SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 2 Issue 4 || April. 2014 || PP-47-53
www.ijmsi.org 47 | P a g e
Some Accepts Of Banach Summability of a Factored Conjugate
Series
Chitaranjan Khadanga1
, Garima Swarnakar2
Rcet, Bhilai, Department of Mathematics,
ABSTRACT: An elementary proposition states that an absolutely convergent series is convergent, i.e. that if
/s0-s1/+/s1-s2/+…+/sn-sn-1/< ∞
This is the analogue for series of the theorem on functions that if a function f(x) is of bounded variation
in an interval, the limits exist at every point. Consider the function f(x) = ∑an xn ,lthen the series being supposed
convergent in ( 0 < x < 1 ) .
Summability theory has historically been concerned with the notion of assigning a limit to a linear space-valued
sequences, especially if the sequence is divergent. In this paper we have been proved a theorem on Banach
summability of a factored conjugate series.
KEY WORDS: Summability theory, Absolute Banach summability, Conjugate series, infinite series.
I. INTRODUCTION
Let  na be a given infinite series with the sequence of partial sums  ns . Let  np be a sequence
of positive numbers such that
(1.1)  1,0,
0
 

 ipPnaspP ii
n
r
vn
The sequence to sequence transformation
(1.2) 

n
v
vvn
n
n sp
P
t
0
1
defines the sequence of the  npN, -mean of the sequence  ns generated by the sequence of coefficients
 np .
The series  na is said to be summable 1,, kpN kn , if
(1.3) 










1
1
1
n
k
nn
k
n
n
tt
p
P
In the case when 1np , for all
knpNkandn ,,1 summability is same as 1,C summability . For
knpNk ,,1 summability is same an npN, -summability.
Now , Let  

1n
n xB be the conjugate Fourier series of a 2 -periodic function  tf and L-integrable on
 , . Then
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 48 | P a g e
(1.4 )     ,...3,2,1,sin
2
0
  ndttxBn



where
(1.5 )     txftxft 
2
1
)(
Dealing with B -summability of a conjugate Fourier Series, We have the following results:
Known Results:
Theorem-2.1:
Let )(tf be a 2 -periodic, L-integrable function on  , . Then the conjugate Fourier Series
 )(xBn of )(tf is B -integrable if
(i)   ,0)( BVt 
and
(ii)
   dt
t
t


0
Theorem-2.2: If
 
 


0
dt
t
t
,
then the factored Fourier series   xBnn is B -summable for  n to be a non-negative convex sequence
such that  n
n
.
we wish to generalize the above two results to absolute Riesz-Banach summability. We prove
Theorem-2.3:
Let  np be a positive non-decreasing sequence of numbers such that


n
v
vn nonpP
1
, . Let
(i)     ,0BVt 
(ii)
 
 


0
dt
t
t
,
and
(iii)    nasPOnp nn , .
Then the conjugate Fourier Series   xBn is absolutely Riesz-Banach summable i.e.
   BpN n, summable.
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 49 | P a g e
Theorem-2.4:
Let  np be a sequence of positive numbers such that 

n
v
vn pP
1
, as n . Let
(i)
   dt
t
t


0
,
and
(ii)  nasPnp nn ),(0 . Then the factored conjugate Fourier series  xBnn is
absolutely Riesz-Banach summable i.e.   BpN n , -summable for  n to be a non-negative convex
sequence such that  
n
n
.
We need the following Lemmas for the proof of the above theorems.
Lemma-2.3.1
Let  np be a positive non-decreasing sequence of numbers.
Let 




t
1
 , then {tn} is a monotonically decreasing sequence.
Lemma-2.3.2
Let  np be a sequence of positive non-decreasing, then






 kn
Pk
is monotonically increasing in k .
Proof. We have
   
  1
1
1
11







knkn
PknPkn
kn
P
kn
P kkkk
 
  
     
  11
121





 
knkn
ppppppnp
knkn
Ppkn kkkkkkk 
 npm,0 is non-decreasing.
This proves the lemma.
Lemma-2.3.3
If  n is a positive convex sequence such that  
n
n
, then  n is a monotonically
decreasing sequence.
Proof of the theorem - 2.3
If  nTk is the k-th element of the Riesz-Banach transformation of the conjugate Fourier Series
  xBn , then
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 50 | P a g e
1
1
1
)( 

 vn
k
v
v
k
k sp
P
nT




1
11
)(
1 vn
r
i
k
v
v
k
xBp
P
     





1
1
1 nk
ni
inik
k
n
i
i xBPP
P
xB .
Now




 
k
v
vnv
kk
k
kk xBP
PP
p
nTnT
11
1
1 )()()(
For the series  )(xBn , we have
  



 



 
1 1 11
1
1 )()()(
k k
k
v
vnv
kk
k
kk xBP
PP
p
nTnT
  

 


1 1 01
1
)(sin)(
2
k
k
v
v
kk
k
dttvntP
PP
p 


 

 


1 101
1
)(sin)(
2
k
k
v
v
kk
k
dttvntP
PP
p



 21
1
21
,
2










    



 t
where
k k
, say
We have
            

 


1 1 0 11
1
1 0 11
1 )(
sinsin
  


k
k
v
v
kk
k
k
k
v
v
kk
k
dt
t
t
tvnPt
PP
p
dttvntP
PP
p
Since
 
  

 

0 1 1
,
k
dt
t
t
, if
   



1 11
1
sin
k
k
v
v
kk
k
tvnPt
PP
p
, uniformly for  t0
Now
   


12 1 11
1
)sin(

k
k
v
v
kk
k
tknP
PP
p
t
  



1 11
1
)(0
k
k
v
v
kk
k
P
PP
p
t
 
 
)(0),1(0)(0)(0
1
)(01)(0
1 1 1
1
1
1
n
k k
n
k
k
k
kk
k
Pnpast
P
pk
tPk
PP
P
t 

    



 

Next,
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 51 | P a g e
   


2 0 11
1
)()(sin



k
k
v
v
kk
k
dtttvnp
PP
p
Since 0)()0(   , we have
  )(
)cos(
)sin(
00
td
vn
tvn
dttvnt 

 


Then,
    




2 0 11
1
)()cos(



k
k
v
v
kk
k
tdtvn
vn
P
PP
p
    ),0(,cos)1(0
11
1


BVtastvn
vn
P
PP
p
k
k
v
v
kk
n


   

by results,   


0
td
  




k
k
kn
k
kk
k
tvn
kn
P
PP
p
,)(cos)1(0
1
1
 





k k
k
Pkn
p
1
1
)(
)(0 , by Lemma-2.3.1,
 
 nn
k
Pnpas
nkn
0,
1)(
1
)(0 

 

  )1(00)(0 1
 
 .
Then



 
1
1 )()(
k
kk nTnT , uniformly for Nn .
Hence  )(xBn is absolutely Riesz-Banach summable.
This completes the proof of the theorem.
Proof of the Theorem - 2.4
Let )(nTk be the k-th element of the Riesz – Banach transformation of the factored conjugate Fourier
series  )(xBnn . Then
    



n
i
ii
nk
ni
nik
k
iik nBPP
P
xBnT
1
1
1
)()( 
Then
 xBP
PP
p
nTnT vn
k
v
vnv
kk
k
kk 




 
11
1
1 )()( 
…series  xBnn , we have
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 52 | P a g e
   



 



 
1 1 11
1
1 )()(
k k
k
v
vnvnv
nk
n
nk xBP
PP
p
nTnT 
     

 




1 1 01
1
sin
2
n
k
v
vnv
nk
n
dtvn
t
t
tP
PP
p 



Since
     





0 1
1,
)(
k
nk nTnTdt
t
t
if
   

 




1 11
1
sin
k
k
v
vnv
nk
k
tvnPt
PP
p
 ,
uniformly for  t0 .
Now
    

 







k
v
vnv
kk
k
k k
tvnPt
PP
p
111
sin


 
1 2
, say.
We have
    




1 1 11
1
sin


k
k
v
vnv
kk
k
tvnPt
PP
p
     






1 11
1
sin0
k
k
v
vnv
kk
k
tvnP
PP
p
t
  



1 11
1
)(0
k
k
v
v
kk
k
P
PP
p
t
  



1 1
1
1)(0
k
k
kk
k
Pk
PP
p
t
  






1 1
1
0),1(0)(0)(0
)1(
)(0
k
nn
k
k
Pnpont
P
pk
t .
Next
    




2 11
1
sin


k
k
v
vnv
kk
n
tvnP
PP
p
t .
By Abel’s partial summation formula
            

  
 
k
v
k
v
v
p
k
p
knkvnvvnv tpnPtpnPtvnP
1
1
1 1 1
sinsinsin 
Some Accepts Of Banach Summability of a Factored Conjugate Series
www.ijmsi.org 53 | P a g e
    





 



1
1
110
k
v
knkvnvvnv PPp 
Thus
   






2
1
1
11
1
1
)1(0


k
k
v
knkvnvvnv
kk
k
PPp
PP
p
  





    




 


k k nn
knk
vnvvnv
kk
k
PP
P
pp
PP
p
1
11
1
1
)1(0
  

 


 






k kk
k
v
nvvnv
PP
p
Pp
1
1
1
111)1(0
  


  

 








vk n
kn
k
k
nn
n
v
vnvvnv
P
p
PP
p
Pp
2 1
1
1
1
11 

  








   

 



 


1
11
11
1
1
)1(0
v v k
kn
v
vnvvnv
vnvvnv
kP
Pp
Pp
P












 








    













 

k
k
v v v
vnvvnv
v v
vnvvnv
kP
P
P
P
P
p
P
p
1
)1(0 1
1
11
1
11







   



 




1 1
1
1
1
1
)1(0
v v k
n
vn
v
vnv
kP
p












  






1 11
)1(0
v v
vn
vn
v










  






1 11
)1(0
v v
vn
vn
v


)1(0 , on n is decreasing and  
n
n
,
Hence   , uniformly for Nn .
Then      BpNisnB nnn , -summable.
This proves the theorem.
REFERENCES:
[1]. CHAMPMAN, S : On non-integral orders of summability of series and integrals, Proceedings of the London Mathematical
Society, (2), 9(1910) 369-409.
[2]. CHOW, A.C : Note on convergence and summability factors, Journal of the London Mathematical Society, 29(19054),459 –
476.
[3]. FEKETE, M : A Szettarto vegtelen sorak elmeletchez, Mathematikal as Termesz Ertesito, 29 (1911), 719-726.
[4]. GREGORY, J : Vera Circuli et hyperbalse quardrature, (1638-1675), published in 1967.
[5]. HARDY, G.H : Divergent Series, Clarendow Press, Oxford, (1949).

More Related Content

What's hot

Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017mmasdeu
 
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachSolving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachClaudio Attaccalite
 
Data Science - Part XVI - Fourier Analysis
Data Science - Part XVI - Fourier AnalysisData Science - Part XVI - Fourier Analysis
Data Science - Part XVI - Fourier AnalysisDerek Kane
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...Global HeavyLift Holdings, LLC
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformAttaporn Ninsuwan
 
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...Global HeavyLift Holdings, LLC
 
lecture 7
lecture 7lecture 7
lecture 7sajinsc
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...Global HeavyLift Holdings, LLC
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...Claudio Attaccalite
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...David Harding
 
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal OperatorsWeyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal OperatorsIOSR Journals
 

What's hot (20)

Maths 3 ppt
Maths 3 pptMaths 3 ppt
Maths 3 ppt
 
1416336962.pdf
1416336962.pdf1416336962.pdf
1416336962.pdf
 
Queueing theory
Queueing theoryQueueing theory
Queueing theory
 
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017
 
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachSolving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
 
Data Science - Part XVI - Fourier Analysis
Data Science - Part XVI - Fourier AnalysisData Science - Part XVI - Fourier Analysis
Data Science - Part XVI - Fourier Analysis
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
 
Chapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier TransformChapter4 - The Continuous-Time Fourier Transform
Chapter4 - The Continuous-Time Fourier Transform
 
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
Original Paper From Astrophysicist Dr. Andrew Beckwith (Journal of Modern Phy...
 
lecture 7
lecture 7lecture 7
lecture 7
 
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
New Presentation From Astrophysicist Dr. Andrew Beckwith: "Detailing Coherent...
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
The monoatomic ideal gas
The monoatomic ideal gasThe monoatomic ideal gas
The monoatomic ideal gas
 
Ft3 new
Ft3 newFt3 new
Ft3 new
 
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...
The Cosmic Microwave (CMB), and Infra-Red (CIRB) Backgrounds are Simple Effec...
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Stack of Tasks Course
Stack of Tasks CourseStack of Tasks Course
Stack of Tasks Course
 
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal OperatorsWeyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
Weyl's Theorem for Algebraically Totally K - Quasi – Paranormal Operators
 

Viewers also liked

Cracking the data conundrum - how successful companies make big data operational
Cracking the data conundrum - how successful companies make big data operationalCracking the data conundrum - how successful companies make big data operational
Cracking the data conundrum - how successful companies make big data operationalRick Bouter
 
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)Hiệp Phan Văn
 
Repórter Notícias Ed 52 - 1
 Repórter Notícias Ed 52 - 1 Repórter Notícias Ed 52 - 1
Repórter Notícias Ed 52 - 1Daniela Bercot
 
Social Media Lewis And Sean
Social Media Lewis And SeanSocial Media Lewis And Sean
Social Media Lewis And Seanseanmalarkey
 
Northern Voice Keynote
Northern Voice KeynoteNorthern Voice Keynote
Northern Voice KeynoteChris Wilson
 
Test hun orchin
Test hun orchinTest hun orchin
Test hun orchintogs99
 
Intro to texas s ta r chart
Intro to texas s ta r chartIntro to texas s ta r chart
Intro to texas s ta r chartbwhite11
 
день святого валентина день всех влюбленных
день святого валентина день всех влюбленныхдень святого валентина день всех влюбленных
день святого валентина день всех влюбленныхoksanasushkova78
 
Pttkpm 6 thiet kekientruc done
Pttkpm 6 thiet kekientruc donePttkpm 6 thiet kekientruc done
Pttkpm 6 thiet kekientruc doneNguyen Tran
 
Nguoi dep voi_dai_yem_mau
Nguoi dep voi_dai_yem_mauNguoi dep voi_dai_yem_mau
Nguoi dep voi_dai_yem_maudanhvy_snv
 
Project Equity: Why we exist
Project Equity: Why we existProject Equity: Why we exist
Project Equity: Why we existprojectequity
 
Gsfpp ta
Gsfpp taGsfpp ta
Gsfpp ta194ds
 

Viewers also liked (20)

Cracking the data conundrum - how successful companies make big data operational
Cracking the data conundrum - how successful companies make big data operationalCracking the data conundrum - how successful companies make big data operational
Cracking the data conundrum - how successful companies make big data operational
 
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)
Huong dan lap_rap_cac_mach_vi_xu_ly_(noi_dung_hoan_chinh_final_2005_)
 
Repórter Notícias Ed 52 - 1
 Repórter Notícias Ed 52 - 1 Repórter Notícias Ed 52 - 1
Repórter Notícias Ed 52 - 1
 
Social Media Lewis And Sean
Social Media Lewis And SeanSocial Media Lewis And Sean
Social Media Lewis And Sean
 
Northern Voice Keynote
Northern Voice KeynoteNorthern Voice Keynote
Northern Voice Keynote
 
Test hun orchin
Test hun orchinTest hun orchin
Test hun orchin
 
Intro to texas s ta r chart
Intro to texas s ta r chartIntro to texas s ta r chart
Intro to texas s ta r chart
 
Diamond hunt
Diamond huntDiamond hunt
Diamond hunt
 
Catasto Rumore
Catasto RumoreCatasto Rumore
Catasto Rumore
 
Bingo Rave
Bingo RaveBingo Rave
Bingo Rave
 
Nano Sekunde1
Nano Sekunde1Nano Sekunde1
Nano Sekunde1
 
Me2011 presentation by Sophie Dupuy-Chessa
Me2011 presentation by Sophie Dupuy-ChessaMe2011 presentation by Sophie Dupuy-Chessa
Me2011 presentation by Sophie Dupuy-Chessa
 
Dsfdssdfsdf
DsfdssdfsdfDsfdssdfsdf
Dsfdssdfsdf
 
Diplom .PDF
Diplom .PDFDiplom .PDF
Diplom .PDF
 
день святого валентина день всех влюбленных
день святого валентина день всех влюбленныхдень святого валентина день всех влюбленных
день святого валентина день всех влюбленных
 
Pttkpm 6 thiet kekientruc done
Pttkpm 6 thiet kekientruc donePttkpm 6 thiet kekientruc done
Pttkpm 6 thiet kekientruc done
 
Industrial Solar Thermal Brochure
Industrial Solar Thermal BrochureIndustrial Solar Thermal Brochure
Industrial Solar Thermal Brochure
 
Nguoi dep voi_dai_yem_mau
Nguoi dep voi_dai_yem_mauNguoi dep voi_dai_yem_mau
Nguoi dep voi_dai_yem_mau
 
Project Equity: Why we exist
Project Equity: Why we existProject Equity: Why we exist
Project Equity: Why we exist
 
Gsfpp ta
Gsfpp taGsfpp ta
Gsfpp ta
 

Similar to F02402047053

Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_ProjectJosh Young
 
Modeling with Recurrence Relations
Modeling with Recurrence RelationsModeling with Recurrence Relations
Modeling with Recurrence RelationsDevanshu Taneja
 
stochastic-processes-1.pdf
stochastic-processes-1.pdfstochastic-processes-1.pdf
stochastic-processes-1.pdforicho
 
Kernel Lower Bounds
Kernel Lower BoundsKernel Lower Bounds
Kernel Lower BoundsASPAK2014
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series AnalysisAmit Ghosh
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Marc Lelarge
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
TheAscoliArzelaTheoremWithApplications
TheAscoliArzelaTheoremWithApplicationsTheAscoliArzelaTheoremWithApplications
TheAscoliArzelaTheoremWithApplicationsAndrea Collivadino
 
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based ComputingMolecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based Computingijcsit
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
 
Chapter 4 Fourier Series.pptx
Chapter 4 Fourier Series.pptxChapter 4 Fourier Series.pptx
Chapter 4 Fourier Series.pptxAshDenem
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Lake Como School of Advanced Studies
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfAshikAhmed42
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsMr. RahüL YøGi
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lPepa Vidosa Serradilla
 

Similar to F02402047053 (20)

F024042046
F024042046F024042046
F024042046
 
Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_Project
 
Modeling with Recurrence Relations
Modeling with Recurrence RelationsModeling with Recurrence Relations
Modeling with Recurrence Relations
 
stochastic-processes-1.pdf
stochastic-processes-1.pdfstochastic-processes-1.pdf
stochastic-processes-1.pdf
 
Kernel Lower Bounds
Kernel Lower BoundsKernel Lower Bounds
Kernel Lower Bounds
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
 
TheAscoliArzelaTheoremWithApplications
TheAscoliArzelaTheoremWithApplicationsTheAscoliArzelaTheoremWithApplications
TheAscoliArzelaTheoremWithApplications
 
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based ComputingMolecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
 
Unit II PPT.pptx
Unit II PPT.pptxUnit II PPT.pptx
Unit II PPT.pptx
 
R180304110115
R180304110115R180304110115
R180304110115
 
Chapter 4 Fourier Series.pptx
Chapter 4 Fourier Series.pptxChapter 4 Fourier Series.pptx
Chapter 4 Fourier Series.pptx
 
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...Complexity of exact solutions of many body systems: nonequilibrium steady sta...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
 
legendre.pptx
legendre.pptxlegendre.pptx
legendre.pptx
 
Digital signal processing part2
Digital signal processing part2Digital signal processing part2
Digital signal processing part2
 
Inverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdfInverse-Trigonometric-Functions.pdf
Inverse-Trigonometric-Functions.pdf
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And Systems
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 

Recently uploaded

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 

Recently uploaded (20)

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 

F02402047053

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 2 Issue 4 || April. 2014 || PP-47-53 www.ijmsi.org 47 | P a g e Some Accepts Of Banach Summability of a Factored Conjugate Series Chitaranjan Khadanga1 , Garima Swarnakar2 Rcet, Bhilai, Department of Mathematics, ABSTRACT: An elementary proposition states that an absolutely convergent series is convergent, i.e. that if /s0-s1/+/s1-s2/+…+/sn-sn-1/< ∞ This is the analogue for series of the theorem on functions that if a function f(x) is of bounded variation in an interval, the limits exist at every point. Consider the function f(x) = ∑an xn ,lthen the series being supposed convergent in ( 0 < x < 1 ) . Summability theory has historically been concerned with the notion of assigning a limit to a linear space-valued sequences, especially if the sequence is divergent. In this paper we have been proved a theorem on Banach summability of a factored conjugate series. KEY WORDS: Summability theory, Absolute Banach summability, Conjugate series, infinite series. I. INTRODUCTION Let  na be a given infinite series with the sequence of partial sums  ns . Let  np be a sequence of positive numbers such that (1.1)  1,0, 0     ipPnaspP ii n r vn The sequence to sequence transformation (1.2)   n v vvn n n sp P t 0 1 defines the sequence of the  npN, -mean of the sequence  ns generated by the sequence of coefficients  np . The series  na is said to be summable 1,, kpN kn , if (1.3)            1 1 1 n k nn k n n tt p P In the case when 1np , for all knpNkandn ,,1 summability is same as 1,C summability . For knpNk ,,1 summability is same an npN, -summability. Now , Let    1n n xB be the conjugate Fourier series of a 2 -periodic function  tf and L-integrable on  , . Then
  • 2. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 48 | P a g e (1.4 )     ,...3,2,1,sin 2 0   ndttxBn    where (1.5 )     txftxft  2 1 )( Dealing with B -summability of a conjugate Fourier Series, We have the following results: Known Results: Theorem-2.1: Let )(tf be a 2 -periodic, L-integrable function on  , . Then the conjugate Fourier Series  )(xBn of )(tf is B -integrable if (i)   ,0)( BVt  and (ii)    dt t t   0 Theorem-2.2: If       0 dt t t , then the factored Fourier series   xBnn is B -summable for  n to be a non-negative convex sequence such that  n n . we wish to generalize the above two results to absolute Riesz-Banach summability. We prove Theorem-2.3: Let  np be a positive non-decreasing sequence of numbers such that   n v vn nonpP 1 , . Let (i)     ,0BVt  (ii)       0 dt t t , and (iii)    nasPOnp nn , . Then the conjugate Fourier Series   xBn is absolutely Riesz-Banach summable i.e.    BpN n, summable.
  • 3. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 49 | P a g e Theorem-2.4: Let  np be a sequence of positive numbers such that   n v vn pP 1 , as n . Let (i)    dt t t   0 , and (ii)  nasPnp nn ),(0 . Then the factored conjugate Fourier series  xBnn is absolutely Riesz-Banach summable i.e.   BpN n , -summable for  n to be a non-negative convex sequence such that   n n . We need the following Lemmas for the proof of the above theorems. Lemma-2.3.1 Let  np be a positive non-decreasing sequence of numbers. Let      t 1  , then {tn} is a monotonically decreasing sequence. Lemma-2.3.2 Let  np be a sequence of positive non-decreasing, then        kn Pk is monotonically increasing in k . Proof. We have       1 1 1 11        knkn PknPkn kn P kn P kkkk              11 121        knkn ppppppnp knkn Ppkn kkkkkkk   npm,0 is non-decreasing. This proves the lemma. Lemma-2.3.3 If  n is a positive convex sequence such that   n n , then  n is a monotonically decreasing sequence. Proof of the theorem - 2.3 If  nTk is the k-th element of the Riesz-Banach transformation of the conjugate Fourier Series   xBn , then
  • 4. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 50 | P a g e 1 1 1 )(    vn k v v k k sp P nT     1 11 )( 1 vn r i k v v k xBp P            1 1 1 nk ni inik k n i i xBPP P xB . Now       k v vnv kk k kk xBP PP p nTnT 11 1 1 )()()( For the series  )(xBn , we have              1 1 11 1 1 )()()( k k k v vnv kk k kk xBP PP p nTnT         1 1 01 1 )(sin)( 2 k k v v kk k dttvntP PP p           1 101 1 )(sin)( 2 k k v v kk k dttvntP PP p     21 1 21 , 2                    t where k k , say We have                   1 1 0 11 1 1 0 11 1 )( sinsin      k k v v kk k k k v v kk k dt t t tvnPt PP p dttvntP PP p Since          0 1 1 , k dt t t , if        1 11 1 sin k k v v kk k tvnPt PP p , uniformly for  t0 Now       12 1 11 1 )sin(  k k v v kk k tknP PP p t       1 11 1 )(0 k k v v kk k P PP p t     )(0),1(0)(0)(0 1 )(01)(0 1 1 1 1 1 1 n k k n k k k kk k Pnpast P pk tPk PP P t              Next,
  • 5. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 51 | P a g e       2 0 11 1 )()(sin    k k v v kk k dtttvnp PP p Since 0)()0(   , we have   )( )cos( )sin( 00 td vn tvn dttvnt       Then,          2 0 11 1 )()cos(    k k v v kk k tdtvn vn P PP p     ),0(,cos)1(0 11 1   BVtastvn vn P PP p k k v v kk n        by results,      0 td        k k kn k kk k tvn kn P PP p ,)(cos)1(0 1 1        k k k Pkn p 1 1 )( )(0 , by Lemma-2.3.1,    nn k Pnpas nkn 0, 1)( 1 )(0        )1(00)(0 1    . Then      1 1 )()( k kk nTnT , uniformly for Nn . Hence  )(xBn is absolutely Riesz-Banach summable. This completes the proof of the theorem. Proof of the Theorem - 2.4 Let )(nTk be the k-th element of the Riesz – Banach transformation of the factored conjugate Fourier series  )(xBnn . Then         n i ii nk ni nik k iik nBPP P xBnT 1 1 1 )()(  Then  xBP PP p nTnT vn k v vnv kk k kk        11 1 1 )()(  …series  xBnn , we have
  • 6. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 52 | P a g e               1 1 11 1 1 )()( k k k v vnvnv nk n nk xBP PP p nTnT               1 1 01 1 sin 2 n k v vnv nk n dtvn t t tP PP p     Since            0 1 1, )( k nk nTnTdt t t if            1 11 1 sin k k v vnv nk k tvnPt PP p  , uniformly for  t0 . Now                k v vnv kk k k k tvnPt PP p 111 sin     1 2 , say. We have          1 1 11 1 sin   k k v vnv kk k tvnPt PP p             1 11 1 sin0 k k v vnv kk k tvnP PP p t       1 11 1 )(0 k k v v kk k P PP p t       1 1 1 1)(0 k k kk k Pk PP p t          1 1 1 0),1(0)(0)(0 )1( )(0 k nn k k Pnpont P pk t . Next          2 11 1 sin   k k v vnv kk n tvnP PP p t . By Abel’s partial summation formula                    k v k v v p k p knkvnvvnv tpnPtpnPtvnP 1 1 1 1 1 sinsinsin 
  • 7. Some Accepts Of Banach Summability of a Factored Conjugate Series www.ijmsi.org 53 | P a g e                1 1 110 k v knkvnvvnv PPp  Thus           2 1 1 11 1 1 )1(0   k k v knkvnvvnv kk k PPp PP p                      k k nn knk vnvvnv kk k PP P pp PP p 1 11 1 1 )1(0                 k kk k v nvvnv PP p Pp 1 1 1 111)1(0                    vk n kn k k nn n v vnvvnv P p PP p Pp 2 1 1 1 1 11                            1 11 11 1 1 )1(0 v v k kn v vnvvnv vnvvnv kP Pp Pp P                                            k k v v v vnvvnv v v vnvvnv kP P P P P p P p 1 )1(0 1 1 11 1 11                     1 1 1 1 1 1 )1(0 v v k n vn v vnv kP p                      1 11 )1(0 v v vn vn v                    1 11 )1(0 v v vn vn v   )1(0 , on n is decreasing and   n n , Hence   , uniformly for Nn . Then      BpNisnB nnn , -summable. This proves the theorem. REFERENCES: [1]. CHAMPMAN, S : On non-integral orders of summability of series and integrals, Proceedings of the London Mathematical Society, (2), 9(1910) 369-409. [2]. CHOW, A.C : Note on convergence and summability factors, Journal of the London Mathematical Society, 29(19054),459 – 476. [3]. FEKETE, M : A Szettarto vegtelen sorak elmeletchez, Mathematikal as Termesz Ertesito, 29 (1911), 719-726. [4]. GREGORY, J : Vera Circuli et hyperbalse quardrature, (1638-1675), published in 1967. [5]. HARDY, G.H : Divergent Series, Clarendow Press, Oxford, (1949).