SlideShare a Scribd company logo
1 of 44
BELT4093
SIGNALS &
NETWORKS
Chapter 3
Fourier Transform
by Dr. Siti Nur Sakinah Jamaludin, 2019
Acknowledgement to Nurul Wahidah Arshad, FKEE, UMP
1
2
3
4
Definition & Properties of FT
FT using Derivative Technique
Inverse FT
Applications
Fourier
Transform
(FT)
At the end of Chapter 3, student should be able
to:
• Determine the Fourier Transforms using its
table and properties.
• Determine the Fourier Transforms using
derivative technique.
• Transform the signal from frequency domain
into time domain using inverse Fourier
Transform.
• Discuss Fourier Transform application in
amplitude modulation.
Learning
Outcomes
CHAPTER 3
3
3.1 Definition & Properties 4
• Same as Fourier series but for aperiodic functions.
Ex: unit step u(t), exp function eat
• The trick is to extend the period T in Fourier series:
• When T increased the only a single function remains
• So, the function will no longer be periodic
Fourier
Transform
Fourier Series is about …
approximating functions on [-L, L].
How do we approximate function on [-∞, ∞]???
Definition of Fourier Transform 5
• The Fourier transform is an integral transformation of f(t) from time domain to
frequency domain
• The inverse Fourier transform:
Practice Problem 18.2





1
1
)
(t
f
1
0
,
0
1
,





t
t
   



















j
j
j
j
j
e
j
e
j
j
e
j
e
dt
e
dt
e
e
t
f
F
j
j
t
j
t
j
t
j
t
j
t
j
)
1
(cos
2
2
cos
2
1
1
1
1
)
(
)
(
1
0
0
1
1
0
0
1











































Practice Problem 18.3




0
)
(
at
e
t
f






t
t
0
,
0
,









j
a
j
a
j
a
e
dt
e
dt
e
dt
e
e
e
t
f
F
t
j
a
t
j
a
t
j
t
j
at
t
j




































1
0
1
)
0
(
)
(
)
(
0
)
(
0
)
(
0
0
Fourier transform pairs
• Linearity
• Time scaling
• Time shifting
• Frequency shifting
• Time differentiation
• Time integration
• Reversal
• Duality
Properties of Fourier Transform
Useful in finding the transforms of complicated functions
from the transform of simple functions:
Fourier transform of a linear
combination of functions is the same
as the linear combination of the
transforms of the individual functions
Properties of
Fourier
Transform -
Linearity
– Time expansion |a| > 1 will causes
frequency compression
– Time compression |a| < 1 will causes
frequency expansion
Properties of
Fourier
Transform –
Time Scaling
Example 1
𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 =
2
𝑗𝜔
Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(4𝑡)
𝐺 𝜔 = ℱ 𝑓(4𝑡 ] =
1
|4|
𝐹
𝜔
4
=
1
|4|
.
2
𝑗(𝜔
4)
=
2
𝑗𝜔
– Delay in time domain causes phase shift
in frequency domain
– Recall in phasors, complex number z can
be express in exponential form as:
Properties of
Fourier
Transform -
Time shifting 
 j
re
r
z 


Example 2
𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 =
2
𝑗𝜔
Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(𝑡 − 2)
𝐺 𝜔 = ℱ 𝑓(𝑡 − 2 ] = 𝑒−𝑗𝜔2𝐹 𝜔 =
2𝑒−𝑗𝜔2
𝑗𝜔
A frequency shift in frequency domain adds
a phase shift in time function
Properties of
Fourier
Transform -
Frequency
shifting





 )
(
)
(
)
( 0
0 




 f
d
f
* Special case: sifting property of the impulse function
Example 3
𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 =
2
𝑗𝜔
Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(𝑡)𝑒𝑗5𝑡
𝐺 𝜔 = ℱ 𝑓(𝑡 𝑒𝑗5𝑡
] = 𝐹 𝜔 − 5 =
2
𝑗(𝜔 − 5)
=
2
𝑗𝜔 − 𝑗5
– Fourier transform of the derivative f(t) is
obtained by multiplying the transform of f(t)
by jω
– The repeated derivative will give:
Properties of
Fourier
Transform -
Time
differentiation Example 4
𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 =
2
𝑗𝜔
Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓2(𝑡)
𝐺 𝜔 = ℱ 𝑓2(𝑡 ] = (𝑗𝜔)2𝐹 𝜔 = −𝜔 ∙
2
𝑗
Reversing the f(t) in time domain will result in
reversing the F(ω) in frequency domain
Properties of
Fourier
Transform -
Reversal
Properties of Fourier Transform
Summarized table of the Fourier transform properties
Differentiate the signal until
you get impulse response
3.2 Derivative
Methode
Remember from chapter 1?
• Differentiate Unit Ramp
become Unit Step
• Derivative of the Unit Step
function is Impulse Function
Practice
Problem 18.5














8
2
4
2
4
2
8
2
)
(
t
t
t
t
t
f
4
3
,
3
2
,
2
3
,
3
4
,












t
t
t
t










2
2
2
2
)
(
' t
f
4
3
,
3
2
,
2
3
,
3
4
,












t
t
t
t
0
f ’(t)
t
4
3
2
1
–4 –3 –2 –1
2
-2
First Derivative:
Practice
Problem 18.5
0
f “(t)
t
4
3
2
1
–4 –3 –2 –1
2 2 2 2
–4
–4
)
4
(
2
)
3
(
4
)
2
(
2
)
2
(
2
)
3
(
4
)
4
(
2
)
(
'
'












t
t
t
t
t
t
t
f






Left-hand side:
    )
(
)
(
)
(
'
' 2
2



 F
F
j
t
f
F 


Right-hand side:
𝐹
2𝛿(𝑡 + 4) − 4𝛿(𝑡 + 3)
+2𝛿(𝑡 + 2) + 2𝛿(𝑡 − 2)
−4𝛿(𝑡 − 3) + 2𝛿(𝑡 − 4)
= 2𝑒𝑗4𝜔
− 4𝑒𝑗3𝜔
+ 2𝑒𝑗2𝜔
+2𝑒−𝑗2𝜔 − 4𝑒−𝑗3𝜔 + 2𝑒−𝑗4𝜔
Second derivative:
Transform using table:
Practice
Problem 18.5
Balancing both sides:
Group the transform:







 4
3
2
2
3
4
2
2
4
2
2
4
2
)
( j
j
j
j
j
j
e
e
e
e
e
e
F 









     
2
2
2
2
2
3
3
4
4
2
cos
4
3
cos
8
4
cos
4
2
cos
4
3
cos
8
4
cos
4
2
4
2
)
(

































 j
j
j
j
j
j
e
e
e
e
e
e
F
Problem
18.5






1
1
)
(
t
t
t
h
1
0
,
0
1
,





t
t
0
h’(t)
t
1
–1
1
-2
-1




1
1
)
(
' t
h
1
0
,
0
1
,





t
t )
(
2 t


First Derivative:
Problem
18.5
)
1
(
)
(
'
2
)
1
(
)
(
'
' 



 t
t
t
t
h 


0
h’’(t)
t
1
–1
1
-2
-1
 Left-hand side:
    )
(
)
(
)
(
'
' 2
2



 F
F
j
t
h
F 


 Right-hand side:
 
)
(sin
2
2
sin
2
2
)
1
(
)
(
'
2
)
1
(






















j
j
j
e
j
e
t
t
t
F
j
j
Second derivative:
Transform using table:
• Balancing both sides:
2
2
)
sin
(
2
)
(
)
(sin
2
)
(














j
F
j
F
• Given:
• Find Fourier transform for time-scaling property first:
• Then, the Fourier transform for δ(t) and δ’(t):
• So, the Fourier transform should be:
Problem
18.15c
)
2
(
'
)
3
(
)
( t
t
t
f 
 















2
.
2
1
3
.
3
1
)
(


 F
F
F
δ(t) before
transform
δ’(t) before
transform




j
j
t
F
t
F



)
1
(
)]
(
'
[
1
)]
(
[

 j
F
2
1
3
1
)
( 

• Refer to the table of Fourier
transform properties and
pairs
• Are used for transforming
back from frequency domain
(ω) to the time domain (t).
3.3 Inverse
Fourier
Transform
Inverse Fourier
Transform
• When fraction is involved, there are 3
possible form of F()
– Simple poles:
– Repeated poles:
– Complex poles:
n
n
n p
s
k
p
s
k
p
s
k
p
s
p
s
p
s
s
N











 2
2
1
1
2
1 )
(
)
)(
(
)
(
n
n
n
p
s
k
p
s
k
p
s
k
p
s
s
N
)
(
)
(
)
(
)
(
)
(
2
2
1
1









b
as
s
k
s
k
b
as
s
s
N





 2
2
1
2
)
(
Practice
Problem
18.6a
• Given:
• To avoid complex calculation using the jω, let:
• Using fraction method, we get:
)
2
)(
4
)(
1
(
)
2
3
(
6
)
(





j
j
j
j
H






j
s 
3
)
2
)(
1
(
0
0
6
5
0
)
2
)(
3
(
0
30
2
0
0
)
1
)(
3
(
6
)
4
)(
1
(
)
2
)(
1
(
)
2
)(
4
(
)
2
3
(
6
2
4
1
)
2
)(
4
)(
1
(
)
2
3
(
6






































C
C
B
B
A
A
s
s
C
s
s
B
s
s
A
s
s
C
s
B
s
A
s
s
s
s
,
2
,
4
,
1






s
s
s
for
for
for
Practice
Problem
18.6a
• So:
• Using Fourier transform pairs table:
  )
(
3
5
2
)
(
3
)
(
5
)
(
2
)
(
2
4
2
4
t
u
e
e
e
t
u
e
t
u
e
t
u
e
t
h
t
t
t
t
t
t












• Given:
• To avoid complex calculation using the jω, let:
• For the first half of the transform we get:
• For the second half of the transform we get:
• So for both halves, the inverse Fourier transform is:
Practice
Problem
18.6b
16
)
1
(
)
1
(
2
1
)
(
)
( 2












j
j
j
Y

j
s 
)
(
1
)
(
1
t
u
j
F 











)
(
4
cos
2
4
)
1
(
)
1
(
2
16
)
1
(
)
1
(
2
2
2
1
2
1
t
tu
e
j
j
F
j
j
F t



































)
(
)
4
cos
2
1
(
)
(
4
cos
2
)
(
)
(
t
u
t
e
t
tu
e
t
u
t
y
t
t






Problem
18.26a
• Given:
• Using the time shift property, we get:
• Inverse transform of F(ω):
• Property statement make the inverse transform becomes:











 



 

j
e
j
e
G j
j
1
1
1
)
( 2
2
  )
2
(
)
(
1
1 1
2
1






















t
f
F
e
F
j
e
F a
j
j




t in the inverse
transform of F(ω)
must be t-2
  )
(
1
1
)
( 1
1
t
u
e
j
F
F
F t














  )
2
(
)
(
)
( )
2
(
1


 


t
u
e
t
g
G
F t

3.4 APPLICATIONS OF FOURIER
TRANSFORM
– Transmission through space is only efficient for high frequency above 20kHz
– Information signals (speech and music) contained low frequency 50Hz to 20kHz
– Is a process whereby the amplitude of the carrier is controlled by the modulating
signal.
30
Amplitude Modulation (AM)
31
http://www.technologyuk.net/telecommunications/telecom-principles/amplitude-modulation.shtml
https://en.m.wikipedia.org/wiki/File:Illustration_of_Amplitude_Modulation.png
A simplified AM radio transmitter-receiver system is shown
below.
(Carrier signal)
Amplitude
Modulation
– Information signals:
– Carrier signal:
– Value of ωc:
– AM signal:
t
V
t
m m
m 
cos
)
( 
t
V
t
c c
c 
cos
)
( 
m
c 
 
t
t
m
V
t
f c
c 
cos
)]
(
1
[
)
( 

– The Fourier transform of the AM signal:
– Where M(ω) is the Fourier transform of m(t)
– The lower sideband (LSB) is the amplitude in frequency ωc – ωm
– The upper sideband (USB) is the amplitude in frequency ωc + ωm
 
)
(
)
(
2
)]
(
)
(
[
]
cos
)
(
[
]
cos
[
)
(
c
c
c
c
c
c
c
c
c
c
M
M
V
V
t
t
m
V
F
t
V
F
F
























Information signal
Carrier signal
AM signal
• In real world, m(t) is non-sinusoidal &
band limited signal means it have
frequency spectrum range limited
• To avoid interference, carriers for AM
radio stations are spaced 10kHz apart
Amplitude
Modulation
Practice
Problem
18.11
If a 2 MHz carrier is modulated by a 4 KHz
information signal, determine the frequencies of
the three components of the AM signal that results
• Given:
– The carrier:
– The modulating signal:
• So the 3 components are:
– The lower side band:
– The carrier:
– The upper side band:
MHz
fc 2

kHz
fm 4

MHz
004
.
2
2004000
4000
2000000 


MHz
996
.
1
1996000
4000
2000000 


MHz
fc 2

Problem
18.58
Given, AM signal:
Determine the carrier frequency, LSB & USB.
• We get:
• The upper side band:
• The lower side band:
t
t
t
f 4
10
cos
)
200
cos
4
1
(
10
)
( 

 

kHz
f
V
c
c
c
c
5
2
10
10
4










Hz
f
V
m
m
m
m
100
2
200
4









kHz
1
.
5
100
5000 

kHz
9
.
4
100
5000 

36
Figure below shows a demodulation system using Amplitude Modulation of a
receiver. The received modulated signal spectrum is:
Determine and sketch the spectrum of the:
(i) Demodulated signal, y(t)
(ii) Message signal, m(t)
Example 5
𝐢) 𝐃𝐞𝐦𝐨𝐝𝐮𝐥𝐚𝐭𝐞𝐝 𝐬𝐢𝐠𝐧𝐚𝐥
𝑥 𝜔 = 2𝜋 𝛿 𝜔 + 160 + 𝛿 𝜔 − 160 −
𝜋
2
[𝛿 𝜔 + 190 + 𝛿 𝜔 − 190 ]
−
𝜋
2
𝛿 𝜔 + 130 + 𝛿 𝜔 − 130
∴ 𝑥 𝑡 = 2 cos 160𝑡 −
1
2
𝑐𝑜𝑠190𝑡 −
1
2
cos 130𝑡
37
𝑦 𝑡 = 𝑥 𝑡 × 𝑐(𝑡)
= (2 cos 160𝑡)(cos 160𝑡) − (
1
2
cos 190𝑡)(cos 160𝑡) − (
1
2
cos 130𝑡)(cos 160𝑡)
= [cos 320𝑡 + cos 0 𝑡] −
1
4
cos 350𝑡 −
1
4
cos 30𝑡 −
1
4
cos 290𝑡 −
1
4
cos 30𝑡
= 1 −
1
2
cos 30𝑡 −
1
4
cos 290𝑡 + cos 320𝑡 −
1
4
cos 350𝑡
38
ii) Message signal, m(t) is the demodulated signal that has passed through a
low pass filter with gain = 2 and allowable frequency ||≤100;
∴ 𝑚 𝑡 = 2 − cos 30𝑡
Sampling – For digital system nowadays
– Can be done by using train of pulses or impulses
• The sampling interval is Ts
• The sampling rate (frequency) is fs
= 1/Ts
• The sampled signal g(t) is:
• The Fourier transform is:
Continuous (analog)
signal to be sampled
Train of impulses
Sampled (digital) signal












n
s
s
n
s
s nT
t
nT
g
nT
t
t
g
t
g )
(
)
(
)
(
)
(
)
( 













n
s
s
n
T
jn
s
s n
G
T
e
nT
g
G s
)
(
1
)
(
)
( 

 
Sampling
• In order to ensure optimum recovery of the original signal, the sampling
frequency must be at least twice the highest frequency in the modulating signal
• Where W is the highest frequency (band-limited) of the modulating signal
W
f
T
s
s
2
1


Nyquist rate:
W
fs 2

Nyquist interval:
W
Ts
2
1

Practice
Problem
18.12
• Given:
– Audio signal is band-limited:
• Maximum sampling interval:
kHz
5
.
12
s
T
T
kHz
kHz
f
W
f
s
s
s
s

40
25000
1
25000
1
25
)
5
.
12
(
2
2







Problem
18.65
• Given:
– Highest frequency of a voice signal:
• Nyquist rate of the sampler:
kHz
4
.
3
kHz
fs
8
.
6
6800
)
3400
(
2



Problem
18.67
• Given:
– Signal:
• We get:
– The Nyquist rate:
– The Nyquist interval:


200
200
sin
)
(
t
t
g 
Hz
W
f 100
2
200
200








Hz
W
fs 200
)
100
(
2
2 


ms
f
T
s
s 5
200
1
1



Thank you
44
Conclusion of Fourier Transform
Can you?
• Determine the Fourier Transforms using its
table and properties.
• Determine the Fourier Transforms using
derivative technique.
• Transform the signal from frequency domain
into time domain using inverse Fourier
Transform.
• Discuss Fourier Transform application in
amplitude modulation.

More Related Content

Similar to SP_SNS_C3.pptx

1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomAmirKhan877722
 
SP_SNS_C2.pptx
SP_SNS_C2.pptxSP_SNS_C2.pptx
SP_SNS_C2.pptxIffahSkmd
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformPraveen430329
 
DISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptDISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptgopal556359
 
07 frequency domain DIP
07 frequency domain DIP07 frequency domain DIP
07 frequency domain DIPbabak danyal
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series IntroductionRizwan Kazi
 
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image TransformDIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image Transformvijayanand Kandaswamy
 

Similar to SP_SNS_C3.pptx (20)

lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
Fourier image
Fourier imageFourier image
Fourier image
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of Telecom
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
SP_SNS_C2.pptx
SP_SNS_C2.pptxSP_SNS_C2.pptx
SP_SNS_C2.pptx
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and Transform
 
DISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptDISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.ppt
 
Lect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdfLect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdf
 
07 frequency domain DIP
07 frequency domain DIP07 frequency domain DIP
07 frequency domain DIP
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image TransformDIGITAL IMAGE PROCESSING - Day 4 Image Transform
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
 
10 Angle_modulation.pdf
10 Angle_modulation.pdf10 Angle_modulation.pdf
10 Angle_modulation.pdf
 
chap4_lec4.ppt
chap4_lec4.pptchap4_lec4.ppt
chap4_lec4.ppt
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 

SP_SNS_C3.pptx

  • 1. BELT4093 SIGNALS & NETWORKS Chapter 3 Fourier Transform by Dr. Siti Nur Sakinah Jamaludin, 2019 Acknowledgement to Nurul Wahidah Arshad, FKEE, UMP
  • 2. 1 2 3 4 Definition & Properties of FT FT using Derivative Technique Inverse FT Applications Fourier Transform (FT)
  • 3. At the end of Chapter 3, student should be able to: • Determine the Fourier Transforms using its table and properties. • Determine the Fourier Transforms using derivative technique. • Transform the signal from frequency domain into time domain using inverse Fourier Transform. • Discuss Fourier Transform application in amplitude modulation. Learning Outcomes CHAPTER 3 3
  • 4. 3.1 Definition & Properties 4 • Same as Fourier series but for aperiodic functions. Ex: unit step u(t), exp function eat • The trick is to extend the period T in Fourier series: • When T increased the only a single function remains • So, the function will no longer be periodic Fourier Transform Fourier Series is about … approximating functions on [-L, L]. How do we approximate function on [-∞, ∞]???
  • 5. Definition of Fourier Transform 5 • The Fourier transform is an integral transformation of f(t) from time domain to frequency domain • The inverse Fourier transform:
  • 6. Practice Problem 18.2      1 1 ) (t f 1 0 , 0 1 ,      t t                        j j j j j e j e j j e j e dt e dt e e t f F j j t j t j t j t j t j ) 1 (cos 2 2 cos 2 1 1 1 1 ) ( ) ( 1 0 0 1 1 0 0 1                                           
  • 9. • Linearity • Time scaling • Time shifting • Frequency shifting • Time differentiation • Time integration • Reversal • Duality Properties of Fourier Transform Useful in finding the transforms of complicated functions from the transform of simple functions:
  • 10. Fourier transform of a linear combination of functions is the same as the linear combination of the transforms of the individual functions Properties of Fourier Transform - Linearity
  • 11. – Time expansion |a| > 1 will causes frequency compression – Time compression |a| < 1 will causes frequency expansion Properties of Fourier Transform – Time Scaling Example 1 𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 = 2 𝑗𝜔 Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(4𝑡) 𝐺 𝜔 = ℱ 𝑓(4𝑡 ] = 1 |4| 𝐹 𝜔 4 = 1 |4| . 2 𝑗(𝜔 4) = 2 𝑗𝜔
  • 12. – Delay in time domain causes phase shift in frequency domain – Recall in phasors, complex number z can be express in exponential form as: Properties of Fourier Transform - Time shifting   j re r z    Example 2 𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 = 2 𝑗𝜔 Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(𝑡 − 2) 𝐺 𝜔 = ℱ 𝑓(𝑡 − 2 ] = 𝑒−𝑗𝜔2𝐹 𝜔 = 2𝑒−𝑗𝜔2 𝑗𝜔
  • 13. A frequency shift in frequency domain adds a phase shift in time function Properties of Fourier Transform - Frequency shifting       ) ( ) ( ) ( 0 0       f d f * Special case: sifting property of the impulse function Example 3 𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 = 2 𝑗𝜔 Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓(𝑡)𝑒𝑗5𝑡 𝐺 𝜔 = ℱ 𝑓(𝑡 𝑒𝑗5𝑡 ] = 𝐹 𝜔 − 5 = 2 𝑗(𝜔 − 5) = 2 𝑗𝜔 − 𝑗5
  • 14. – Fourier transform of the derivative f(t) is obtained by multiplying the transform of f(t) by jω – The repeated derivative will give: Properties of Fourier Transform - Time differentiation Example 4 𝑓 𝑡 = 𝑠𝑔𝑛 𝑡 ↔ 𝐹 𝜔 = 2 𝑗𝜔 Find 𝐺 𝜔 if 𝑔 𝑡 = 𝑓2(𝑡) 𝐺 𝜔 = ℱ 𝑓2(𝑡 ] = (𝑗𝜔)2𝐹 𝜔 = −𝜔 ∙ 2 𝑗
  • 15. Reversing the f(t) in time domain will result in reversing the F(ω) in frequency domain Properties of Fourier Transform - Reversal
  • 16. Properties of Fourier Transform Summarized table of the Fourier transform properties
  • 17. Differentiate the signal until you get impulse response 3.2 Derivative Methode Remember from chapter 1? • Differentiate Unit Ramp become Unit Step • Derivative of the Unit Step function is Impulse Function
  • 19. Practice Problem 18.5 0 f “(t) t 4 3 2 1 –4 –3 –2 –1 2 2 2 2 –4 –4 ) 4 ( 2 ) 3 ( 4 ) 2 ( 2 ) 2 ( 2 ) 3 ( 4 ) 4 ( 2 ) ( ' '             t t t t t t t f       Left-hand side:     ) ( ) ( ) ( ' ' 2 2     F F j t f F    Right-hand side: 𝐹 2𝛿(𝑡 + 4) − 4𝛿(𝑡 + 3) +2𝛿(𝑡 + 2) + 2𝛿(𝑡 − 2) −4𝛿(𝑡 − 3) + 2𝛿(𝑡 − 4) = 2𝑒𝑗4𝜔 − 4𝑒𝑗3𝜔 + 2𝑒𝑗2𝜔 +2𝑒−𝑗2𝜔 − 4𝑒−𝑗3𝜔 + 2𝑒−𝑗4𝜔 Second derivative: Transform using table:
  • 20. Practice Problem 18.5 Balancing both sides: Group the transform:         4 3 2 2 3 4 2 2 4 2 2 4 2 ) ( j j j j j j e e e e e e F                 2 2 2 2 2 3 3 4 4 2 cos 4 3 cos 8 4 cos 4 2 cos 4 3 cos 8 4 cos 4 2 4 2 ) (                                   j j j j j j e e e e e e F
  • 22. Problem 18.5 ) 1 ( ) ( ' 2 ) 1 ( ) ( ' '      t t t t h    0 h’’(t) t 1 –1 1 -2 -1  Left-hand side:     ) ( ) ( ) ( ' ' 2 2     F F j t h F     Right-hand side:   ) (sin 2 2 sin 2 2 ) 1 ( ) ( ' 2 ) 1 (                       j j j e j e t t t F j j Second derivative: Transform using table: • Balancing both sides: 2 2 ) sin ( 2 ) ( ) (sin 2 ) (               j F j F
  • 23. • Given: • Find Fourier transform for time-scaling property first: • Then, the Fourier transform for δ(t) and δ’(t): • So, the Fourier transform should be: Problem 18.15c ) 2 ( ' ) 3 ( ) ( t t t f                   2 . 2 1 3 . 3 1 ) (    F F F δ(t) before transform δ’(t) before transform     j j t F t F    ) 1 ( )] ( ' [ 1 )] ( [   j F 2 1 3 1 ) (  
  • 24. • Refer to the table of Fourier transform properties and pairs • Are used for transforming back from frequency domain (ω) to the time domain (t). 3.3 Inverse Fourier Transform
  • 25. Inverse Fourier Transform • When fraction is involved, there are 3 possible form of F() – Simple poles: – Repeated poles: – Complex poles: n n n p s k p s k p s k p s p s p s s N             2 2 1 1 2 1 ) ( ) )( ( ) ( n n n p s k p s k p s k p s s N ) ( ) ( ) ( ) ( ) ( 2 2 1 1          b as s k s k b as s s N       2 2 1 2 ) (
  • 26. Practice Problem 18.6a • Given: • To avoid complex calculation using the jω, let: • Using fraction method, we get: ) 2 )( 4 )( 1 ( ) 2 3 ( 6 ) (      j j j j H       j s  3 ) 2 )( 1 ( 0 0 6 5 0 ) 2 )( 3 ( 0 30 2 0 0 ) 1 )( 3 ( 6 ) 4 )( 1 ( ) 2 )( 1 ( ) 2 )( 4 ( ) 2 3 ( 6 2 4 1 ) 2 )( 4 )( 1 ( ) 2 3 ( 6                                       C C B B A A s s C s s B s s A s s C s B s A s s s s , 2 , 4 , 1       s s s for for for
  • 27. Practice Problem 18.6a • So: • Using Fourier transform pairs table:   ) ( 3 5 2 ) ( 3 ) ( 5 ) ( 2 ) ( 2 4 2 4 t u e e e t u e t u e t u e t h t t t t t t            
  • 28. • Given: • To avoid complex calculation using the jω, let: • For the first half of the transform we get: • For the second half of the transform we get: • So for both halves, the inverse Fourier transform is: Practice Problem 18.6b 16 ) 1 ( ) 1 ( 2 1 ) ( ) ( 2             j j j Y  j s  ) ( 1 ) ( 1 t u j F             ) ( 4 cos 2 4 ) 1 ( ) 1 ( 2 16 ) 1 ( ) 1 ( 2 2 2 1 2 1 t tu e j j F j j F t                                    ) ( ) 4 cos 2 1 ( ) ( 4 cos 2 ) ( ) ( t u t e t tu e t u t y t t      
  • 29. Problem 18.26a • Given: • Using the time shift property, we get: • Inverse transform of F(ω): • Property statement make the inverse transform becomes:                    j e j e G j j 1 1 1 ) ( 2 2   ) 2 ( ) ( 1 1 1 2 1                       t f F e F j e F a j j     t in the inverse transform of F(ω) must be t-2   ) ( 1 1 ) ( 1 1 t u e j F F F t                 ) 2 ( ) ( ) ( ) 2 ( 1       t u e t g G F t 
  • 30. 3.4 APPLICATIONS OF FOURIER TRANSFORM – Transmission through space is only efficient for high frequency above 20kHz – Information signals (speech and music) contained low frequency 50Hz to 20kHz – Is a process whereby the amplitude of the carrier is controlled by the modulating signal. 30 Amplitude Modulation (AM)
  • 32. Amplitude Modulation – Information signals: – Carrier signal: – Value of ωc: – AM signal: t V t m m m  cos ) (  t V t c c c  cos ) (  m c    t t m V t f c c  cos )] ( 1 [ ) (   – The Fourier transform of the AM signal: – Where M(ω) is the Fourier transform of m(t) – The lower sideband (LSB) is the amplitude in frequency ωc – ωm – The upper sideband (USB) is the amplitude in frequency ωc + ωm   ) ( ) ( 2 )] ( ) ( [ ] cos ) ( [ ] cos [ ) ( c c c c c c c c c c M M V V t t m V F t V F F                        
  • 33. Information signal Carrier signal AM signal • In real world, m(t) is non-sinusoidal & band limited signal means it have frequency spectrum range limited • To avoid interference, carriers for AM radio stations are spaced 10kHz apart Amplitude Modulation
  • 34. Practice Problem 18.11 If a 2 MHz carrier is modulated by a 4 KHz information signal, determine the frequencies of the three components of the AM signal that results • Given: – The carrier: – The modulating signal: • So the 3 components are: – The lower side band: – The carrier: – The upper side band: MHz fc 2  kHz fm 4  MHz 004 . 2 2004000 4000 2000000    MHz 996 . 1 1996000 4000 2000000    MHz fc 2 
  • 35. Problem 18.58 Given, AM signal: Determine the carrier frequency, LSB & USB. • We get: • The upper side band: • The lower side band: t t t f 4 10 cos ) 200 cos 4 1 ( 10 ) (      kHz f V c c c c 5 2 10 10 4           Hz f V m m m m 100 2 200 4          kHz 1 . 5 100 5000   kHz 9 . 4 100 5000  
  • 36. 36 Figure below shows a demodulation system using Amplitude Modulation of a receiver. The received modulated signal spectrum is: Determine and sketch the spectrum of the: (i) Demodulated signal, y(t) (ii) Message signal, m(t) Example 5
  • 37. 𝐢) 𝐃𝐞𝐦𝐨𝐝𝐮𝐥𝐚𝐭𝐞𝐝 𝐬𝐢𝐠𝐧𝐚𝐥 𝑥 𝜔 = 2𝜋 𝛿 𝜔 + 160 + 𝛿 𝜔 − 160 − 𝜋 2 [𝛿 𝜔 + 190 + 𝛿 𝜔 − 190 ] − 𝜋 2 𝛿 𝜔 + 130 + 𝛿 𝜔 − 130 ∴ 𝑥 𝑡 = 2 cos 160𝑡 − 1 2 𝑐𝑜𝑠190𝑡 − 1 2 cos 130𝑡 37 𝑦 𝑡 = 𝑥 𝑡 × 𝑐(𝑡) = (2 cos 160𝑡)(cos 160𝑡) − ( 1 2 cos 190𝑡)(cos 160𝑡) − ( 1 2 cos 130𝑡)(cos 160𝑡) = [cos 320𝑡 + cos 0 𝑡] − 1 4 cos 350𝑡 − 1 4 cos 30𝑡 − 1 4 cos 290𝑡 − 1 4 cos 30𝑡 = 1 − 1 2 cos 30𝑡 − 1 4 cos 290𝑡 + cos 320𝑡 − 1 4 cos 350𝑡
  • 38. 38 ii) Message signal, m(t) is the demodulated signal that has passed through a low pass filter with gain = 2 and allowable frequency ||≤100; ∴ 𝑚 𝑡 = 2 − cos 30𝑡
  • 39. Sampling – For digital system nowadays – Can be done by using train of pulses or impulses • The sampling interval is Ts • The sampling rate (frequency) is fs = 1/Ts • The sampled signal g(t) is: • The Fourier transform is: Continuous (analog) signal to be sampled Train of impulses Sampled (digital) signal             n s s n s s nT t nT g nT t t g t g ) ( ) ( ) ( ) ( ) (               n s s n T jn s s n G T e nT g G s ) ( 1 ) ( ) (    
  • 40. Sampling • In order to ensure optimum recovery of the original signal, the sampling frequency must be at least twice the highest frequency in the modulating signal • Where W is the highest frequency (band-limited) of the modulating signal W f T s s 2 1   Nyquist rate: W fs 2  Nyquist interval: W Ts 2 1 
  • 41. Practice Problem 18.12 • Given: – Audio signal is band-limited: • Maximum sampling interval: kHz 5 . 12 s T T kHz kHz f W f s s s s  40 25000 1 25000 1 25 ) 5 . 12 ( 2 2       
  • 42. Problem 18.65 • Given: – Highest frequency of a voice signal: • Nyquist rate of the sampler: kHz 4 . 3 kHz fs 8 . 6 6800 ) 3400 ( 2   
  • 43. Problem 18.67 • Given: – Signal: • We get: – The Nyquist rate: – The Nyquist interval:   200 200 sin ) ( t t g  Hz W f 100 2 200 200         Hz W fs 200 ) 100 ( 2 2    ms f T s s 5 200 1 1   
  • 44. Thank you 44 Conclusion of Fourier Transform Can you? • Determine the Fourier Transforms using its table and properties. • Determine the Fourier Transforms using derivative technique. • Transform the signal from frequency domain into time domain using inverse Fourier Transform. • Discuss Fourier Transform application in amplitude modulation.