SlideShare a Scribd company logo
1 of 7
The Lower Bound Threshold for Fatigue Crack Growth
“A processby which a crackcan formand then grow underfluctuating loading,in which the resulting
failure can be sudden and catastrophic”
Fatigue damage accumulationisone of several degradationmechanismsconsideredinthe designof
nuclearpowerplantcomponents.Ingeneral,the severityof fatigue damage isevaluatedby
computinga cumulative usage factor(CUF), derivedfromalineardamage rule (Miner’sRule); witha
designfatigue curve,derivedfromthe resultsof uniaxial,strain-controlledfatigue tests.Suchtests
are usuallyperformedundercontrolledlaboratoryconditions(roomtemperature,air,low-humidity)
on smooth,un-notched specimens.The general ideaisthatfatigue testdataderivedfromspecimen
testsremainvalidwhenusedforengineeringsizedcomponentssubjectedtoplantrepresentative
pressure-temperature transients. Fatigue damage assessmentmethodshave beencodifiedin
several designstandards(ASMEIII/VIII,RCC-M,EN13445 toname a few),withrelativelylittle
divergence betweenthe general proceduresapplied.Code prescribedmethodshave aproven
historyof successful implementation,withsufficientconservativism(albeittoomuchinsome cases)
to ensure componentstructural integrityoverincreasinglylongeroperatinglifetimes [1].Inthe
contextof the civil nuclearpowergeneration,operatinglicenserenewal islikelytoextendthe
operatinglifetimeof existingplantsto60 years,providedthe necessarychecksagainst
environmentallyassisteddegradationare satisfied [2].Withincreasingcomponentoperatinglives,
furtherjustificationof protectionagainstfatigue failureiswarranted;asfatigue damage assessment
isheavilydatadependent,thiswill undoubtedlyrequire agreaternumberof fatigue teststobe
carriedout infuture,includingplantrepresentative componenttesting;simulationof severe plant-
representative transients–non-isothermal,out-of-phase,thermal-mechanical loadingeventswith
significantstraingradienteffects –will alsoneedtobe investigatedfurther .
Now,itis clearthat the increasingdemandforenergycombinedwithadrive towardsgreaterenergy
efficiencywillinevitablyforce industriestoadopta more sustainable long-life approachto
componentdesignwithinreason. Withthisobjective,itbaresrememberingwhythisisactually
possible inthe firstplace!Asengineers,more oftenthannot, amacroscopicapproach isall that is
necessarytomodel a givenproblem.Withthisapproachinmind,we treatengineeringmaterialsas
an isotropic,homogenouscontinuum,andfocusourattentiononthe mechanical propertiesof the
material,andthe prescribedloadingconditions.Inthisframework,fatiguedamage canonlyoccur
underthree conditions,all of whichmustbe satisfiedconcurrently.
1. Tensile stressesmustexist.
2. Repeatedloading
3. Plasticity
The 3rd
requirementisnottrivial andwarrantsfurtherconsideration.Fatigue damage relieson
energydeposition (irreversible absorption) whichcanonlyoccur if plasticityispresent;inother
words,there mustbe a developedhysteresiscycle.We oftenonlyconsidersuchconditionsto prevail
at the tipsof visible notchesorflaws,butthe real flaw (pardonthe pun) liesinonlyconsideringthe
macroscopicpropertiesof the material.Inreality,microscopicflawswillexhibitplasticity,evenin
caseswhere the macroscopicbehaviourof the material remainselastic.Iam no metallurgist,butI
wouldhazardan informedguessthatthisphenomenonissimplyascaled-downmacroscopic
analogue;thatis,damage occurs due to plasticenergydepositionatthe tipsof microscopicflaws.
Figure 1 illustratesthe crackgrowthprocess;sufficientenergyabsorptionisrequiredtotranslate the
crack-tipplasticzone to a newposition.Because plasticityisirreversible, regionswithsignificant
plasticstrainwill be leftbehindthe crack-tipfieldascrack growthprogresses.
Well,thisbegsthe question,if plasticityreallyisprevalentonamicroscopicscale,thenwhy doesthis
not alwaystranslate tomore damage on a macroscopicscale whenthe three above conditionsare
satisfied?Lookingbackat the openingdefinition,we know fatiguefailure canonlyoccurwhena
crack growsto a critical length,leadingtosuddenfailure byfracture.Butformicroscopicplasticityto
exist,amicroscopiccrack mustalreadybe present.Therefore,itiscrack growthwe are concerned
withhere. Since crackgrowth ultimatelyreliesonasupplyof energytothe crack tipregion(the zone
of cyclicplasticity) todrive the fatigue damage mechanism, the processcanonlyprogressif each
cycle of loadprovidesincreasinglymore energytothe region.Thus,anenergythreshold mustbe
overcome forcrack growthto occur [3].
It isuseful toconsiderhowmuchplasticenergyisdepositedpercycle of load.The fatigue crack
growthper cycle can be relatedtothe stressintensityfactorrange, ∆𝐾,underthe assumptionof
LinearElasticFracture Mechanics(LEFM),or the J-Integral range, ∆𝐽,forPost-YieldFracture
Mechanics (PYFM), where plasticityisgenerallynotconfinedtothe crack-tipregion.This empirical
relationship,knownasThe ParisLaw,isexpressedasfollows [4].
𝑑𝑎
𝑑𝑁
∝ ∆𝐾 𝑚 ⇛
𝑑𝑎
𝑑𝑁
= 𝐶∆𝐾 𝑚 (1)
If we considerthe assumptionof LEFMconditions –where the plasticzone issmall incomparisonto
the total section where LEFMfieldsprevail –we can confine ourattentiontothe crack-tipresponse
underloading. Considerthe followingscenarioassumingaconstantloadamplitude: Onfirstload,
the crack-tipplasticzone exceedsthe materialyieldstrength,but doesnotexceedtwice yieldwhen
calculatedonan elasticbasis.Hence,whenloadisremoved,the crack-tipplasticzone will unload
elastically andplasticitywill be containeddue tothe “elasticcore”behaviourof the section.
Subsequentloadcycleswill thuscycle elasticallybetweenamaximumof +𝑦𝑖𝑒𝑙𝑑 (𝑡𝑒𝑛𝑠𝑖𝑙𝑒)and
−𝑦𝑖𝑒𝑙𝑑 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒), or throughthe range twice-yield;thisprocessiscalled Shakedown. Because
the crack-tipzone cycleselasticallyin thisinstance,itcannotbe responsible forabsorbingenergyto
drive fatigue crackgrowth.Onlya regionof cyclicplasticity –where the alternatingstressintensity
range exceedstwice-yield–can be responsibleforfatigue damage. Therefore,if we consideracrack
loadedinMode I, and assumingthe limitingcase of ∆𝜎 = 2𝜎 𝑦,we can derive anexpressionforthe
size of the plasticzone [5].
2𝜎 𝑦 =
∆𝐾
√2𝜋𝑟
⇛ 𝑟 =
∆𝐾2
8𝜎 𝑦
2 𝜋
(2)
θ
PlasticZone ∆𝒂
Crack Growth
𝑟
Figure 1. Illustration of Crack Growth Under Cyclic Loading
Definingthe strainatyieldas 𝜀 𝑦, andassumingonlymechanical loading, the strainenergycanbe
expressedasfollows
𝑊 =
1
2
𝐶𝑖𝑗𝑘𝑙 𝜀𝑖, 𝑗 𝜀 𝑘,𝑙 (3)
Where 𝐶 is the fourth-orderelasticitytensor,the componentsof whichrepresentthe elasticmoduli
of the material,and 𝜀 isthe infinitesimal straintensor.The stress-strainrelation,ignoringthe effects
of temperature,canbe expressedbydifferentiatingeqn.(3) withrespecttothe infinitesimalstrain
𝜎 =
𝑑𝑊
𝑑𝜀
( 𝜀) = 𝐶𝜀 𝑜𝑟 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀 𝑘𝑙 𝑖𝑛 𝑖𝑛𝑑𝑖𝑐𝑖𝑎𝑙 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (4)
The energydeposited perunitvolume istherefore 2𝜎𝜀,or2𝜎 𝑦 𝜀 𝑦 inour example.
The plasticzone infront of the crack-tipis usuallyelliptical.Forsimplicity,we canassume acircular
plasticzone (like thatinFigure 1) withitscentre coincident withthe tipof the crack. Thus,the
volume of concernis 𝜋𝑟2 𝑡, where 𝑡 representsthe lengthalongthe crackfront.We can now further
expandeqn.(2) byconsideringthe energydepositedperunitvolume andrearrangingfor 𝑟.
2𝜎 𝑦 𝜀 𝑦 =
𝑊
𝜋𝑟2 𝑡
⇛ 𝑟 = √
𝑊
2𝜎 𝑦 𝜀 𝑦 𝜋𝑡
(5)
Substitute eqn.(5) intoeqn.(2) andon rearrangingwe obtainanexpressionforthe energy
depositedforeachcycle of load
√
𝑊
2𝜎 𝑦 𝜀 𝑦 𝜋𝑡
=
∆𝐾2
8𝜎 𝑦
2 𝜋
⇛ 𝑊 =
𝜀 𝑦 𝑡∆𝐾4
32𝜋𝜎 𝑦
3
(6)
Consideringeqn.(6) representsthe thresholdenergypercycle,we cansimplifythisexample further
by assumingthere existsafixedamountof strainenergy providedbythe externalloads,
correspondingtoa unitincrease incrack area – i.e.the derivativeof energywithrespecttocrack
area.We introduce the energyreleaserate, 𝐺,andfurthersimplifyeqn.(6).
𝐺 =
𝑑𝑊
𝑑𝑎
⇛
𝑑𝑎
𝑑𝑁
=
𝑑𝑊
𝐺
=
𝜀 𝑦∆𝐾4
32𝜋𝜎 𝑦
3 𝐺
(7)
The resultisthe ParisLaw with 𝐶 =
𝜀 𝑦
32𝜋𝜎 𝑦
3 𝐺
and 𝑚 = 4 whichconformswith empirical dataformost
structural steels. Obviously,we have made some fairlyonerousassumptionshere,butanimportant
observationabouteqn.(7) deservesattention:If there existsaminimum, non-zero(andfixed)
amountof energyrequiredtodrive crackgrowth,thenthismustalsocorrespondtoa minimum,
non-zero,stressintensityfactorrange, ∆𝐾 𝑚𝑖𝑛; when∆𝐾 < ∆𝐾 𝑚𝑖𝑛,there isinsufficientenergy
depositiontodrive the crackgrowthmechanism.
𝐹𝑜𝑟 ∆𝐾 < ∆𝐾 𝑚𝑖𝑛,
𝑑𝑎
𝑑𝑁
= 0
Now,forthe interestingpart!Whathappensif ∆𝐾 isexactlyequal to ∆𝐾 𝑚𝑖𝑛?
𝐹𝑜𝑟 ∆𝐾 = ∆𝐾 𝑚𝑖𝑛,
𝑑𝑎
𝑑𝑁
= ?
We knowunderthese conditionsthat
𝑑𝑎
𝑑𝑁
≠ 0, sowhat isthe smallest,non-zerovalue that 𝑑𝑎 can
take?A somewhatmeaningfulanswerpresentsitselfwhenwe considerthe behaviourof
engineeringmaterialsinthe quantumrealm.
For polycrystallinematerials(mostmetalsandceramics),atomsare arrangedina repeatingor
periodicarrayoverlarge atomic distances.Differentatomsandionscan be modelledassolid
spheresof fixedsize,arrangedinthe smallestpossible repeatinggroups;these groupsare knownas
Unit Cells andare illustratedin Figure 2. The grosscrystal structure of any polycrystalline material is
therefore dependentonthe configurationof atomswithinthe unitcell [6].
Figure 2. Unit Cell within a Polycrystalline Lattice Structure
Four simple crystallinestructuresaccountformostmetallicmaterials:
1. Simple Cubic(SCC)
2. Body-CentredCubic(BCC)
3. Face-CentredCubic(FCC)
4. Hexagonal Close-Packed(HCP)
Withoutdelvinginto muchdepth,the commonfeature of anyconfiguration isthatthe unitcell
correspondstothe lowestpossiblepotential energystate achievable foragivencrystal structure.If
atomsare to form a stable metallicstructure,the meanenergyof the free electronswithinthe
lattice mustbe lessthanthe energyof the electron energy level thatwouldprevailif the atom
existedfreely.The equilibriumseparationdistance of the atomsof atomswithinthe lattice isthat
for whichanyfurtherclosure wouldresultinanincrease inthe repulsive force whichexceedsthe
attendantdecrease inmeanelectronenergy [7].Thisphenomenonisdepicted inFigure 3.
UnitCell
 The smallestrepeatingarrangementof
atoms
 Usuallyprismsorparallelepipeds
 Three setsof parallel faces
Figure 3. Variation in Atomic Energy Levels with Inter-Atomic Closure
The inter-atomicdistance betweenatomsisdeterminedbythe inter-atomicbondlength. Asarough
approximation,the bondlengthbetweentwodifferentatomsisequal tothe sumof the individual
covalentradii,andcan be measuredusingelectrondiffraction.
Table 1 belowshowssome importantcharacteristicsof well-knownelements.
Element Symbol
Atomic
Weight
(amu)
Density
(g/cm^3)
Crystal
Structure
Atomic
Radius (pm)
Aluminium Al 26.98 2.71 FCC 143
Argon Ar 39.95
Barium Ba 137.33 3.5 BCC 217
Beryllium Be 9.012 1.85 HCP 114
Boron B 10.81 2.34 Rhombohedral
Bromine Br 79.9
Cadmium Cd 112.41 8.65 HCP 149
Calcium Ca 40.08 1.55 FCC 197
Carbon C 12.011 2.25 Hexagonal 71
Caesium Cs 132.91 1.87 BCC 265
Chlorine Cl 35.45
Chromium Cr 52 7.19 BCC 125
Cobalt Co 58.93 8.9 HCP 125
Copper Cu 63.55 8.94 FCC 128
Fluorine F 19
Gallium Ga 69.72 5.9 Orthorhombic 122
Germanium Ge 72.59 5.32
Diamond
Cubic 122
Gold Au 196.97 19.32 FCC 144
Helium He 4.003
Hydrogen H 1.008
Table 1. Selected Element Properties
At firstglance,we can see thatthe atomic radii donot differdrasticallybetweendifferent metals;
mostatomic radii lie inthe range of 100 − 250𝑝𝑚, withthe inter-atomicspacingcorrespondingto
twice the atomicradius. Thisanswersourquestion,atleast ina theoretical sense –the smallest
possible non-zerocrack lengthincrement, d𝒂, correspondsto one atomic spacing. Fromthis
observation,valuesof ∆𝐾 𝑚𝑖𝑛 have beenderivedformany structural materials.Of course,the
accuracy of these valuesispredicatedonthe assumptionthatthe ParisLaw still holds atthe lower
boundcrack growth limit of one atomicspacing.
Finally,asanaside,itisworth consideringthe engineeringconsequences thatwould arise –inthe
contextof very-highcycle fatigue(VHCF)–if the thresholdSIFrange, ∆𝐾 𝑚𝑖𝑛,didnotexist.VHCF
range correspondsroughlytoover 108 cyclesto failure.Componentsoperatinginthisregime
include internal combustionengine cylinderheads,gasturbine disks,andball bearings [8].
Conventionalfatiguetestingisusuallylimitedto100Hz, correspondingtoaround 107cyclesperday,
or 3 × 109 cyclesper year.Thisof course isimpractical andcostlydue to time constraints,hence
mostVHCF testingisdone using ultrasonicfatiguetestingrangesof 15 to 30 kHz, corresponding
roughlyto107 cyclesperminute or1.6 × 109 cyclesperday!
Let usconsiderboththe conventional andultrasonictestingscenarios,underthe assumptionof no
fatigue crack growththreshold,withthe smallestpossible crackgrowthincrementof asingle atomic
displacement.Forsimplicity,we willassume anaverage inter-atomicspacingof 200𝑝𝑚 (or
2 𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚𝑠, 𝐴̇).Afterone day, the resultingcrackgrowthisas follows:
𝑎 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = 107 × 2𝑒−10 = 2 𝑚𝑚
𝑎 𝑢𝑙𝑡 𝑟𝑎𝑠𝑜𝑛𝑖𝑐 = 1.6𝑒9 × 2𝑒−10 = 320 𝑚𝑚
“Failure”– or the terminationpoint –of most fatigue testsisusuallyestablishedusingthe 25% load-
drop criterion;thiscorrespondstothe initiationandpropagationof afatigue crackto “engineering
size”,orroughly 3 𝑚𝑚. The worryingconclusionisclearfromthese results:
In absenceof a fatiguethreshold belowwhich zero crackgrowth occurs,mostengineering structures
would incur fatiguefailurewithin a matter of weeks at most.
Alas, we can be thankful thatrealityisat leasta little more forgiving!
References
[1] ASME, “ASME III,Division1,SubsectionNB,”in ASMEBoiler & PressureVesselCode,2015.
[2] NuclearRegulatoryCommision,“RegulatoryGuide1.207: GUIDELINES FOR EVALUATING
FATIGUE ANALYSESINCORPORATINGTHELIFE REDUCTION OF METAL COMPONENTSDUE TO
THE EFFECTS OFTHE LIGHT-WATER REACTOR ENVIRONMENTFORNEW REACTORS,”no.
March, pp.1–7, 2007.
[3] R. Bradford,“The Effectsof PlasticIrreversibilityonLow Temperature Fracture,”2015.
[4] P. C.Paris,M. P.Gomez,and W. E. Anderson,“A Rational AnalyticTheoryof Fatigue,” Trend
Eng.,no.13, pp. 9–14, 1961.
[5] R. J. Roark,W. C. Young,and R. Plunkett, Formulas forStressand Strain,vol.43,no.3. 1976.
[6] J. Datsko, MaterialsSelection forDesign and Manufacturing,3rded.AnnArbor,Michigan:
MichiganUniversityPress,1997.
[7] R. E. SmallmanandR. J. BiShop,“ModernPhysical MetallurgyandMaterialsEngineering,”
Mod.Phys.Metall.Mater.Eng.,pp.320–350, 1999.
[8] V.Kazymyrovych, Very high cycle fatigueof engineering materials - A literature review.2009.

More Related Content

What's hot

Awma 2001 Plumes And Aircraft #0189
Awma 2001   Plumes And Aircraft #0189Awma 2001   Plumes And Aircraft #0189
Awma 2001 Plumes And Aircraft #0189Joel Reisman
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Thermo 5th chap02p001
Thermo 5th chap02p001Thermo 5th chap02p001
Thermo 5th chap02p001Luma Marques
 
Density of liquid refrigerants
Density of liquid refrigerantsDensity of liquid refrigerants
Density of liquid refrigerantsShyam Kumar
 
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...AEIJjournal2
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfertmuliya
 
19910001020 comparison of nastran analysis with gvt results of uh-60 a
19910001020  comparison of nastran analysis with gvt results of uh-60 a19910001020  comparison of nastran analysis with gvt results of uh-60 a
19910001020 comparison of nastran analysis with gvt results of uh-60 aRonaldJones54
 

What's hot (17)

Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Paper icame
Paper icamePaper icame
Paper icame
 
Awma 2001 Plumes And Aircraft #0189
Awma 2001   Plumes And Aircraft #0189Awma 2001   Plumes And Aircraft #0189
Awma 2001 Plumes And Aircraft #0189
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Pipe Flow Optimization
Pipe Flow OptimizationPipe Flow Optimization
Pipe Flow Optimization
 
Thermo 5th chap02p001
Thermo 5th chap02p001Thermo 5th chap02p001
Thermo 5th chap02p001
 
welding
weldingwelding
welding
 
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
22 jawahar
22 jawahar22 jawahar
22 jawahar
 
Agc
AgcAgc
Agc
 
TOCbw I&ECPDD Oct67
TOCbw I&ECPDD Oct67TOCbw I&ECPDD Oct67
TOCbw I&ECPDD Oct67
 
Density of liquid refrigerants
Density of liquid refrigerantsDensity of liquid refrigerants
Density of liquid refrigerants
 
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfer
 
Thermodynamics by s k mondal copy
Thermodynamics  by s k mondal   copyThermodynamics  by s k mondal   copy
Thermodynamics by s k mondal copy
 
19910001020 comparison of nastran analysis with gvt results of uh-60 a
19910001020  comparison of nastran analysis with gvt results of uh-60 a19910001020  comparison of nastran analysis with gvt results of uh-60 a
19910001020 comparison of nastran analysis with gvt results of uh-60 a
 

Similar to The Lower Bound Threshold for Fatigue Crack Growth

Hall 2006 problems-encounteredfromuserayleighdamping
Hall 2006 problems-encounteredfromuserayleighdampingHall 2006 problems-encounteredfromuserayleighdamping
Hall 2006 problems-encounteredfromuserayleighdampingJuan Camacho
 
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...Uchenna Odi, PhD, MBA
 
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...IJAEMSJORNAL
 
To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...Kirtan Gohel
 
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...IJAPEJOURNAL
 
Numerical modeling of the welding defect influence on fatigue life of the wel...
Numerical modeling of the welding defect influence on fatigue life of the wel...Numerical modeling of the welding defect influence on fatigue life of the wel...
Numerical modeling of the welding defect influence on fatigue life of the wel...inventy
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...ijrap
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...ijrap
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report FinalGregory Day
 
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...Barhm Mohamad
 
Group Cohomology of the Poincare Group and Invariant States
Group Cohomology of the Poincare Group and Invariant States Group Cohomology of the Poincare Group and Invariant States
Group Cohomology of the Poincare Group and Invariant States James Moffat
 
Impact of gravity on fluid mechanics models
Impact of gravity on fluid mechanics modelsImpact of gravity on fluid mechanics models
Impact of gravity on fluid mechanics modelsDrAamirraza204
 
Quantification of operating reserves with high penetration of wind power cons...
Quantification of operating reserves with high penetration of wind power cons...Quantification of operating reserves with high penetration of wind power cons...
Quantification of operating reserves with high penetration of wind power cons...IJECEIAES
 
On the formulation_of_asce7_95_gust_effe
On the formulation_of_asce7_95_gust_effeOn the formulation_of_asce7_95_gust_effe
On the formulation_of_asce7_95_gust_effevijith vasudevan
 
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...IJRES Journal
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories finalKhalil Alhatab
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Kingston Rivington
 

Similar to The Lower Bound Threshold for Fatigue Crack Growth (20)

Vijay_Pof_2009
Vijay_Pof_2009Vijay_Pof_2009
Vijay_Pof_2009
 
Hall 2006 problems-encounteredfromuserayleighdamping
Hall 2006 problems-encounteredfromuserayleighdampingHall 2006 problems-encounteredfromuserayleighdamping
Hall 2006 problems-encounteredfromuserayleighdamping
 
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...
Peer Reviewed CETI 13-027: Modified Ensemble Kalman Filter Optimization of Su...
 
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...
A New Under-Frequency Load Shedding Method Using the Voltage Electrical Dista...
 
To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...
 
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...
Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load ...
 
Fatigue
FatigueFatigue
Fatigue
 
Numerical modeling of the welding defect influence on fatigue life of the wel...
Numerical modeling of the welding defect influence on fatigue life of the wel...Numerical modeling of the welding defect influence on fatigue life of the wel...
Numerical modeling of the welding defect influence on fatigue life of the wel...
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report Final
 
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...
EFFECTS OF TRANSIENT LOAD ONGASTURBINE BLADE STRESS AND FATIGUE LIFE CHARACTE...
 
Group Cohomology of the Poincare Group and Invariant States
Group Cohomology of the Poincare Group and Invariant States Group Cohomology of the Poincare Group and Invariant States
Group Cohomology of the Poincare Group and Invariant States
 
Impact of gravity on fluid mechanics models
Impact of gravity on fluid mechanics modelsImpact of gravity on fluid mechanics models
Impact of gravity on fluid mechanics models
 
Quantification of operating reserves with high penetration of wind power cons...
Quantification of operating reserves with high penetration of wind power cons...Quantification of operating reserves with high penetration of wind power cons...
Quantification of operating reserves with high penetration of wind power cons...
 
On the formulation_of_asce7_95_gust_effe
On the formulation_of_asce7_95_gust_effeOn the formulation_of_asce7_95_gust_effe
On the formulation_of_asce7_95_gust_effe
 
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...
Compilation and Verification of FatigueLoad Spectrum ofHighSpeed Maglev Vehic...
 
E04701035045
E04701035045E04701035045
E04701035045
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories final
 
Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...Twice yield method for assessment of fatigue life assesment of pressure swing...
Twice yield method for assessment of fatigue life assesment of pressure swing...
 

Recently uploaded

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...Payal Garg #K09
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information SystemsAnge Felix NSANZIYERA
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 

Recently uploaded (20)

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 

The Lower Bound Threshold for Fatigue Crack Growth

  • 1. The Lower Bound Threshold for Fatigue Crack Growth “A processby which a crackcan formand then grow underfluctuating loading,in which the resulting failure can be sudden and catastrophic” Fatigue damage accumulationisone of several degradationmechanismsconsideredinthe designof nuclearpowerplantcomponents.Ingeneral,the severityof fatigue damage isevaluatedby computinga cumulative usage factor(CUF), derivedfromalineardamage rule (Miner’sRule); witha designfatigue curve,derivedfromthe resultsof uniaxial,strain-controlledfatigue tests.Suchtests are usuallyperformedundercontrolledlaboratoryconditions(roomtemperature,air,low-humidity) on smooth,un-notched specimens.The general ideaisthatfatigue testdataderivedfromspecimen testsremainvalidwhenusedforengineeringsizedcomponentssubjectedtoplantrepresentative pressure-temperature transients. Fatigue damage assessmentmethodshave beencodifiedin several designstandards(ASMEIII/VIII,RCC-M,EN13445 toname a few),withrelativelylittle divergence betweenthe general proceduresapplied.Code prescribedmethodshave aproven historyof successful implementation,withsufficientconservativism(albeittoomuchinsome cases) to ensure componentstructural integrityoverincreasinglylongeroperatinglifetimes [1].Inthe contextof the civil nuclearpowergeneration,operatinglicenserenewal islikelytoextendthe operatinglifetimeof existingplantsto60 years,providedthe necessarychecksagainst environmentallyassisteddegradationare satisfied [2].Withincreasingcomponentoperatinglives, furtherjustificationof protectionagainstfatigue failureiswarranted;asfatigue damage assessment isheavilydatadependent,thiswill undoubtedlyrequire agreaternumberof fatigue teststobe carriedout infuture,includingplantrepresentative componenttesting;simulationof severe plant- representative transients–non-isothermal,out-of-phase,thermal-mechanical loadingeventswith significantstraingradienteffects –will alsoneedtobe investigatedfurther . Now,itis clearthat the increasingdemandforenergycombinedwithadrive towardsgreaterenergy efficiencywillinevitablyforce industriestoadopta more sustainable long-life approachto componentdesignwithinreason. Withthisobjective,itbaresrememberingwhythisisactually possible inthe firstplace!Asengineers,more oftenthannot, amacroscopicapproach isall that is necessarytomodel a givenproblem.Withthisapproachinmind,we treatengineeringmaterialsas an isotropic,homogenouscontinuum,andfocusourattentiononthe mechanical propertiesof the material,andthe prescribedloadingconditions.Inthisframework,fatiguedamage canonlyoccur underthree conditions,all of whichmustbe satisfiedconcurrently. 1. Tensile stressesmustexist. 2. Repeatedloading 3. Plasticity The 3rd requirementisnottrivial andwarrantsfurtherconsideration.Fatigue damage relieson energydeposition (irreversible absorption) whichcanonlyoccur if plasticityispresent;inother words,there mustbe a developedhysteresiscycle.We oftenonlyconsidersuchconditionsto prevail at the tipsof visible notchesorflaws,butthe real flaw (pardonthe pun) liesinonlyconsideringthe macroscopicpropertiesof the material.Inreality,microscopicflawswillexhibitplasticity,evenin caseswhere the macroscopicbehaviourof the material remainselastic.Iam no metallurgist,butI wouldhazardan informedguessthatthisphenomenonissimplyascaled-downmacroscopic analogue;thatis,damage occurs due to plasticenergydepositionatthe tipsof microscopicflaws.
  • 2. Figure 1 illustratesthe crackgrowthprocess;sufficientenergyabsorptionisrequiredtotranslate the crack-tipplasticzone to a newposition.Because plasticityisirreversible, regionswithsignificant plasticstrainwill be leftbehindthe crack-tipfieldascrack growthprogresses. Well,thisbegsthe question,if plasticityreallyisprevalentonamicroscopicscale,thenwhy doesthis not alwaystranslate tomore damage on a macroscopicscale whenthe three above conditionsare satisfied?Lookingbackat the openingdefinition,we know fatiguefailure canonlyoccurwhena crack growsto a critical length,leadingtosuddenfailure byfracture.Butformicroscopicplasticityto exist,amicroscopiccrack mustalreadybe present.Therefore,itiscrack growthwe are concerned withhere. Since crackgrowth ultimatelyreliesonasupplyof energytothe crack tipregion(the zone of cyclicplasticity) todrive the fatigue damage mechanism, the processcanonlyprogressif each cycle of loadprovidesincreasinglymore energytothe region.Thus,anenergythreshold mustbe overcome forcrack growthto occur [3]. It isuseful toconsiderhowmuchplasticenergyisdepositedpercycle of load.The fatigue crack growthper cycle can be relatedtothe stressintensityfactorrange, ∆𝐾,underthe assumptionof LinearElasticFracture Mechanics(LEFM),or the J-Integral range, ∆𝐽,forPost-YieldFracture Mechanics (PYFM), where plasticityisgenerallynotconfinedtothe crack-tipregion.This empirical relationship,knownasThe ParisLaw,isexpressedasfollows [4]. 𝑑𝑎 𝑑𝑁 ∝ ∆𝐾 𝑚 ⇛ 𝑑𝑎 𝑑𝑁 = 𝐶∆𝐾 𝑚 (1) If we considerthe assumptionof LEFMconditions –where the plasticzone issmall incomparisonto the total section where LEFMfieldsprevail –we can confine ourattentiontothe crack-tipresponse underloading. Considerthe followingscenarioassumingaconstantloadamplitude: Onfirstload, the crack-tipplasticzone exceedsthe materialyieldstrength,but doesnotexceedtwice yieldwhen calculatedonan elasticbasis.Hence,whenloadisremoved,the crack-tipplasticzone will unload elastically andplasticitywill be containeddue tothe “elasticcore”behaviourof the section. Subsequentloadcycleswill thuscycle elasticallybetweenamaximumof +𝑦𝑖𝑒𝑙𝑑 (𝑡𝑒𝑛𝑠𝑖𝑙𝑒)and −𝑦𝑖𝑒𝑙𝑑 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒), or throughthe range twice-yield;thisprocessiscalled Shakedown. Because the crack-tipzone cycleselasticallyin thisinstance,itcannotbe responsible forabsorbingenergyto drive fatigue crackgrowth.Onlya regionof cyclicplasticity –where the alternatingstressintensity range exceedstwice-yield–can be responsibleforfatigue damage. Therefore,if we consideracrack loadedinMode I, and assumingthe limitingcase of ∆𝜎 = 2𝜎 𝑦,we can derive anexpressionforthe size of the plasticzone [5]. 2𝜎 𝑦 = ∆𝐾 √2𝜋𝑟 ⇛ 𝑟 = ∆𝐾2 8𝜎 𝑦 2 𝜋 (2) θ PlasticZone ∆𝒂 Crack Growth 𝑟 Figure 1. Illustration of Crack Growth Under Cyclic Loading
  • 3. Definingthe strainatyieldas 𝜀 𝑦, andassumingonlymechanical loading, the strainenergycanbe expressedasfollows 𝑊 = 1 2 𝐶𝑖𝑗𝑘𝑙 𝜀𝑖, 𝑗 𝜀 𝑘,𝑙 (3) Where 𝐶 is the fourth-orderelasticitytensor,the componentsof whichrepresentthe elasticmoduli of the material,and 𝜀 isthe infinitesimal straintensor.The stress-strainrelation,ignoringthe effects of temperature,canbe expressedbydifferentiatingeqn.(3) withrespecttothe infinitesimalstrain 𝜎 = 𝑑𝑊 𝑑𝜀 ( 𝜀) = 𝐶𝜀 𝑜𝑟 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀 𝑘𝑙 𝑖𝑛 𝑖𝑛𝑑𝑖𝑐𝑖𝑎𝑙 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (4) The energydeposited perunitvolume istherefore 2𝜎𝜀,or2𝜎 𝑦 𝜀 𝑦 inour example. The plasticzone infront of the crack-tipis usuallyelliptical.Forsimplicity,we canassume acircular plasticzone (like thatinFigure 1) withitscentre coincident withthe tipof the crack. Thus,the volume of concernis 𝜋𝑟2 𝑡, where 𝑡 representsthe lengthalongthe crackfront.We can now further expandeqn.(2) byconsideringthe energydepositedperunitvolume andrearrangingfor 𝑟. 2𝜎 𝑦 𝜀 𝑦 = 𝑊 𝜋𝑟2 𝑡 ⇛ 𝑟 = √ 𝑊 2𝜎 𝑦 𝜀 𝑦 𝜋𝑡 (5) Substitute eqn.(5) intoeqn.(2) andon rearrangingwe obtainanexpressionforthe energy depositedforeachcycle of load √ 𝑊 2𝜎 𝑦 𝜀 𝑦 𝜋𝑡 = ∆𝐾2 8𝜎 𝑦 2 𝜋 ⇛ 𝑊 = 𝜀 𝑦 𝑡∆𝐾4 32𝜋𝜎 𝑦 3 (6) Consideringeqn.(6) representsthe thresholdenergypercycle,we cansimplifythisexample further by assumingthere existsafixedamountof strainenergy providedbythe externalloads, correspondingtoa unitincrease incrack area – i.e.the derivativeof energywithrespecttocrack area.We introduce the energyreleaserate, 𝐺,andfurthersimplifyeqn.(6). 𝐺 = 𝑑𝑊 𝑑𝑎 ⇛ 𝑑𝑎 𝑑𝑁 = 𝑑𝑊 𝐺 = 𝜀 𝑦∆𝐾4 32𝜋𝜎 𝑦 3 𝐺 (7) The resultisthe ParisLaw with 𝐶 = 𝜀 𝑦 32𝜋𝜎 𝑦 3 𝐺 and 𝑚 = 4 whichconformswith empirical dataformost structural steels. Obviously,we have made some fairlyonerousassumptionshere,butanimportant observationabouteqn.(7) deservesattention:If there existsaminimum, non-zero(andfixed) amountof energyrequiredtodrive crackgrowth,thenthismustalsocorrespondtoa minimum, non-zero,stressintensityfactorrange, ∆𝐾 𝑚𝑖𝑛; when∆𝐾 < ∆𝐾 𝑚𝑖𝑛,there isinsufficientenergy depositiontodrive the crackgrowthmechanism. 𝐹𝑜𝑟 ∆𝐾 < ∆𝐾 𝑚𝑖𝑛, 𝑑𝑎 𝑑𝑁 = 0 Now,forthe interestingpart!Whathappensif ∆𝐾 isexactlyequal to ∆𝐾 𝑚𝑖𝑛? 𝐹𝑜𝑟 ∆𝐾 = ∆𝐾 𝑚𝑖𝑛, 𝑑𝑎 𝑑𝑁 = ?
  • 4. We knowunderthese conditionsthat 𝑑𝑎 𝑑𝑁 ≠ 0, sowhat isthe smallest,non-zerovalue that 𝑑𝑎 can take?A somewhatmeaningfulanswerpresentsitselfwhenwe considerthe behaviourof engineeringmaterialsinthe quantumrealm. For polycrystallinematerials(mostmetalsandceramics),atomsare arrangedina repeatingor periodicarrayoverlarge atomic distances.Differentatomsandionscan be modelledassolid spheresof fixedsize,arrangedinthe smallestpossible repeatinggroups;these groupsare knownas Unit Cells andare illustratedin Figure 2. The grosscrystal structure of any polycrystalline material is therefore dependentonthe configurationof atomswithinthe unitcell [6]. Figure 2. Unit Cell within a Polycrystalline Lattice Structure Four simple crystallinestructuresaccountformostmetallicmaterials: 1. Simple Cubic(SCC) 2. Body-CentredCubic(BCC) 3. Face-CentredCubic(FCC) 4. Hexagonal Close-Packed(HCP) Withoutdelvinginto muchdepth,the commonfeature of anyconfiguration isthatthe unitcell correspondstothe lowestpossiblepotential energystate achievable foragivencrystal structure.If atomsare to form a stable metallicstructure,the meanenergyof the free electronswithinthe lattice mustbe lessthanthe energyof the electron energy level thatwouldprevailif the atom existedfreely.The equilibriumseparationdistance of the atomsof atomswithinthe lattice isthat for whichanyfurtherclosure wouldresultinanincrease inthe repulsive force whichexceedsthe attendantdecrease inmeanelectronenergy [7].Thisphenomenonisdepicted inFigure 3. UnitCell  The smallestrepeatingarrangementof atoms  Usuallyprismsorparallelepipeds  Three setsof parallel faces
  • 5. Figure 3. Variation in Atomic Energy Levels with Inter-Atomic Closure The inter-atomicdistance betweenatomsisdeterminedbythe inter-atomicbondlength. Asarough approximation,the bondlengthbetweentwodifferentatomsisequal tothe sumof the individual covalentradii,andcan be measuredusingelectrondiffraction. Table 1 belowshowssome importantcharacteristicsof well-knownelements. Element Symbol Atomic Weight (amu) Density (g/cm^3) Crystal Structure Atomic Radius (pm) Aluminium Al 26.98 2.71 FCC 143 Argon Ar 39.95 Barium Ba 137.33 3.5 BCC 217 Beryllium Be 9.012 1.85 HCP 114 Boron B 10.81 2.34 Rhombohedral Bromine Br 79.9 Cadmium Cd 112.41 8.65 HCP 149 Calcium Ca 40.08 1.55 FCC 197 Carbon C 12.011 2.25 Hexagonal 71 Caesium Cs 132.91 1.87 BCC 265 Chlorine Cl 35.45 Chromium Cr 52 7.19 BCC 125 Cobalt Co 58.93 8.9 HCP 125 Copper Cu 63.55 8.94 FCC 128 Fluorine F 19 Gallium Ga 69.72 5.9 Orthorhombic 122 Germanium Ge 72.59 5.32 Diamond Cubic 122 Gold Au 196.97 19.32 FCC 144 Helium He 4.003 Hydrogen H 1.008 Table 1. Selected Element Properties
  • 6. At firstglance,we can see thatthe atomic radii donot differdrasticallybetweendifferent metals; mostatomic radii lie inthe range of 100 − 250𝑝𝑚, withthe inter-atomicspacingcorrespondingto twice the atomicradius. Thisanswersourquestion,atleast ina theoretical sense –the smallest possible non-zerocrack lengthincrement, d𝒂, correspondsto one atomic spacing. Fromthis observation,valuesof ∆𝐾 𝑚𝑖𝑛 have beenderivedformany structural materials.Of course,the accuracy of these valuesispredicatedonthe assumptionthatthe ParisLaw still holds atthe lower boundcrack growth limit of one atomicspacing. Finally,asanaside,itisworth consideringthe engineeringconsequences thatwould arise –inthe contextof very-highcycle fatigue(VHCF)–if the thresholdSIFrange, ∆𝐾 𝑚𝑖𝑛,didnotexist.VHCF range correspondsroughlytoover 108 cyclesto failure.Componentsoperatinginthisregime include internal combustionengine cylinderheads,gasturbine disks,andball bearings [8]. Conventionalfatiguetestingisusuallylimitedto100Hz, correspondingtoaround 107cyclesperday, or 3 × 109 cyclesper year.Thisof course isimpractical andcostlydue to time constraints,hence mostVHCF testingisdone using ultrasonicfatiguetestingrangesof 15 to 30 kHz, corresponding roughlyto107 cyclesperminute or1.6 × 109 cyclesperday! Let usconsiderboththe conventional andultrasonictestingscenarios,underthe assumptionof no fatigue crack growththreshold,withthe smallestpossible crackgrowthincrementof asingle atomic displacement.Forsimplicity,we willassume anaverage inter-atomicspacingof 200𝑝𝑚 (or 2 𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚𝑠, 𝐴̇).Afterone day, the resultingcrackgrowthisas follows: 𝑎 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 = 107 × 2𝑒−10 = 2 𝑚𝑚 𝑎 𝑢𝑙𝑡 𝑟𝑎𝑠𝑜𝑛𝑖𝑐 = 1.6𝑒9 × 2𝑒−10 = 320 𝑚𝑚 “Failure”– or the terminationpoint –of most fatigue testsisusuallyestablishedusingthe 25% load- drop criterion;thiscorrespondstothe initiationandpropagationof afatigue crackto “engineering size”,orroughly 3 𝑚𝑚. The worryingconclusionisclearfromthese results: In absenceof a fatiguethreshold belowwhich zero crackgrowth occurs,mostengineering structures would incur fatiguefailurewithin a matter of weeks at most. Alas, we can be thankful thatrealityisat leasta little more forgiving!
  • 7. References [1] ASME, “ASME III,Division1,SubsectionNB,”in ASMEBoiler & PressureVesselCode,2015. [2] NuclearRegulatoryCommision,“RegulatoryGuide1.207: GUIDELINES FOR EVALUATING FATIGUE ANALYSESINCORPORATINGTHELIFE REDUCTION OF METAL COMPONENTSDUE TO THE EFFECTS OFTHE LIGHT-WATER REACTOR ENVIRONMENTFORNEW REACTORS,”no. March, pp.1–7, 2007. [3] R. Bradford,“The Effectsof PlasticIrreversibilityonLow Temperature Fracture,”2015. [4] P. C.Paris,M. P.Gomez,and W. E. Anderson,“A Rational AnalyticTheoryof Fatigue,” Trend Eng.,no.13, pp. 9–14, 1961. [5] R. J. Roark,W. C. Young,and R. Plunkett, Formulas forStressand Strain,vol.43,no.3. 1976. [6] J. Datsko, MaterialsSelection forDesign and Manufacturing,3rded.AnnArbor,Michigan: MichiganUniversityPress,1997. [7] R. E. SmallmanandR. J. BiShop,“ModernPhysical MetallurgyandMaterialsEngineering,” Mod.Phys.Metall.Mater.Eng.,pp.320–350, 1999. [8] V.Kazymyrovych, Very high cycle fatigueof engineering materials - A literature review.2009.