SlideShare a Scribd company logo
1 of 48
Image and Camera
Fundamentals
Elsayed Hemayed
Overview
• Image Formation
• Cameras
• Digital Image Acquisition
• Matrix Representation of Images
• Image Characteristics
• Digital Color Images
• Image Display
• Human Eye
2Image & Camera
Image Formation
• Camera obscura (dark chamber)
"When images of illuminated objects ... penetrate through a small hole into a very dark room ...
you will see [on the opposite wall] these objects in their proper form and color, reduced in size ...
in a reversed position, owing to the intersection of the rays".
Leonardo Da Vinci 3Image & Camera
Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.
Images are two-dimensional patterns of brightness values.They are formed by the
projection of 3D objects.
Image Formation
4
Animal eye: a looonnng time ago.
Photographic camera:
Niepce, 1816.
Reproduced by permission, the American Society of Photogrammetry and
Remote Sensing. A.L. Nowicki, “Stereoscopy.” Manual of Photogrammetry,
Thompson, Radlinski, and Speert (eds.), third edition, 1966.
Figure from US Navy
Manual of Basic Optics
and Optical Instruments,
prepared by Bureau of
Naval Personnel. Reprinted
by Dover Publications,
Inc., 1969.
Pinhole perspective projection: Brunelleschi, XVth Century.
Camera obscura: XVIth Century. 5
Cameras
• It used a pinhole to focus light rays onto a wall or
translucent plate.
• Pinholes were replaced by lenses.
• Light collected over the imaging surface
produces a photograph.
6Image & Camera
Pinhole too big -
many directions are
averaged, blurring the
image
Pinhole too small-
diffraction effects blur
the image
Generally, pinhole
cameras are dark, because
a very small set of rays
from a particular point
hits the screen.
Pinhole (Aperture)
size effect
7Image & Camera
The reason for lenses
8Image & Camera
Digital Image Acquisition
• When photons strike, electron-hole pairs are
generated on sensor sites.
• Electrons generated are collected over a certain
period of time.
• The number of electrons are converted to pixel
values. (Pixel is short for picture element.)
• Pixel values are quantized. For example, in an
8-bit representation the pixel values are integers
in the range [0-255].
Spectral
filter
Lens
Sensor
array
QuantizerExposure
timer
Scene
Digital
image
9
The Field of View
10Image & Camera
CCD Cameras
charge-coupled-device (CCD)
Shutter Speed: is the length of
time a shutter is open; the total
exposure is proportional to this
exposure time, or duration of light
reaching the film or image sensor.
Focal Length: affects the zoom
Aperture Size: affects the focus
Resolution: affects the details
11Image & Camera
See http://www.engineerguy.com/elements/videos/video-ccd.htm
Digital Image Acquisition
12
Digital Image Acquisition
Spatial sampling and amplitude quantization 13Image & Camera
Quantization Effects –
Radiometric Resolution
8 bit – 256 levels 1 bit – 2 levels2 bit – 4 levels4 bit – 16 levels
Matrix Representation of Images
• A digital image can be written as a matrix
1 2
[0,0] [0,1] [0, 1]
[1,0] [1,1] [1, 1]
[ , ]
[ 1,0] [ 1, 1] MxN
x x x N
x x x N
x n n
x M x M N
 
  
 
 
   
35 45 20
43 64 52
10 29 39
 
 
 
  
15Image & Camera
What is an image?
16
RRf
yxfP


2
:
),(
17
RRf
yxfP


2
:
),(
18
1. We sample the
image to get a
discrete set of
pixels with
quantized values.
2. For a gray tone
image there is one
band F(r,c), with
values usually
between 0 and
255.
3. For a color image
there are 3 bands
R(r,c), G(r,c), B(r,c)
Images in Python Numpy
N x M grayscale image “im”
– im[0,0] = top-left pixel value
– im[y, x] = y pixels down, x pixels to right
– im[N-1, M-1] = bottom-right pixel
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
Row
Column
James Hays
Grayscale intensity
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
Color R
G
B
James Hays
Images in Python Numpy
N x M RGB image “im”
– im[0,0,0] = top-left pixel value in R-channel
– Im[x, y, b] = x pixels to right, y pixels down in the bth channel
– Im[N-1, M-1, 3] = bottom-right pixel in B-channel
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
R
G
B
Row
Column
James Hays
Images in Python Numpy
Take care between types!
- uint8 (values 0 to 255) – io.imread(“file.jpg”)
- float32 (values 0 to 255) – io.imread(“file.jpg”).astype(np.float32)
- float32 (values 0 to 1) – img_as_float32(io.imread(“file.jpg”))
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
Row
Column
James Hays
Image Characteristics
• Image Resolution
• Image Size
• Bit Depth – Grayscale Resolution
24Image & Camera
Image Characteristics
Image Resolution
25
Image Characteristics
Image Size
26
Image Characteristics
8 bits 7 bits
6 bits 5 bits
Bit Depth – Grayscale Resolution
27
Image Characteristics
4 bits 3 bits
2 bits 1 bit
Bit Depth – Grayscale Resolution
Contouring
28Image & Camera
Color Sensing in Camera (RGB)
• 3-chip vs. 1-chip: quality vs. cost
• Why more green?
http://www.cooldictionary.com/words/Bayer-filter.wikipedia
Why 3 colors?
Slide by Steve Seitz
Practical Color Sensing: Bayer Grid
• Estimate RGB
at ‘G’ cells
from
neighboring
values
Slide by Steve Seitz
Color spaces
• How can we represent color?
http://en.wikipedia.org/wiki/File:RGB_illumination.jpg
Color spaces: RGB
0,1,0
0,0,1
1,0,0
Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png
Any color = r*R + g*G + b*B
• Strongly correlated channels
• Non-perceptual
Default color space
R = 1
(G=0,B=0)
G = 1
(R=0,B=0)
B = 1
(R=0,G=0)
Most information in intensity
Only color shown – constant intensity
James Hays
Most information in intensity
Only intensity shown – constant color
James Hays
Most information in intensity
Original image
James Hays
HSI
• Hue refers to the perceived color (the dominant
wavelength)- Example: purple
• Saturation measures its dilution by white light. Light
purple vs. dark purple
• HSI decouples the intensity information from the color
36
Color spaces: HSV
Intuitive color space
H
(S=1,V=1)
S
(H=1,V=1)
V
(H=1,S=0)
James Hays
Color spaces: YCbCr
Y
(Cb=0.5,Cr=0.5)
Cb
(Y=0.5,Cr=0.5)
Cr
(Y=0.5,Cb=0.5)
Y=0 Y=0.5
Y=1
Cb
Cr
Fast to compute, good for
compression, used by TV
James Hays
CMY
• The CMY (cyan-magenta-yellow) model is a subtractive
model appropriate to absorption of colors, for example
due to pigments in paints.
• Whereas the RGB model asks what is added to black to
get a particular color, the CMY model asks what is
subtracted from white.
• Subtractive means that color you see on the paper is a
result of adding together the three secondary colors,
filtering out the unwanted color components, and
reflecting only the desired colors.
• Cyan absorbs the red color component, magenta
absorbs the green, and yellow absorbs the blue.
• For example, mixing magenta and yellow together
results in the red color seen on the paper.
39Image & Camera
CMY Vs RGB
The figure on the left shows the additive mixing of red, green and blue primaries to form
the three secondary colours yellow (red + green), cyan (blue + green) and magenta (red +
blue), and white ((red + green + blue).
The figure on the right shows the three subtractive primaries, and their pairwise
combinations to form red, green and blue, and finally black by subtracting all three
primaries from white. 40Image & Camera
Image Display
• Display
– CRT, LCD, DLP, Plasma, LCOS, D-ILA
– HDTV, display wall
– PDA, cellular phone, Gameboy
– Stereoscopic (3D)
41Image & Camera
CRT: Cathode Ray Tube
Mitsubishi WS-55813
Rear Projection CRT
Sony KV34XBR910
Direct View CRT
Future: extinction
42Image & Camera
LCD: Liquid Crystal Display
Philips 42FD9954 Flat Screen
LCD Display
Future: bigger, faster, cheaper
43Image & Camera
Virtual Wall
NASA Space Shuttle on the display wall, March 1999
44Image & Camera
Display on Mobile Devices
cell phone
portable DVD
Gameboy
PDA
45Image & Camera
3D Display
46Image & Camera
The Ultimate Display: Virtual
Retinal Display
47Image & Camera
The Human Eye
•The iris and the pupil control the amount of light penetrating the eyeball
•The cornea and the lens refract the light to create the retinal image
•The retina where the image is formed.
•Human eye Field of View: 160x135
48Image & Camera
• The human eye is a camera
– Iris - colored annulus with radial muscles
– Pupil - the hole (aperture) whose size is controlled by the iris
– What’s the sensor? photoreceptor cells (rods and cones) in the retina

More Related Content

Similar to Image & Camera Fundamentals Guide

Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday lifePrathika Jp Jp
 
09 cie552 image_featuresi
09 cie552 image_featuresi09 cie552 image_featuresi
09 cie552 image_featuresiElsayed Hemayed
 
introduction to Digital Image Processing
introduction to Digital Image Processingintroduction to Digital Image Processing
introduction to Digital Image Processingnikesh gadare
 
NDT - Digital radiography for the future in Industry
NDT - Digital radiography for the future in IndustryNDT - Digital radiography for the future in Industry
NDT - Digital radiography for the future in IndustryRavindraVasudeva1
 
Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday lifejothiganga
 
Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday lifeHasan Ali
 
Television System.pptx
Television System.pptxTelevision System.pptx
Television System.pptxGILAMOYAN1
 
Blur Filter - Hanpo
Blur Filter - HanpoBlur Filter - Hanpo
Blur Filter - HanpoHanpo Cheng
 
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...Maths in daytoday life by Gilad Lerman Department of Mathematics University o...
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...yashoverdhanv
 
Poster at aala2016
Poster at aala2016 Poster at aala2016
Poster at aala2016 TakaKumazawa
 
Lec13 stereo converted
Lec13 stereo convertedLec13 stereo converted
Lec13 stereo convertedBaliThorat1
 
presentation
presentationpresentation
presentationlei zhang
 
Image orientation classification analysis
Image orientation classification analysisImage orientation classification analysis
Image orientation classification analysisRohit Dandona
 
2 basic imaging and radiometry
2 basic imaging and radiometry2 basic imaging and radiometry
2 basic imaging and radiometryzjnsrbt
 
Enlish presntation
Enlish presntationEnlish presntation
Enlish presntationAyoub BAHTAT
 

Similar to Image & Camera Fundamentals Guide (20)

Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday life
 
09 cie552 image_featuresi
09 cie552 image_featuresi09 cie552 image_featuresi
09 cie552 image_featuresi
 
PPT s06-machine vision-s2
PPT s06-machine vision-s2PPT s06-machine vision-s2
PPT s06-machine vision-s2
 
cv1.ppt
cv1.pptcv1.ppt
cv1.ppt
 
introduction to Digital Image Processing
introduction to Digital Image Processingintroduction to Digital Image Processing
introduction to Digital Image Processing
 
NDT - Digital radiography for the future in Industry
NDT - Digital radiography for the future in IndustryNDT - Digital radiography for the future in Industry
NDT - Digital radiography for the future in Industry
 
Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday life
 
Mathematics in everyday life
Mathematics in everyday lifeMathematics in everyday life
Mathematics in everyday life
 
Television System.pptx
Television System.pptxTelevision System.pptx
Television System.pptx
 
Blur Filter - Hanpo
Blur Filter - HanpoBlur Filter - Hanpo
Blur Filter - Hanpo
 
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...Maths in daytoday life by Gilad Lerman Department of Mathematics University o...
Maths in daytoday life by Gilad Lerman Department of Mathematics University o...
 
Mk slides.ppt
Mk slides.pptMk slides.ppt
Mk slides.ppt
 
Poster at aala2016
Poster at aala2016 Poster at aala2016
Poster at aala2016
 
Lec13 stereo converted
Lec13 stereo convertedLec13 stereo converted
Lec13 stereo converted
 
CNN
CNNCNN
CNN
 
presentation
presentationpresentation
presentation
 
Image orientation classification analysis
Image orientation classification analysisImage orientation classification analysis
Image orientation classification analysis
 
2 basic imaging and radiometry
2 basic imaging and radiometry2 basic imaging and radiometry
2 basic imaging and radiometry
 
Enlish presntation
Enlish presntationEnlish presntation
Enlish presntation
 
Image pipeline
Image pipelineImage pipeline
Image pipeline
 

More from Elsayed Hemayed

14 cie552 camera_calibration
14 cie552 camera_calibration14 cie552 camera_calibration
14 cie552 camera_calibrationElsayed Hemayed
 
12 cie552 object_recognition
12 cie552 object_recognition12 cie552 object_recognition
12 cie552 object_recognitionElsayed Hemayed
 
11 cie552 image_featuresii_sift
11 cie552 image_featuresii_sift11 cie552 image_featuresii_sift
11 cie552 image_featuresii_siftElsayed Hemayed
 
10 cie552 image_featuresii_corner
10 cie552 image_featuresii_corner10 cie552 image_featuresii_corner
10 cie552 image_featuresii_cornerElsayed Hemayed
 
08 cie552 image_segmentation
08 cie552 image_segmentation08 cie552 image_segmentation
08 cie552 image_segmentationElsayed Hemayed
 
07 cie552 image_mosaicing
07 cie552 image_mosaicing07 cie552 image_mosaicing
07 cie552 image_mosaicingElsayed Hemayed
 
06 cie552 image_manipulation
06 cie552 image_manipulation06 cie552 image_manipulation
06 cie552 image_manipulationElsayed Hemayed
 
05 cie552 image_enhancement
05 cie552 image_enhancement05 cie552 image_enhancement
05 cie552 image_enhancementElsayed Hemayed
 
04 cie552 image_filtering_frequency
04 cie552 image_filtering_frequency04 cie552 image_filtering_frequency
04 cie552 image_filtering_frequencyElsayed Hemayed
 
03 cie552 image_filtering_spatial
03 cie552 image_filtering_spatial03 cie552 image_filtering_spatial
03 cie552 image_filtering_spatialElsayed Hemayed
 
Csci101 lect04 advanced_selection
Csci101 lect04 advanced_selectionCsci101 lect04 advanced_selection
Csci101 lect04 advanced_selectionElsayed Hemayed
 
Csci101 lect10 algorithms_iii
Csci101 lect10 algorithms_iiiCsci101 lect10 algorithms_iii
Csci101 lect10 algorithms_iiiElsayed Hemayed
 
Csci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeCsci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeElsayed Hemayed
 
Csci101 lect08b matlab_programs
Csci101 lect08b matlab_programsCsci101 lect08b matlab_programs
Csci101 lect08b matlab_programsElsayed Hemayed
 
Csci101 lect08a matlab_programs
Csci101 lect08a matlab_programsCsci101 lect08a matlab_programs
Csci101 lect08a matlab_programsElsayed Hemayed
 
Csci101 lect07 algorithms_ii
Csci101 lect07 algorithms_iiCsci101 lect07 algorithms_ii
Csci101 lect07 algorithms_iiElsayed Hemayed
 
Csci101 lect06 advanced_looping
Csci101 lect06 advanced_loopingCsci101 lect06 advanced_looping
Csci101 lect06 advanced_loopingElsayed Hemayed
 
Csci101 lect05 formatted_output
Csci101 lect05 formatted_outputCsci101 lect05 formatted_output
Csci101 lect05 formatted_outputElsayed Hemayed
 
Csci101 lect03 algorithms_i
Csci101 lect03 algorithms_iCsci101 lect03 algorithms_i
Csci101 lect03 algorithms_iElsayed Hemayed
 

More from Elsayed Hemayed (20)

14 cie552 camera_calibration
14 cie552 camera_calibration14 cie552 camera_calibration
14 cie552 camera_calibration
 
12 cie552 object_recognition
12 cie552 object_recognition12 cie552 object_recognition
12 cie552 object_recognition
 
11 cie552 image_featuresii_sift
11 cie552 image_featuresii_sift11 cie552 image_featuresii_sift
11 cie552 image_featuresii_sift
 
10 cie552 image_featuresii_corner
10 cie552 image_featuresii_corner10 cie552 image_featuresii_corner
10 cie552 image_featuresii_corner
 
08 cie552 image_segmentation
08 cie552 image_segmentation08 cie552 image_segmentation
08 cie552 image_segmentation
 
07 cie552 image_mosaicing
07 cie552 image_mosaicing07 cie552 image_mosaicing
07 cie552 image_mosaicing
 
06 cie552 image_manipulation
06 cie552 image_manipulation06 cie552 image_manipulation
06 cie552 image_manipulation
 
05 cie552 image_enhancement
05 cie552 image_enhancement05 cie552 image_enhancement
05 cie552 image_enhancement
 
04 cie552 image_filtering_frequency
04 cie552 image_filtering_frequency04 cie552 image_filtering_frequency
04 cie552 image_filtering_frequency
 
03 cie552 image_filtering_spatial
03 cie552 image_filtering_spatial03 cie552 image_filtering_spatial
03 cie552 image_filtering_spatial
 
01 cie552 introduction
01 cie552 introduction01 cie552 introduction
01 cie552 introduction
 
Csci101 lect04 advanced_selection
Csci101 lect04 advanced_selectionCsci101 lect04 advanced_selection
Csci101 lect04 advanced_selection
 
Csci101 lect10 algorithms_iii
Csci101 lect10 algorithms_iiiCsci101 lect10 algorithms_iii
Csci101 lect10 algorithms_iii
 
Csci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeCsci101 lect09 vectorized_code
Csci101 lect09 vectorized_code
 
Csci101 lect08b matlab_programs
Csci101 lect08b matlab_programsCsci101 lect08b matlab_programs
Csci101 lect08b matlab_programs
 
Csci101 lect08a matlab_programs
Csci101 lect08a matlab_programsCsci101 lect08a matlab_programs
Csci101 lect08a matlab_programs
 
Csci101 lect07 algorithms_ii
Csci101 lect07 algorithms_iiCsci101 lect07 algorithms_ii
Csci101 lect07 algorithms_ii
 
Csci101 lect06 advanced_looping
Csci101 lect06 advanced_loopingCsci101 lect06 advanced_looping
Csci101 lect06 advanced_looping
 
Csci101 lect05 formatted_output
Csci101 lect05 formatted_outputCsci101 lect05 formatted_output
Csci101 lect05 formatted_output
 
Csci101 lect03 algorithms_i
Csci101 lect03 algorithms_iCsci101 lect03 algorithms_i
Csci101 lect03 algorithms_i
 

Recently uploaded

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Recently uploaded (20)

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 

Image & Camera Fundamentals Guide

  • 2. Overview • Image Formation • Cameras • Digital Image Acquisition • Matrix Representation of Images • Image Characteristics • Digital Color Images • Image Display • Human Eye 2Image & Camera
  • 3. Image Formation • Camera obscura (dark chamber) "When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position, owing to the intersection of the rays". Leonardo Da Vinci 3Image & Camera
  • 4. Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. Images are two-dimensional patterns of brightness values.They are formed by the projection of 3D objects. Image Formation 4
  • 5. Animal eye: a looonnng time ago. Photographic camera: Niepce, 1816. Reproduced by permission, the American Society of Photogrammetry and Remote Sensing. A.L. Nowicki, “Stereoscopy.” Manual of Photogrammetry, Thompson, Radlinski, and Speert (eds.), third edition, 1966. Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. Pinhole perspective projection: Brunelleschi, XVth Century. Camera obscura: XVIth Century. 5
  • 6. Cameras • It used a pinhole to focus light rays onto a wall or translucent plate. • Pinholes were replaced by lenses. • Light collected over the imaging surface produces a photograph. 6Image & Camera
  • 7. Pinhole too big - many directions are averaged, blurring the image Pinhole too small- diffraction effects blur the image Generally, pinhole cameras are dark, because a very small set of rays from a particular point hits the screen. Pinhole (Aperture) size effect 7Image & Camera
  • 8. The reason for lenses 8Image & Camera
  • 9. Digital Image Acquisition • When photons strike, electron-hole pairs are generated on sensor sites. • Electrons generated are collected over a certain period of time. • The number of electrons are converted to pixel values. (Pixel is short for picture element.) • Pixel values are quantized. For example, in an 8-bit representation the pixel values are integers in the range [0-255]. Spectral filter Lens Sensor array QuantizerExposure timer Scene Digital image 9
  • 10. The Field of View 10Image & Camera
  • 11. CCD Cameras charge-coupled-device (CCD) Shutter Speed: is the length of time a shutter is open; the total exposure is proportional to this exposure time, or duration of light reaching the film or image sensor. Focal Length: affects the zoom Aperture Size: affects the focus Resolution: affects the details 11Image & Camera See http://www.engineerguy.com/elements/videos/video-ccd.htm
  • 13. Digital Image Acquisition Spatial sampling and amplitude quantization 13Image & Camera
  • 14. Quantization Effects – Radiometric Resolution 8 bit – 256 levels 1 bit – 2 levels2 bit – 4 levels4 bit – 16 levels
  • 15. Matrix Representation of Images • A digital image can be written as a matrix 1 2 [0,0] [0,1] [0, 1] [1,0] [1,1] [1, 1] [ , ] [ 1,0] [ 1, 1] MxN x x x N x x x N x n n x M x M N              35 45 20 43 64 52 10 29 39          15Image & Camera
  • 16. What is an image? 16
  • 18. RRf yxfP   2 : ),( 18 1. We sample the image to get a discrete set of pixels with quantized values. 2. For a gray tone image there is one band F(r,c), with values usually between 0 and 255. 3. For a color image there are 3 bands R(r,c), G(r,c), B(r,c)
  • 19. Images in Python Numpy N x M grayscale image “im” – im[0,0] = top-left pixel value – im[y, x] = y pixels down, x pixels to right – im[N-1, M-1] = bottom-right pixel 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 Row Column James Hays
  • 20. Grayscale intensity 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
  • 22. Images in Python Numpy N x M RGB image “im” – im[0,0,0] = top-left pixel value in R-channel – Im[x, y, b] = x pixels to right, y pixels down in the bth channel – Im[N-1, M-1, 3] = bottom-right pixel in B-channel 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 R G B Row Column James Hays
  • 23. Images in Python Numpy Take care between types! - uint8 (values 0 to 255) – io.imread(“file.jpg”) - float32 (values 0 to 255) – io.imread(“file.jpg”).astype(np.float32) - float32 (values 0 to 1) – img_as_float32(io.imread(“file.jpg”)) 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 Row Column James Hays
  • 24. Image Characteristics • Image Resolution • Image Size • Bit Depth – Grayscale Resolution 24Image & Camera
  • 27. Image Characteristics 8 bits 7 bits 6 bits 5 bits Bit Depth – Grayscale Resolution 27
  • 28. Image Characteristics 4 bits 3 bits 2 bits 1 bit Bit Depth – Grayscale Resolution Contouring 28Image & Camera
  • 29. Color Sensing in Camera (RGB) • 3-chip vs. 1-chip: quality vs. cost • Why more green? http://www.cooldictionary.com/words/Bayer-filter.wikipedia Why 3 colors? Slide by Steve Seitz
  • 30. Practical Color Sensing: Bayer Grid • Estimate RGB at ‘G’ cells from neighboring values Slide by Steve Seitz
  • 31. Color spaces • How can we represent color? http://en.wikipedia.org/wiki/File:RGB_illumination.jpg
  • 32. Color spaces: RGB 0,1,0 0,0,1 1,0,0 Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png Any color = r*R + g*G + b*B • Strongly correlated channels • Non-perceptual Default color space R = 1 (G=0,B=0) G = 1 (R=0,B=0) B = 1 (R=0,G=0)
  • 33. Most information in intensity Only color shown – constant intensity James Hays
  • 34. Most information in intensity Only intensity shown – constant color James Hays
  • 35. Most information in intensity Original image James Hays
  • 36. HSI • Hue refers to the perceived color (the dominant wavelength)- Example: purple • Saturation measures its dilution by white light. Light purple vs. dark purple • HSI decouples the intensity information from the color 36
  • 37. Color spaces: HSV Intuitive color space H (S=1,V=1) S (H=1,V=1) V (H=1,S=0) James Hays
  • 38. Color spaces: YCbCr Y (Cb=0.5,Cr=0.5) Cb (Y=0.5,Cr=0.5) Cr (Y=0.5,Cb=0.5) Y=0 Y=0.5 Y=1 Cb Cr Fast to compute, good for compression, used by TV James Hays
  • 39. CMY • The CMY (cyan-magenta-yellow) model is a subtractive model appropriate to absorption of colors, for example due to pigments in paints. • Whereas the RGB model asks what is added to black to get a particular color, the CMY model asks what is subtracted from white. • Subtractive means that color you see on the paper is a result of adding together the three secondary colors, filtering out the unwanted color components, and reflecting only the desired colors. • Cyan absorbs the red color component, magenta absorbs the green, and yellow absorbs the blue. • For example, mixing magenta and yellow together results in the red color seen on the paper. 39Image & Camera
  • 40. CMY Vs RGB The figure on the left shows the additive mixing of red, green and blue primaries to form the three secondary colours yellow (red + green), cyan (blue + green) and magenta (red + blue), and white ((red + green + blue). The figure on the right shows the three subtractive primaries, and their pairwise combinations to form red, green and blue, and finally black by subtracting all three primaries from white. 40Image & Camera
  • 41. Image Display • Display – CRT, LCD, DLP, Plasma, LCOS, D-ILA – HDTV, display wall – PDA, cellular phone, Gameboy – Stereoscopic (3D) 41Image & Camera
  • 42. CRT: Cathode Ray Tube Mitsubishi WS-55813 Rear Projection CRT Sony KV34XBR910 Direct View CRT Future: extinction 42Image & Camera
  • 43. LCD: Liquid Crystal Display Philips 42FD9954 Flat Screen LCD Display Future: bigger, faster, cheaper 43Image & Camera
  • 44. Virtual Wall NASA Space Shuttle on the display wall, March 1999 44Image & Camera
  • 45. Display on Mobile Devices cell phone portable DVD Gameboy PDA 45Image & Camera
  • 47. The Ultimate Display: Virtual Retinal Display 47Image & Camera
  • 48. The Human Eye •The iris and the pupil control the amount of light penetrating the eyeball •The cornea and the lens refract the light to create the retinal image •The retina where the image is formed. •Human eye Field of View: 160x135 48Image & Camera • The human eye is a camera – Iris - colored annulus with radial muscles – Pupil - the hole (aperture) whose size is controlled by the iris – What’s the sensor? photoreceptor cells (rods and cones) in the retina