Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Composites Flame Retardant

7,245 views

Published on

The flame-retardant mechanisms involved in the polymer-clay nano-composites are described.

  • Be the first to comment

Composites Flame Retardant

  1. 1. Composites technology 16.12.2008 Flame Retardant Nanocomposites Christophe Swistak Valentin Chapuis Alexandre Durussel
  2. 2. Outline • Applications • Introduction – Fire hazards – Combustion of polymers • Flame-Retardant composites • Nanofillers • Flame retardancy mechanism • Processing
  3. 3. Applications • Flame retardant wall panels • Flame retardant doors • Airplanes & trains ! !! Flame retardant ≠ Fireproof Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  4. 4. Dangers due to fire • Heat release (HR) – Control intensity and speed of combustion • « Black » smokes – Difficult orientation of rescue squads and victims • Toxic gazes released during combustion – Can lead to death Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  5. 5. Combustion of polymers • Process in two stages 1. Thermo-oxidative degradation • Heat transfer • Decomposition leading to generation of flammable volatile products • Diffusion of gazes through the matrix 2. Normal burning • Combustion involving volatiles products and oxygen Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  6. 6. Flame-retardant composites (I) • Conventional composites – Polymer matrix (PP, PE, PA, …) – Fillers • Aluminium trihydrate AlH3 • Magnesium hydroxide MgOH • Organic brominated compounds – Advantages  Well known  No problem of dispersion of the filler – Drawbacks X Requires gf ~ 30-60%wt to obtain good flame retardancy X High density, small flexibility X Toxicity of flame retardant compounds (e.g. Br) Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  7. 7. Flame-retardant composites (II) • Nanocomposites – Polymer matrix (PP, PE, PA, PS, EVA, epoxy, …) – Nanofillers • Layered silicates (mostly Monmorillonite (MMT)) • Spherical nanoparticles of silica • Carbon nanotube – Advantages  Same flame-retardant properties with a smaller volume fraction of filler (gf~2-10%wt)  Easier to process (especially in injection)  Better mechanical properties and smaller density – Drawbacks X Compatibility between matrix and filler X Dispersion Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  8. 8. Nanofillers (I) • Structure – Layered structure with thickness ~1nm – High ratio length/thickness ~ 1000 – “Agglomerated” structure MMT structure from wikipedia.org Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  9. 9. Nanofillers (II) • Dispersion – Determine flame-retardant property Kashiwagi et al., Polymer, 2004 Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  10. 10. Nanofillers (III) • Dispersion – Big challenge Maximization of Matrix/filler interaction  Leads to the better flame- retardancy TEM pictures of PP/clay nanocomposite Günter Beyer et al, 2002, [1] S. Bourbigot et al, 2008, [7] Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  11. 11. Nanofillers (IV) • Dispersion – Chemical process 1. Expansion 2. Compatibilization 3. Mixing / Polymerization – Specific system for each couple of clay and polymer matrix W.S. Wang et al, 2008, [9] Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  12. 12. Nanofillers (V) • Dispersion – Mechanical process (separating the layers with a high shear stress) – Directly in the production process – Addition of a stabilization / compatibilization agent may be necessary F. Samyn, S. Bourbigot et al, 2008, [7] Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  13. 13. Flame retardancy mechanism (I) • Formation of a thermal insulating and low permeability char • The char acts as a physical and chemical barrier between the polymer and the burning surface Less smoke/gazes formation Heat release rate (HRR) decrease Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  14. 14. Flame retardancy mechanism (II) G. Beyer et al, 2002, [1] Reduction of the HRR of 47% with only 5%wt of filler Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  15. 15. Flame retardancy mechanism (III) F. Laoutid et al. 2008, [5] Reduction of the HRR up to 70 % with 10%wt of filler Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  16. 16. Processing • In-situ Polymerization • Polymerization in solvent • Molten processing 1. Polymer melting 2. Add fillers 3. Physical dispersion – Allows injection / extrusion – Industrial process Applications / Introduction / Flame retardant composites / Nanofillers / Flame retardancy mechanism / Processing
  17. 17. Summary • Important parameters to control – Heat release rate – Thermal and diffusion barrier • Nanocomposites (layered silicates)  Same or better flame-retardancy for a lower gf  better mechanical properties  Improvements in processability and matrix/filler interaction  Fillers that are non-toxic Problems of dispersion and compatibility
  18. 18. References [1] Nanocomposites : a new class of flame retardants for polymers, in Plastics Additives & Compounding, October 2002 [2] Nanocomposites offer new way forward for flame retardants, in Plastics Additives & Compounding, September/October 2005 [3] Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene, H. Qin and al., Polymer 46 (2005), pp. 8386-8395 [4] Characterization of the dispersion in polymer flame retarded nanocomposites, F. Samyn and al., European Polymer Journal 44 (2008), pp. 1631-1641 [5] New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, F.Laoutid, et al., Mater. Sci. Eng. R(2008), doi:10.1016/j.mser.2008.09.002 [6] Flame retardant mechanism of polyamide 6-clay nanocomposites, T. Kashiwagi and al. Polymer 45, 2004, pp. 881-891. [7] Crossed characterisation of polymer-layered silicat nanocomposite morphology: TEM, X-ray diffraction, rheology and solid-state nuclear magnetic resonance measurements. F. Samyn, S. Bourbigot and al. European Polymer Journal 44, 2008, pp. 1642-1653 [8] Synergism between flame retardant and modified layered silicate on thermal stability and fire behavior of polyurethane nanocomposite foams, M. Modesti and al., Polymer Degradation and Stability (2008), pp. 1-6 [9] Properties of novel epoxy/clay nanocomposites prepared with reactive phosphorous containing organoclay, W.S. Wang and al., Polymer (2008), pp. 1-11 [10] A novel phosphorus-containing copolyester/monmorillonite nanocomposites with improved flame retardancy, X.G. Ge and al., European Polymer Journal 43 (2007), pp. 2882-2890 [11] http://www.epp.goodrich.com/fyreroc/ [12] http://www.cfoam.com/fireproofcore.htm

×