 7 8 9 10
2θ (degree)
Intensity,a.u.
PLA/PBAT/0.1 ODA-MMT
PLA/PBAT/0.3 ODA-MMT
PLA/PBAT/0.6 ODA-MMT
PLA/PBAT/1.0 ODA-MMT
PLA/PBAT/3.0 ODA-MMT
2.76°
2.54°
XRD pattern of PLA/PBAT/ODA-MMT nanocomposites
Table of interlayer spacing with different type and clay content
Type of nanocomposites Clay content (wt%) 2θ (°) Interlayer spacing (Å)
PLA/PBAT/Na-MMT 0.1 - -
0.3 - -
0.6 - -
1.0 6.02o
14.68Å
3.0 6.42o
13.77Å
PLA/PBAT/ODA-MMT 0.1 - -
0.3 - -
0.6 - -
1.0 2.76o
32.01Å
3.0 2.54o
34.79Å
35
36
37
38
39
40
41
42
43
44
45
0 0.5 1 1.5 2 2.5 3
Clay Content (wt%)
TensileStrength(MPa)
PLA/PBAT+ODA-MMT
PLA/PBAT+Na-MMT
Tensile strength of PLA/PBAT/Organoclay composites
1012
1014
1016
1018
1020
1022
1024
0 0.5 1 1.5 2 2.5 3
Clay Content (wt%)
TensileModulus(MPa)
PLA/PBAT+ODA-MMT
PLA/PBAT+Na-MMT
Tensile modulus of PLA/PBAT/Organoclay composites
0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
StorageModulusG'(Pa)
PLA/PBAT
PLA/PBAT/0.1 Na-MMT
PLA/PBAT/0.3 Na-MMT
PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT
PLA/PBAT/3.0 Na-MMT
The G’ as the function of temperature for PLA/PBAT/Na-MMT
0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
StorageModulusG'(Pa)
PLA/PBAT
PLA/PBAT/0.1 ODA-MMT
PLA/PBAT/0.3 ODA-MMT
PLA/PBAT/0.6 ODA-MMT
PLA/PBAT/1.0 ODA-MMT
PLA/PBAT/3.0 ODA-MMT
The G’ as the function of temperature for PLA/PBAT/ODA-MMT
0.00E+00
1.00E+08
2.00E+08
3.00E+08
4.00E+08
5.00E+08
6.00E+08
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
LossModulusG"(Pa)
PLA/PBAT
PLA/PBAT/0.1 Na-MMT
PLA/PBAT/0.3 Na-MMT
PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT
PLA/PBAT/3.0 Na-MMT
The G” as the function of temperature for PLA/PBAT/Na-MMT
0.00E+00
1.00E+08
2.00E+08
3.00E+08
4.00E+08
5.00E+08
6.00E+08
-50 -30 -10 10 30 50 70 90
Temperature (
o
C)
LossModulusG"(Pa)
PLA/PBAT
PLA/PBAT/0.1 ODA-MMT
PLA/PBAT/0.3 ODA-MMT
PLA/PBAT/0.6 ODA-MMT
PLA/PBAT/1.0 ODA-MMT
PLA/PBAT/3.0 ODA-MMT
The G” as the function of temperature for PLA/PBAT/ODA-MMT
Tg at different clay loading
Sample Identification Tg PLA (o
C) Tg PBAT (o
C)
PLA/PBAT 68.1 -23.0
PLA/PBAT/0.1 Na-MMT
PLA/PBAT/0.3 Na-MMT
PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT
PLA/PBAT/3.0 Na-MMT
57.6
59.3
59.8
64.3
60.8
-14.6
-10.7
-15.1
-10.1
-14.2
PLA/PBAT/0.1ODA-MMT
PLA/PBAT/0.3ODA-MMT
PLA/PBAT/0.6ODA-MMT
PLA/PBAT/1.0ODA-MMT
PLA/PBAT/3.0ODA-MMT
59.9
65.4
63.2
62.3
58.3
-15.1
-14.6
-9.6
-15.5
-13.6
0
20
40
60
80
100
200 250 300 350 400 450 500 550
Temperature (o
C)
Weight%(%)
(a)
(b)
(c)
(d)
TGA thermograms of PLA/PBAT/Na-MMT (a) 0.3 wt% (b) 1.0 wt% and
(c) 3.0 wt% of Na-MMT
0
20
40
60
80
100
200 250 300 350 400 450 500 550
Temperature (o
C)
Weight%(%)
(a)
(b) (c)
(d)
TGA thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt%
(c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT
-22
-17
-12
-7
-2
200 250 300 350 400 450 500 550
Temperature (o
C)
DerivativesWeight%(%/m)
(a)
(b)
(c)
(d)
DTG thermograms of (a) PLA/PBAT, PLA/PBAT/Na-MMT (b) 0.3 wt%,
(c) 1.0 wt% and (d) 3.0 wt% of Na-MMT
-22
-17
-12
-7
-2
200 250 300 350 400 450 500 550
Temperature (o
C)
DerivativesWeight%(%/m)
(a)
(b)
(c)
(d)
DTG thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt%
(c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT
Thermal degradation for PLA/PBAT/Na-MMT and PLA/PBAT/ODA-MMT
with various clay content
Type of clay Clay content (wt
%)
Tonset
(o
C) T50
(°C) Tmax
(°C)
PLA/PBAT 0.0 275.39 318.78 321.52
Na-MMT 0.3 284.97 319.68 320.43
1.0 286.71 325.27 329.38
3.0 299.71 330.27 332.38
ODA-MMT 0.3 308.57 333.60 334.56
1.0 310.36 336.09 336.93
3.0 315.17 343.22 345.585
0
0.5
1
1.5
0 2 4 6 8 10 12 14 16 18
Time (days)
Waterabsorption
percentage(%)
PLA/PBAT PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT
Water absorption percentage of PLA/PBAT/Na-MMT at various clay loading
0
0.5
1
1.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (days)
Waterabsorption
percentage(%)
PLA/PBAT PLA/PBAT/0.6 ODA-MMT
PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT
Water absorption percentage of PLA/PBAT/ODA-MMT at various clay loading
Water absorption percentage of all samples at various clay loading
Time (days)
Samples 0 2 4 8 16
PLA/PBAT 0 1.20 1.44 1.44 1.44
PLA/PBAT/0.6 Na-MMT 0 1.32 1.51 1.52 1.52
PLA/PBAT/1.0 Na-MMT 0 1.35 1.54 1.54 1.54
PLA/PBAT/3.0 Na-MMT 0 1.38 1.55 1.55 1.55
PLA/PBAT/0.6 ODA-MMT 0 1.22 1.45 1.45 1.45
PLA/PBAT/1.0 ODA-MMT 0 1.26 1.47 1.47 1.47
PLA/PBAT/3.0 ODA-MMT 0 1.29 1.49 1.49 1.49
0
5
10
15
20
0 1 2 3 4 5 6 7 8 9 10 11 12
Time (weeks)
Weightlosspercentage
(%)
PLA/PBAT PLA/PBAT/0.6 Na-MMT
PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT
Figure 4.45: Weight loss percentage of PLA/PBAT/Na-MMT at various clay loading
0
2
4
6
8
10
0 1 2 3 4 5 6 7 8 9 10 11 12
Time (weeks)
Weightlosspercentage(%)
PLA/PBAT PLA/PBAT/0.6 ODA-MMT
PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT
Weight loss percentage of PLA/PBAT/ODA-MMT at various clay loading
Weight loss percentage of all samples at various clay loading
Time (weeks)
Samples 0 3 6 9 12
PLA/PBAT 0.00 1.71 3.13 4.51 7.14
PLA/PBAT/0.6 Na-MMT 0.00 2.22 3.42 6.12 10.52
PLA/PBAT/1.0 Na-MMT 0.00 2.61 4.32 9.34 13.53
PLA/PBAT/3.0 Na-MMT 0.00 3.11 5.24 10.61 15.72
PLA/PBAT/0.6 ODA-MMT 0.00 1.89 3.37 4.86 7.49
PLA/PBAT/1.0 ODA-MMT 0.00 2.23 3.77 5.63 8.41
PLA/PBAT/3.0 ODA-MMT 0.00 2.57 4.29 6.11 8.69
•Two types of organoclays (ODA-MMT and DDOA-MMT) were successfully prepared
through ion exchange technique from Na-MMT (FTIR, XRD, TGA and elemental
analyzer).
•PLA/PBAT blends at different PBAT content were successfully prepared using melt
blending technique (Tensile testing, FTIR, DMA, SEM, water absorption and
biodegradability).
•PLA/PBAT/composites/nanocomposites at different type of clay were successfully
prepared using melt blending technique (XRD, FTIR, tensile testing, DMA, TGA,
SEM, TEM, water absorption and biodegradability).
•PLA/PBAT/composites/nanocomposites at different clay content were successfully
prepared using melt blending technique (XRD, tensile testing, DMA, TGA, water
absorption and biodegradability).
Conclusion
References
• Abacha, N., Kubouchi, M., Tsuda, K. and Sakai. T. (2007). Performance of epoxy-nanocomposite under
corrosive environment. Express Polymer Letters 1(6) : 364-369.
• Akelah, A., Kelly, P., Qutubuddin, S. and Moet, A. (1994). Synthesis and characterization of epoxyphilic
montmorillonites, Clay Mineral. 29 : 169-178.
• Akelah, A. (1995). Nanocomposites of grafted polymer onto layered silicate. In polymer and other
advance material: Emerging technologies and business opportunities. Plenum Press. New York : 625-
644.
• Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties
and uses of a new class of materials. Material Science Engineering Reports, 28(1–2): 1–63.
• Aminabhavi, T.M., Balundgi, R.H. and Cassidi, P.E. (1990). Review on biodegradable plastics. Polymer
Plastic Technology and Engineering. 29(3) : 235-262.
• Anderson, K.S. and Hillmyer, M.A. (2004). The influence of block copolymer microstructure on the
toughness of compatibilized polylactide/polyethylene blends. Polymer. 45 : 8809–8823.
• Auras, R., Harte B. and Selke, S. (2004). An overview of polylactides as packaging materials.
Macromolecular Bioscience. 4(9) : 835–864.
• Averous, L. (2004). Biodegradable multiphase systems based on plasticized starch: A review. Journal of
Macromolecule Science Polymer Review. 44 : 231-274.
•Aziz, S.H. and Ansell, M.P. (2004). The effect of alkalization and fibre alignment on the mechanical and
thermal properties of kenaf and hemp bast fibre composites: Part 1 – Polyester resin matrix. Composites
Science Technology. 64 : 1219-1230.
•Bala, P., Samantaray, B.K. and Srivastava, S.K. (2000). Synthesis and characterization of Na-
montmorillonite-alkylammonium intercalated compound. Material Research Bulletin. 35 : 1717-1724.
•Balek, V., Benes, M., Malek, Z., Matuschek, G., Kettrup, A. and Yariv, S. (2006). Emanation thermal analysis
study of Na-montmorillonite and montmorillonite saturated with various cations. Journal of Thermal
Analysis and Calorimetry. 83 : 617.
•Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006). Handbook of Clay Science, First Edition. Elsevier.
•Bhatia, A., Gupta, R.K., Bhattacharya, S.N. and Choi, H. J. (2007). Compatibility of biodegradable poly (lactic
acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Australia Rheology
Journal. 19(3) : 125-131.
•Becker, O., Cheng, Y.B., Varley, R. J. and Simon, G.P. (2003). Layered silicate nanocomposites based on
various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical
properties, and free volume. Macromolecules. 36 : 1616-1625.
•Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Samboulis, A., Shenderovick, I.
and Limbach, H. (2002). Surface characterization of flax, hemp, and cellulose fibers; Surface properties and
the water uptake behavior. Polymer Composites. 23(5) : 872-894.
•Biswas, M. and Sinha Ray, S. (2001). Recent progress in synthesis and evaluation of polymer–
montmorillonite nanocomposites. Advances in Polymer Science. 155 : 167–221.
•Blumstein, A. (1961). Etude des polymerizations en couche absorbee 1. Bulletin de la Societe Chimique de
France. 899-905.
•Bordes, P., Pollet, E. and Averous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay
systems. Progress in Polymer Science. 34 : 125-155.
•Bray, H.J. and Redfern, S.A.T. (1999). Kinetics of gehydration of Ca-montmorillonite. Physical Chemical
Minerals. 26 : 591.
•Bulakh, N., Kulkarni, S.M., Jog, J.P. and Chaudhari R.V. (2003). Preparation and characterization of
polyketone/clay nanocomposites. Journal of Macromolecular Science: Part B: Physics. 42 (5) : 963-973.
•Calcagno, C.I.W., Mariani, C.M., Teixeira S.R. and Mauler, R.S. (2007). The role of the MMT on the
morphology and mechanical properties of the PP/PET blends. Composites Science and Technology. 68(10-11)
: 2193-2200.
•Capkova, P., Pospisil, M., Valaskova, M., Merinska, D., Trchovad, M., Sedlakovad, Z., Weiss, Z. and Simonik,
J. (2006). Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling,
diffraction, IR spectroscopy. Journal of Colloid and Interface Science. 300 : 264–269.
•Chandra, R. and Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science. 23 : 1273-1335.
•Chen, C.C., Chueh, J.Y., Tseng, H., Huang H.M. and Lee, S.Y. (2003). Preparation and characterization of
biodegradable PLA polymeric blends. Biomaterials. 24(7) : 1167-1173.
•Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Aposlotov, A.A. and Ishiaku, U.S. (2003). Compatibilizing
effect of maleated polyproplene on the mechanical properties and morphology of injection moulded
polyamida 6/polypropylene/organoclay nanocomposites. Polymer. 44 : 7427-7440.
•Correlo, V.M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N.M. and Reis, R. L. (2007). Water
absorption and biodegradation characteristics of chitosan-based polyesters and hydroxyapatite composites.
Macromolecular Bioscience. 7 : 354-363.
•De Paiva, L.B., Morales, A.R. and Valenzuela Díaz, F.R. (2008). Organoclays: Properties, preparation and
applications. Applied Clay Science. (42) : 8-24.
•Delozier, D.M., Orwoll, R.A., Cahoon, J.F. Johnson, N.J., Smith Jr, J.G. and Conwell, J.W. (2002). Preparation
and characterization of polyamide/organoclay nanocomposites. Polymer. 43 : 813-822.
•Eubeler J.P., Bernhard M. and Knepper T.P. (2010). Environmental biodegradation of synthetic polymers II.
Biodegradation of different polymer groups. Trends in Analytical Chemistry. 29(1) : 84-100.
•Errco, M.E. (1999). Polymethylmethacrylate-modified biocompatible polyesters. Current Trends Polymer
Science. 4 : 1-26.
•Fan, J., Liu, S., Chen, G. and Qi, Z. (2002). SEM study of a polystyrene/clay nanocomposite. Journal of
Applied Polymer Science. 83 : 66-69.
•Fischer, H. R., Gielgens, L. H. and Koster, T. P. M. (1999). Nanocomposites from polymers and layered
minerals. Acta Polymerica. 50(4) : 122–126.
•Feijoo, J. L., Cabedo, L., Gim E Nez, E., Lagaron, J. M. and Saura, J. J. (2005). Development of amorphous
PLA-montmorillonite nanocomposites. Journal of Materials Science. 40 : 1785-1788.
•Fornes, T.D., Yoon, P.J., Keskkula, H. and Poul, D.R. (2001). Nylon 6 nanocomposites: The effect of matrix
molecular weight. Polymer. 42 : 9929-9940.
•Fornes, T.D., Yoon, P.J., Hunter, D.L., Keskkula, H. and Paul, D.R. (2002). Effect of organoclay structure on
nylon 6 nanocomposite morphology and properties. Polymer. 43 : 5915-5933.
•Fu, X. and Qutubuddin, S. (2001). Polymer–clay nanocomposites: Exfoliation of organophilic
montmorillonite nanolayers in polystyrene. Polymer. 42(2) : 807-813.
•Fukushima, K., Tabuani, D. and Camino, G. (2009). Nanocomposites of PLA and PCL based on
montmorillonite and sepiolite. Materials Science and Engineering C. 29 : 1433-1441.
•Gajria, A.M. Dave, V.Gross, R.A. and McCarthy, S.P. (1996). Miscibility and biodegradability of blends of
poly(lactic acid) and poly(vinyl acetate). Polymer. 37(3) : 437-444.
•Giannelis, E.P., Krishnamoorti, R. and Manias E. (1999). Polymer-Silicate Nanocomposites: Model system
for confined polymer and polymer brushes. Advance in Polymer Science. 138 : 108-143.
•Gilman, J.W. (1999). Flamibility and thermal stability studies of polymer-layered silicate (clay)
nanocomposites. Applied Clay Science. 15 : 31-49.
•Gilnian, J. W., Kashivagi, T. C. L., Giannelis, E. P., Manias, E., Lomakin, S. and Lichtenhan, J. D. (1998). Fire
retardancy of polymers. Cambridge: Royal Society of Chemistry.
•Greene, J. (2007). Biodegradation of compostable plastics in green yard-waste compost environment.
Journal of Polymers and the Environment. 15(4) : 269-273.
•Grijpma, D. W., Zondervan, G. J. and Pennings, A. (1991). High molecular weight copolymers of L-lactide
and c-caprolactone as biodegradable elastomeric implant materials. Polymer Bulletin. 25 : 327-333.
•Gu, J.D. Gu, D.T. Eberiel, S.P. McCarthy and R.A. Gross, (1993). Cellulose acetate biodegradability upon
exposure to stimulated aerobic composting and anaerobic bioreactor environments. Journal of
Environmental Polymer Biodegradation. 1 : 143–153.
•Gu, S.Y., Zhang, K., Ren, J. and Zhan, H. (2008). Melt rheology of polylactic acid/ poly(butylene adipate-co-
terephthalate) blends. Carbohydrate Polymers. 74: 79-85.
•He, Y., Zhu, B. and Inoue Y. (2004). Hydrogen bonds in polymer blends. Progress in Polymer Science. 29 :
1021-1051.
•Herrera, R., Franco, L., Rodriguez-Galan, A. and Puiggali, J. (2002). Characterization and biodegradation
behavior of poly(butylene adipate-co-terephtalate)s. Journal of Polymer Science: Part A- Polymer Chemistry.
40 : 4141-4157.
•Hiljanen-V.M., Karjalainen, T. and Seppala, J. V. (1996). Biodegradable lactone copolymers. 1.
Characterization and mechanical behavior of 8-caprolactone and lactide copolymers. Journal of Applied
Polymer Science. 59 : 1281-1288.
•Hiljanen V.M., Orava, P. A. and Seppala, J. V. (1997). Properties of epsilon-caprolactone/DL-lactide (epsilon-
CL/DL-LA) copolymers with a minor epsilon-CL content. Journal of Biomedical Materials Research. 34 : 39-46.
•Huang, X. and Brittain, W.J. (2001). Synthesis and characterization of PMMA nanocomposites by
suspension and emulsion polymerization. Macromolecules. 34(10) : 3255-3260
•Jang, W. Y., Shin, B.Y., Lee, T.J. and Narayan R. (2007).Thermal properties and morphology of biodegradable
PLA/starch compatibilized blends. Journal of Industrial and Engineering Chemistry. 13(3) : 457-464.
•Jiang, L., Wolcott, M. P. and Zhang, J. (2006). Study of biodegradable polylactide/poly(butylenes adipate-
co-terephthalate) blends. Biomacromolecules. 7(1) : 199-207.
•Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf M.A. and Jasiuk, I. (2005). Experimental trends in polymer
nanocomposites: A review. Materials Science and Engineering A. 393(1-2) : 1-11.
•Kager-Kocsis, J. (2004). Thermoset rubber/layered silicate nanocomposites: Status and future trends.
Polymer Engineering and Science. 44 : 1083-1093.
Thank you
Preparation and characterization of pla pbat organoclay composites

More Related Content

What's hot

Crystallinity in polymers
Crystallinity in polymers Crystallinity in polymers
Crystallinity in polymers Manjinder Singh
 
Polyethylene (PE)
Polyethylene (PE)Polyethylene (PE)
Polyethylene (PE)Kamal Batra
 
Plastic waste management- Conventional and New Technology
Plastic waste management- Conventional and New TechnologyPlastic waste management- Conventional and New Technology
Plastic waste management- Conventional and New Technologyrmeena99
 
Arlene Films Flexible Packaging
Arlene Films Flexible PackagingArlene Films Flexible Packaging
Arlene Films Flexible PackagingHenky Wibawa
 
Phenolic and amino resins
Phenolic and amino resinsPhenolic and amino resins
Phenolic and amino resinsmohammed rida
 
Polyurethane-structure,types,properties,preparation,application
Polyurethane-structure,types,properties,preparation,applicationPolyurethane-structure,types,properties,preparation,application
Polyurethane-structure,types,properties,preparation,applicationEmayavarambanA
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable PolymersSaurabh Shukla
 
Compatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blendsCompatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blendsjeff jose
 
Styrene butadiene rubber
Styrene butadiene rubberStyrene butadiene rubber
Styrene butadiene rubberKareem Tharaa
 
Poly lactic acid & collagen fiber
Poly lactic acid & collagen fiberPoly lactic acid & collagen fiber
Poly lactic acid & collagen fibersushilahooda
 
PULP MAKING PROCESS.pptx
PULP MAKING PROCESS.pptxPULP MAKING PROCESS.pptx
PULP MAKING PROCESS.pptxElvisKirui2
 
Composites Flame Retardant
Composites Flame RetardantComposites Flame Retardant
Composites Flame Retardantvchapuis
 
Polyester - A Speciality Polymer
Polyester - A Speciality PolymerPolyester - A Speciality Polymer
Polyester - A Speciality PolymerRomaan Sheikh
 
Styrene Butadiene Rubber
Styrene Butadiene RubberStyrene Butadiene Rubber
Styrene Butadiene RubberShaukat Ali
 

What's hot (20)

Crystallinity in polymers
Crystallinity in polymers Crystallinity in polymers
Crystallinity in polymers
 
Polymerization techniques
Polymerization techniquesPolymerization techniques
Polymerization techniques
 
Flame Retardants
Flame RetardantsFlame Retardants
Flame Retardants
 
Polyethylene (PE)
Polyethylene (PE)Polyethylene (PE)
Polyethylene (PE)
 
Plastic waste management- Conventional and New Technology
Plastic waste management- Conventional and New TechnologyPlastic waste management- Conventional and New Technology
Plastic waste management- Conventional and New Technology
 
Pva
PvaPva
Pva
 
Arlene Films Flexible Packaging
Arlene Films Flexible PackagingArlene Films Flexible Packaging
Arlene Films Flexible Packaging
 
Phenolic and amino resins
Phenolic and amino resinsPhenolic and amino resins
Phenolic and amino resins
 
Polyurethane-structure,types,properties,preparation,application
Polyurethane-structure,types,properties,preparation,applicationPolyurethane-structure,types,properties,preparation,application
Polyurethane-structure,types,properties,preparation,application
 
Biodegradable Polymers
Biodegradable PolymersBiodegradable Polymers
Biodegradable Polymers
 
Compatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blendsCompatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blends
 
Polymer composites
Polymer compositesPolymer composites
Polymer composites
 
Styrene butadiene rubber
Styrene butadiene rubberStyrene butadiene rubber
Styrene butadiene rubber
 
Poly lactic acid & collagen fiber
Poly lactic acid & collagen fiberPoly lactic acid & collagen fiber
Poly lactic acid & collagen fiber
 
PULP MAKING PROCESS.pptx
PULP MAKING PROCESS.pptxPULP MAKING PROCESS.pptx
PULP MAKING PROCESS.pptx
 
Composites Flame Retardant
Composites Flame RetardantComposites Flame Retardant
Composites Flame Retardant
 
Polyester - A Speciality Polymer
Polyester - A Speciality PolymerPolyester - A Speciality Polymer
Polyester - A Speciality Polymer
 
Styrene Butadiene Rubber
Styrene Butadiene RubberStyrene Butadiene Rubber
Styrene Butadiene Rubber
 
Modern Fibres
Modern FibresModern Fibres
Modern Fibres
 
Polymer foams
Polymer foamsPolymer foams
Polymer foams
 

Viewers also liked

A prospective trial of poly l-lactic /cosmetic dentistry courses
A prospective trial of poly l-lactic /cosmetic dentistry coursesA prospective trial of poly l-lactic /cosmetic dentistry courses
A prospective trial of poly l-lactic /cosmetic dentistry coursesIndian dental academy
 
ORGANICALLY MODIFIED LAYERED CLAYS LATEX STAGE MIXING MELT MIXING
ORGANICALLY MODIFIED LAYERED CLAYS    LATEX STAGE MIXING    MELT MIXINGORGANICALLY MODIFIED LAYERED CLAYS    LATEX STAGE MIXING    MELT MIXING
ORGANICALLY MODIFIED LAYERED CLAYS LATEX STAGE MIXING MELT MIXINGArjun K Gopi
 
Accenture innovation awards 2011 - Consumer Products & Agri -concept - Synterra
Accenture innovation awards 2011 - Consumer Products & Agri -concept - SynterraAccenture innovation awards 2011 - Consumer Products & Agri -concept - Synterra
Accenture innovation awards 2011 - Consumer Products & Agri -concept - SynterraAccenture the Netherlands
 
Corbion Bioplastics EUBP 2105 - for publishing
Corbion Bioplastics EUBP 2105 - for publishingCorbion Bioplastics EUBP 2105 - for publishing
Corbion Bioplastics EUBP 2105 - for publishingHugo Vuurens
 
Applications of Poly (lactic acid) in Tissue Engineering and Delivery Systems
Applications of Poly (lactic acid) in Tissue Engineering and Delivery SystemsApplications of Poly (lactic acid) in Tissue Engineering and Delivery Systems
Applications of Poly (lactic acid) in Tissue Engineering and Delivery SystemsAna Rita Ramos
 
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...Ana Rita Ramos
 
Small & Medium Scale Industries (Biotechnology Products)
Small & Medium Scale Industries (Biotechnology Products) Small & Medium Scale Industries (Biotechnology Products)
Small & Medium Scale Industries (Biotechnology Products) Ajjay Kumar Gupta
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix compositesHiep Tran
 
Composites in dentistry /certified fixed orthodontic courses by Indian denta...
Composites in dentistry  /certified fixed orthodontic courses by Indian denta...Composites in dentistry  /certified fixed orthodontic courses by Indian denta...
Composites in dentistry /certified fixed orthodontic courses by Indian denta...Indian dental academy
 
Production of lactic acid and acidic acid
Production of lactic acid and acidic acidProduction of lactic acid and acidic acid
Production of lactic acid and acidic acidTHILAKAR MANI
 
1 plastic materials
1 plastic materials1 plastic materials
1 plastic materialsmanishrdtata
 
Fabrication of composite leaf spring
Fabrication of composite  leaf springFabrication of composite  leaf spring
Fabrication of composite leaf springPratik Gandhi
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix compositesDr. Ramesh B
 

Viewers also liked (17)

e-catalog
e-cataloge-catalog
e-catalog
 
A prospective trial of poly l-lactic /cosmetic dentistry courses
A prospective trial of poly l-lactic /cosmetic dentistry coursesA prospective trial of poly l-lactic /cosmetic dentistry courses
A prospective trial of poly l-lactic /cosmetic dentistry courses
 
Session 18 ic2011 ding
Session 18 ic2011 dingSession 18 ic2011 ding
Session 18 ic2011 ding
 
ORGANICALLY MODIFIED LAYERED CLAYS LATEX STAGE MIXING MELT MIXING
ORGANICALLY MODIFIED LAYERED CLAYS    LATEX STAGE MIXING    MELT MIXINGORGANICALLY MODIFIED LAYERED CLAYS    LATEX STAGE MIXING    MELT MIXING
ORGANICALLY MODIFIED LAYERED CLAYS LATEX STAGE MIXING MELT MIXING
 
Accenture innovation awards 2011 - Consumer Products & Agri -concept - Synterra
Accenture innovation awards 2011 - Consumer Products & Agri -concept - SynterraAccenture innovation awards 2011 - Consumer Products & Agri -concept - Synterra
Accenture innovation awards 2011 - Consumer Products & Agri -concept - Synterra
 
Corbion Bioplastics EUBP 2105 - for publishing
Corbion Bioplastics EUBP 2105 - for publishingCorbion Bioplastics EUBP 2105 - for publishing
Corbion Bioplastics EUBP 2105 - for publishing
 
Applications of Poly (lactic acid) in Tissue Engineering and Delivery Systems
Applications of Poly (lactic acid) in Tissue Engineering and Delivery SystemsApplications of Poly (lactic acid) in Tissue Engineering and Delivery Systems
Applications of Poly (lactic acid) in Tissue Engineering and Delivery Systems
 
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...
APPLICATIONS OF PLA - POLY (LACTIC ACID) IN TISSUE ENGINEERING AND DELIVERY S...
 
Small & Medium Scale Industries (Biotechnology Products)
Small & Medium Scale Industries (Biotechnology Products) Small & Medium Scale Industries (Biotechnology Products)
Small & Medium Scale Industries (Biotechnology Products)
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
 
Acetic acid
Acetic acidAcetic acid
Acetic acid
 
Composites in dentistry /certified fixed orthodontic courses by Indian denta...
Composites in dentistry  /certified fixed orthodontic courses by Indian denta...Composites in dentistry  /certified fixed orthodontic courses by Indian denta...
Composites in dentistry /certified fixed orthodontic courses by Indian denta...
 
Production of lactic acid and acidic acid
Production of lactic acid and acidic acidProduction of lactic acid and acidic acid
Production of lactic acid and acidic acid
 
1 plastic materials
1 plastic materials1 plastic materials
1 plastic materials
 
Fillers in composite resins
Fillers in composite resinsFillers in composite resins
Fillers in composite resins
 
Fabrication of composite leaf spring
Fabrication of composite  leaf springFabrication of composite  leaf spring
Fabrication of composite leaf spring
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
 

Similar to Preparation and characterization of pla pbat organoclay composites

Presentation paper id 11-14
Presentation paper id 11-14Presentation paper id 11-14
Presentation paper id 11-14Monjurul Shuvo
 
Poulose et al-2015-polymer_composites
Poulose et al-2015-polymer_compositesPoulose et al-2015-polymer_composites
Poulose et al-2015-polymer_compositesKing Saud University
 
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...IRJET Journal
 
TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6Shanshan Cheng
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Hamid Arandiyan
 
ETISE 2020.ppt
ETISE 2020.pptETISE 2020.ppt
ETISE 2020.pptAnand Anil
 
heavy metal removal from wastewater
heavy metal removal from wastewaterheavy metal removal from wastewater
heavy metal removal from wastewaterDr. Preeti Pal
 
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...OECD Environment
 
Slide Proposal Presentation.pdf
Slide Proposal Presentation.pdfSlide Proposal Presentation.pdf
Slide Proposal Presentation.pdfJALIMIEABDULJALIL
 
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...IRJET Journal
 
ASCE TEXAS 2013 centennial
ASCE TEXAS 2013 centennialASCE TEXAS 2013 centennial
ASCE TEXAS 2013 centennialBijoy K. Halder
 
adsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsadsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsSiti Nadzifah Ghazali
 
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2Agnes Zoller
 
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...Marius Murariu
 
Chap 6b nanocomposites (1)
Chap 6b nanocomposites (1)Chap 6b nanocomposites (1)
Chap 6b nanocomposites (1)Onur AGDACI
 
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...IRJET Journal
 

Similar to Preparation and characterization of pla pbat organoclay composites (20)

Presentation paper id 11-14
Presentation paper id 11-14Presentation paper id 11-14
Presentation paper id 11-14
 
Poulose et al-2015-polymer_composites
Poulose et al-2015-polymer_compositesPoulose et al-2015-polymer_composites
Poulose et al-2015-polymer_composites
 
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...
IRJET- Study on Mechanical and Structural Properties of Geopolymer Concrete M...
 
TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6TRAC Project Workshop 2 Presentation 6
TRAC Project Workshop 2 Presentation 6
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
 
ETISE 2020.ppt
ETISE 2020.pptETISE 2020.ppt
ETISE 2020.ppt
 
heavy metal removal from wastewater
heavy metal removal from wastewaterheavy metal removal from wastewater
heavy metal removal from wastewater
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...
OECD Webinar | Assessing the dispersion stability and dissolution (rate) of n...
 
Slide Proposal Presentation.pdf
Slide Proposal Presentation.pdfSlide Proposal Presentation.pdf
Slide Proposal Presentation.pdf
 
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...
AN EXPERIMENTAL STUDY ON CONCRETE CONTAINING META KAOLIN WITH HD PET THERMOPL...
 
Bami l i 2018 kiru tech seminor
Bami l i 2018 kiru tech seminorBami l i 2018 kiru tech seminor
Bami l i 2018 kiru tech seminor
 
ASCE TEXAS 2013 centennial
ASCE TEXAS 2013 centennialASCE TEXAS 2013 centennial
ASCE TEXAS 2013 centennial
 
Presentation_(B4-1).pdf
Presentation_(B4-1).pdfPresentation_(B4-1).pdf
Presentation_(B4-1).pdf
 
adsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsadsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeads
 
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2
POSTER GRANADA 2 MARCILLA ZOLLER BELTRAN v final2
 
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...
GOING “GREEN” IN ENGINEERING APPLICATIONS: POLYLACTIDE (PLA) - CaSO4 COMPOSIT...
 
Chap 6b nanocomposites (1)
Chap 6b nanocomposites (1)Chap 6b nanocomposites (1)
Chap 6b nanocomposites (1)
 
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...
IRJET-Experimental Study on Corn Cob Ash Powder as Partial Replacement of Cem...
 
2022 CalAPA Spring Educational Workshop presentation on mix design
2022 CalAPA Spring Educational Workshop presentation on mix design2022 CalAPA Spring Educational Workshop presentation on mix design
2022 CalAPA Spring Educational Workshop presentation on mix design
 

Recently uploaded

_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Recently uploaded (20)

_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Preparation and characterization of pla pbat organoclay composites

  • 1. PREPARATION AND CHARACTERIZATION OF POLY(LACTIC ACID)/POLY(BUTYLENE ADIPATE-CO-THEREPTHTHALATE) NANOCOMPOSITES by Mohd Junaedy Osman (GS21850) Dr Nor Azowa Ibrahim Prof Dato’ Dr Wan Md Zin Wan Yunus Dr Jamaliah Sharif (Nuclear Agency Malaysia)
  • 2. Introduction. • Environmental problem has been arising ever since the usage of plastic was introduced. For this reason, there is an urgent need to study and to develop renewable source-based biopolymers (able to degrade via a natural composting process). • One of the ways to diminish the effect of these problems was to use biodegradable polymer or also called Green Polymer.
  • 3. Poly(lactic acid) (PLA) • PLA is a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, (corn starch or sugarcanes). • Standard grade PLA has high modulus and strength comparable to that many petroleum based plastics (brittle). PLA monomer
  • 4. Poly(butylene adipate-co-therephtlate) (PBAT) • PBAT (Ecoflex ) is an aliphatic-aromatic copolyester, which is fully biodegradable. (Jiang et al. 2006). • It is a flexible plastic designed for film extrusion and extrusion coating. PBAT monomer.
  • 5. Objectives. • To prepare organoclay through ion exchange technique process with various type of alkyl ammonium ion. • To characterize the organoclay produced. • To study the effect of adding PBAT on the mechanical and thermal properties of PLA/PBAT nanocomposites. • To investigate the effect of organoclay on mechanical, thermal and morphology of PLA/PBAT nanocomposites.
  • 6. •The production of polymer materials has grown rapidly in the past 50 years. The versatility of plastics is not exceeded by any other class of materials, guarantees that polymers will continue to be very important in the future. •The problem was the creation of phase separated mixture or immiscible blends. The immiscible blends can be easily classified by looking through its morphology and dynamics mechanical analysis. Literature Review
  • 7. Method and Result •Preparation of organoclay •Preparation of PLA/PBAT blends •Preparation of PLA/PBAT nanocomposites •Effect of type of clay •Effect of clay loading
  • 9. Preparation of organoclay • 2 types of organoclay prepared. –ODA-MMT –DDOA-MMT • The organoclay were prepared according to the published method with slight modification (Tabtiang et al., 2000; Pospisil et al., 2004; Capkova et al., 2006)
  • 10. Schematic Diagram Na-MMT Organofiller (ODA & DDOA) Organoclay ODA-MMT & DDOA-MMT Characterization •XRD •FTIR •TGA •Elemental analyzer Cation Exchange Technique
  • 11. Characterization • X-ray Diffraction study • Fourier Transform Infrared spectroscopy • Thermogravimetric Analysis • Elemental Analysis
  • 12. Preparation of PLA/PBAT blends • PLA/PBAT blends were prepared by using melt blending technique.
  • 13. PLA + PBAT PLA/PBAT composites sheet Characterization Melt Blending PLA/PBAT blends Hot Pressing Schematic Diagram
  • 14. Characterization • Tensile Properties study • Fourier Transform Infrared spectroscopy • Dynamic Mechanical Analysis • Scanning Electron Microscopy • Water Absorption Test • Biodegradable Test
  • 15. Preparation of PLA/PBAT nanocomposites • PLA/PBAT nanocomposites were prepared by using melt blending technique.
  • 16. Preparation of PLA/PBAT blends PLA + PBAT PLA/PBAT nanocomposites sheet Characterization Melt Blending PLA/PBAT blends Hot Pressing Schematic Diagram Organoclay
  • 17. Characterization • X-ray Diffraction study • Tensile Properties study • Fourier Transform Infrared spectroscopy • Dynamic Mechanical Analysis • Thermogravimetric Analysis • Scanning Electron Microscopy • Transmission Electron Microscopy • Water Absorption Test • Biodegradable Test
  • 19. Clay galleries of montmorillonite
  • 20. 0 1000 2000 3000 4000 5000 6000 2 3 4 5 6 7 8 9 10 2θ (degree) Intersitya.u. XRD curve for (a) Na-MMT, (b) C 20A, (c) ODA-MMT and (d) DDOA-MMT (a) (c) (b) (d)
  • 21. Summary Type of Clay Exchange Cation 2θ Interlayer Spacing (Å) d001 Na-MMT Na+ 7.46 11.85 DDOA-MMT (CH3 (CH2 )17 )2 N+ (CH3 )2 2.66 33.22 ODA-MMT C18 H37 NH3 + 2.92 30.26 C 20A (CH3 )2 N+ (HT)2 3.40 26.00
  • 22. 100020003000 (d) (c) (b) (a) Wavenumber cm -1 %T Asymmetric CH3 stretching Symmetric CH3 stretching -CH2 - bending Free water molecule and water-water hydrogen bond Si-O-Si stretching Al-O bending Si-O bending OH bending FTIR spectra for (a) Na-MMT, (b) ODA-MMT, (c) DDOA-MMT and (d) C 20A
  • 23. 40 50 60 70 80 90 100 110 35 135 235 335 435 535 635 735 Temperature ( o C) Weight%(%) (a) (b) (c) (d) TGA thermograms of (a) Na-MMT, (b) ODA-MMT, (c) C20A and (d) DDOA-MMT
  • 24. Type of Clay Exchange Cation Percent of Surfactant Intercalated (%) Quantity of Water (%) Na-MMT Na+ - 11.99 ODA-MMT C18 H37 NH3 + 14.57 9.02 DDOA-MMT (CH3 (CH2 )17 )2 N+ (CH3 )2 25.89 3.41 C 20A (CH3 )2 N+ (HT)2 18.64 3.22
  • 25. Carbon content and the amount of surfactant intercalated into the clay galleries Type of Clay Exchange Cation C (%) Weight of sample (mg) Percentage Surfactant intercalate (%) Na-MMT Na+ 0.513 1.919 - ODA-MMT C18 H37 NH3 + 15.913 2.088 19.193 DDOA-MMT (CH3 (CH2 )17 )2 N+ (CH3 )2 20.455 2.060 26.552 C 20A (CH3 )2 N+ (HT)2 19.571 2.031 23.464 CHNS analyzer
  • 27. 0 10 20 30 40 50 60 0 5 10 15 20 25 30 PBAT content (%) TensileStrength(Mpa) Determination of tensile strength with various PBAT content.
  • 28. 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 PBAT content (%) TensileModulus(Mpa) Determination of tensile modulus with various PBAT content.
  • 29. -5 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 PBAT content (%) Elongationatbreak(%) Elongation at break of PLA/PBAT with various PBAT content
  • 30. 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 PBAT content (%) Elongationatbreak(%) 0 200 400 600 800 1000 1200 1400 TensileModulus(MPa) Comparison of elongation at break and tensile modulus with various PBAT content
  • 31. 0 100 200 300 1000200030004000 (a) (b) (c) Wavenumber cm -1 %T 2997 cm-1 Alkane stretch C – H 1750 cm-1 C = O 1081 cm-1 C – O 1450 cm-1 -CH3 bending 2953 cm-1 2996 cm-1 1749 cm-1 1714 cm-1 1450 cm-1 1450 cm-1 C = C aromatic 1081 cm-1 1090 cm-1 FTIR spectra of (a) PLA, (b) PBAT and (c) 85PLA/15PBAT blends
  • 32. 0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08 1.00E+09 1.20E+09 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Temperature (°C) LossModulusG"(Pa) PLA PBAT 95PLA/5PBAT 85PLA/15PBAT 75PLA/25PBAT 0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 -50 -40 -30 -20 -10 0 Temperature (°C) LossModulusG"(Pa) PLA PBAT 95PLA/5PBAT 85PLA/15PBAT 75PLA/25PBAT Temperature dependence of G” of PLA/PBAT with various amount of PBAT content
  • 33. 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 2.50E+09 3.00E+09 3.50E+09 4.00E+09 4.50E+09 5.00E+09 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature ( o C) StorageModulusG'(Pa) PLA PBAT 95PLA/5PBAT 85PLA/15PBAT 75PLA/25PBAT Temperature dependence of G’ of PLA/PBAT with various amount of PBAT
  • 34. (a) (b) (c) PBAT SEM images of (a) PLA, (b) PBAT and (c) PLA/PBAT blends
  • 35. 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time (days) Waterabsorption percentage(%) PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT Water absorption of PLA, PBAT, PLA/PBAT blends with various amount of PBAT
  • 36. 0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8 9 10 11 12 Time (weeks) Weightlosspercentage(%) PLA PBAT 95PLA5PBAT 85PLA15PBAT 75PLA25PBAT Weight loss percentage of PLA, PBAT, PLA/PBAT blends with various amount of PBAT
  • 37. Results Preparation of PLA/PBAT nanocomposites (Effect of surfactant type)
  • 38. 0 50 100 150 200 250 300 350 400 450 2 3 4 5 6 7 8 9 10 2θ (degree) Intensitya.u. (a) (b) (c) (d) XRD curve for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/C 20A, (c) PLA/PBAT/ODA-MMT and (d) PLA/PBAT/DDOA-MMT
  • 39. XRD peak and interlayer spacing of various type of clay Type of clay 2θ (°) Interlayer spacing (Å) Interlayer spacing without PLA/PBAT (Å) Shift extant (Å) PLA/PBAT/Na-MMT 6.42 13.67 11.85 1.82 PLA/PBAT/ODA-MMT 2.54 34.79 30.26 4.53 PLA/PBAT/DDOA-MMT 2.00 44.18 33.22 10.96 PLA/PBAT/C 20A 2.40 36.82 26.00 10.82
  • 40. 100020003000 (e) (d) (c) (b) (a) Wavenumber cm -1 %T C - O 1081 cm-1 1082 cm-1 1083 cm-1 1083 cm-1 1083 cm-1 FTIR curve for (a) PLA/PBAT, (b) PLA/PBAT Na-MMT, (c) PLA/PBAT/C 20A, (d) PLA/PBAT/ODA-MMT and (e) PLA/PBAT/DDOA-MMT
  • 41. Hydrogen Bonding PLA PBAT CLAY OH Expected hydrogen bonding between the OMMT and PLA/PBAT blends
  • 42. 37.56 39.68 43.58 42.11 40.99 34 36 38 40 42 44 46 Organoclay TensileStrength(MPa) PLA/PBAT + Na-MMT + ODA-MMT + DDOA-MMT + C 20A Tensile strength of PLA/PBAT/organoclay
  • 44. 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 2.50E+09 3.00E+09 3.50E+09 -50 -30 -10 10 30 50 70 90 Temperature ( o C) StorageModulusG'(Pa) PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT PLA/PBAT/C 20A The effect of type of clay on storage modulus
  • 45. 0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 -50 -30 -10 10 30 50 70 90 Temperature ( o C) LossModulusG"(Pa) PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT PLA/PBAT/C 20A 0.00E+00 2.00E+07 4.00E+07 6.00E+07 8.00E+07 1.00E+08 1.20E+08 1.40E+08 1.60E+08 1.80E+08 2.00E+08 -30 -25 -20 -15 -10 -5 0 5 10 Temperature ( o C) LossModulusG"(Pa) PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT PLA/PBAT/C 20A The effect of type of clay on loss modulus
  • 46. Tg for different type of clay Sample Identification Tg PLA (o C) Tg PBAT (o C) PLA/PBAT 68.1 -23.0 PLA/PBAT/Na-MMT 64.3 -10.1 PLA/PBAT/ODA-MMT 62.3 -15.5 PLA/PBAT/DDOA-MMT 61.7 -12.2 PLA/PBAT/C 20A 63.4 -12.5
  • 47. 0 20 40 60 80 100 200 250 300 350 400 450 500 550 Temperature (o C) Weight%(%) (a) (b) (c) (d) (e) TGA curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A (d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT
  • 48. -22 -17 -12 -7 -2 200 250 300 350 400 450 500 550 Temperature (o C) DerivativesWeight%(%/m) (a) (b) (c) (d) (e) DTG curve for (a) PLA/PBAT, (b) PLA/PBAT/Na-MMT, (c) PLA/PBAT/C 20A, (d) PLA/PBAT/DDOA-MMT and (e) PLA/PBAT/ODA-MMT
  • 49. The thermal degradation for PLA/PBAT and PLA/PBAT/nanocomposites with various type of clay Sample Tonset (o C) T50 (ºC) Tmax (ºC) PLA/PBAT 275.39 318.78 321.52 PLA/PBAT/Na-MMT 286.71 325.27 329.38 PLA/PBAT/ C 20A 300.36 332.13 334.93 PLA/PBAT/DDOA-MMT 307.52 334.19 335.37 PLA/PBAT/ ODA-MMT 310.36 336.09 336.98
  • 50. (a) (b) (c) (d) SEM images of (a) PLA/PBAT/ODA-MMT, (b) PLA/PBAT/DDOA-MMT, (c) PLA/PBAT/C 20A and (d) PLA/PBAT/Na-MMT
  • 51. (a) (b) (c) (d) 200 nm200 nm 200 nm 200 nm TEM images for (a) PLA/PBAT/Na-MMT, (b) PLA/PBAT/ODA-MMT, (c) PLA/PBAT/DDOA-MMT and (d) PLA/PBAT/C 20A (Magnification 10000x)
  • 52. 0 0.5 1 1.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time (days) Waterabsorption percentage(%) PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT PLA/PBAT/C20A Water absorption percentage of PLA/PBAT incorporation with different type of clay
  • 53. Percentage water uptake PLA/PBAT incorporation with different type of clay Time (days) Sample 0 2 4 8 16 PLA/PBAT 0 1.22 1.45 1.45 1.45 PLA/PBAT/Na-MMT 0 1.32 1.51 1.52 1.52 PLA/PBAT/ODA-MMT 0 1.20 1.44 1.44 1.44 PLA/PBAT/DDOA-MMT 0 1.21 1.45 1.45 1.45 PLA/PBAT/C 20A 0 1.21 1.44 1.44 1.44
  • 54. 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 Time (weeks) Weightlosspencentage(%) PLA/PBAT PLA/PBAT/Na-MMT PLA/PBAT/ODA-MMT PLA/PBAT/DDOA-MMT PLA/PBAT/C 20A Weight loss percentage of PLA/PBAT incorporation with different type of clay
  • 55. Percentage weight loss PLA/PBAT incorporation with different type of clay Time (weeks) Samples 0 3 6 9 12 PLA/PBAT 0.00 2.33 2.52 2.69 2.76 PLA/PBAT/Na-MMT 0.00 2.39 2.62 2.75 2.82 PLA/PBAT/ODA-MMT 0.00 2.23 3.77 5.63 8.41 PLA/PBAT/DDOA-MMT 0.00 2.03 3.56 5.25 7.96 PLA/PBAT/C 20A 0.00 2.00 3.56 4.81 7.62
  • 56. Results Preparation of PLA/PBAT nanocomposites (Effect of clay loading)
  • 57. 0 50 100 150 200 250 300 2 3 4 5 6 7 8 9 10 2θ (degree) Intensity,a.u. PLA/PBAT/0.1 Na-MMT PLA/PBAT/0.3 Na-MMT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT 6.02° 6.42° XRD patterns of PLA/PBAT/Na-MMT
  • 58. 0 50 100 150 200 250 300 350 400 2 3 4 5 6 7 8 9 10 2θ (degree) Intensity,a.u. PLA/PBAT/0.1 ODA-MMT PLA/PBAT/0.3 ODA-MMT PLA/PBAT/0.6 ODA-MMT PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT 2.76° 2.54° XRD pattern of PLA/PBAT/ODA-MMT nanocomposites
  • 59. Table of interlayer spacing with different type and clay content Type of nanocomposites Clay content (wt%) 2θ (°) Interlayer spacing (Å) PLA/PBAT/Na-MMT 0.1 - - 0.3 - - 0.6 - - 1.0 6.02o 14.68Å 3.0 6.42o 13.77Å PLA/PBAT/ODA-MMT 0.1 - - 0.3 - - 0.6 - - 1.0 2.76o 32.01Å 3.0 2.54o 34.79Å
  • 60. 35 36 37 38 39 40 41 42 43 44 45 0 0.5 1 1.5 2 2.5 3 Clay Content (wt%) TensileStrength(MPa) PLA/PBAT+ODA-MMT PLA/PBAT+Na-MMT Tensile strength of PLA/PBAT/Organoclay composites
  • 61. 1012 1014 1016 1018 1020 1022 1024 0 0.5 1 1.5 2 2.5 3 Clay Content (wt%) TensileModulus(MPa) PLA/PBAT+ODA-MMT PLA/PBAT+Na-MMT Tensile modulus of PLA/PBAT/Organoclay composites
  • 62. 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 2.50E+09 3.00E+09 3.50E+09 -50 -30 -10 10 30 50 70 90 Temperature ( o C) StorageModulusG'(Pa) PLA/PBAT PLA/PBAT/0.1 Na-MMT PLA/PBAT/0.3 Na-MMT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT The G’ as the function of temperature for PLA/PBAT/Na-MMT
  • 63. 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 2.50E+09 3.00E+09 3.50E+09 -50 -30 -10 10 30 50 70 90 Temperature ( o C) StorageModulusG'(Pa) PLA/PBAT PLA/PBAT/0.1 ODA-MMT PLA/PBAT/0.3 ODA-MMT PLA/PBAT/0.6 ODA-MMT PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT The G’ as the function of temperature for PLA/PBAT/ODA-MMT
  • 64. 0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 -50 -30 -10 10 30 50 70 90 Temperature ( o C) LossModulusG"(Pa) PLA/PBAT PLA/PBAT/0.1 Na-MMT PLA/PBAT/0.3 Na-MMT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT The G” as the function of temperature for PLA/PBAT/Na-MMT
  • 65. 0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 -50 -30 -10 10 30 50 70 90 Temperature ( o C) LossModulusG"(Pa) PLA/PBAT PLA/PBAT/0.1 ODA-MMT PLA/PBAT/0.3 ODA-MMT PLA/PBAT/0.6 ODA-MMT PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT The G” as the function of temperature for PLA/PBAT/ODA-MMT
  • 66. Tg at different clay loading Sample Identification Tg PLA (o C) Tg PBAT (o C) PLA/PBAT 68.1 -23.0 PLA/PBAT/0.1 Na-MMT PLA/PBAT/0.3 Na-MMT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT 57.6 59.3 59.8 64.3 60.8 -14.6 -10.7 -15.1 -10.1 -14.2 PLA/PBAT/0.1ODA-MMT PLA/PBAT/0.3ODA-MMT PLA/PBAT/0.6ODA-MMT PLA/PBAT/1.0ODA-MMT PLA/PBAT/3.0ODA-MMT 59.9 65.4 63.2 62.3 58.3 -15.1 -14.6 -9.6 -15.5 -13.6
  • 67. 0 20 40 60 80 100 200 250 300 350 400 450 500 550 Temperature (o C) Weight%(%) (a) (b) (c) (d) TGA thermograms of PLA/PBAT/Na-MMT (a) 0.3 wt% (b) 1.0 wt% and (c) 3.0 wt% of Na-MMT
  • 68. 0 20 40 60 80 100 200 250 300 350 400 450 500 550 Temperature (o C) Weight%(%) (a) (b) (c) (d) TGA thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt% (c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT
  • 69. -22 -17 -12 -7 -2 200 250 300 350 400 450 500 550 Temperature (o C) DerivativesWeight%(%/m) (a) (b) (c) (d) DTG thermograms of (a) PLA/PBAT, PLA/PBAT/Na-MMT (b) 0.3 wt%, (c) 1.0 wt% and (d) 3.0 wt% of Na-MMT
  • 70. -22 -17 -12 -7 -2 200 250 300 350 400 450 500 550 Temperature (o C) DerivativesWeight%(%/m) (a) (b) (c) (d) DTG thermograms of (a) PLA/PBAT, PLA/PBAT/ODA-MMT (b) 0.3 wt% (c) 1.0 wt% and (d) 3.0 wt% of ODA-MMT
  • 71. Thermal degradation for PLA/PBAT/Na-MMT and PLA/PBAT/ODA-MMT with various clay content Type of clay Clay content (wt %) Tonset (o C) T50 (°C) Tmax (°C) PLA/PBAT 0.0 275.39 318.78 321.52 Na-MMT 0.3 284.97 319.68 320.43 1.0 286.71 325.27 329.38 3.0 299.71 330.27 332.38 ODA-MMT 0.3 308.57 333.60 334.56 1.0 310.36 336.09 336.93 3.0 315.17 343.22 345.585
  • 72. 0 0.5 1 1.5 0 2 4 6 8 10 12 14 16 18 Time (days) Waterabsorption percentage(%) PLA/PBAT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT Water absorption percentage of PLA/PBAT/Na-MMT at various clay loading
  • 73. 0 0.5 1 1.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time (days) Waterabsorption percentage(%) PLA/PBAT PLA/PBAT/0.6 ODA-MMT PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT Water absorption percentage of PLA/PBAT/ODA-MMT at various clay loading
  • 74. Water absorption percentage of all samples at various clay loading Time (days) Samples 0 2 4 8 16 PLA/PBAT 0 1.20 1.44 1.44 1.44 PLA/PBAT/0.6 Na-MMT 0 1.32 1.51 1.52 1.52 PLA/PBAT/1.0 Na-MMT 0 1.35 1.54 1.54 1.54 PLA/PBAT/3.0 Na-MMT 0 1.38 1.55 1.55 1.55 PLA/PBAT/0.6 ODA-MMT 0 1.22 1.45 1.45 1.45 PLA/PBAT/1.0 ODA-MMT 0 1.26 1.47 1.47 1.47 PLA/PBAT/3.0 ODA-MMT 0 1.29 1.49 1.49 1.49
  • 75. 0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 10 11 12 Time (weeks) Weightlosspercentage (%) PLA/PBAT PLA/PBAT/0.6 Na-MMT PLA/PBAT/1.0 Na-MMT PLA/PBAT/3.0 Na-MMT Figure 4.45: Weight loss percentage of PLA/PBAT/Na-MMT at various clay loading
  • 76. 0 2 4 6 8 10 0 1 2 3 4 5 6 7 8 9 10 11 12 Time (weeks) Weightlosspercentage(%) PLA/PBAT PLA/PBAT/0.6 ODA-MMT PLA/PBAT/1.0 ODA-MMT PLA/PBAT/3.0 ODA-MMT Weight loss percentage of PLA/PBAT/ODA-MMT at various clay loading
  • 77. Weight loss percentage of all samples at various clay loading Time (weeks) Samples 0 3 6 9 12 PLA/PBAT 0.00 1.71 3.13 4.51 7.14 PLA/PBAT/0.6 Na-MMT 0.00 2.22 3.42 6.12 10.52 PLA/PBAT/1.0 Na-MMT 0.00 2.61 4.32 9.34 13.53 PLA/PBAT/3.0 Na-MMT 0.00 3.11 5.24 10.61 15.72 PLA/PBAT/0.6 ODA-MMT 0.00 1.89 3.37 4.86 7.49 PLA/PBAT/1.0 ODA-MMT 0.00 2.23 3.77 5.63 8.41 PLA/PBAT/3.0 ODA-MMT 0.00 2.57 4.29 6.11 8.69
  • 78. •Two types of organoclays (ODA-MMT and DDOA-MMT) were successfully prepared through ion exchange technique from Na-MMT (FTIR, XRD, TGA and elemental analyzer). •PLA/PBAT blends at different PBAT content were successfully prepared using melt blending technique (Tensile testing, FTIR, DMA, SEM, water absorption and biodegradability). •PLA/PBAT/composites/nanocomposites at different type of clay were successfully prepared using melt blending technique (XRD, FTIR, tensile testing, DMA, TGA, SEM, TEM, water absorption and biodegradability). •PLA/PBAT/composites/nanocomposites at different clay content were successfully prepared using melt blending technique (XRD, tensile testing, DMA, TGA, water absorption and biodegradability). Conclusion
  • 79. References • Abacha, N., Kubouchi, M., Tsuda, K. and Sakai. T. (2007). Performance of epoxy-nanocomposite under corrosive environment. Express Polymer Letters 1(6) : 364-369. • Akelah, A., Kelly, P., Qutubuddin, S. and Moet, A. (1994). Synthesis and characterization of epoxyphilic montmorillonites, Clay Mineral. 29 : 169-178. • Akelah, A. (1995). Nanocomposites of grafted polymer onto layered silicate. In polymer and other advance material: Emerging technologies and business opportunities. Plenum Press. New York : 625- 644. • Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Material Science Engineering Reports, 28(1–2): 1–63. • Aminabhavi, T.M., Balundgi, R.H. and Cassidi, P.E. (1990). Review on biodegradable plastics. Polymer Plastic Technology and Engineering. 29(3) : 235-262. • Anderson, K.S. and Hillmyer, M.A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer. 45 : 8809–8823. • Auras, R., Harte B. and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience. 4(9) : 835–864. • Averous, L. (2004). Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecule Science Polymer Review. 44 : 231-274.
  • 80. •Aziz, S.H. and Ansell, M.P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – Polyester resin matrix. Composites Science Technology. 64 : 1219-1230. •Bala, P., Samantaray, B.K. and Srivastava, S.K. (2000). Synthesis and characterization of Na- montmorillonite-alkylammonium intercalated compound. Material Research Bulletin. 35 : 1717-1724. •Balek, V., Benes, M., Malek, Z., Matuschek, G., Kettrup, A. and Yariv, S. (2006). Emanation thermal analysis study of Na-montmorillonite and montmorillonite saturated with various cations. Journal of Thermal Analysis and Calorimetry. 83 : 617. •Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006). Handbook of Clay Science, First Edition. Elsevier. •Bhatia, A., Gupta, R.K., Bhattacharya, S.N. and Choi, H. J. (2007). Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Australia Rheology Journal. 19(3) : 125-131. •Becker, O., Cheng, Y.B., Varley, R. J. and Simon, G.P. (2003). Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules. 36 : 1616-1625. •Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Samboulis, A., Shenderovick, I. and Limbach, H. (2002). Surface characterization of flax, hemp, and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites. 23(5) : 872-894.
  • 81. •Biswas, M. and Sinha Ray, S. (2001). Recent progress in synthesis and evaluation of polymer– montmorillonite nanocomposites. Advances in Polymer Science. 155 : 167–221. •Blumstein, A. (1961). Etude des polymerizations en couche absorbee 1. Bulletin de la Societe Chimique de France. 899-905. •Bordes, P., Pollet, E. and Averous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science. 34 : 125-155. •Bray, H.J. and Redfern, S.A.T. (1999). Kinetics of gehydration of Ca-montmorillonite. Physical Chemical Minerals. 26 : 591. •Bulakh, N., Kulkarni, S.M., Jog, J.P. and Chaudhari R.V. (2003). Preparation and characterization of polyketone/clay nanocomposites. Journal of Macromolecular Science: Part B: Physics. 42 (5) : 963-973. •Calcagno, C.I.W., Mariani, C.M., Teixeira S.R. and Mauler, R.S. (2007). The role of the MMT on the morphology and mechanical properties of the PP/PET blends. Composites Science and Technology. 68(10-11) : 2193-2200. •Capkova, P., Pospisil, M., Valaskova, M., Merinska, D., Trchovad, M., Sedlakovad, Z., Weiss, Z. and Simonik, J. (2006). Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling, diffraction, IR spectroscopy. Journal of Colloid and Interface Science. 300 : 264–269. •Chandra, R. and Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science. 23 : 1273-1335. •Chen, C.C., Chueh, J.Y., Tseng, H., Huang H.M. and Lee, S.Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials. 24(7) : 1167-1173. •Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Aposlotov, A.A. and Ishiaku, U.S. (2003). Compatibilizing effect of maleated polyproplene on the mechanical properties and morphology of injection moulded polyamida 6/polypropylene/organoclay nanocomposites. Polymer. 44 : 7427-7440.
  • 82. •Correlo, V.M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N.M. and Reis, R. L. (2007). Water absorption and biodegradation characteristics of chitosan-based polyesters and hydroxyapatite composites. Macromolecular Bioscience. 7 : 354-363. •De Paiva, L.B., Morales, A.R. and Valenzuela Díaz, F.R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science. (42) : 8-24. •Delozier, D.M., Orwoll, R.A., Cahoon, J.F. Johnson, N.J., Smith Jr, J.G. and Conwell, J.W. (2002). Preparation and characterization of polyamide/organoclay nanocomposites. Polymer. 43 : 813-822. •Eubeler J.P., Bernhard M. and Knepper T.P. (2010). Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends in Analytical Chemistry. 29(1) : 84-100. •Errco, M.E. (1999). Polymethylmethacrylate-modified biocompatible polyesters. Current Trends Polymer Science. 4 : 1-26. •Fan, J., Liu, S., Chen, G. and Qi, Z. (2002). SEM study of a polystyrene/clay nanocomposite. Journal of Applied Polymer Science. 83 : 66-69. •Fischer, H. R., Gielgens, L. H. and Koster, T. P. M. (1999). Nanocomposites from polymers and layered minerals. Acta Polymerica. 50(4) : 122–126. •Feijoo, J. L., Cabedo, L., Gim E Nez, E., Lagaron, J. M. and Saura, J. J. (2005). Development of amorphous PLA-montmorillonite nanocomposites. Journal of Materials Science. 40 : 1785-1788. •Fornes, T.D., Yoon, P.J., Keskkula, H. and Poul, D.R. (2001). Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer. 42 : 9929-9940.
  • 83. •Fornes, T.D., Yoon, P.J., Hunter, D.L., Keskkula, H. and Paul, D.R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer. 43 : 5915-5933. •Fu, X. and Qutubuddin, S. (2001). Polymer–clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer. 42(2) : 807-813. •Fukushima, K., Tabuani, D. and Camino, G. (2009). Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and Engineering C. 29 : 1433-1441. •Gajria, A.M. Dave, V.Gross, R.A. and McCarthy, S.P. (1996). Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 37(3) : 437-444. •Giannelis, E.P., Krishnamoorti, R. and Manias E. (1999). Polymer-Silicate Nanocomposites: Model system for confined polymer and polymer brushes. Advance in Polymer Science. 138 : 108-143. •Gilman, J.W. (1999). Flamibility and thermal stability studies of polymer-layered silicate (clay) nanocomposites. Applied Clay Science. 15 : 31-49. •Gilnian, J. W., Kashivagi, T. C. L., Giannelis, E. P., Manias, E., Lomakin, S. and Lichtenhan, J. D. (1998). Fire retardancy of polymers. Cambridge: Royal Society of Chemistry. •Greene, J. (2007). Biodegradation of compostable plastics in green yard-waste compost environment. Journal of Polymers and the Environment. 15(4) : 269-273. •Grijpma, D. W., Zondervan, G. J. and Pennings, A. (1991). High molecular weight copolymers of L-lactide and c-caprolactone as biodegradable elastomeric implant materials. Polymer Bulletin. 25 : 327-333. •Gu, J.D. Gu, D.T. Eberiel, S.P. McCarthy and R.A. Gross, (1993). Cellulose acetate biodegradability upon exposure to stimulated aerobic composting and anaerobic bioreactor environments. Journal of Environmental Polymer Biodegradation. 1 : 143–153. •Gu, S.Y., Zhang, K., Ren, J. and Zhan, H. (2008). Melt rheology of polylactic acid/ poly(butylene adipate-co- terephthalate) blends. Carbohydrate Polymers. 74: 79-85.
  • 84. •He, Y., Zhu, B. and Inoue Y. (2004). Hydrogen bonds in polymer blends. Progress in Polymer Science. 29 : 1021-1051. •Herrera, R., Franco, L., Rodriguez-Galan, A. and Puiggali, J. (2002). Characterization and biodegradation behavior of poly(butylene adipate-co-terephtalate)s. Journal of Polymer Science: Part A- Polymer Chemistry. 40 : 4141-4157. •Hiljanen-V.M., Karjalainen, T. and Seppala, J. V. (1996). Biodegradable lactone copolymers. 1. Characterization and mechanical behavior of 8-caprolactone and lactide copolymers. Journal of Applied Polymer Science. 59 : 1281-1288. •Hiljanen V.M., Orava, P. A. and Seppala, J. V. (1997). Properties of epsilon-caprolactone/DL-lactide (epsilon- CL/DL-LA) copolymers with a minor epsilon-CL content. Journal of Biomedical Materials Research. 34 : 39-46. •Huang, X. and Brittain, W.J. (2001). Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules. 34(10) : 3255-3260 •Jang, W. Y., Shin, B.Y., Lee, T.J. and Narayan R. (2007).Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. Journal of Industrial and Engineering Chemistry. 13(3) : 457-464. •Jiang, L., Wolcott, M. P. and Zhang, J. (2006). Study of biodegradable polylactide/poly(butylenes adipate- co-terephthalate) blends. Biomacromolecules. 7(1) : 199-207. •Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf M.A. and Jasiuk, I. (2005). Experimental trends in polymer nanocomposites: A review. Materials Science and Engineering A. 393(1-2) : 1-11. •Kager-Kocsis, J. (2004). Thermoset rubber/layered silicate nanocomposites: Status and future trends. Polymer Engineering and Science. 44 : 1083-1093.

Editor's Notes

  1. Addition of PBAT in PLA system reduce the physical properties as