SlideShare a Scribd company logo
1 of 55
Free video Lecture 
By: 
video.edhole.com
Chapter 7 
Eigenvalues and Eigenvectors 
7.1 Eigenvalues and Eigenvectors 
7.2 Diagonalization 
7.3 Symmetric Matrices and Orthogonal Diagonalization 
video.edhole.com 
Elementary Linear Algebra 投影片設計編製者 
R. Larsen et al. (6 Edition) 淡江大學 電機系 翁慶昌 教 
授
3/53 
7.1 Eigenvalues and Eigenvectors 
 Eigenvalue problem: 
If A is an n´n matrix, do there exist nonzero vectors x in Rn 
such that Ax is a scalar multiple of x ? 
 Eigenvalue and eigenvector: 
A:an n´n matrix 
 :a scalar 
x : a nonzero vector in Rn 
Eigenvalue 
Ax =lx 
Eigenvector 
 Geometrical Interpretation 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, pp.421-422
4/53 
 Ex 1: (Verifying eigenvalues and eigenvectors) 
ù 
2 0 
1 
= é0 
A úû 
= 
0 1 
úû 
é 
êë 
- 
ù 
êë 
1 x 
úûù 
0 
êë= é1 
Ax = é 
2 0 ù 
é 
1 
úû 
úû 
2 
- 
0 
= 2 é 1 = x 2 
1 0 1 
0 
0 1 ù 
êë 
ù 
êëé = úû 
ù 
êë 
úû 
êë 
Eigenvalue 
Eigenvector 
úû 
úû 
Ax = é 
2 0 ù 
é 
0 
é 
úû 
0 
é 0 - 
= - 1 
= - 1 = - x ( 1) 
2 0 1 
1 
1 2 ù 
êë 
ù 
êë 
ù 
êë 
úû 
êë 
Eigenvalue 
Eigenvector 
2 x 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.423
5/53 
 Thm 7.1: (The eigenspace of A corresponding to l) 
If A is an n´n matrix with an eigenvalue l, then the set of all 
eigenvectors of l together with the zero vector is a subspace 
of Rn. This subspace is called the eigenspace of l . 
Pf: 
x1 and x2 are eigenvectors corresponding to l 
( . . , ) 1 1 2 2 i e Ax = lx Ax =lx 
A x + x = Ax + Ax = l x +l x = l x + 
x 
(1) ( ) ( ) 
1 2 1 2 1 2 1 2 
i e x + 
x λ 
( . . is an eigenvector corresponding to ) 
1 2 
A cx = c Ax = c x = cx 
(2) ( ) ( ) ( ) ( ) 
1 1 1 1 
video.edhole.com 
( . . is an eigenvector corresponding to ) 
1 
l 
l l 
i e cx 
Elementary Linear Algebra: Section 7.1, p.424
6/53 
 Ex 3: (An example of eigenspaces in the plane) 
Find the eigenvalues and corresponding eigenspaces of 
ù 
úû 
é- 
= 
êë 
1 0 
0 1 
A 
ù 
úû 
é- 
= úû 
êë 
ù 
If v = (x, y) 
êë é 
úû ù 
é- 
= 
êë 
x 
y 
x 
y 
A 
1 0 
0 1 
v 
For a vector on the x-axis Eigenvalue 1 1 l = - 
ù 
úû 
1 0 x x x 
é 
- = úû 
êë 
ù 
é- 
= úû 
êë 
ù 
é 
êë 
ù 
úû 
êë é- 
0 
1 
0 0 
0 1 
Sol: 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.425
7/53 
For a vector on the y-axis 
ù 
úû 
0 
1 
é 
= úû 
êë 
ù 
0 0 
é 
= úû 
êë 
ù 
é 
êë 
ù 
úû 
é- 
êë 
y y y 
1 0 
0 1 
Eigenvalue 1 2 l = 
Geometrically, multiplying a vector (x, 
y) in R2 by the matrix A corresponds to a 
reflection in the y-axis. 
1 1 l = - 
The eigenspace corresponding to is the x-axis. 
The eigenspace corresponding to is the y-axis. 
1 2 l = 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.425
 Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AÎMn´n ) 
Let A is an n´n matrix. 
(1) An eigenvalue of A is a scalar l such that d e t ( l I - A ) = 0 . 
(2) The eigenvectors of A corresponding to l are the nonzero 
8/53 
solutions of . 
 Note: 
Ax = lx Þ (lI - A)x = 0 
(homogeneous system) 
 Characteristic polynomial of AÎMn´n: 
det( I - A) = ( I - A) = n + c n - + + c + 
c 
n 
1 1 0 
1 
- l l l l  l 
 Characteristic equation of A: 
video.edhole.com 
det(lI - A) = 0 
(lI - A)x = 0 
If ( l I - A ) x = 0 has nonzero solutions iff d e t ( l I - A ) = 0 . 
Elementary Linear Algebra: Section 7.1, p.426
9/53 
 Ex 4: (Finding eigenvalues and eigenvectors) 
ù 
úû 
é 
2 12 
= 
1 5 
êë 
- 
- 
A 
Sol: Characteristic equation: 
2 12 
l 
- 
- l 
+ 
1 5 
3 2 ( 1)( 2) 0 
- = 
det( I ) 
= l 2 + l + = l + l 
+ = 
l A 
Þl = -1, - 2 
Eigenvalues : 1, 2 1 2 l = - l = - 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.426
10/53 
(2) 2 2 l = - 
t 
4 4 
é 
= úû 
t 
ù 
3 3 
ù 
é 
= úû 
, 0 
1 
3 12 
é 
- 
é - 
1 4 
~ 
ù 
ù 
4 12 
é 
- 
é - 
1 3 
~ 
0 0 
3 12 
ù 
4 12 
1 3 
0 
ù 
é 
= úû 
é 
= úû 
0 
0 
1 3 
é 
- 
( I ) 
x 
1 
é 
é 
= úû 
x 
1 
2 
x 
1 
x 
1 
2 
2 
¹ úû 
êë 
ù 
ù 
é 
= úû 
êë 
ù 
é 
êë 
ù 
é 
ù 
Þ úû 
êë 
ù 
úû 
é 
- 
êë 
- 
úû 
êë 
ù 
êë 
úû 
êë 
- 
Þ - = 
t t 
t 
x 
x 
A x 
 
l 
(1) 1 1 l = - 
, 0 
1 
0 0 
1 4 
0 
1 4 
( I ) 
2 
2 
1 
¹ úû 
êë 
ù 
êë 
ù 
êë 
Þ úû 
êë 
úû 
êë 
- 
úû 
êë 
ù 
êë é 
úû 
êë 
- 
Þ - = 
t t 
t 
x 
x 
A x 
 
l 
Check : Ax x i l 
= 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.426
11/53 
 Ex 5: (Finding eigenvalues and eigenvectors) 
Find the eigenvalues and corresponding eigenvectors for 
the matrix A. What is the dimension of the eigenspace of 
each eigenvalue? 
ù 
ú ú 
û 
2 1 0 
é 
= 
0 0 2 
ê ê 
ë 
0 2 0 
A 
Sol: Characteristic equation: 
l 
- - 
I - = = l 
- 3 = 
( 2) 0 
2 1 0 
l 
- 
0 2 0 
l 
- 
0 0 2 
l A 
Eigenvalue: l = 2 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.428
12/53 
The eigenspace of A corresponding to l = 2 : 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
ë 
ù 
ú ú ú û 
é 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é - 
ê ê ê 
ë 
- = 
0 
0 
0 
0 1 0 
0 0 0 
0 0 0 
( I ) 
x 
1 
2 
x 
3 
x 
l A x 
0 
ù 
é 
+ 
0 
, , 0 
1 
1 
0 
0 
s 
0 
0 1 0 
~ 
0 0 0 
0 0 0 
é - 
0 1 0 
0 0 0 
0 0 0 
x 
1 
2 
3 
¹ 
ú ú ú 
û 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é 
Þ 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é 
ê ê ê ë 
ù 
ú ú ú 
û 
ê ê ê 
ë 
s t s t 
t 
x 
x 
 
ü 
é 
s t s t R l 
, : the eigenspace of A corresponding to 2 
0 
0 
é 
+ 
1 
1 
0 
0 
= 
ïþ 
ïý 
ì 
ïî 
ïí 
Î 
ù 
ú ú ú 
û 
ê ê ê 
ë 
ù 
ú ú ú û 
ê ê ê 
ë 
Thus, the dimension of its eigenspace is 2. 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.428
13/53 
 Notes: 
(1) If an eigenvalue l1 occurs as a multiple root (k times) for 
the characteristic polynominal, then l1 has multiplicity k. 
(2) The multiplicity of an eigenvalue is greater than or equal 
to the dimension of its eigenspace. 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.428
14/53 
 Ex 6:Find the eigenvalues of the matrix A and find a basis 
for each of the corresponding eigenspaces. 
ù 
ú ú ú ú 
û 
1 0 0 0 
é 
= - 
1 0 0 3 
ê ê ê ê 
1 0 2 0 
ë 
0 1 5 10 
A 
Sol: Characteristic equation: 
1 0 0 0 
- - 
- 
0 1 5 10 
- - 
1 0 2 0 
- - 
1 0 0 3 
( 1) ( 2)( 3) 0 
I 
- = 
= l - 2 l - l 
- = 
l 
l 
l 
l 
l A 
video.edhole.com 
Eigenvalues : 1, 2, 3 1 2 3 l = l = l = 
Elementary Linear Algebra: Section 7.1, p.429
15/53 
(1) 1 1 l = 
ù 
ú ú ú ú 
û 
é 
= 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
0 0 0 0 
- 
0 0 5 10 
- - 
1 0 1 0 
- - 
Þ - = 
0 
0 
0 
0 
1 0 0 2 
( I ) 
x 
1 
2 
x 
x 
3 
4 
1 
x 
l A x 
2 
é- 
+ 
0 
ù 
, , 0 
2 
1 
0 
é 
= 
1 
0 
0 
2 
é- 
= 
s 
t 
2 
1 0 0 2 
~ 
0 0 1 2 
0 0 0 0 
0 0 0 0 
0 0 0 0 
- 
0 0 5 10 
- - 
1 0 1 0 
1 0 0 2 
x 
1 
2 
x 
x 
3 
4 
¹ 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
Þ 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê ë 
- 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
- - 
s t s t 
t 
t 
x 
2 
é- 
0 
Þ is a basis for the eigenspace 
2 
video.edhole.com 
1 
0 
é 
1 
ù 
, 
0 
0 
ü 
ï ï 
ý 
ï ï 
þ 
ì 
ï ï 
í 
ï ï 
î 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ú ú ú ú 
û 
ê ê ê ê 
ë 
of A corresponding to l =1 
Elementary Linear Algebra: Section 7.1, p.429
16/53 
(2) 2 2 l = 
ù 
ú ú ú ú 
û 
é 
= 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
1 0 0 0 
0 1 5 10 
- 
- 
1 0 0 0 
- - 
Þ - = 
0 
0 
0 
0 
1 0 0 1 
( I ) 
x 
1 
2 
x 
x 
3 
4 
2 
x 
l A x 
0 
5 
ù 
, 0 
0 
é 
= 
1 
0 
é 
= 
t 
5 
0 
1 0 0 0 
0 1 5 0 
~ 
0 0 0 1 
0 0 0 0 
1 0 0 0 
- 
0 1 5 10 
1 0 0 0 
ù 
1 0 0 1 
x 
1 
2 
x 
x 
3 
4 
¹ 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
Þ 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
- 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
- 
- - 
t t 
t 
x 
0 
5 
é 
Þ is a basis for the eigenspace 
1 
video.edhole.0 
com 
ü 
ï ï 
ý 
ï ï 
þ 
ì 
ï ï 
í 
ï ï 
î 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
of A corresponding to l = 2 
Elementary Linear Algebra: Section 7.1, p.429
17/53 
(3) 3 3 l = 
ù 
ú ú ú ú 
û 
é 
= 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
2 0 0 0 
0 2 5 10 
- 
- 
- 
Þ - = 
0 
0 
0 
0 
1 0 1 0 
1 0 0 0 
( I ) 
x 
1 
2 
x 
x 
3 
4 
3 
x 
l A x 
0 
ù 
5 
é 
- 
= 
, 0 
0 
1 
0 
5 
é 
- 
= 
0 
1 0 0 0 
0 1 0 5 
~ 
0 0 1 0 
0 0 0 0 
2 0 0 0 
0 2 5 10 
1 0 1 0 
1 0 0 0 
x 
1 
2 
x 
x 
3 
4 
¹ 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
Þ 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
- 
- 
- 
t t 
t 
t 
x 
0 
ù 
5 
é 
- 
Þ is a basis for the eigenspace 
0 
video.edhole.1 
com 
ü 
ï ï 
ý 
ï ï 
þ 
ì 
ï ï 
í 
ï ï 
î 
ú ú ú ú 
û 
ê ê ê ê 
ë 
of A corresponding to l = 3 
Elementary Linear Algebra: Section 7.1, p.429
18/53 
 Thm 7.3: (Eigenvalues of triangular matrices) 
If A is an n´n triangular matrix, then its eigenvalues are 
the entries on its main diagonal. 
 Ex 7: (Finding eigenvalues for diagonal and triangular matrices) 
ù 
ú ú ú 
û 
é 
ê ê ê 
ë 
2 0 0 
1 1 0 
- 
= - 
5 3 3 
(a)A 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
ë 
1 0 0 0 0 
0 2 0 0 0 
0 0 0 0 0 
- 
- 
= 
0 0 0 4 0 
0 0 0 0 3 
(b)A 
Sol: 
- 
( ) I - = = l - l - l 
+ 
( 2)( 1)( 3) 
2 0 0 
l 
- 
1 1 0 
- - l 
+ 
5 3 3 
l 
a l A 
2, 1, 3 1 2 3 l = l = l = - 
video.edhole.com 
( ) 1, 2, 0, 4, 3 1 2 3 4 5 b l = - l = l = l = - l = 
Elementary Linear Algebra: Section 7.1, p.430
19/53 
 Eigenvalues and eigenvectors of linear transformations: 
A number is called an eigenvalue of a linear transformation 
® x x = x 
T V V T 
: if there is a nonzero vector such that ( ) . 
The vector is called an eigenvector of corresponding to , 
and the setof all eigenvectors of (with the zero vector) is 
l 
called the eigenspace of . 
l 
l 
l 
l 
T 
x 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.431
20/53 
 Ex 8: (Finding eigenvalues and eigenspaces) 
Find the eigenvalues and corresponding eigenspaces 
ù 
. 
1 3 0 
3 1 0 
0 0 2 
ú ú ú û 
é 
ê ê ê 
ë 
- 
A = 
Sol: 
- = l l 
( 2) ( 4) 
- - 
1 3 0 
3 1 0 
0 0 2 
= + 2 - 
+ 
- - 
l 
l 
l 
lI A 
eigenvalues : 4, 2 1 2 l = l = - 
The eigenspaces for these two eigenvalues are as follows. 
= l 
= 
{(1, 1, 0)} Basis for 4 
B 
1 1 
= - l 
= - 
video.edhole.com 
{(1, 1, 0),(0, 0, 1)} Basis for 2 
B 
2 2 
Elementary Linear Algebra: Section 7.1, p.431
® 
(1) Let be the linear transformation whose standard matrix 
is A in Ex. 8, and let be the basis of made up of three linear 
21/53 
 Notes: 
independent eigenvectors found in Ex. 8. Then , the matrix of 
relative to the basis ,is diagonal. 
' {(1, 1, 0),(1, 1, 0),(0, 0, 1)} 
3 
3 3 
= - 
B 
B' 
A' T 
B' R 
T:R R 
ù 
ú ú 
û 
é 
ê ê 
4 0 0 
= - 
0 0 2 
ë 
0 2 0 
- 
A' 
Eigenvectors of A Eigenvalues of A 
(2) The main diagonal entries of the matrix A' are the eigenvalues of A. 
video.edhole.com 
Elementary Linear Algebra: Section 7.1, p.431
22/53 
Keywords in Section 7.1: 
 eigenvalue problem: 特徵值問題 
 eigenvalue: 特徵值 
 eigenvector: 特徵向量 
 characteristic polynomial: 特徵多項式 
 characteristic equation: 特徵方程式 
 eigenspace: 特徵空間 
 multiplicity: 重數 
video.edhole.com
23/53 
7.2 Diagonalization 
 Diagonalization problem: 
For a square matrix A, does there exist an invertible matrix P 
such that P-1AP is diagonal? 
 Diagonalizable matrix: 
A square matrix A is called diagonalizable if there exists an 
invertible matrix P such that P-1AP is a diagonal matrix. 
(P diagonalizes A)  Notes: 
B = P-1AP 
(1) If there exists an invertible matrix P such that , 
then two square matrices A and B are called similar. 
(2) The eigenvalue problem is related closely to the 
diagonalization problem. 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.435
24/53 
 Thm 7.4: (Similar matrices have the same eigenvalues) 
If A and B are similar n´n matrices, then they have the 
same eigenvalues. 
Pf: 
A and B are similarÞ B = P-1AP 
1 1 1 1 
B P AP P P P AP P A P 
l l l l 
- = - = - = - 
I I I ( I ) 
- - - 
1 1 1 
P A P P P A P P A 
= - = - = - 
A 
= - 
- - - - 
I 
I I I 
l 
l l l 
A and B have the same characteristic polynomial. 
Thus A and B have the same eigenvalues. 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.436
25/53 
 Ex 1: (A diagonalizable matrix) 
ù 
ú ú 
û 
1 3 0 
é 
ê ê 
= 
0 0 2 
ë 
3 1 0 
- 
A 
Sol: Characteristic equation: 
l 
- - 
I - = = l - l 
+ 2 = 
( 4)( 2) 0 
1 3 0 
- l 
- 
3 1 0 
l 
+ 
0 0 2 
l A 
Eigenvalues : 4, 2, 2 1 2 3 l = l = - l = - 
(See p.403 Ex.5) 
1 
é 
1 
0 
(1) 4 Eigenvector : 1 
ù 
ú ú ú 
û 
ê ê ê 
ë 
l = Þ p = 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.436
26/53 
(See p.403 Ex.5) 
0 
0 
é 
= 
1 
1 
ù 
é 
l = - Þ p = - p 
(2) 2 Eigenvector : 2 3 
1 
, 
0 
ù 
ú ú ú 
û 
ê ê ê 
ë 
ú ú ú û 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é 
ê ê ê 
ë 
4 0 0 
0 2 0 
- 
[ ] 1 
1 2 3 P p p p P AP 
Þ = - 
ù 
ú ú ú 
û 
1 1 0 
é 
ê ê ê ë 
= = - - 
0 0 2 
1 1 0 
0 0 1 
ù 
ù 
ú ú ú 
û 
é 
é 
ê ê ê 
ë 
2 0 0 
0 4 0 
2 0 0 
- 
- 
- 
 Notes: 
P p p p P AP 
Þ = 
ù 
ù 
ú ú ú 
û 
é 
1 1 0 
= = - 
é 
ê ê ê 
1 1 0 
1 0 1 
= = - 
video.edhole.com 
ë 
ú ú ú 
û 
ê ê ê 
ë 
- 
- 
Þ = 
ú ú ú 
û 
ê ê ê 
ë 
- 
0 2 0 
0 0 4 
1 0 1 
0 1 0 
(2) [ ] 
0 0 2 
0 0 1 
(1) [ ] 
1 
2 3 1 
1 
2 1 3 
P p p p P AP 
Elementary Linear Algebra: Section 7.2, p.436
27/53 
 Thm 7.5: (Condition for diagonalization) 
An n´n matrix A is diagonalizable if and only if 
it has n linearly independent eigenvectors. 
Pf: 
(Þ)A is diagonalizable 
1 
= - 
P D P AP 
there exists an invertible s.t. is diagonal 
P = p p  p D = diag 
l l  l 
n n Let [ ] and ( , , , ) 
1 2 1 2 
0  
0 
0  
0 
    
0 0 
PD p p p 
é 
[ ] 
[ ] 
video.edhole.1 1 com 
2 2 
2 
1 
1 2 
n n 
n 
n 
p p p 
l l l 
l 
l 
l 
 
 
 
= 
ù 
ú ú ú ú 
û 
ê ê ê ê 
ë 
= 
Elementary Linear Algebra: Section 7.2, p.437
28/53 
[ ] [ ] 1 2 n 1 2 n AP = A p p  p = Ap Ap  Ap 
AP PD 
= 
l 
 
 = = 
Ap p , i 1, 2, , 
n 
i e p P A 
( . . the column vector of are eigenvectors of ) 
i 
i i i  
is invertible , , , are linearly independent. 1 2 n P Þ p p  p 
 A has n linearly independent eigenvectors. 
n A n p p p 
1 2 Ü 
( ) has linearly independent eigenvectors , , 
l l l 
n 
 
with corresponding eigenvalues , , 
1 2 
Ap p i n i i i i.e. = l , =1, 2,, 
Let [ ] 1 2 n P = p p  p 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.438
29/53 
AP A p p p 
[  
] 
1 2 
Ap Ap Ap 
[ ] 
n 
 
1 2 
p p p 
ù 
l l l 
[ ] 
é 
0  
0 
0  
0 
1 1 2 2 
p p p PD 
    
n 
n 
n n 
n 
= 
ú ú ú ú 
û 
ê ê ê ê 
ë 
= 
= 
= 
= 
l 
l 
l 
 
 
 
0 0 
[ ] 
2 
1 
1 2 
p p p P n 
, , , are linearly independent is invertible 
1 
  
1 1 
P AP D 
 = 
is diagonalizable 
A 
Þ 
Þ 
- 
Note: If n linearly independent vectors do not exist, 
v i d e oth.eend anh on´len .mcaotrmix A is not diagonalizable. 
Elementary Linear Algebra: Section 7.2, p.438
I 1 l A I A p 
A does not have two (n=2) linearly independent eigenvectors, 
so A is not diagonalizable. 
30/53 
 Ex 4: (A matrix that is not diagonalizable) 
Show that the following matrix is not diagonalizable. 
ù 
úû 
1 2 
= é 
0 1 
êë 
A 
Sol: Characteristic equation: 
l A l 
Eigenvalue : 1 1 l = 
- = - - l l 
I 1 2 = - 2 = - 
0 1 ( 1) 0 
ù 
úû 
1 
é 
= Þ úû 
êë 
ù 
é 
0 1 
~ 
êë 
ù 
úû 
é - 
êë 
- = - = 
0 
Eigenvector : 
0 0 
0 2 
0 0 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.439
 
 
ù 
é 
- = = l 
1  
31/53 
 Steps for diagonalizing an n´n square matrix: 
Step 1: Find n linearly independent eigenvectors 
for A with corresponding eigenvalues 
Step 2: Let [ ] 1 2 n P = p p  p 
n p , p , , p 1 2  
Step 3: 
0 0 
1 
0 0 
2 
P AP D Ap p i n i i i 
    
n 
, where , 1, 2, , 
0 0 
 
= = 
ú ú ú ú 
û 
ê ê ê ê 
ë 
l 
l 
l 
Elementary Linear Algebra: Section 7.2, p.439 
n l ,l , ,l 1 2  
Note: 
The order of the eigenvalues used to form P will determine 
vthide eorode.er idn hwohilceh. tchoe meigenvalues appear on the main diagonal of D.
32/53 
 Ex 5: (Diagonalizing a matrix) 
- - 
1 1 1 
1 3 1 
ù 
ú ú ú 
- - 
3 1 1 
- 
û 
P P 1AP 
A 
é 
ê ê ê 
ë 
= 
Find a matrix such that is diagonal. 
Sol: Characteristic equation: 
l 
- 
I - = = l - l + l 
- = 
( 2)( 2)( 3) 0 
1 1 1 
- l 
- - 
1 3 1 
- l 
+ 
3 1 1 
l A 
Eigenvalues : 2, 2, 3 1 2 3 l = l = - l = 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.440
1 
ù 
ù 
1 
Þ = - 
1 
33/53 
2 1 l = 
ù 
ú ú 
û 
é 
1 0 1 
~ 
ê ê 
ë 
ù 
ú ú 
1 1 1 
1 1 1 
û 
é 
ê ê 
Þ - = - - - 
ë 
- 
0 1 0 
0 0 0 
3 1 3 
I 1 l A 
ú ú ú 
û 
é- 
ê ê ê 
ë 
Þ = 
1 
ù 
ú ú ú 
0 1 
û 
é- 
= 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é- 
= 
ê ê ê ë 
ù 
ú ú ú 
û 
é 
Þ 
ê ê ê 
ë 
0 
1 
Eigenvector : 
0 
1 
x 
1 
2 
3 
t p 
t 
t 
x 
x 
2 2 l = - 
ù 
ú ú 
û 
é - 
1 0 
~ 
ê ê 
I 4 
ë 
ù 
ú ú 
3 1 1 
1 5 1 
û 
é 
ê ê 
ë 
- - - 
- - 
- 
Þ - = 
0 1 
1 
0 0 0 
3 1 1 
1 
4 
2 l A 
ú ú ú 
û 
é 
ê ê ê 
ë 
ù 
ú ú ú 
1 
1 
4 2 
û 
é 
ê ê ê 
= - 
ë 
ù 
ú ú ú 
û 
é 
= - 
ê ê ê 
video.edhole.com 
ë 
ù 
ú ú ú 
û 
é 
Þ 
ê ê ê 
ë 
4 
Eigenvector : 
4 
1 
1 
4 
1 
4 
x 
1 
2 
3 
t p 
t 
t 
t 
x 
x 
Elementary Linear Algebra: Section 7.2, p.440
34/53 
3 3 l = 
ù 
ú ú 
1 0 1 
~ 
0 1 1 
û 
é 
ê ê 
ë 
- 
ù 
ú ú 
2 1 1 
1 0 1 
û 
é 
ê ê 
Þ - = - - 
ë 
- 
0 0 0 
3 1 4 
I 3 l A 
1 
ù 
ú ú ú 
û 
é- 
ê ê ê 
ë 
Þ = 
1 
ù 
ú ú ú 
û 
é- 
= 
ê ê ê 
ë 
ù 
ú ú ú 
û 
é- 
= 
ê ê ê ë 
ù 
ú ú ú 
û 
é 
Þ 
ê ê ê 
ë 
1 
1 
Eigenvector : 
1 
1 
3 
x 
1 
2 
3 
t p 
t 
t 
t 
x 
x 
é 
- - 
ù 
ú ú ú 
û 
P p p p 
é 
ê ê ê 
2 0 0 
Þ = - 
video.edhole.com 
ë 
1 1 1 
ù 
ú ú ú 
û 
ê ê ê 
ë 
- 
= = 
- 
0 2 0 
0 0 3 
0 1 1 
1 4 1 
Let [ ] 
1 
1 2 3 
P AP 
Elementary Linear Algebra: Section 7.2, p.440
35/53 
 Notes: k is a positive integer 
ù 
ú ú ú ú 
û 
é 
ê ê ê ê 
(1) 2 
ë 
D 
Þ = 
ù 
ú ú ú ú û 
é 
= 
ê ê ê ê 
ë 
0  
0 
0  
0 
    
k 
n 
k 
k 
k 
d 
d 
0  
0 
0  
0 
    
n d 
d 
d 
d 
D 
 
 
0 0 
0 0 
1 
2 
1 
k - 
1 
k 
D P AP 
D P AP 
( ) 
- - - 
1 1 1 
Þ = 
P AP P AP P AP 
= ××× 
( )( ) ( ) 
- - - - 
1 1 1 1 
P A PP A PP PP AP 
= ××× 
- 
1 
P AA AP 
= ××× 
- 
1 
P A P 
video.edhole.com 
1 
1 
( ) ( ) ( ) 
(2) 
- 
- 
k k 
 = 
= 
= 
A PD P 
k 
Elementary Linear Algebra: Section 7.2, p.445
36/53 
 Thm 7.6: (Sufficient conditions for diagonalization) 
If an n´n matrix A has n distinct eigenvalues, then the 
corresponding eigenvectors are linearly independent and 
A is diagonalizable. 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.442
37/53 
 Ex 7: (Determining whether a matrix is diagonalizable) 
ù 
ú ú ú 
û 
é 
ê ê ê 
ë 
1 2 1 
- 
- 
= 
0 0 1 
0 0 3 
A 
Sol: Because A is a triangular matrix, 
its eigenvalues are the main diagonal entries. 
1, 0, 3 1 2 3 l = l = l = - 
These three values are distinct, so A is diagonalizable. (Thm.7.6) 
video.edhole.com 
Elementary Linear Algebra: Section 7.2, p.443
 Ex 8: (Finding a diagonalizing matrix for a linear transformation) 
38/53 
3 3 
T:R ® 
R 
Let be the linear transformation given by 
T x ,x ,x = x - x - x , x + x + x , - x + x - 
x 
( ) ( 3 3 ) 
1 2 3 1 2 3 1 2 3 1 2 3 
3 
B R T 
Find a basis for such that the matrix for 
B 
relative to is diagonal. 
Sol: 
T 
The standard matrix for is given by 
[ ] 
1 1 1 
ù 
ú ú ú 
û 
é 
ê ê ê 
ë 
- - 
1 3 1 
- - 
1 2 3 A T e T e T e 
= = 
3 1 1 
( ) ( ) ( ) 
From Ex. 5, there are three distinct eigenvalues 
2, 2, 3 1 2 3 l = l = - l = 
video.edhole.com 
so A is diagonalizable. (Thm. 7.6) 
Elementary Linear Algebra: Section 7.2, p.443
39/53 
Thus, the three linearly independent eigenvectors found in Ex. 
5 
( 1, 0, 1), (1, 1, 4), ( 1, 1, 1) 1 2 3 p = - p = - p = - 
can be used to form the basis B. That is 
{ , , } {( 1, 0, 1),(1, 1, 4),( 1, 1, 1)} 1 2 3 B = p p p = - - - 
The matrix for T relative to this basis is 
[ ] 
[ ] 
[ ] 
D T p T p T p 
[ ( )] [ ( )] [ ( )] 
B B B 
1 2 3 
Ap Ap Ap 
[ ] [ ] [ ] 
B B B 
1 2 3 
p p p 
l l l 
[ ] [ ] [ ] 
B B B 
1 1 2 2 3 3 
ù 
ú ú ú 
video.edhole.com 
û 
= 
= 
2 0 0 
é 
= - 
ê ê ê 
ë 
= 
0 2 0 
0 0 3 
Elementary Linear Algebra: Section 7.2, p.443
40/53 
Keywords in Section 7.2: 
 diagonalization problem: 對角化問題 
 diagonalization: 對角化 
 diagonalizable matrix: 可對角化矩陣 
video.edhole.com
7.3 Symmetric Matrices and Orthogonal Diagonalization 
41/53 
 Symmetric matrix: 
A square matrix A is symmetric if it is equal to its 
transpose: A = AT 
 Ex 1: (Symmetric matrices and nonsymetric 
matrices) 
ù 
ú ú 
û 
0 1 2 
é 
- 
ê ê 
ë 
- 
= 
1 3 0 
2 0 5 
A 
B 4 3 
úûù 
= é 3 1 
êë 
ù 
ú ú 
û 
3 2 1 
é 
= - 
1 0 5 
ê ê 
1 4 0 
ë 
C 
(symmetric) 
(symmetric) 
(nonsymmetric) 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.447
42/53 
 Thm 7.7: (Eigenvalues of symmetric matrices) 
If A is an n´n symmetric matrix, then the following properties 
are true. 
(1) A is diagonalizable. 
(2) All eigenvalues of A are real. 
(3) If l is an eigenvalue of A with multiplicity k, then l has k 
linearly independent eigenvectors. That is, the eigenspace 
of l has dimension k. 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.447
43/53 
 Ex 2: 
Prove that a symmetric matrix is diagonalizable. 
ù 
úû 
A a c 
= é c b 
êë 
Pf: Characteristic equation: 
I A a c l l l 
l l 
- = - - a b ab c c b 
- - = 2 - ( + ) + - 2 = 0 
As a quadratic in l, this polynomial has a discriminant of 
2 2 2 2 2 
a + b - ab - c = a + ab + b - ab + 
c 
( ) 4( ) 2 4 4 
2 2 2 
a ab b c 
= - + + 
2 4 
³ 0 2 2 
a b c 
= - + 
( ) 4 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.448
44/53 
(1) (a - b)2 + 4c2 = 0 
Þ a = b, c = 0 
is a matrix of diagonal. 
0 
0 
ù 
úû 
é 
= 
êë 
a 
a 
A 
(2) (a - b)2 + 4c2 > 0 
The characteristic polynomial of A has two distinct real 
roots, which implies that A has two distinct real eigenvalues. 
Thus, A is diagonalizable. 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.448
0 4 
3 
0 1 0 
ù 
45/53 
 Orthogonal matrix: 
A square matrix P is called orthogonal if it is invertible and 
P-1 = PT 
 Ex 4: (Orthogonal matrices) 
0 1 
é - 
= = úû 
é 
- 
P = P- PT 
(a) 1 úû 
é - 
0 4 
3 
P = 0 1 0 
P- PT 
0 3 
4 
ù 
Elementary Linear Algebra: Section 7.3, p.449 
. 
0 1 
1 0 
is orthogonal because 
1 0 
ù 
êë 
ù 
êë 
. 
5 
0 3 
4 
5 
5 
5 
is orthogonal because 
5 
5 
5 
5 
(b) 1 
ú ú ú ú ú 
û 
é 
ê ê ê ê ê 
ë 
- 
= = 
ú ú ú ú ú 
û 
ê ê ê ê ê 
ë 
video.edhole.com
46/53 
 Thm 7.8: (Properties of orthogonal matrices) 
An n´n matrix P is orthogonal if and only if 
its column vectors form an orthogonal set. 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.450
47/53 
 Ex 5: (An orthogonal matrix) 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
ë 
1 
- 
1 
2 
- - 
5 
3 5 
4 
3 5 
2 
3 5 
5 
5 
3 2 
3 2 
3 
P 0 
Sol: If P is a orthogonal matrix, then P-1 = PT Þ PPT = I 
I 
1 0 0 
0 1 0 
0 0 1 
é 
2 
= 1 
- 
0 
0 
2 
4 
5 
3 5 
1 
3 2 
3 5 
5 
3 2 
3 5 
5 
3 
5 
3 5 
1 
4 
3 5 
1 
2 
2 
PPT - 
3 5 
5 
5 
3 2 
3 2 
3 
= 
ù 
ú ú 
û 
é 
= 
ê ê 
ë 
ù 
ú ú ú 
û 
é 
ê ê ê 
ë 
ù 
ú ú ú 
û 
ê ê ê 
ë 
- - 
- - 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
1 Let p , p , p 0 
ë 
ù 
ú ú ú 
û 
é 
= 
ê ê ê 
ë 
ù 
ú ú ú 
video.edhole.com 
û 
é 
= 
ê ê ê 
ë 
1 
3 
- 
3 2 
1 
2 
5 
- - 
3 2 
5 
3 5 
3 
5 
4 
3 5 
2 
2 
3 5 
Elementary Linear Algebra: Section 7.3, p.451
48/53 
p p p p p p 
× = × = × = 
p p p 
1 2 1 3 2 3 
1 
0 
produces 
= = = 
1 2 3 
{ , , } is an orthonormal set. 1 2 3 p p p 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.451
49/53 
 Thm 7.9: (Properties of symmetric matrices) 
Let A be an n´n symmetric matrix. If l1 and l2 are distinct 
eigenvalues of A, then their corresponding eigenvectors x1 
and x2 are orthogonal. 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.452
0 1 
ù 
é 
- 
 Ex 6: (Eigenvectors of a symmetric matrix) 
A = 
úû 
Show that any two eigenvecto rs of 1 0 
êë 
corresponding to distinct eigenvalues are orthogonal. 
 Sol: Characteristic function 
l 
- - 
l A 
Eigenvalues : 2, 4 1 2 Þ l = l = 
I - = = l 2 - l + = l - l 
- = 
6 8 ( 2)( 4) 0 
3 1 
- l 
- 
1 3 
1 
ù 
úû 
ù 
é- 
Þ = é 
ù 
- - 
é 
- - 
l = Þl - A = s s 
(1) 2 I 1 1 1 ¹ úû 
, 0 
1 
x 
1 1 
~ 
0 0 
1 1 
úû 
1 1 
êë 
êë 
êë 
1 
ù 
úû 
ù 
é 
Þ = é - 
ù 
é 
- 
- 
l = Þl - A = t t 
x x 0 x and x are orthogonal. 1 2 1 2 Þ = - = úû 
(2) 4 I 2 2 2 ¹ úû 
, 0 
1 
x 
1 1 
~ 
0 0 
1 1 
1 1 
êë 
êë 
úû 
êë 
ù 
t 
é 
× úû 
s 
× = st st 
êë 
ù 
é- 
êë 
video.edhole.s 
com 
t 
Elementary Linear Algebra: Section 7.3, p.452 50/53
51/53 
 Thm 7.10: (Fundamental theorem of symmetric matrices) 
Let A be an n´n matrix. Then A is orthogonally diagonalizable 
and has real eigenvalue if and only if A is symmetric. 
 Orthogonal diagonalization of a symmetric matrix: 
Let A be an n´n symmetric matrix. 
(1) Find all eigenvalues of A and determine the multiplicity of each. 
(2) For each eigenvalue of multiplicity 1, choose a unit eigenvector. 
(3) For each eigenvalue of multiplicity k³2, find a set of k linearly 
independent eigenvectors. If this set is not orthonormal, apply Gram- 
Schmidt orthonormalization process. 
(4) The composite of steps 2 and 3 produces an orthonormal set of n 
eigenvectors. Use these eigenvectors to form the columns of P. The 
matrix will P-1AP = PT AP = D be diagonal. 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.453
52/53 
 Ex 7: (Determining whether a matrix is orthogonally 
diagonalizable) 
1 1 1 
é 
= 
1 1 1 
ù 
ú ú 
1 0 1 
û 
ê ê 
ë 
1 A 
ù 
ú ú 
û 
5 2 1 
é 
- 
ê ê 
ë 
= 
2 1 8 
1 8 0 
2 A 
ù 
úû 
3 2 0 
êë= é 2 0 1 
3 A 
ù 
úû 
é 
= 0 - 2 
êë 
0 0 
4 A 
Orthogonally 
diagonalizable 
Symmetric 
matrix 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.454
53/53 
 Ex 9: (Orthogonal diagonalization) 
Find an orthogonal matrix that diagonalizes A. 
ù 
ú ú ú û 
é 
ê ê ê 
ë 
2 2 2 
- 
- 
2 1 4 
- - 
= 
2 4 1 
A 
P 
Sol: 
(1) lI - A = (l -3)2 (l + 6) = 0 
6, 3 (has a multiplicity of 2) 1 2 l = - l = 
l v u v 
= - = - Þ = = - 
3 (2) 2 
6, (1, 2, 2) 1 
( 1 
, 2 
, ) 3 
3 
1 
1 1 1 
v 
(3) 3, (2, 1, 0), ( 2, 0, 1) 2 2 3 l = v = v = - 
Linear Independent 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.455
54/53 
Gram-Schmidt Process: 
w v w v v w 
= = = - × w 
(2, 1, 0), 3 2 
( 2 
, 4 
, 1) 2 
5 
5 
w w 
2 2 
2 2 3 3 
= - 
× 
u w 
( , , 0), 3 
( 2 
, 4 
, 5 
) 3 5 
3 5 
3 5 
3 
1 
5 3 
2 
5 
u w 
2 
2 
2 
= = = = - 
w 
w 
ù 
ú ú ú 
û 
é 
ê ê ê 
1 
= = - 
ë 
- 
2 
4 
5 
3 5 
2 
3 2 
3 5 
2 
1 
5 
3 
3 5 
5 
3 
1 2 3 
0 
(4) P [ p p p ] 
ù 
ú ú ú 
û 
é- 
ê ê ê 
ë 
Þ - = = 
6 0 0 
0 3 0 
0 0 3 
P 1AP PT AP 
video.edhole.com 
Elementary Linear Algebra: Section 7.3, p.456
55/53 
Keywords in Section 7.3: 
 symmetric matrix: 對稱矩陣 
 orthogonal matrix: 正交矩陣 
 orthonormal set: 單範正交集 
 orthogonal diagonalization: 正交對角化 
video.edhole.com

More Related Content

Viewers also liked

Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization gandhinagar
 
B.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsB.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsRai University
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...GeeksLab Odessa
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsMatthew Leingang
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringshubham211
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vectorRutvij Patel
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesIvan Mateev
 

Viewers also liked (7)

Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
B.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsB.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectors
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matrices
 

Similar to Free Video Lecture For Mba, Mca, Btech, BBA, In india

A03401001005
A03401001005A03401001005
A03401001005theijes
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkHiroshi Kuwajima
 
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)Ming-Chi Liu
 
Properties of fuzzy inner product spaces
Properties of fuzzy inner product spacesProperties of fuzzy inner product spaces
Properties of fuzzy inner product spacesijfls
 
Scaling Secure Computation
Scaling Secure ComputationScaling Secure Computation
Scaling Secure ComputationDavid Evans
 
Deep learning study 2
Deep learning study 2Deep learning study 2
Deep learning study 2San Kim
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)parth98796
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials QuestionDrradz Maths
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsYoshihiro Mizoguchi
 
IRJET - Equivalence Relation on Fuzzy Meet Hyperlattice
IRJET -  	  Equivalence Relation on Fuzzy Meet HyperlatticeIRJET -  	  Equivalence Relation on Fuzzy Meet Hyperlattice
IRJET - Equivalence Relation on Fuzzy Meet HyperlatticeIRJET Journal
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchAhmed BESBES
 
presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptxahmed219190
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdfgrssieee
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdfgrssieee
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdfgrssieee
 

Similar to Free Video Lecture For Mba, Mca, Btech, BBA, In india (20)

A03401001005
A03401001005A03401001005
A03401001005
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
 
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
 
Properties of fuzzy inner product spaces
Properties of fuzzy inner product spacesProperties of fuzzy inner product spaces
Properties of fuzzy inner product spaces
 
Scaling Secure Computation
Scaling Secure ComputationScaling Secure Computation
Scaling Secure Computation
 
Indefinite Integral 3
Indefinite Integral 3Indefinite Integral 3
Indefinite Integral 3
 
Deep learning study 2
Deep learning study 2Deep learning study 2
Deep learning study 2
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials Question
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on Groups
 
IRJET - Equivalence Relation on Fuzzy Meet Hyperlattice
IRJET -  	  Equivalence Relation on Fuzzy Meet HyperlatticeIRJET -  	  Equivalence Relation on Fuzzy Meet Hyperlattice
IRJET - Equivalence Relation on Fuzzy Meet Hyperlattice
 
Chapter 2.pptx
Chapter 2.pptxChapter 2.pptx
Chapter 2.pptx
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from Scratch
 
presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptx
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdf
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdf
 
simplex.pdf
simplex.pdfsimplex.pdf
simplex.pdf
 

More from Edhole.com

Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarkaEdhole.com
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarkaEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in suratEdhole.com
 
Website dsigning company in india
Website dsigning company in indiaWebsite dsigning company in india
Website dsigning company in indiaEdhole.com
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhiEdhole.com
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarkaEdhole.com
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarkaEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in suratEdhole.com
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in indiaEdhole.com
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhiEdhole.com
 
Website designing company in mumbai
Website designing company in mumbaiWebsite designing company in mumbai
Website designing company in mumbaiEdhole.com
 
Website development company surat
Website development company suratWebsite development company surat
Website development company suratEdhole.com
 
Website desinging company in surat
Website desinging company in suratWebsite desinging company in surat
Website desinging company in suratEdhole.com
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in indiaEdhole.com
 

More from Edhole.com (20)

Ca in patna
Ca in patnaCa in patna
Ca in patna
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarka
 
Ca in dwarka
Ca in dwarkaCa in dwarka
Ca in dwarka
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarka
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in surat
 
Website dsigning company in india
Website dsigning company in indiaWebsite dsigning company in india
Website dsigning company in india
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhi
 
Ca in patna
Ca in patnaCa in patna
Ca in patna
 
Chartered accountant in dwarka
Chartered accountant in dwarkaChartered accountant in dwarka
Chartered accountant in dwarka
 
Ca firm in dwarka
Ca firm in dwarkaCa firm in dwarka
Ca firm in dwarka
 
Ca in dwarka
Ca in dwarkaCa in dwarka
Ca in dwarka
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website designing company in surat
Website designing company in suratWebsite designing company in surat
Website designing company in surat
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in india
 
Website designing company in delhi
Website designing company in delhiWebsite designing company in delhi
Website designing company in delhi
 
Website designing company in mumbai
Website designing company in mumbaiWebsite designing company in mumbai
Website designing company in mumbai
 
Website development company surat
Website development company suratWebsite development company surat
Website development company surat
 
Website desinging company in surat
Website desinging company in suratWebsite desinging company in surat
Website desinging company in surat
 
Website designing company in india
Website designing company in indiaWebsite designing company in india
Website designing company in india
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

Free Video Lecture For Mba, Mca, Btech, BBA, In india

  • 1. Free video Lecture By: video.edhole.com
  • 2. Chapter 7 Eigenvalues and Eigenvectors 7.1 Eigenvalues and Eigenvectors 7.2 Diagonalization 7.3 Symmetric Matrices and Orthogonal Diagonalization video.edhole.com Elementary Linear Algebra 投影片設計編製者 R. Larsen et al. (6 Edition) 淡江大學 電機系 翁慶昌 教 授
  • 3. 3/53 7.1 Eigenvalues and Eigenvectors  Eigenvalue problem: If A is an n´n matrix, do there exist nonzero vectors x in Rn such that Ax is a scalar multiple of x ?  Eigenvalue and eigenvector: A:an n´n matrix  :a scalar x : a nonzero vector in Rn Eigenvalue Ax =lx Eigenvector  Geometrical Interpretation video.edhole.com Elementary Linear Algebra: Section 7.1, pp.421-422
  • 4. 4/53  Ex 1: (Verifying eigenvalues and eigenvectors) ù 2 0 1 = é0 A úû = 0 1 úû é êë - ù êë 1 x úûù 0 êë= é1 Ax = é 2 0 ù é 1 úû úû 2 - 0 = 2 é 1 = x 2 1 0 1 0 0 1 ù êë ù êëé = úû ù êë úû êë Eigenvalue Eigenvector úû úû Ax = é 2 0 ù é 0 é úû 0 é 0 - = - 1 = - 1 = - x ( 1) 2 0 1 1 1 2 ù êë ù êë ù êë úû êë Eigenvalue Eigenvector 2 x video.edhole.com Elementary Linear Algebra: Section 7.1, p.423
  • 5. 5/53  Thm 7.1: (The eigenspace of A corresponding to l) If A is an n´n matrix with an eigenvalue l, then the set of all eigenvectors of l together with the zero vector is a subspace of Rn. This subspace is called the eigenspace of l . Pf: x1 and x2 are eigenvectors corresponding to l ( . . , ) 1 1 2 2 i e Ax = lx Ax =lx A x + x = Ax + Ax = l x +l x = l x + x (1) ( ) ( ) 1 2 1 2 1 2 1 2 i e x + x λ ( . . is an eigenvector corresponding to ) 1 2 A cx = c Ax = c x = cx (2) ( ) ( ) ( ) ( ) 1 1 1 1 video.edhole.com ( . . is an eigenvector corresponding to ) 1 l l l i e cx Elementary Linear Algebra: Section 7.1, p.424
  • 6. 6/53  Ex 3: (An example of eigenspaces in the plane) Find the eigenvalues and corresponding eigenspaces of ù úû é- = êë 1 0 0 1 A ù úû é- = úû êë ù If v = (x, y) êë é úû ù é- = êë x y x y A 1 0 0 1 v For a vector on the x-axis Eigenvalue 1 1 l = - ù úû 1 0 x x x é - = úû êë ù é- = úû êë ù é êë ù úû êë é- 0 1 0 0 0 1 Sol: video.edhole.com Elementary Linear Algebra: Section 7.1, p.425
  • 7. 7/53 For a vector on the y-axis ù úû 0 1 é = úû êë ù 0 0 é = úû êë ù é êë ù úû é- êë y y y 1 0 0 1 Eigenvalue 1 2 l = Geometrically, multiplying a vector (x, y) in R2 by the matrix A corresponds to a reflection in the y-axis. 1 1 l = - The eigenspace corresponding to is the x-axis. The eigenspace corresponding to is the y-axis. 1 2 l = video.edhole.com Elementary Linear Algebra: Section 7.1, p.425
  • 8.  Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AÎMn´n ) Let A is an n´n matrix. (1) An eigenvalue of A is a scalar l such that d e t ( l I - A ) = 0 . (2) The eigenvectors of A corresponding to l are the nonzero 8/53 solutions of .  Note: Ax = lx Þ (lI - A)x = 0 (homogeneous system)  Characteristic polynomial of AÎMn´n: det( I - A) = ( I - A) = n + c n - + + c + c n 1 1 0 1 - l l l l  l  Characteristic equation of A: video.edhole.com det(lI - A) = 0 (lI - A)x = 0 If ( l I - A ) x = 0 has nonzero solutions iff d e t ( l I - A ) = 0 . Elementary Linear Algebra: Section 7.1, p.426
  • 9. 9/53  Ex 4: (Finding eigenvalues and eigenvectors) ù úû é 2 12 = 1 5 êë - - A Sol: Characteristic equation: 2 12 l - - l + 1 5 3 2 ( 1)( 2) 0 - = det( I ) = l 2 + l + = l + l + = l A Þl = -1, - 2 Eigenvalues : 1, 2 1 2 l = - l = - video.edhole.com Elementary Linear Algebra: Section 7.1, p.426
  • 10. 10/53 (2) 2 2 l = - t 4 4 é = úû t ù 3 3 ù é = úû , 0 1 3 12 é - é - 1 4 ~ ù ù 4 12 é - é - 1 3 ~ 0 0 3 12 ù 4 12 1 3 0 ù é = úû é = úû 0 0 1 3 é - ( I ) x 1 é é = úû x 1 2 x 1 x 1 2 2 ¹ úû êë ù ù é = úû êë ù é êë ù é ù Þ úû êë ù úû é - êë - úû êë ù êë úû êë - Þ - = t t t x x A x  l (1) 1 1 l = - , 0 1 0 0 1 4 0 1 4 ( I ) 2 2 1 ¹ úû êë ù êë ù êë Þ úû êë úû êë - úû êë ù êë é úû êë - Þ - = t t t x x A x  l Check : Ax x i l = video.edhole.com Elementary Linear Algebra: Section 7.1, p.426
  • 11. 11/53  Ex 5: (Finding eigenvalues and eigenvectors) Find the eigenvalues and corresponding eigenvectors for the matrix A. What is the dimension of the eigenspace of each eigenvalue? ù ú ú û 2 1 0 é = 0 0 2 ê ê ë 0 2 0 A Sol: Characteristic equation: l - - I - = = l - 3 = ( 2) 0 2 1 0 l - 0 2 0 l - 0 0 2 l A Eigenvalue: l = 2 video.edhole.com Elementary Linear Algebra: Section 7.1, p.428
  • 12. 12/53 The eigenspace of A corresponding to l = 2 : ù ú ú ú û é = ê ê ê ë ù ú ú ú û é ê ê ê ë ù ú ú ú û é - ê ê ê ë - = 0 0 0 0 1 0 0 0 0 0 0 0 ( I ) x 1 2 x 3 x l A x 0 ù é + 0 , , 0 1 1 0 0 s 0 0 1 0 ~ 0 0 0 0 0 0 é - 0 1 0 0 0 0 0 0 0 x 1 2 3 ¹ ú ú ú û ê ê ê ë ù ú ú ú û é = ê ê ê ë ù ú ú ú û é = ê ê ê ë ù ú ú ú û é Þ ê ê ê ë ù ú ú ú û é ê ê ê ë ù ú ú ú û ê ê ê ë s t s t t x x  ü é s t s t R l , : the eigenspace of A corresponding to 2 0 0 é + 1 1 0 0 = ïþ ïý ì ïî ïí Î ù ú ú ú û ê ê ê ë ù ú ú ú û ê ê ê ë Thus, the dimension of its eigenspace is 2. video.edhole.com Elementary Linear Algebra: Section 7.1, p.428
  • 13. 13/53  Notes: (1) If an eigenvalue l1 occurs as a multiple root (k times) for the characteristic polynominal, then l1 has multiplicity k. (2) The multiplicity of an eigenvalue is greater than or equal to the dimension of its eigenspace. video.edhole.com Elementary Linear Algebra: Section 7.1, p.428
  • 14. 14/53  Ex 6:Find the eigenvalues of the matrix A and find a basis for each of the corresponding eigenspaces. ù ú ú ú ú û 1 0 0 0 é = - 1 0 0 3 ê ê ê ê 1 0 2 0 ë 0 1 5 10 A Sol: Characteristic equation: 1 0 0 0 - - - 0 1 5 10 - - 1 0 2 0 - - 1 0 0 3 ( 1) ( 2)( 3) 0 I - = = l - 2 l - l - = l l l l l A video.edhole.com Eigenvalues : 1, 2, 3 1 2 3 l = l = l = Elementary Linear Algebra: Section 7.1, p.429
  • 15. 15/53 (1) 1 1 l = ù ú ú ú ú û é = ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë 0 0 0 0 - 0 0 5 10 - - 1 0 1 0 - - Þ - = 0 0 0 0 1 0 0 2 ( I ) x 1 2 x x 3 4 1 x l A x 2 é- + 0 ù , , 0 2 1 0 é = 1 0 0 2 é- = s t 2 1 0 0 2 ~ 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 5 10 - - 1 0 1 0 1 0 0 2 x 1 2 x x 3 4 ¹ ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û é Þ ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë - ù ú ú ú ú û é ê ê ê ê ë - - s t s t t t x 2 é- 0 Þ is a basis for the eigenspace 2 video.edhole.com 1 0 é 1 ù , 0 0 ü ï ï ý ï ï þ ì ï ï í ï ï î ù ú ú ú ú û ê ê ê ê ë ú ú ú ú û ê ê ê ê ë of A corresponding to l =1 Elementary Linear Algebra: Section 7.1, p.429
  • 16. 16/53 (2) 2 2 l = ù ú ú ú ú û é = ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë 1 0 0 0 0 1 5 10 - - 1 0 0 0 - - Þ - = 0 0 0 0 1 0 0 1 ( I ) x 1 2 x x 3 4 2 x l A x 0 5 ù , 0 0 é = 1 0 é = t 5 0 1 0 0 0 0 1 5 0 ~ 0 0 0 1 0 0 0 0 1 0 0 0 - 0 1 5 10 1 0 0 0 ù 1 0 0 1 x 1 2 x x 3 4 ¹ ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û é Þ ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë - ú ú ú ú û é ê ê ê ê ë - - - t t t x 0 5 é Þ is a basis for the eigenspace 1 video.edhole.0 com ü ï ï ý ï ï þ ì ï ï í ï ï î ù ú ú ú ú û ê ê ê ê ë of A corresponding to l = 2 Elementary Linear Algebra: Section 7.1, p.429
  • 17. 17/53 (3) 3 3 l = ù ú ú ú ú û é = ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë 2 0 0 0 0 2 5 10 - - - Þ - = 0 0 0 0 1 0 1 0 1 0 0 0 ( I ) x 1 2 x x 3 4 3 x l A x 0 ù 5 é - = , 0 0 1 0 5 é - = 0 1 0 0 0 0 1 0 5 ~ 0 0 1 0 0 0 0 0 2 0 0 0 0 2 5 10 1 0 1 0 1 0 0 0 x 1 2 x x 3 4 ¹ ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û ê ê ê ê ë ù ú ú ú ú û é Þ ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë ù ú ú ú ú û é ê ê ê ê ë - - - t t t t x 0 ù 5 é - Þ is a basis for the eigenspace 0 video.edhole.1 com ü ï ï ý ï ï þ ì ï ï í ï ï î ú ú ú ú û ê ê ê ê ë of A corresponding to l = 3 Elementary Linear Algebra: Section 7.1, p.429
  • 18. 18/53  Thm 7.3: (Eigenvalues of triangular matrices) If A is an n´n triangular matrix, then its eigenvalues are the entries on its main diagonal.  Ex 7: (Finding eigenvalues for diagonal and triangular matrices) ù ú ú ú û é ê ê ê ë 2 0 0 1 1 0 - = - 5 3 3 (a)A ù ú ú ú ú û é ê ê ê ê ë 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 - - = 0 0 0 4 0 0 0 0 0 3 (b)A Sol: - ( ) I - = = l - l - l + ( 2)( 1)( 3) 2 0 0 l - 1 1 0 - - l + 5 3 3 l a l A 2, 1, 3 1 2 3 l = l = l = - video.edhole.com ( ) 1, 2, 0, 4, 3 1 2 3 4 5 b l = - l = l = l = - l = Elementary Linear Algebra: Section 7.1, p.430
  • 19. 19/53  Eigenvalues and eigenvectors of linear transformations: A number is called an eigenvalue of a linear transformation ® x x = x T V V T : if there is a nonzero vector such that ( ) . The vector is called an eigenvector of corresponding to , and the setof all eigenvectors of (with the zero vector) is l called the eigenspace of . l l l l T x video.edhole.com Elementary Linear Algebra: Section 7.1, p.431
  • 20. 20/53  Ex 8: (Finding eigenvalues and eigenspaces) Find the eigenvalues and corresponding eigenspaces ù . 1 3 0 3 1 0 0 0 2 ú ú ú û é ê ê ê ë - A = Sol: - = l l ( 2) ( 4) - - 1 3 0 3 1 0 0 0 2 = + 2 - + - - l l l lI A eigenvalues : 4, 2 1 2 l = l = - The eigenspaces for these two eigenvalues are as follows. = l = {(1, 1, 0)} Basis for 4 B 1 1 = - l = - video.edhole.com {(1, 1, 0),(0, 0, 1)} Basis for 2 B 2 2 Elementary Linear Algebra: Section 7.1, p.431
  • 21. ® (1) Let be the linear transformation whose standard matrix is A in Ex. 8, and let be the basis of made up of three linear 21/53  Notes: independent eigenvectors found in Ex. 8. Then , the matrix of relative to the basis ,is diagonal. ' {(1, 1, 0),(1, 1, 0),(0, 0, 1)} 3 3 3 = - B B' A' T B' R T:R R ù ú ú û é ê ê 4 0 0 = - 0 0 2 ë 0 2 0 - A' Eigenvectors of A Eigenvalues of A (2) The main diagonal entries of the matrix A' are the eigenvalues of A. video.edhole.com Elementary Linear Algebra: Section 7.1, p.431
  • 22. 22/53 Keywords in Section 7.1:  eigenvalue problem: 特徵值問題  eigenvalue: 特徵值  eigenvector: 特徵向量  characteristic polynomial: 特徵多項式  characteristic equation: 特徵方程式  eigenspace: 特徵空間  multiplicity: 重數 video.edhole.com
  • 23. 23/53 7.2 Diagonalization  Diagonalization problem: For a square matrix A, does there exist an invertible matrix P such that P-1AP is diagonal?  Diagonalizable matrix: A square matrix A is called diagonalizable if there exists an invertible matrix P such that P-1AP is a diagonal matrix. (P diagonalizes A)  Notes: B = P-1AP (1) If there exists an invertible matrix P such that , then two square matrices A and B are called similar. (2) The eigenvalue problem is related closely to the diagonalization problem. video.edhole.com Elementary Linear Algebra: Section 7.2, p.435
  • 24. 24/53  Thm 7.4: (Similar matrices have the same eigenvalues) If A and B are similar n´n matrices, then they have the same eigenvalues. Pf: A and B are similarÞ B = P-1AP 1 1 1 1 B P AP P P P AP P A P l l l l - = - = - = - I I I ( I ) - - - 1 1 1 P A P P P A P P A = - = - = - A = - - - - - I I I I l l l l A and B have the same characteristic polynomial. Thus A and B have the same eigenvalues. video.edhole.com Elementary Linear Algebra: Section 7.2, p.436
  • 25. 25/53  Ex 1: (A diagonalizable matrix) ù ú ú û 1 3 0 é ê ê = 0 0 2 ë 3 1 0 - A Sol: Characteristic equation: l - - I - = = l - l + 2 = ( 4)( 2) 0 1 3 0 - l - 3 1 0 l + 0 0 2 l A Eigenvalues : 4, 2, 2 1 2 3 l = l = - l = - (See p.403 Ex.5) 1 é 1 0 (1) 4 Eigenvector : 1 ù ú ú ú û ê ê ê ë l = Þ p = video.edhole.com Elementary Linear Algebra: Section 7.2, p.436
  • 26. 26/53 (See p.403 Ex.5) 0 0 é = 1 1 ù é l = - Þ p = - p (2) 2 Eigenvector : 2 3 1 , 0 ù ú ú ú û ê ê ê ë ú ú ú û ê ê ê ë ù ú ú ú û é ê ê ê ë 4 0 0 0 2 0 - [ ] 1 1 2 3 P p p p P AP Þ = - ù ú ú ú û 1 1 0 é ê ê ê ë = = - - 0 0 2 1 1 0 0 0 1 ù ù ú ú ú û é é ê ê ê ë 2 0 0 0 4 0 2 0 0 - - -  Notes: P p p p P AP Þ = ù ù ú ú ú û é 1 1 0 = = - é ê ê ê 1 1 0 1 0 1 = = - video.edhole.com ë ú ú ú û ê ê ê ë - - Þ = ú ú ú û ê ê ê ë - 0 2 0 0 0 4 1 0 1 0 1 0 (2) [ ] 0 0 2 0 0 1 (1) [ ] 1 2 3 1 1 2 1 3 P p p p P AP Elementary Linear Algebra: Section 7.2, p.436
  • 27. 27/53  Thm 7.5: (Condition for diagonalization) An n´n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. Pf: (Þ)A is diagonalizable 1 = - P D P AP there exists an invertible s.t. is diagonal P = p p  p D = diag l l  l n n Let [ ] and ( , , , ) 1 2 1 2 0  0 0  0     0 0 PD p p p é [ ] [ ] video.edhole.1 1 com 2 2 2 1 1 2 n n n n p p p l l l l l l    = ù ú ú ú ú û ê ê ê ê ë = Elementary Linear Algebra: Section 7.2, p.437
  • 28. 28/53 [ ] [ ] 1 2 n 1 2 n AP = A p p  p = Ap Ap  Ap AP PD = l  = = Ap p , i 1, 2, , n i e p P A ( . . the column vector of are eigenvectors of ) i i i i  is invertible , , , are linearly independent. 1 2 n P Þ p p  p A has n linearly independent eigenvectors. n A n p p p 1 2 Ü ( ) has linearly independent eigenvectors , , l l l n  with corresponding eigenvalues , , 1 2 Ap p i n i i i i.e. = l , =1, 2,, Let [ ] 1 2 n P = p p  p video.edhole.com Elementary Linear Algebra: Section 7.2, p.438
  • 29. 29/53 AP A p p p [  ] 1 2 Ap Ap Ap [ ] n  1 2 p p p ù l l l [ ] é 0  0 0  0 1 1 2 2 p p p PD     n n n n n = ú ú ú ú û ê ê ê ê ë = = = = l l l    0 0 [ ] 2 1 1 2 p p p P n , , , are linearly independent is invertible 1   1 1 P AP D = is diagonalizable A Þ Þ - Note: If n linearly independent vectors do not exist, v i d e oth.eend anh on´len .mcaotrmix A is not diagonalizable. Elementary Linear Algebra: Section 7.2, p.438
  • 30. I 1 l A I A p A does not have two (n=2) linearly independent eigenvectors, so A is not diagonalizable. 30/53  Ex 4: (A matrix that is not diagonalizable) Show that the following matrix is not diagonalizable. ù úû 1 2 = é 0 1 êë A Sol: Characteristic equation: l A l Eigenvalue : 1 1 l = - = - - l l I 1 2 = - 2 = - 0 1 ( 1) 0 ù úû 1 é = Þ úû êë ù é 0 1 ~ êë ù úû é - êë - = - = 0 Eigenvector : 0 0 0 2 0 0 video.edhole.com Elementary Linear Algebra: Section 7.2, p.439
  • 31.   ù é - = = l 1  31/53  Steps for diagonalizing an n´n square matrix: Step 1: Find n linearly independent eigenvectors for A with corresponding eigenvalues Step 2: Let [ ] 1 2 n P = p p  p n p , p , , p 1 2  Step 3: 0 0 1 0 0 2 P AP D Ap p i n i i i     n , where , 1, 2, , 0 0  = = ú ú ú ú û ê ê ê ê ë l l l Elementary Linear Algebra: Section 7.2, p.439 n l ,l , ,l 1 2  Note: The order of the eigenvalues used to form P will determine vthide eorode.er idn hwohilceh. tchoe meigenvalues appear on the main diagonal of D.
  • 32. 32/53  Ex 5: (Diagonalizing a matrix) - - 1 1 1 1 3 1 ù ú ú ú - - 3 1 1 - û P P 1AP A é ê ê ê ë = Find a matrix such that is diagonal. Sol: Characteristic equation: l - I - = = l - l + l - = ( 2)( 2)( 3) 0 1 1 1 - l - - 1 3 1 - l + 3 1 1 l A Eigenvalues : 2, 2, 3 1 2 3 l = l = - l = video.edhole.com Elementary Linear Algebra: Section 7.2, p.440
  • 33. 1 ù ù 1 Þ = - 1 33/53 2 1 l = ù ú ú û é 1 0 1 ~ ê ê ë ù ú ú 1 1 1 1 1 1 û é ê ê Þ - = - - - ë - 0 1 0 0 0 0 3 1 3 I 1 l A ú ú ú û é- ê ê ê ë Þ = 1 ù ú ú ú 0 1 û é- = ê ê ê ë ù ú ú ú û é- = ê ê ê ë ù ú ú ú û é Þ ê ê ê ë 0 1 Eigenvector : 0 1 x 1 2 3 t p t t x x 2 2 l = - ù ú ú û é - 1 0 ~ ê ê I 4 ë ù ú ú 3 1 1 1 5 1 û é ê ê ë - - - - - - Þ - = 0 1 1 0 0 0 3 1 1 1 4 2 l A ú ú ú û é ê ê ê ë ù ú ú ú 1 1 4 2 û é ê ê ê = - ë ù ú ú ú û é = - ê ê ê video.edhole.com ë ù ú ú ú û é Þ ê ê ê ë 4 Eigenvector : 4 1 1 4 1 4 x 1 2 3 t p t t t x x Elementary Linear Algebra: Section 7.2, p.440
  • 34. 34/53 3 3 l = ù ú ú 1 0 1 ~ 0 1 1 û é ê ê ë - ù ú ú 2 1 1 1 0 1 û é ê ê Þ - = - - ë - 0 0 0 3 1 4 I 3 l A 1 ù ú ú ú û é- ê ê ê ë Þ = 1 ù ú ú ú û é- = ê ê ê ë ù ú ú ú û é- = ê ê ê ë ù ú ú ú û é Þ ê ê ê ë 1 1 Eigenvector : 1 1 3 x 1 2 3 t p t t t x x é - - ù ú ú ú û P p p p é ê ê ê 2 0 0 Þ = - video.edhole.com ë 1 1 1 ù ú ú ú û ê ê ê ë - = = - 0 2 0 0 0 3 0 1 1 1 4 1 Let [ ] 1 1 2 3 P AP Elementary Linear Algebra: Section 7.2, p.440
  • 35. 35/53  Notes: k is a positive integer ù ú ú ú ú û é ê ê ê ê (1) 2 ë D Þ = ù ú ú ú ú û é = ê ê ê ê ë 0  0 0  0     k n k k k d d 0  0 0  0     n d d d d D   0 0 0 0 1 2 1 k - 1 k D P AP D P AP ( ) - - - 1 1 1 Þ = P AP P AP P AP = ××× ( )( ) ( ) - - - - 1 1 1 1 P A PP A PP PP AP = ××× - 1 P AA AP = ××× - 1 P A P video.edhole.com 1 1 ( ) ( ) ( ) (2) - - k k = = = A PD P k Elementary Linear Algebra: Section 7.2, p.445
  • 36. 36/53  Thm 7.6: (Sufficient conditions for diagonalization) If an n´n matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable. video.edhole.com Elementary Linear Algebra: Section 7.2, p.442
  • 37. 37/53  Ex 7: (Determining whether a matrix is diagonalizable) ù ú ú ú û é ê ê ê ë 1 2 1 - - = 0 0 1 0 0 3 A Sol: Because A is a triangular matrix, its eigenvalues are the main diagonal entries. 1, 0, 3 1 2 3 l = l = l = - These three values are distinct, so A is diagonalizable. (Thm.7.6) video.edhole.com Elementary Linear Algebra: Section 7.2, p.443
  • 38.  Ex 8: (Finding a diagonalizing matrix for a linear transformation) 38/53 3 3 T:R ® R Let be the linear transformation given by T x ,x ,x = x - x - x , x + x + x , - x + x - x ( ) ( 3 3 ) 1 2 3 1 2 3 1 2 3 1 2 3 3 B R T Find a basis for such that the matrix for B relative to is diagonal. Sol: T The standard matrix for is given by [ ] 1 1 1 ù ú ú ú û é ê ê ê ë - - 1 3 1 - - 1 2 3 A T e T e T e = = 3 1 1 ( ) ( ) ( ) From Ex. 5, there are three distinct eigenvalues 2, 2, 3 1 2 3 l = l = - l = video.edhole.com so A is diagonalizable. (Thm. 7.6) Elementary Linear Algebra: Section 7.2, p.443
  • 39. 39/53 Thus, the three linearly independent eigenvectors found in Ex. 5 ( 1, 0, 1), (1, 1, 4), ( 1, 1, 1) 1 2 3 p = - p = - p = - can be used to form the basis B. That is { , , } {( 1, 0, 1),(1, 1, 4),( 1, 1, 1)} 1 2 3 B = p p p = - - - The matrix for T relative to this basis is [ ] [ ] [ ] D T p T p T p [ ( )] [ ( )] [ ( )] B B B 1 2 3 Ap Ap Ap [ ] [ ] [ ] B B B 1 2 3 p p p l l l [ ] [ ] [ ] B B B 1 1 2 2 3 3 ù ú ú ú video.edhole.com û = = 2 0 0 é = - ê ê ê ë = 0 2 0 0 0 3 Elementary Linear Algebra: Section 7.2, p.443
  • 40. 40/53 Keywords in Section 7.2:  diagonalization problem: 對角化問題  diagonalization: 對角化  diagonalizable matrix: 可對角化矩陣 video.edhole.com
  • 41. 7.3 Symmetric Matrices and Orthogonal Diagonalization 41/53  Symmetric matrix: A square matrix A is symmetric if it is equal to its transpose: A = AT  Ex 1: (Symmetric matrices and nonsymetric matrices) ù ú ú û 0 1 2 é - ê ê ë - = 1 3 0 2 0 5 A B 4 3 úûù = é 3 1 êë ù ú ú û 3 2 1 é = - 1 0 5 ê ê 1 4 0 ë C (symmetric) (symmetric) (nonsymmetric) video.edhole.com Elementary Linear Algebra: Section 7.3, p.447
  • 42. 42/53  Thm 7.7: (Eigenvalues of symmetric matrices) If A is an n´n symmetric matrix, then the following properties are true. (1) A is diagonalizable. (2) All eigenvalues of A are real. (3) If l is an eigenvalue of A with multiplicity k, then l has k linearly independent eigenvectors. That is, the eigenspace of l has dimension k. video.edhole.com Elementary Linear Algebra: Section 7.3, p.447
  • 43. 43/53  Ex 2: Prove that a symmetric matrix is diagonalizable. ù úû A a c = é c b êë Pf: Characteristic equation: I A a c l l l l l - = - - a b ab c c b - - = 2 - ( + ) + - 2 = 0 As a quadratic in l, this polynomial has a discriminant of 2 2 2 2 2 a + b - ab - c = a + ab + b - ab + c ( ) 4( ) 2 4 4 2 2 2 a ab b c = - + + 2 4 ³ 0 2 2 a b c = - + ( ) 4 video.edhole.com Elementary Linear Algebra: Section 7.3, p.448
  • 44. 44/53 (1) (a - b)2 + 4c2 = 0 Þ a = b, c = 0 is a matrix of diagonal. 0 0 ù úû é = êë a a A (2) (a - b)2 + 4c2 > 0 The characteristic polynomial of A has two distinct real roots, which implies that A has two distinct real eigenvalues. Thus, A is diagonalizable. video.edhole.com Elementary Linear Algebra: Section 7.3, p.448
  • 45. 0 4 3 0 1 0 ù 45/53  Orthogonal matrix: A square matrix P is called orthogonal if it is invertible and P-1 = PT  Ex 4: (Orthogonal matrices) 0 1 é - = = úû é - P = P- PT (a) 1 úû é - 0 4 3 P = 0 1 0 P- PT 0 3 4 ù Elementary Linear Algebra: Section 7.3, p.449 . 0 1 1 0 is orthogonal because 1 0 ù êë ù êë . 5 0 3 4 5 5 5 is orthogonal because 5 5 5 5 (b) 1 ú ú ú ú ú û é ê ê ê ê ê ë - = = ú ú ú ú ú û ê ê ê ê ê ë video.edhole.com
  • 46. 46/53  Thm 7.8: (Properties of orthogonal matrices) An n´n matrix P is orthogonal if and only if its column vectors form an orthogonal set. video.edhole.com Elementary Linear Algebra: Section 7.3, p.450
  • 47. 47/53  Ex 5: (An orthogonal matrix) ù ú ú ú û é = ê ê ê ë 1 - 1 2 - - 5 3 5 4 3 5 2 3 5 5 5 3 2 3 2 3 P 0 Sol: If P is a orthogonal matrix, then P-1 = PT Þ PPT = I I 1 0 0 0 1 0 0 0 1 é 2 = 1 - 0 0 2 4 5 3 5 1 3 2 3 5 5 3 2 3 5 5 3 5 3 5 1 4 3 5 1 2 2 PPT - 3 5 5 5 3 2 3 2 3 = ù ú ú û é = ê ê ë ù ú ú ú û é ê ê ê ë ù ú ú ú û ê ê ê ë - - - - ù ú ú ú û é = ê ê ê 1 Let p , p , p 0 ë ù ú ú ú û é = ê ê ê ë ù ú ú ú video.edhole.com û é = ê ê ê ë 1 3 - 3 2 1 2 5 - - 3 2 5 3 5 3 5 4 3 5 2 2 3 5 Elementary Linear Algebra: Section 7.3, p.451
  • 48. 48/53 p p p p p p × = × = × = p p p 1 2 1 3 2 3 1 0 produces = = = 1 2 3 { , , } is an orthonormal set. 1 2 3 p p p video.edhole.com Elementary Linear Algebra: Section 7.3, p.451
  • 49. 49/53  Thm 7.9: (Properties of symmetric matrices) Let A be an n´n symmetric matrix. If l1 and l2 are distinct eigenvalues of A, then their corresponding eigenvectors x1 and x2 are orthogonal. video.edhole.com Elementary Linear Algebra: Section 7.3, p.452
  • 50. 0 1 ù é -  Ex 6: (Eigenvectors of a symmetric matrix) A = úû Show that any two eigenvecto rs of 1 0 êë corresponding to distinct eigenvalues are orthogonal.  Sol: Characteristic function l - - l A Eigenvalues : 2, 4 1 2 Þ l = l = I - = = l 2 - l + = l - l - = 6 8 ( 2)( 4) 0 3 1 - l - 1 3 1 ù úû ù é- Þ = é ù - - é - - l = Þl - A = s s (1) 2 I 1 1 1 ¹ úû , 0 1 x 1 1 ~ 0 0 1 1 úû 1 1 êë êë êë 1 ù úû ù é Þ = é - ù é - - l = Þl - A = t t x x 0 x and x are orthogonal. 1 2 1 2 Þ = - = úû (2) 4 I 2 2 2 ¹ úû , 0 1 x 1 1 ~ 0 0 1 1 1 1 êë êë úû êë ù t é × úû s × = st st êë ù é- êë video.edhole.s com t Elementary Linear Algebra: Section 7.3, p.452 50/53
  • 51. 51/53  Thm 7.10: (Fundamental theorem of symmetric matrices) Let A be an n´n matrix. Then A is orthogonally diagonalizable and has real eigenvalue if and only if A is symmetric.  Orthogonal diagonalization of a symmetric matrix: Let A be an n´n symmetric matrix. (1) Find all eigenvalues of A and determine the multiplicity of each. (2) For each eigenvalue of multiplicity 1, choose a unit eigenvector. (3) For each eigenvalue of multiplicity k³2, find a set of k linearly independent eigenvectors. If this set is not orthonormal, apply Gram- Schmidt orthonormalization process. (4) The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors. Use these eigenvectors to form the columns of P. The matrix will P-1AP = PT AP = D be diagonal. video.edhole.com Elementary Linear Algebra: Section 7.3, p.453
  • 52. 52/53  Ex 7: (Determining whether a matrix is orthogonally diagonalizable) 1 1 1 é = 1 1 1 ù ú ú 1 0 1 û ê ê ë 1 A ù ú ú û 5 2 1 é - ê ê ë = 2 1 8 1 8 0 2 A ù úû 3 2 0 êë= é 2 0 1 3 A ù úû é = 0 - 2 êë 0 0 4 A Orthogonally diagonalizable Symmetric matrix video.edhole.com Elementary Linear Algebra: Section 7.3, p.454
  • 53. 53/53  Ex 9: (Orthogonal diagonalization) Find an orthogonal matrix that diagonalizes A. ù ú ú ú û é ê ê ê ë 2 2 2 - - 2 1 4 - - = 2 4 1 A P Sol: (1) lI - A = (l -3)2 (l + 6) = 0 6, 3 (has a multiplicity of 2) 1 2 l = - l = l v u v = - = - Þ = = - 3 (2) 2 6, (1, 2, 2) 1 ( 1 , 2 , ) 3 3 1 1 1 1 v (3) 3, (2, 1, 0), ( 2, 0, 1) 2 2 3 l = v = v = - Linear Independent video.edhole.com Elementary Linear Algebra: Section 7.3, p.455
  • 54. 54/53 Gram-Schmidt Process: w v w v v w = = = - × w (2, 1, 0), 3 2 ( 2 , 4 , 1) 2 5 5 w w 2 2 2 2 3 3 = - × u w ( , , 0), 3 ( 2 , 4 , 5 ) 3 5 3 5 3 5 3 1 5 3 2 5 u w 2 2 2 = = = = - w w ù ú ú ú û é ê ê ê 1 = = - ë - 2 4 5 3 5 2 3 2 3 5 2 1 5 3 3 5 5 3 1 2 3 0 (4) P [ p p p ] ù ú ú ú û é- ê ê ê ë Þ - = = 6 0 0 0 3 0 0 0 3 P 1AP PT AP video.edhole.com Elementary Linear Algebra: Section 7.3, p.456
  • 55. 55/53 Keywords in Section 7.3:  symmetric matrix: 對稱矩陣  orthogonal matrix: 正交矩陣  orthonormal set: 單範正交集  orthogonal diagonalization: 正交對角化 video.edhole.com