SlideShare a Scribd company logo
1 of 35
Download to read offline
www.usra.edu
X-Ray Photoelectron Spectroscopy
(XPS)
Applied to Soot
&
What It Can Do for You
Randy L. Vander Wal,
Vicki Bryg & Michael D. Hays
USRA The U.S. EPA
Acknowledgements:
1. Former funding through NASA NRA 99-HEDs-01 (RVW) and the U.S. EPA
2. Soot samples supplied by the U.S. EPA, Sandia National Labs
3. Vicki Bryg, Patrick Rodgers, Y.L.Chen, David R. Hull and Dr. Chuck
Mueller, Sandia National Labs
Results Regarding Soot Nanostructure
Soot Nanostructure: (Definition)
* Soot Nanostructure refers to carbon lamella (layer plane) length, orientation,
separation and tortuosity.
* Nanostructure is variable, dependent upon temperature, residence time and
fuel identity.
Fringe Analysis Algorithm: (Quantification)
* Lattice fringe analysis can be used to analyze HRTEM image data and
quantify carbon nanostructure through statistical analysis.
Oxidation Rates: (Implications)
* Oxidation rates are dependent upon nanostructure - suggests using
nanostructure to control (accelerate) oxidation.
* Source apportionment via analysis of nanostructure?
* Health consequences related to nanostructure?
* Environmental impact dependent upon nanostructure?
Pure Hydrocarbon
Application I:
Emissions Reduction
Oxygenated Additive
Fringe Length Analysis

Reference Fuel-n-hexadecane + heptamethylnonane
25

20

15

10

5

0

0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76
Fringe Length (nm)
Diethylene glycol ether (DGE)
25

20

15

10

5

0

0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76
Fringe Length (nm)
Fringe Tortuosity Analysis
Reference Fuel- n-hexadecane + heptamethylnonane
20

15

10

5

0

1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96
Fringe Tortuosity
Diethylene glycol ether (DGE)
20

15

10

5

0

1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96
Fringe Tortuosity
Smoke Meter (Engine Out)
Microscopic and Spectroscopic Analysis 

Techniques for Soot Characterization

HRTEMHRTEM
(high resolution transmission(high resolution transmission
electron microscopy)electron microscopy)
Microscopy TechniqueMicroscopy Technique
Physical StructurePhysical Structure
(nanostructure)(nanostructure)
XPS
(X-ray photoelectron
spectroscopy)
Spectroscopy Technique

Chemical Composition
(& bonding states)
Outline - XPS
1. Motivation & Background
2. Introduction to XPS
3. Analytical capabilities:
A. Elemental Composition (Identification of source; wear, etc.)
B. Carbon Oxidation State - Oxygen Functional Groups
(Oxidation conditions)
* Consistency of samples within the same class
* Distinctness between different classes of samples
C. Carbon (nano)structure
4. Conclusions
Introduction to X-Ray Photoelectron Spectroscopy 

(XPS)

* XPS provides information about elemental composition
and
oxidation state of the surface.
* A monochromatic X-ray beam of known energy displaces an
electron from a K-shell orbital.
* The kinetic energy of the emitted electron is measured in an
electron spectrometer.
* The binding energy Eb = hv – Ek
is characteristic of the atom and orbital from which the electron is
emitted.
Introduction to XPS (continued)
* A low-resolution wide-scan (survey) spectrum serves as the basis
for the determination of the elemental composition of samples.
* At higher resolution, chemical shifts are observed depending upon
oxidation state.
Ek = hv - Eb
X-ray
e-
Eb
Outline
1. Motivation & Background
2. Introduction to XPS
3. Analytical capabilities:
A. Elemental Composition (Identification of source; wear, etc.)
B. Carbon Oxidation State - Oxygen Functional Groups
(Oxidation conditions)
* Consistency of samples within the same class
* Distinctness between different classes of samples
C. Carbon (nano)structure
4. Conclusions
Low-Resolution Survey Scan - Jet Aircraft Emissions
Low-Resolution Survey Scan - Diesel Engine Soot
6.0
5.0
4.0
%
3.0
2.0
1.0
0.0
XPS - Survey Elemental Analysis

S
Plant OFB
Wildfire
Jet Engines
Industrial OFB
Biodiesel A
Residential OFF
Biodiesel B
Biodiesel Soot
Na N Ca P
Elements
Outline
1. Motivation & Background
2. Introduction to XPS
3. Analytical capabilities:
A. Elemental Composition (Identification of source; wear, etc.)
B. Carbon Oxidation State - Oxygen Functional Groups
(Oxidation conditions)
* Consistency of samples within the same class
* Distinctness between different classes of samples
C. Carbon (nano)structure
4. Conclusions
Identify Oxygen Functional Groups

C-C sp2
Carbonyls
Phenols
Plasmon
Carboxylic
-C-OH Phenol
-C=O Carbonyl
-C-OOH Carboxylic
%Area
Oil Fired Boiler versus Residential Oil Fired Furnace

%Area

50
40
30
20
10
0
C1s Peak Histogram
80
C1s Peak Histogram
C-C sp2
60
C-C sp2
Fullerenic
40
-C-OH
C-C sp3
-C=O
0
20
-C-OOH -C-OOH
C-C sp3
-C=O
Industrial OFB1
Industrial OFB2
Res. OFF1
Res. OFF2
281.6 283.2 284.4 285.2 286.3 288.2 289.5 281.6 283.2 284.4 285.2 286.3 288.2 289.5
C1s Peak Position (eV) C1s Peak Position (eV)
0
10
20
30
40
50
60
%Area
Comparison Between Biodiesel Soots

C1s Peak Histogram
Biodiesel 15&16
Biodiesel 17&18
0
20
40
60
80
100
C1s Peak Histogram
%Area
C-C sp2
-C-OH -C-OOH
C-C sp2
-C-OH
-C=O
Fullerenic
Biodiesel 13

Biodiesel 14

281.6	 283.2 284.4 285.2 286.3 288.2 289.5 282.8 283.6 284.8 285.8 287 288.8
C1s Peak Position (eV) C1s Peak Position (eV)
Comparative Peak Intensities - Oxygen Functional Groups

Average C1s Peaks 

(normalized)
Diesel Soot
Plant OFB
Wildfire%
Jet Engine%
Industrial OFB
Residential OFF
Biodiesel A
Biodiesel B
281.4
283.4
284.2
284.7
285.0
285.9
286.3
C1s position (eV)

286.6

287.4
288.8
289.5
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Outline
1. Motivation & Background
2. Introduction to XPS
3. Analytical capabilities:
A. Elemental Composition (Identification of source; wear, etc.)
B. Carbon Oxidation State - Oxygen Functional Groups
(Oxidation conditions)
* Consistency of samples within the same class
* Distinctness between different classes of samples
C. Carbon (nano)structure
4. Conclusions
Motivation for Alternative Analysis Techniques
1. Lattice Fringe Analysis is time consuming
2. Analysis can be difficult to apply (in some cases)
Hmmm….
Identify Types of Carbon Nanostructure

C-C sp2
Carbonyls
Phenols
Fullerenic
Carboxylic
C-C sp3
Identify Types of Carbon Nanostructure

Carbonyls
Phenols
Carboxylic
C-C sp3 C-C sp2
Fullerenic
Identify Types of Carbon Nanostructure

C-C sp2
Carbonyls
Phenols
Fullerenic
Carboxylic
C-C sp3
AverageIntensity
(rawdata)
281.4
283.1
283.6
284.2
284.4
284.6
285.0
285.7
286.0
286.3
286.5
286.8

287.4
287.9
288.8
289.5
Comparative Peak Intensities - Carbon Nanostructure

12000
Average XPS peaks
10000
Diesel Soot
Plant OFB
8000
Wildfire
Jet engines
Industrial OFB6000
Residential OFF
Biodiesel A
4000 Biodiesel B
2000
0
Peak positions
High Resolution Scan - C1s Region - HOPG Edge Planes

C-C sp2
C-C sp3
Carboxylic
Phenols
Carbonyl
Graphitic
Defects
High Resolution Scan - C1s Region - HOPG Layer Planes

C-C sp2
C-C sp3
Phenols
Graphitic
Defects
XPS Sensitivity to Carbon Nanostructure

C-C sp2
C-C sp3
Phenols
C-C sp2
C-C sp3
Carboxylic
Phenols
Carbonyl
* Developing Correlations with Carbon Reactivity* 

Sample:
Edge Sites Basal Plane
Intensity Sum Intensity Sum
Planar Graphite
( ~ 284 eV, sp2)
1749
13%
11265
87%
Edge Graphite
( ~ 285 eV, sp3)
4021
37%
6723
63%
Ratio (G/D) 0.35 1.38
Edge site carbons can be nearly 10-fold more reactive than basal plane sites
Goal & Result
HRTEM & Lattice Fringe Analysis
XPS Carbon nanostructure Oxidative Reactivity
Conclusions
1. XPS analysis can identify & quantify trace elements.
Utility: Can be used to identify source based on specific elements
present and their distribution.
* Track fuel and/or oil elements
* Analysis of engine wear
2. XPS can identify oxygen groups by bonding type; C-OH, C=O, and
C-OOH. 	These reflect the soot oxidation history.
Utility: Identify the occurrence and degree of oxidation, such as
the soot cake within a DPF
3. XPS can identify the types of carbon present, sp2, sp3 and fullerenic
Therein it can provide a complimentary method to HRTEM and image
analysis.
Utility: Correlate nanostructure with soot reactivity, and changes
new fuels, e.g. biodiesel
Graphitic
Normal Particle
DPF
Soot
Hollow
Interiors
outer shell
Normal Particle Normal Particle
Partially Oxidized Partially Oxidized
Application III:
DPFs
Application II: Source Specific Nanostructure

Wildfire Emissions Oil Fired Boiler
Comparison between carbon lamella;

short, disconnected versus longer range structure and order
Jet Aircraft Engine Exhaust

Fullerenic

Structure
Jet Engine Emission Diesel Emission Wildfire Emission
a1-1c-ROI_14	 e2-3a-roi_1c4-hb-ROI_1
252525
202020
151515
101010
555
000
0.00	 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 0 0.72 1.44 2.16 2.88 3.6 4.32 5.04 5.76 0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76
Fringe Length (nm) Fringe Length (nm) Fringe Length (nm)
C4-HB-SEPSKEL_1 A1-1C-SEPSKEL_1	 E2-3A-ROI_1_4
25	 25
25
202020
151515
101010
555
000
0.32	 0.35 0.37 0.40 0.43 0.46 0.48 0.32 0.35 0.37 0.40 0.43 0.46 0.48 0.32 0.35 0.37 0.40 0.43 0.46 0.48
Fringe Separation (nm) Separation Distance (nm) Separation Distance (nm)
Separation Distance (nm)
c4-hb-tort_1 a1-1c-tort_1	 e2-3a-_1
202020
151515
101010
555
000
1.00	 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96
Tortuosity Tortuosity Tortuosity
Average C1s Peaks Average C1s Peaks

Intensitiies and Locations Intensitiies and Locations

AverageIntensity
2500

2000

1500

1000

500

0 0
500
1000
1500
2000
281.4 283.6 284.4 285.2 286.4 287 288.8
Bio 13-18
AverageIntensity
Average Peak Position (eV)
281.4 283.6 284.4 285.2 286.4 287 288.8
Bio 13-14
Average Peak Position
0
2000
4000
6000
8000
1 104
Average C1s Peaks
Intensitiies and Locations
BBB2&WVU
AverageIntensity
Biodiesel 1 Biodiesel 2
Ordinary
diesel
Averaged by Intensity
Averaged by Position
281.4 283.6 284.4 285.2 286.4 287 288.8
Average Peak Position (eV)

More Related Content

What's hot (7)

11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)11. malibs in argon (jo pcs)
11. malibs in argon (jo pcs)
 
neutron-detector-based
neutron-detector-basedneutron-detector-based
neutron-detector-based
 
Bahrami presentation- AAS
Bahrami presentation- AASBahrami presentation- AAS
Bahrami presentation- AAS
 
IRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar CellsIRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar Cells
 
Talk 3_0
Talk 3_0Talk 3_0
Talk 3_0
 
MASc Research work
MASc Research workMASc Research work
MASc Research work
 
Sofc
SofcSofc
Sofc
 

Similar to 2006 deer vanderwal

xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptx
AshikBabu10
 
CNT Hydrogen Storage Brief
CNT Hydrogen Storage BriefCNT Hydrogen Storage Brief
CNT Hydrogen Storage Brief
Andy Zelinski
 
A simple photochemical_method_to_synthes
A simple photochemical_method_to_synthesA simple photochemical_method_to_synthes
A simple photochemical_method_to_synthes
franciscocabrera94
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
LandimarMendesDuarte
 
MRS_poster_Bowen_2012Fall_Mod3-RBvD2
MRS_poster_Bowen_2012Fall_Mod3-RBvD2MRS_poster_Bowen_2012Fall_Mod3-RBvD2
MRS_poster_Bowen_2012Fall_Mod3-RBvD2
Bowen Dong
 
33nd battery conference poster zhou TB JC
33nd battery conference poster zhou TB JC33nd battery conference poster zhou TB JC
33nd battery conference poster zhou TB JC
Jigang Zhou
 

Similar to 2006 deer vanderwal (20)

Consistently High Voc Values in p-i-n Type Perovskite Solar Cells Using Ni3+-...
Consistently High Voc Values in p-i-n Type Perovskite Solar Cells Using Ni3+-...Consistently High Voc Values in p-i-n Type Perovskite Solar Cells Using Ni3+-...
Consistently High Voc Values in p-i-n Type Perovskite Solar Cells Using Ni3+-...
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.chang
 
xpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptxxpspresentation-180225211042 (1).pptx
xpspresentation-180225211042 (1).pptx
 
CNT Hydrogen Storage Brief
CNT Hydrogen Storage BriefCNT Hydrogen Storage Brief
CNT Hydrogen Storage Brief
 
X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)X-ray Photoelecctron Spectroscopy (XPS)
X-ray Photoelecctron Spectroscopy (XPS)
 
Laksman2014-Cysteine
Laksman2014-CysteineLaksman2014-Cysteine
Laksman2014-Cysteine
 
A simple photochemical_method_to_synthes
A simple photochemical_method_to_synthesA simple photochemical_method_to_synthes
A simple photochemical_method_to_synthes
 
A simple photochemical_method_to_synthes
A simple photochemical_method_to_synthesA simple photochemical_method_to_synthes
A simple photochemical_method_to_synthes
 
A simple photochemical_method_to_synthes
A simple photochemical_method_to_synthesA simple photochemical_method_to_synthes
A simple photochemical_method_to_synthes
 
Maletin cesep2013
Maletin cesep2013Maletin cesep2013
Maletin cesep2013
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...
 
B037309012
B037309012B037309012
B037309012
 
MRS_poster_Bowen_2012Fall_Mod3-RBvD2
MRS_poster_Bowen_2012Fall_Mod3-RBvD2MRS_poster_Bowen_2012Fall_Mod3-RBvD2
MRS_poster_Bowen_2012Fall_Mod3-RBvD2
 
Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...
 
Non-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnONon-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnO
 
33nd battery conference poster zhou TB JC
33nd battery conference poster zhou TB JC33nd battery conference poster zhou TB JC
33nd battery conference poster zhou TB JC
 
Vapour Sensing Properties of Bio-Inspired Synthetic Nanostructures
Vapour Sensing Properties of Bio-Inspired Synthetic NanostructuresVapour Sensing Properties of Bio-Inspired Synthetic Nanostructures
Vapour Sensing Properties of Bio-Inspired Synthetic Nanostructures
 

More from Filipa Correia (9)

3.russier antoine2014
3.russier antoine20143.russier antoine2014
3.russier antoine2014
 
97502051x
97502051x97502051x
97502051x
 
7887 4
7887 47887 4
7887 4
 
2018 sensors and actuators
2018 sensors and actuators2018 sensors and actuators
2018 sensors and actuators
 
Carbon quantum dots_synthesis_book
Carbon quantum dots_synthesis_bookCarbon quantum dots_synthesis_book
Carbon quantum dots_synthesis_book
 
1 s2.0-s0925400515302999-main
1 s2.0-s0925400515302999-main1 s2.0-s0925400515302999-main
1 s2.0-s0925400515302999-main
 
1 s2.0-s0142961216304070-main
1 s2.0-s0142961216304070-main1 s2.0-s0142961216304070-main
1 s2.0-s0142961216304070-main
 
2013 tese jjasilva
2013 tese jjasilva2013 tese jjasilva
2013 tese jjasilva
 
S ntese de_novas_azocinas_diversamente_funcionalizadas___laureana_fonseca__la...
S ntese de_novas_azocinas_diversamente_funcionalizadas___laureana_fonseca__la...S ntese de_novas_azocinas_diversamente_funcionalizadas___laureana_fonseca__la...
S ntese de_novas_azocinas_diversamente_funcionalizadas___laureana_fonseca__la...
 

Recently uploaded

POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
RaunakRastogi4
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 

Recently uploaded (20)

Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Daily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter PhysicsDaily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter Physics
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 

2006 deer vanderwal

  • 1. www.usra.edu X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You Randy L. Vander Wal, Vicki Bryg & Michael D. Hays USRA The U.S. EPA Acknowledgements: 1. Former funding through NASA NRA 99-HEDs-01 (RVW) and the U.S. EPA 2. Soot samples supplied by the U.S. EPA, Sandia National Labs 3. Vicki Bryg, Patrick Rodgers, Y.L.Chen, David R. Hull and Dr. Chuck Mueller, Sandia National Labs
  • 2. Results Regarding Soot Nanostructure Soot Nanostructure: (Definition) * Soot Nanostructure refers to carbon lamella (layer plane) length, orientation, separation and tortuosity. * Nanostructure is variable, dependent upon temperature, residence time and fuel identity. Fringe Analysis Algorithm: (Quantification) * Lattice fringe analysis can be used to analyze HRTEM image data and quantify carbon nanostructure through statistical analysis. Oxidation Rates: (Implications) * Oxidation rates are dependent upon nanostructure - suggests using nanostructure to control (accelerate) oxidation. * Source apportionment via analysis of nanostructure? * Health consequences related to nanostructure? * Environmental impact dependent upon nanostructure?
  • 3. Pure Hydrocarbon Application I: Emissions Reduction Oxygenated Additive
  • 4. Fringe Length Analysis Reference Fuel-n-hexadecane + heptamethylnonane 25 20 15 10 5 0 0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 Fringe Length (nm) Diethylene glycol ether (DGE) 25 20 15 10 5 0 0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 Fringe Length (nm) Fringe Tortuosity Analysis Reference Fuel- n-hexadecane + heptamethylnonane 20 15 10 5 0 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 Fringe Tortuosity Diethylene glycol ether (DGE) 20 15 10 5 0 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 Fringe Tortuosity
  • 6. Microscopic and Spectroscopic Analysis Techniques for Soot Characterization HRTEMHRTEM (high resolution transmission(high resolution transmission electron microscopy)electron microscopy) Microscopy TechniqueMicroscopy Technique Physical StructurePhysical Structure (nanostructure)(nanostructure) XPS (X-ray photoelectron spectroscopy) Spectroscopy Technique Chemical Composition (& bonding states)
  • 7. Outline - XPS 1. Motivation & Background 2. Introduction to XPS 3. Analytical capabilities: A. Elemental Composition (Identification of source; wear, etc.) B. Carbon Oxidation State - Oxygen Functional Groups (Oxidation conditions) * Consistency of samples within the same class * Distinctness between different classes of samples C. Carbon (nano)structure 4. Conclusions
  • 8. Introduction to X-Ray Photoelectron Spectroscopy (XPS) * XPS provides information about elemental composition and oxidation state of the surface. * A monochromatic X-ray beam of known energy displaces an electron from a K-shell orbital. * The kinetic energy of the emitted electron is measured in an electron spectrometer. * The binding energy Eb = hv – Ek is characteristic of the atom and orbital from which the electron is emitted.
  • 9. Introduction to XPS (continued) * A low-resolution wide-scan (survey) spectrum serves as the basis for the determination of the elemental composition of samples. * At higher resolution, chemical shifts are observed depending upon oxidation state. Ek = hv - Eb X-ray e- Eb
  • 10. Outline 1. Motivation & Background 2. Introduction to XPS 3. Analytical capabilities: A. Elemental Composition (Identification of source; wear, etc.) B. Carbon Oxidation State - Oxygen Functional Groups (Oxidation conditions) * Consistency of samples within the same class * Distinctness between different classes of samples C. Carbon (nano)structure 4. Conclusions
  • 11. Low-Resolution Survey Scan - Jet Aircraft Emissions
  • 12. Low-Resolution Survey Scan - Diesel Engine Soot
  • 13. 6.0 5.0 4.0 % 3.0 2.0 1.0 0.0 XPS - Survey Elemental Analysis S Plant OFB Wildfire Jet Engines Industrial OFB Biodiesel A Residential OFF Biodiesel B Biodiesel Soot Na N Ca P Elements
  • 14. Outline 1. Motivation & Background 2. Introduction to XPS 3. Analytical capabilities: A. Elemental Composition (Identification of source; wear, etc.) B. Carbon Oxidation State - Oxygen Functional Groups (Oxidation conditions) * Consistency of samples within the same class * Distinctness between different classes of samples C. Carbon (nano)structure 4. Conclusions
  • 15. Identify Oxygen Functional Groups C-C sp2 Carbonyls Phenols Plasmon Carboxylic -C-OH Phenol -C=O Carbonyl -C-OOH Carboxylic
  • 16. %Area Oil Fired Boiler versus Residential Oil Fired Furnace %Area 50 40 30 20 10 0 C1s Peak Histogram 80 C1s Peak Histogram C-C sp2 60 C-C sp2 Fullerenic 40 -C-OH C-C sp3 -C=O 0 20 -C-OOH -C-OOH C-C sp3 -C=O Industrial OFB1 Industrial OFB2 Res. OFF1 Res. OFF2 281.6 283.2 284.4 285.2 286.3 288.2 289.5 281.6 283.2 284.4 285.2 286.3 288.2 289.5 C1s Peak Position (eV) C1s Peak Position (eV)
  • 17. 0 10 20 30 40 50 60 %Area Comparison Between Biodiesel Soots C1s Peak Histogram Biodiesel 15&16 Biodiesel 17&18 0 20 40 60 80 100 C1s Peak Histogram %Area C-C sp2 -C-OH -C-OOH C-C sp2 -C-OH -C=O Fullerenic Biodiesel 13 Biodiesel 14 281.6 283.2 284.4 285.2 286.3 288.2 289.5 282.8 283.6 284.8 285.8 287 288.8 C1s Peak Position (eV) C1s Peak Position (eV)
  • 18. Comparative Peak Intensities - Oxygen Functional Groups Average C1s Peaks (normalized) Diesel Soot Plant OFB Wildfire% Jet Engine% Industrial OFB Residential OFF Biodiesel A Biodiesel B 281.4 283.4 284.2 284.7 285.0 285.9 286.3 C1s position (eV) 286.6 287.4 288.8 289.5 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
  • 19. Outline 1. Motivation & Background 2. Introduction to XPS 3. Analytical capabilities: A. Elemental Composition (Identification of source; wear, etc.) B. Carbon Oxidation State - Oxygen Functional Groups (Oxidation conditions) * Consistency of samples within the same class * Distinctness between different classes of samples C. Carbon (nano)structure 4. Conclusions
  • 20. Motivation for Alternative Analysis Techniques 1. Lattice Fringe Analysis is time consuming 2. Analysis can be difficult to apply (in some cases) Hmmm….
  • 21. Identify Types of Carbon Nanostructure C-C sp2 Carbonyls Phenols Fullerenic Carboxylic C-C sp3
  • 22. Identify Types of Carbon Nanostructure Carbonyls Phenols Carboxylic C-C sp3 C-C sp2 Fullerenic
  • 23. Identify Types of Carbon Nanostructure C-C sp2 Carbonyls Phenols Fullerenic Carboxylic C-C sp3
  • 24. AverageIntensity (rawdata) 281.4 283.1 283.6 284.2 284.4 284.6 285.0 285.7 286.0 286.3 286.5 286.8 287.4 287.9 288.8 289.5 Comparative Peak Intensities - Carbon Nanostructure 12000 Average XPS peaks 10000 Diesel Soot Plant OFB 8000 Wildfire Jet engines Industrial OFB6000 Residential OFF Biodiesel A 4000 Biodiesel B 2000 0 Peak positions
  • 25. High Resolution Scan - C1s Region - HOPG Edge Planes C-C sp2 C-C sp3 Carboxylic Phenols Carbonyl Graphitic Defects
  • 26. High Resolution Scan - C1s Region - HOPG Layer Planes C-C sp2 C-C sp3 Phenols Graphitic Defects
  • 27. XPS Sensitivity to Carbon Nanostructure C-C sp2 C-C sp3 Phenols C-C sp2 C-C sp3 Carboxylic Phenols Carbonyl
  • 28. * Developing Correlations with Carbon Reactivity* Sample: Edge Sites Basal Plane Intensity Sum Intensity Sum Planar Graphite ( ~ 284 eV, sp2) 1749 13% 11265 87% Edge Graphite ( ~ 285 eV, sp3) 4021 37% 6723 63% Ratio (G/D) 0.35 1.38 Edge site carbons can be nearly 10-fold more reactive than basal plane sites
  • 29. Goal & Result HRTEM & Lattice Fringe Analysis XPS Carbon nanostructure Oxidative Reactivity
  • 30. Conclusions 1. XPS analysis can identify & quantify trace elements. Utility: Can be used to identify source based on specific elements present and their distribution. * Track fuel and/or oil elements * Analysis of engine wear 2. XPS can identify oxygen groups by bonding type; C-OH, C=O, and C-OOH. These reflect the soot oxidation history. Utility: Identify the occurrence and degree of oxidation, such as the soot cake within a DPF 3. XPS can identify the types of carbon present, sp2, sp3 and fullerenic Therein it can provide a complimentary method to HRTEM and image analysis. Utility: Correlate nanostructure with soot reactivity, and changes new fuels, e.g. biodiesel
  • 31. Graphitic Normal Particle DPF Soot Hollow Interiors outer shell Normal Particle Normal Particle Partially Oxidized Partially Oxidized Application III: DPFs
  • 32. Application II: Source Specific Nanostructure Wildfire Emissions Oil Fired Boiler Comparison between carbon lamella; short, disconnected versus longer range structure and order
  • 33. Jet Aircraft Engine Exhaust Fullerenic Structure
  • 34. Jet Engine Emission Diesel Emission Wildfire Emission a1-1c-ROI_14 e2-3a-roi_1c4-hb-ROI_1 252525 202020 151515 101010 555 000 0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 0 0.72 1.44 2.16 2.88 3.6 4.32 5.04 5.76 0.00 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 Fringe Length (nm) Fringe Length (nm) Fringe Length (nm) C4-HB-SEPSKEL_1 A1-1C-SEPSKEL_1 E2-3A-ROI_1_4 25 25 25 202020 151515 101010 555 000 0.32 0.35 0.37 0.40 0.43 0.46 0.48 0.32 0.35 0.37 0.40 0.43 0.46 0.48 0.32 0.35 0.37 0.40 0.43 0.46 0.48 Fringe Separation (nm) Separation Distance (nm) Separation Distance (nm) Separation Distance (nm) c4-hb-tort_1 a1-1c-tort_1 e2-3a-_1 202020 151515 101010 555 000 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 1.00 1.12 1.24 1.36 1.48 1.60 1.72 1.84 1.96 Tortuosity Tortuosity Tortuosity
  • 35. Average C1s Peaks Average C1s Peaks Intensitiies and Locations Intensitiies and Locations AverageIntensity 2500 2000 1500 1000 500 0 0 500 1000 1500 2000 281.4 283.6 284.4 285.2 286.4 287 288.8 Bio 13-18 AverageIntensity Average Peak Position (eV) 281.4 283.6 284.4 285.2 286.4 287 288.8 Bio 13-14 Average Peak Position 0 2000 4000 6000 8000 1 104 Average C1s Peaks Intensitiies and Locations BBB2&WVU AverageIntensity Biodiesel 1 Biodiesel 2 Ordinary diesel Averaged by Intensity Averaged by Position 281.4 283.6 284.4 285.2 286.4 287 288.8 Average Peak Position (eV)