SlideShare a Scribd company logo
1 of 180
Download to read offline
MT-­‐201B	
  MATERIALS	
  SCIENCE	
  




                                   1	
  
Why	
  Study	
  Materials	
  Science?	
  

1.	
  ApplicaBon	
  oriented	
  Proper&es	
  	
  
	
  
2.	
  Cost	
  consideraBon	
  
	
  
3.	
  Processing	
  route	
  	
  

                                                    2	
  
ClassificaBon	
  of	
  Materials	
  
  1.	
  Metals	
  
  2.	
  Ceramics	
  
  3.	
  Polymers	
  
  4.	
  Composites	
  
  5.	
  Semiconductors	
  
  6.	
  Biomaterials	
  
  7.	
  Nanomaterials	
  
  	
                                  3	
  
Syllabus	
  
1.     IntroducBon	
  to	
  Crystallography	
  
2.     Principle	
  of	
  Alloy	
  FormaBon	
  
3.     Binary	
  Equilibria	
  
4.     Mechanical	
  ProperBes	
  
5.     Heat	
  Treatments	
  
6.     Engineering	
  Materials	
  
7.     Advanced	
  Materials	
  
	
  
                                                  4	
  
Recommended	
  Books	
  

1.  Callister	
  W.D.,	
   Materials	
  Science	
  and	
  
    Engineering	
  an	
  Introduc&on 	
  
2.  Askeland	
  D.R.,	
   The	
  Science	
  and	
  
    Engineering	
  of	
  Materials 	
  
3.  Raghavan	
  V., Materials	
  Science	
  and	
  
    Engineering-­‐	
  A	
  first	
  Course, 	
  
4.  Avener	
  S.H,	
   IntroducBon	
  to	
  Physical	
  
    Metallurgy, 	
  
                                                             5	
  
The	
  Structure	
  of	
  Crystalline	
  Solids	
  
 CRYSTALLINE	
  STATE	
  
 	
  


 • 	
  Most	
  solids	
  are	
  crystalline	
  with	
  their	
  atoms	
  arranged	
  in	
  a	
  	
  	
  	
  	
  
 	
  	
  	
  regular	
  manner.	
  
 • 	
  Long-­‐range	
  order:	
  the	
  regularity	
  can	
  extend	
  throughout	
  the	
  	
  	
  
 	
  	
  	
  crystal.	
  
 • 	
  Short-­‐range	
  order:	
  the	
  regularity	
  does	
  not	
  persist	
  over	
  	
  	
  
 	
  	
  	
  appreciable	
  distances.	
  Ex.	
  amorphous	
  materials	
  such	
  as	
  glass	
  	
  	
  	
  
 	
  	
  	
  and	
  wax.	
  
 • 	
  Liquids	
  have	
  short-­‐range	
  order,	
  but	
  lack	
  long-­‐range	
  order.	
  
 • 	
  Gases	
  lack	
  both	
  long-­‐range	
  and	
  short-­‐range	
  order.	
  
 • 	
  Some	
  of	
  the	
  properBes	
  of	
  crystalline	
  solids	
  depend	
  on	
  the	
  	
  
 	
  	
  crystal	
  structure	
  of	
  the	
  material,	
  the	
  manner	
  in	
  which	
  atoms,	
  	
  	
  
 	
  	
  ions,	
  or	
  molecules	
  are	
  arranged.	
  
 	
  
                                                                                                          6	
  
Lace	
  
• 	
  SomeBmes	
  the	
  term	
  lace	
  is	
  used	
  in	
  the	
  context	
  of	
  crystal	
  	
  	
  
	
  	
  	
  structures;	
  in	
  this	
  sense	
   lace 	
  means	
  a	
  three-­‐	
  	
  
	
  	
  	
  dimensional	
  array	
  of	
  points	
  coinciding	
  with	
  atom	
  posiBons	
  	
  	
  
	
  	
  	
  (or	
  sphere	
  centers).	
  




                                  	
  A	
  point	
  la*ce	
  	
  
                                                                                                            7	
  
Unit	
  Cells	
  
•  The unit cell is the basic structural unit or building block of the crystal
   structure and defines the crystal structure by virtue of its geometry and
   the atom positions within.
•  This size and shape of the unit cell can be described in terms of their
   lengths (a,b,c) and the angles between then (α,β,γ). These lengths and
   angles are the lattice constants or lattice parameters of the unit cell.




      	
  A	
  point	
  la*ce	
  	
            A	
  unit	
  cell	
  
                                                                             8	
  
Bravais	
  Lace	
  
Table 1: Crystal systems and Bravais Lattices




                                                Crystal systems and Bravais Lattice
                                                                                      9	
  
Types of crystals

Three relatively simple crystal structures are found for most
of the common metals; body-centered cubic, face-centered
cubic, and hexagonal close-packed.

1. Body Centered Cubic Structure (BCC)

2. Face Centered Cubic Structure (FCC)

3. Hexagonal Close Packed (HCP)



                                                            10	
  
1.  Body Centered Cubic Structure (BCC)

In these structures, there are 8 atoms at the 8 corners and
one atom in the interior, i.e. in the centre of the unit cell with
no atoms on the faces.




                                                                     11	
  
2. Face Centered Cubic Structure (FCC)

In these structures, there are 8 atoms at the 8 corners,
6 atoms at the centers of 6 faces and no interior atom.




                                                           12	
  
3. Hexagonal Close Packed (HCP)

In these structures, there are 12 corner atoms (6 at the bottom
face and 6 at the top face), 2 atoms at the centers of the
above two faces and 3 atoms in the interior of the unit cell.




                                                            13	
  
Average Number of Atoms per Unit Cell
Since the atoms in a unit cell are shared by the neighboring
cells it is important to know the average number of atoms per
unit cell. In cubic structures, the corner atoms are shared by 8
cells (4 from below and 4 from above), face atoms are shared
by adjacent two cells and atoms in the interior are shared by
only that one cell. Therefore, general we can write:

                   Nav = Nc / 8 + Nf / 2 + Ni / 1

Where,
Nav = average number of atoms per unit cell.
Nc = Total number of corner atoms in an unit cell.
Nf = Total number of face atoms in an unit cell.
Ni = Centre or interior atoms.
                                                              14	
  
•  Simple cubic (SC) structures: In these structures there are
8 atoms corresponding to 8 corners and there are no atoms
on the faces or in the interior of the unit cell. Therefore,
Nc = 8, Nf = 0 and Ni = 0
Using above eqn. we get, Nav = 8/8 + 0/2 + 0/1 = 1




                                                             15	
  
2. Body centered cubic (BCC) structures: In these
   structures, there are 8 atoms at the 8 corners and one
   atom in the interior, i.e. in the centre of the unit cell with
   no atoms on the faces. Therefore Nc = 8, Nf = 0 and Ni = 1
   Using above eqn. we get, Nav = 8/8 + 0/2 + 1/1 = 2




                                                               16	
  
3.  Face Centered Cubic Structure (FCC): In these structures,
    there are 8 atoms at the 8 corners, 6 atoms at the centers
    of 6 faces and no interior atom
    Therefore Nc = 8, Nf = 6 and Ni = 0
    Using above eqn. we get, Nav = 8/8 + 6/2 + 0/1 = 4




                                                            17	
  
4. Hexagonal Close Packed (HCP) Structures:
In these structures, there are 12 corner atoms (6 at the bottom face and 6 at
the top face), 2 atoms at the centers of the above two faces and 3 atoms in
the interior of the unit cell.
For hexagonal structures, the corner atoms are shared by 6 cells (3 from
below and 3 from above), face atoms are shared by adjacent 2 cells and
atoms in the interior are shared by only one cell. Therefore, in general the
number of atoms per unit cell will be as: Nav = Nc / 6 + Nf / 2 + Ni / 1
Here Nc = 12, Nf = 2 and Ni = 3
Hence, Nav = 12 / 6 + 2 / 2 + 3 / 1 = 6




                                                                        18	
  
Co-­‐ordina&on	
  Number	
  

Co-­‐ordinaBon	
  number	
  is	
  the	
  number	
  of	
  nearest	
  equidistant	
  
	
  neighboring	
  atoms	
  surrounding	
  an	
  atom	
  under	
  consideraBon	
  
1.	
  Simple	
  Cubic	
  Structure:	
  	
  




Simple	
  cubic	
  structure	
  has	
  a	
  coordinaBon	
  number	
  of	
  6	
  
                                                                                   19	
  
2.	
  Body	
  Centered	
  Cubic	
  Structure:	
  	
  




Body	
  centered	
  cubic	
  structure	
  	
  
has	
  a	
  coordinaBon	
  number	
  of	
  8	
  




                                                        20	
  
3.	
  Face	
  Centered	
  Cubic	
  Structure:	
  	
  




Face	
  centered	
  cubic	
  structure	
  has	
  a	
  coordinaBon	
  number	
  of	
  12	
  


                                                                                          21	
  
4.	
  Hexagonal	
  Close	
  Packed	
  Structure:	
  	
  




Hexagonal	
  close	
  packed	
  structure	
  has	
  a	
  coordinaBon	
  number	
  of	
  12	
  


                                                                                         22	
  
Stacking	
  Sequence	
  for	
  SC,	
  BCC,	
  FCC	
  and	
  HCP	
  
• 	
  Lace	
  structures	
  are	
  described	
  by	
  stacking	
  of	
  idenBcal	
  planes	
  	
  
	
  	
  	
  of	
  atoms	
  one	
  over	
  the	
  other	
  in	
  a	
  definite	
  manner	
  
	
  


• 	
  Different	
  crystal	
  structures	
  exhibit	
  different	
  stacking	
  sequences	
  
       1.  Stacking	
  Sequence	
  of	
  Simple	
  Cubic	
  Structure:	
  
       	
  


       Stacking	
  sequence	
  of	
  simple	
  cubic	
  structure	
  is	
  AAAAA…..since	
  the	
  
       second	
  as	
  well	
  as	
  the	
  other	
  planes	
  are	
  stacked	
  in	
  a	
  similar	
  manner	
  
       as	
  the	
  first	
  i.e.	
  all	
  planes	
  are	
  stacked	
  in	
  the	
  same	
  manner.	
  	
  	
  
       	
  	
  
                                                         A	
  




                                                         A	
  




                                                         A	
                                              23	
  
2.	
  	
  Stacking	
  Sequence	
  of	
  Body	
  Centered	
  Cubic	
  Structure:	
  
	
  
 • 	
  Stacking	
  sequence	
  of	
  body	
  centered	
  cubic	
  structure	
  is	
  ABABAB….	
  
	
  	
  
	
  


 • 	
  The	
  stacking	
  sequence	
  ABABAB	
  indicates	
  that	
  the	
  second	
  plane	
  	
  
 	
  	
  	
  is	
  stacked	
  in	
  a	
  different	
  manner	
  to	
  the	
  first.	
  	
  
	
  


• 	
  Any	
  one	
  atom	
  from	
  the	
  second	
  plane	
  occupies	
  any	
  one	
  intersBBal	
  
	
  	
  	
  site	
  of	
  the	
  first	
  atom.	
  	
  
	
  


• 	
  Third	
  plane	
  is	
  stacked	
  in	
  a	
  manner	
  idenBcal	
  to	
  the	
  first	
  and	
  fourth	
  	
  
	
  	
  	
  plane	
  is	
  stacked	
  in	
  an	
  idenBcal	
  	
  
	
  	
  	
  manner	
  to	
  the	
  second	
  and	
  so	
  on.	
  	
   A	
  
	
  	
  	
  This	
  results	
  in	
  a	
  bcc	
  structure.	
  	
     B	
  
                                                                      A
                                                                B	
  




                                                                                                             24	
  
3.	
  	
  Stacking	
  Sequence	
  of	
  Face	
  Centered	
  Cubic	
  Structure:	
  
    	
  
• 	
  Stacking	
  sequence	
  of	
  face	
  centered	
  cubic	
  structure	
  is	
  ABCABC….	
  
	
  	
  	
  
• 	
  The	
  close	
  packed	
  planes	
  are	
  inclined	
  at	
  an	
  angle	
  to	
  the	
  cube	
  faces	
  	
  
	
  	
  	
  and	
  are	
  known	
  as	
  octahedral	
  planes	
  
	
  


• 	
  The	
  stacking	
  sequence	
  ABCABC…	
  indicates	
  that	
  the	
  second	
  plane	
  	
  
	
  	
  	
  is	
  stacked	
  in	
  a	
  different	
  manner	
  to	
  the	
  first	
  and	
  so	
  is	
  the	
  third	
  from	
  
	
  	
  	
  the	
  second	
  and	
  the	
  first.	
  The	
  fourth	
  plane	
  is	
  stacked	
  in	
  a	
  similar	
  	
  
	
  	
  	
  fashion	
  to	
  the	
  first	
  




                                                                                                                       25	
  
26	
  
4.	
  	
  Stacking	
  Sequence	
  of	
  Hexagonal	
  Close	
  Packed	
  Structure:	
  
	
  
	
  	
   • 	
  Stacking	
  sequence	
  of	
  HCP	
  structure	
  is	
  ABABAB…..	
  
   	
  


   • 	
  HCP	
  structure	
  is	
  produced	
  by	
  stacking	
  sequence	
  of	
  the	
  	
  	
  	
  
   	
  	
  type	
  ABABAB…..in	
  which	
  any	
  one	
  atom	
  from	
  the	
  second	
  	
  	
  
   	
  	
  plane	
  occupies	
  any	
  one	
  intersBBal	
  site	
  of	
  the	
  first	
  plane.	
  
   	
  


   • 	
  Third	
  plane	
  is	
  stacked	
  similar	
  to	
  first	
  and	
  fourth	
  similar	
  to	
  	
  	
  	
  
   	
  	
  second	
  and	
  so	
  on.	
  




                                                                                                                      27	
  
Atomic Packing Factor (APF)
Atomic packing factor is the fraction of volume or
space occupied by atoms in an unit cell. Therefore,

       APF = Volume of atoms in unit cell
               Volume of the unit cell
   Since volume of atoms in a unit cell = Average number
   of atoms/cell x Volume of an atom 	
  

APF = Average number of atoms/cell x Volume of an atom
             Volume of the unit cell

                                                           28	
  
1.	
  Simple	
  Cubic	
  Structures:	
  
                      	
  
In	
  simple	
  cubic	
  structures,	
  the	
  atoms	
  are	
  assumed	
  to	
  be	
  placed	
  in	
  
such	
  a	
  way	
  that	
  any	
  two	
  adjacent	
  atoms	
  touch	
  each	
  other.	
  If	
   a 	
  is	
  
the	
  lace	
  parameter	
  of	
  the	
  simple	
  cubic	
  structure	
  and	
   r 	
  is	
  the	
  
radius	
  of	
  atoms,	
  it	
  is	
  clear	
  from	
  the	
  fig	
  that:	
  r	
  =	
  a/2	
  
	
  




  APF = Average number of atoms/cell x Volume of an atom
               Volume of the unit cell
          = 1 x 4/3 π r3           =          4/3 π r3             =         0.52
                 a3                              (2r)3
        APF	
  of	
  simple	
  cubic	
  structure	
  is	
  0.52	
  or	
  52%	
  
                                                                                                                29	
  
2.	
  Body	
  Centered	
  Cubic	
  (BCC)	
  Structures:	
  
In	
  body	
  centred	
  cubic	
  structures,	
  the	
  centre	
  atom	
  touches	
  the	
  
corner	
  atoms	
  as	
  shown	
  in	
  fig.	
  
	
  




   If	
   a 	
  is	
  the	
  lace	
  parameter	
  of	
  BCC	
  structure	
  and	
  
   	
   r 	
  is	
  the	
  radius	
  of	
  atoms,	
  we	
  can	
  write	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (DF)2	
  	
  =	
  (DG)2	
  +	
  (GF)2	
  
   Now	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (DG)2	
  	
  =	
  (DC)2	
  +	
  (CG)2	
  and	
  DF	
  =	
  4r	
  
   Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (DF)2	
  	
  =	
  (DC)2	
  +	
  (CG)2	
  +	
  (GF)2	
  
   	
  
                                                                                                                                                                   30	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4r)2	
  	
  =	
  a2	
  	
  +	
  a2	
  	
  	
  +	
  a2	
  
              Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  r	
  =	
  a√3	
  /	
  4	
  


APF	
  =	
  Average	
  number	
  of	
  atoms/cell	
  x	
  Volume	
  of	
  an	
  atom	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Volume	
  of	
  the	
  unit	
  cell	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  x	
  4/3	
  π	
  (a√3	
  /	
  4)3	
  	
  	
  	
  	
  	
  =	
  	
  	
  	
  0.68	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a3	
  

              APF	
  of	
  body	
  centered	
  cubic	
  structure	
  is	
  0.68	
  or	
  68%	
  




                                                                                                                                                                          31	
  
3.	
  Face	
  Centered	
  Cubic	
  (FCC)	
  Structures:	
  
	
  	
  	
  	
  	
  	
  	
  	
  In	
  face	
  centred	
  cubic	
  structures,	
  the	
  atoms	
  at	
  the	
  centre	
  of	
  faces	
  	
  touch	
  the	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  corner	
  atoms	
  as	
  shown	
  in	
  figure.	
  




 	
  	
  	
  	
  	
  	
  	
  	
  	
  If	
   a 	
  is	
  the	
  lace	
  parameter	
  of	
  FCC	
  structure	
  and	
   r 	
  is	
  the	
  atomic	
  radius	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (DB)2	
  	
  	
  =	
  	
  (DC)2	
  	
  	
  +	
  	
  	
  (CB)2	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  i.e.	
  (4r)2	
  	
  	
  =	
  a2	
  +	
  a2	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Therefore,	
  r	
  =	
  a	
  /	
  2√2	
  
 APF	
  =	
  Average	
  number	
  of	
  atoms/cell	
  x	
  Volume	
  of	
  an	
  atom	
  	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Volume	
  of	
  the	
  unit	
  cell	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  	
  4	
  x	
  4	
  /	
  3	
  x	
  π	
  (a/2√2)3	
  	
  	
  =	
  	
  	
  	
  0.74	
  	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a3	
  
              APF	
  of	
  face	
  centered	
  cubic	
  structure	
  is	
  0.74	
  or	
  74%	
                                                                                 32	
  
4.	
  Hexagonal	
  Close	
  Packed	
  (HCP)	
  Structures	
  
The	
  volume	
  of	
  the	
  unit	
  cell	
  for	
  HCP	
  can	
  be	
  found	
  by	
  finding	
  out	
  the	
  area	
  
of	
  the	
  basal	
  plane	
  and	
  then	
  mulBplying	
  this	
  by	
  its	
  height	
  


                                                                   This	
  area	
  is	
  six	
  Bmes	
  the	
  area	
  of	
  	
  
                                                                   equilateral	
  triangle	
  ABC	
  
                                                                   Area	
  of	
  triangle	
  ABC	
  =	
  ½	
  a2	
  sin	
  60	
  
                                                                   Total	
  area	
  ABDEFG	
  =	
  6	
  x	
  ½	
  a2	
  sin	
  60	
  
                                                                   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  3	
  a2	
  sin	
  60	
  
                                                                   Now	
  volume	
  of	
  unit	
  cell	
  =	
  3	
  a2	
  sin	
  60	
  x	
  c	
  

                                                         	
  	
  	
  	
  	
  	
  	
  For	
  HCP	
  structures,	
  the	
  corner	
  atoms	
  
                                                         	
  	
  	
  	
  	
  	
  	
  are	
  touching	
  the	
  centre	
  atoms,	
  i.e.	
  atoms	
  	
  
                                                         	
  	
  	
  	
  	
  	
  	
  at	
  ABDEFG	
  are	
  touching	
  the	
  C	
  atom.	
  
                                                         	
  	
  	
  	
  	
  	
  	
  Therefore	
  a	
  =	
  2r	
  or	
  r	
  =	
  a	
  /	
  2	
  


                                                                                                                                                                                                                       33	
  
APF	
  =	
  Average	
  number	
  of	
  atoms/cell	
  x	
  Volume	
  of	
  an	
  atom	
  	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Volume	
  of	
  the	
  unit	
  cell	
  
  	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  APF	
  =	
  6	
  x	
  4π/3	
  r3	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  a2	
  sin	
  60	
  x	
  c	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  APF	
  =	
  	
  	
  	
  6	
  x	
  4π/3	
  (a/2)3	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  a2	
  sin	
  60	
  x	
  c	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  APF	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  π	
  a	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  c	
  sin	
  60	
  	
  


The	
  c/a	
  raBo	
  for	
  an	
  ideal	
  HCP	
  structure	
  consisBng	
  of	
  uniform	
  spheres	
  packed	
  as	
  
	
  Bghtly	
  together	
  as	
  possible	
  is	
  1.633.	
  

Therefore,	
  subsBtuBng	
  c/a	
  =	
  1.633	
  and	
  Sin	
  60o	
  =	
  0.866	
  in	
  above	
  equaBon	
  we	
  get:	
  
APF	
  =	
  	
  	
  π	
  /	
  3	
  x	
  1.633	
  x	
  0.899	
  	
  =	
  0.74	
  

                        APF	
  of	
  face	
  centered	
  cubic	
  structure	
  is	
  0.74	
  or	
  74%	
  
                                                                                                                                                                                                                                   34	
  
Atomic	
  Packing	
  Factor	
  

1.  Simple	
  cubic	
  structure:	
  0.52	
  
	
  

2.	
  Body	
  centered	
  cubic	
  structure:	
  0.68	
  

3.	
  Face	
  centered	
  cubic	
  structure:	
  0.74	
  

4.	
  Hexagonal	
  close	
  packed	
  structure:	
  0.74	
  	
  

                                                                   35	
  
Crystallographic	
  Points,	
  Planes	
  and	
  DirecBons	
  
                                    1.  Point	
  Coordinates	
  
                                    	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  When	
  dealing	
  with	
  crystalline	
  materials	
  it	
  olen	
  becomes	
  necessary	
  to	
  
         specify	
  a	
  parBcular	
  point	
  within	
  a	
  unit	
  cell.	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  The	
  posiBon	
  of	
  any	
  point	
  located	
  within	
  a	
  unit	
  cell	
  may	
  be	
  specified	
  in	
  
                                   terms	
  of	
  its	
  coordinates	
  as	
  fracBonal	
  mulBples	
  of	
  the	
  unit	
  cell	
  edge	
  lengths.	
  




                                                                                                                                                 36	
  
37	
  
2.	
  Plane	
  Coordinates	
  	
  
 1.  Find	
  out	
  the	
  intercepts	
  made	
  by	
  the	
  plane	
  at	
  the	
  three	
  
                              reference	
  axis	
  e.g.	
  p,q	
  and	
  r.	
  
 2.  Convert	
  these	
  intercepts	
  to	
  fracBonal	
  intercepts	
  by	
  dividing	
  
                              with	
  their	
  axial	
  lengths.	
  If	
  the	
  axial	
  length	
  is	
  a,	
  b	
  and	
  c	
  the	
  
                              fracBonal	
  intercepts	
  will	
  be	
  p/a,	
  q/b	
  and	
  r/c.	
  
 3.  	
  Find	
  the	
  reciprocals	
  of	
  the	
  fracBonal	
  intercepts.	
  In	
  the	
  above	
  
                              case	
  a/p,	
  b/q	
  and	
  c/r.	
  
 4.  Convert	
  these	
  reciprocals	
  to	
  the	
  minimum	
  of	
  whole	
  numbers	
  
                              by	
  mulBplying	
  with	
  their	
  LCM.	
  
 5.  Enclose	
  these	
  numbers	
  in	
  brackets	
  (parenthesis)	
  as	
  (hkl)	
  
 	
  	
  	
  	
  	
  	
  	
  	
  Note:	
  If	
  plane	
  passes	
  through	
  the	
  selected	
  origin,	
  either	
  another	
  
         parallel	
  plane	
  must	
  be	
  constructed	
  within	
  the	
  unit	
  cell	
  by	
  an	
  
         appropriate	
  translaBon	
  or	
  a	
  new	
  origin	
  must	
  be	
  established	
  at	
  the	
  
         corner	
  of	
  the	
  unit	
  cell.	
  
 	
                                                                                                                                        38	
  
1.  	
  Intercepts:	
  p,q	
  and	
  r.	
  
2.  FracBonal	
  intercepts:	
  p/a,	
  q/b	
  and	
  r/c.	
  
3.  	
  Reciprocals:	
  a/p,	
  b/q	
  and	
  c/r.	
  
4.  Convert	
  to	
  whole	
  numbers	
  
5.  Enclose	
  these	
  numbers	
  in	
  	
  
	
  	
  	
  	
  	
  	
  	
  brackets	
  (parenthesis)	
  as	
  (hkl)	
  
	
  




                                                                           39	
  
Step	
  1	
  :	
  	
  IdenBfy	
  the	
  intercepts	
  on	
  the	
  	
  
x-­‐	
  ,	
  y-­‐	
  and	
  z-­‐	
  axes.	
  In	
  this	
  case	
  the	
  intercept	
  on	
  the	
  	
  
x-­‐axis	
  is	
  at	
  x	
  =	
  1	
  (	
  at	
  the	
  point	
  (1,0,0)	
  ),	
  but	
  the	
  surface	
  	
  
is	
  parallel	
  to	
  the	
  y-­‐	
  and	
  z-­‐axes	
  so	
  we	
  consider	
  the	
  	
  
intercept	
  to	
  be	
  at	
  infinity	
  (	
  ∞	
  )	
  for	
  the	
  special	
  case	
  	
  
where	
  the	
  plane	
  is	
  parallel	
  to	
  an	
  axis.	
  	
  
The	
  intercepts	
  on	
  the	
  x-­‐	
  ,	
  y-­‐	
  and	
  z-­‐axes	
  are	
  thus	
  	
  
Intercepts	
  :	
  	
  	
  	
  1	
  ,	
  ∞	
  ,	
  ∞	
  	
  
Step	
  2	
  :	
  	
  Specify	
  the	
  intercepts	
  in	
  fracBonal	
  co-­‐ordinates	
  	
  
Co-­‐ordinates	
  are	
  converted	
  to	
  fracBonal	
  co-­‐ordinates	
  by	
  dividing	
  by	
  the	
  respecBve	
  	
  
cell-­‐dimension	
  -­‐	
  This	
  gives	
  	
  
FracBonal	
  Intercepts	
  :	
  	
  	
  	
  1/1	
  ,	
  ∞/1,	
  ∞/1	
  	
  	
  	
  i.e.	
  	
  	
  	
  1	
  ,	
  ∞	
  ,	
  ∞	
  	
  
Step	
  3	
  :	
  	
  Take	
  the	
  reciprocals	
  of	
  the	
  fracBonal	
  intercepts	
  	
  
This	
  final	
  manipulaBon	
  generates	
  the	
  Miller	
  Indices	
  which	
  (by	
  convenBon)	
  should	
  	
  
then	
  be	
  specified	
  without	
  being	
  separated	
  by	
  any	
  commas	
  or	
  other	
  symbols.	
  	
  
The	
  Miller	
  Indices	
  are	
  also	
  enclosed	
  within	
  standard	
  brackets	
  (….).	
  	
  
The	
  reciprocals	
  of	
  1	
  and	
  ∞	
  are	
  1	
  and	
  0	
  respecBvely,	
  thus	
  yielding	
  	
  
Miller	
  Indices	
  :	
  	
  	
  (100)	
  So	
  the	
  surface/plane	
  illustrated	
  is	
  the	
  (100)	
  plane	
  of	
  the	
  
cubic	
  crystal.	
  
                                                                                                                          40	
  
Intercepts	
  :	
  	
  	
  1	
  ,	
  1	
  ,	
  ∞	
  	
  
                                                         FracBonal	
  intercepts	
  :	
  	
  	
  1	
  ,	
  1	
  ,	
  ∞	
  
                                                         Reciprocal:	
  1,1,0	
  
                                                         Miller	
  Indices	
  :	
  	
  	
  (110)	
  	
  




Intercepts	
  :	
  	
  	
  1	
  ,	
  1	
  ,	
  1	
  	
  
FracBonal	
  intercepts	
  :	
  	
  	
  1	
  ,	
  1	
  ,	
  1	
  	
  
Reciprocal:	
  1,1,1	
  
Miller	
  Indices	
  :	
  	
  	
  (111)	
  	
  

                                                                                                                             41	
  
Intercepts	
  :	
  	
  	
  ½	
  	
  ,	
  1	
  ,	
  ∞	
  	
  
FracBonal	
  intercepts	
  :	
  	
  	
  ½	
  ,	
  1	
  ,	
  ∞	
  	
  
Reciprocal:	
  2,1,0	
  
Miller	
  Indices	
  :	
  	
  	
  (210)	
  	
  




                                                       Intercepts	
  :	
  	
  	
  1/3	
  	
  ,	
  2/3	
  ,	
  1	
  	
  
                                                       FracBonal	
  intercepts	
  :	
  	
  	
  1/3	
  	
  ,	
  2/3	
  ,	
  
                                                       1	
  	
  
                                                       Reciprocal:	
  3,	
  3/2,	
  1	
  
                                                       Miller	
  Indices	
  :	
  	
  	
  (632)	
  	
  
                                                                                                                              42	
  
Exercise	
  




               43	
  
Exercise	
  




               44	
  
Exercise	
  




               45	
  
Exercise	
  




               46	
  
Exercise	
  




               47	
  
48	
  
If	
  the	
  plane	
  passes	
  through	
  the	
  origin,	
  the	
  origin	
  	
  
has	
  to	
  be	
  shiled	
  for	
  indexing	
  the	
  plane	
  




                                                                                     49	
  
50	
  
Miller	
  Indices	
  of	
  Planes	
  for	
  Hexagonal	
  Crystals	
  
	
  
• 	
  Crystal	
  Plane	
  in	
  HCP	
  unit	
  cells	
  is	
  commonly	
  idenBfied	
  by	
  using	
  four	
  indices	
  
	
  	
  	
  instead	
  of	
  three.	
  
	
  

• The	
  HCP	
  crystal	
  plane	
  indices	
  called	
  Miller-­‐Bravis	
  indices	
  are	
  denoted	
  by	
  the	
  
	
  	
  	
  lepers	
  h,	
  k,	
  i	
  and	
  l	
  are	
  enclosed	
  in	
  parentheses	
  as	
  (hkil)	
  
	
  

• These	
   four	
   digit	
   hexagonal	
   indices	
   are	
   based	
   on	
   a	
   coordinate	
   system	
   with	
   four	
  
axes.	
  
• The	
  three	
  a1,	
  a2	
  and	
  a3	
  axes	
  are	
  all	
  contained	
  within	
  a	
  single	
  plane	
  
	
  	
  (called	
  the	
  basal	
  plane),	
  and	
  at	
  1200	
  angles	
  to	
  one	
  another.	
  The	
  z-­‐axis	
  is	
  
	
  	
  perpendicular	
  to	
  the	
  basal	
  plane.	
  
	
  

• The	
  unit	
  of	
  measurement	
  along	
  the	
  a1,	
  a2	
  and	
  a3	
  axes	
  is	
  the	
  distance	
  	
  
	
  	
  	
  between	
  the	
  atoms	
  along	
  these	
  axes.	
  
	
  

• The	
  unit	
  of	
  measurement	
  along	
  the	
  z-­‐	
  axis	
  is	
  the	
  height	
  of	
  the	
  unit	
  cell.	
  
• 	
  The	
  reciprocals	
  of	
  the	
  intercepts	
  that	
  a	
  crystal	
  plane	
  makes	
  with	
  the	
  
	
  	
  	
  a1,	
  a2	
  and	
  a3	
  axes	
  give	
  the	
  h,	
  k	
  and	
  I	
  indices	
  while	
  the	
  reciprocal	
  of	
  the	
  
	
  	
  	
  intercept	
  with	
  the	
  z-­‐axis	
  gives	
  the	
  index	
  l.	
  
                                                                                                                                             51	
  
52	
  
53	
  
Miller Indices of Directions for Cubic Crystals

•  A	
  vector	
  of	
  convenient	
  length	
  is	
  posiBoned	
  such	
  that	
  it	
  	
  	
  
	
  	
  passes	
  through	
  the	
  origin	
  of	
  the	
  coordinate	
  system.	
  
	
  


• 	
  The	
  length	
  of	
  the	
  vector	
  projecBon	
  on	
  each	
  of	
  the	
  three	
  axes	
  	
  	
  
	
  	
  	
  is	
  determined.	
  
• 	
  These	
  three	
  numbers	
  are	
  mulBplied	
  or	
  divided	
  by	
  a	
  common	
  	
  
	
  	
  	
  factor	
  to	
  reduce	
  them	
  to	
  the	
  smallest	
  integer	
  values.	
  
	
  


• 	
  The	
  three	
  indices,	
  not	
  separated	
  by	
  commas,	
  
	
  	
  	
  are	
  enclosed	
  in	
  square	
  brackets	
  [uvw]	
  
	
  


• 	
  If	
  a	
  negaBve	
  sign	
  is	
  obtained	
  represent	
  	
  
	
  	
  	
  the	
  –ve	
  sign	
  with	
  a	
  	
  	
  	
  
	
  	
  	
  bar	
  over	
  the	
  number	
  


                                                                                                             54	
  
55	
  
For	
  direcBon	
  not	
  originaBng	
  from	
  origin	
  the	
  origin	
  has	
  to	
  be	
  shiled	
  	
  




                                                                                                     56	
  
Examples	
  of	
  direcBons	
  with	
  shil	
  of	
  origin	
  




                                                                  57	
  
58	
  
Family	
  of	
  Symmetry	
  Related	
  Planes	
  

                                                                                                                          _	
  
                                                                       (	
  1	
  1	
  0	
  )	
                     (1	
  1	
  0)	
  
                                                                                                                                        _	
  
                                                                       (	
  1	
  0	
  1	
  )	
                     (	
  1	
  0	
  1	
  )	
  
                                                                                                                                        _	
  
                                                                       (	
  0	
  1	
  1	
  )	
                     (	
  0	
  1	
  1	
  )	
  




                                                                                                   {	
  1	
  1	
  0	
  }	
  
{	
  1	
  1	
  0	
  }	
  =	
  Plane	
  (	
  1	
  1	
  0	
  )	
  and	
  all	
  other	
  planes	
  related	
  	
  by	
  
symmetry	
  to	
  (	
  1	
  1	
  0	
  )	
  

                                                                                                                                                59	
  
Family	
  of	
  Symmetry	
  Related	
  DirecBons	
  
                                                             [	
  0	
  0	
  1	
  ]	
  



                                                                                                                                                  IdenBcal	
  atomic	
  density	
  

                                                                                                                                                  IdenBcal	
  properBes	
  
                                                                                                                      _	
  
                                                                                                                [	
  1	
  0	
  0	
  ]	
  

                                                                                                                                                                〈	
  1	
  0	
  0	
  〉	
  
                                                                                                         [	
  0	
  1	
  0	
  ]	
  
          _	
                    [	
  1	
  0	
  0	
  ]	
  
[	
  0	
  1	
  0	
  ]	
                                                                                                                     〈1	
  0	
  0〉=	
  [	
  1	
  0	
  0	
  ]	
  and	
  all	
  other	
  
                                 z                                                             _	
  
                                                                                   [	
  0	
  0	
  1	
  ]	
                                  direcBons	
  related	
  to	
  [	
  1	
  0	
  0	
  ]	
  
                                                                                                                                            by	
  symmetry	
  
                                                                 y

                            x                                                                                                                                                                                60	
  
SUMMARY OF MEANINGS OF PARENTHESES


           q r s represents a point


           (hkl) represents a plane
      {hkl} represents a family of planes


          [hkl] represents a direction
    <hkl> represents a family of directions



                                              61	
  
Anisotropy	
  of	
  crystals	
  

                                               191.1	
  GPa	
  




Young s	
  modulus	
  
of	
  FCC	
  Cu	
  




                                      130.3	
  GPa	
  

          66.7	
  GPa	
                                           62	
  
Anisotropy	
  of	
  crystals	
  (contd.)	
  

                                               Different	
  crystallographic	
  
                                               planes	
  have	
  different	
  
                                               atomic	
  density	
  




                                               And	
  hence	
  
                                               different	
  
                                               properBes	
  



                                               Si	
  Wafer	
  for	
  
                                               computers	
  

                                                                        63	
  
Linear	
  and	
  Planar	
  DensiBes	
  
   Linear	
  Density	
  
• 	
  Linear	
  density	
  (LD)	
  is	
  defined	
  as	
  the	
  number	
  of	
  atoms	
  per	
  	
  	
  	
  
	
  	
  	
  unit	
  length	
  whose	
  centers	
  lie	
  on	
  the	
  direcBon	
  vector	
  
	
  
	
  	
  LD	
  =	
  number	
  of	
  atoms	
  centered	
  on	
  direcBon	
  vector	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  length	
  of	
  direcBon	
  vector	
  	
  	
  


                                                                                The	
  [110]	
  linear	
  density	
  for	
  
                                                                                FCC	
  is:	
  	
  
                                                                                LD110	
  =	
  2	
  atoms/4R	
  =	
  1/2R	
  	
  
                                                                                                                                                             64	
  
Planar	
  Density	
  
                                   	
  
•  	
  Planar	
  density	
  (PD)	
  is	
  defined	
  as	
  the	
  number	
  of	
  atoms	
  per	
  	
  	
  	
  
                    unit	
  area	
  that	
  are	
  centered	
  on	
  a	
  parBcular	
  crystallographic	
  
	
  	
  	
  	
  	
  	
  plane	
  

•  	
  	
  PD	
  =	
  number	
  of	
  atoms	
  centered	
  on	
  a	
  plane	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  area	
  of	
  plane	
  	
  	
  

                                                                  Planar	
  density	
  on	
  (110)	
  plane	
  in	
  a	
  FCC	
  unit	
  cell	
  
                                                                  • 	
  Number	
  of	
  atoms	
  on	
  (110)	
  plane	
  is	
  2	
  
                                                                  • 	
  Area	
  of	
  (110)	
  plane	
  (rectangular	
  secBon)	
  is	
  	
  
                                                                  	
  	
  4R	
  (length)	
  x	
  2√2R	
  (height)	
  =	
  8R2√2	
  	
  
                                                                  	
  	
  PD	
  =	
  2	
  atoms	
  /	
  8R2√2	
  =	
  	
  
                                                                  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  /	
  4R2√2	
  
                                                                  	
  
                                                                  	
                                                                                                  65	
  
Planar	
  density	
  on	
  (100)	
  plane	
  in	
  a	
  Simple	
  Cubic	
  
 Structure:	
  
 • 	
  Number	
  of	
  atoms	
  on	
  (100)	
  plane	
  is	
  1	
  
 • 	
  Area	
  of	
  (100)	
  plane	
  (square	
  secBon)	
  is	
  	
  
 	
  	
  a	
  x	
  a	
  =	
  a2	
  	
  
 	
  	
  PD	
  =	
  1	
  atom	
  /	
  a2	
  =	
  	
  
 	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  1	
  /	
  a2	
  

Planar	
  density	
  on	
  (110)	
  plane	
  in	
  a	
  
Simple	
  Cubic	
  Structure:	
  
• 	
  Number	
  of	
  atoms	
  on	
  (110)	
  plane	
  is	
  1	
  
• 	
  Area	
  of	
  (110)	
  plane	
  (rectangular	
  
secBon)	
  is	
  √2a2	
  
	
  	
  PD	
  =	
  1	
  atom	
  /	
  √2	
  a2	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  1	
  /	
  √2	
  a2	
  
                                                                               66	
  
Planar	
  density	
  on	
  (111)	
  plane	
  in	
  a	
  
Simple	
  Cubic	
  Structure:	
  
• 	
  Number	
  of	
  atoms	
  on	
  (111)	
  plane	
  is	
  
1/6	
  x	
  3	
  =	
  0.5	
  
• 	
  Area	
  of	
  (111)	
  plane	
  (triangle	
  DEF)	
  is	
  	
  
	
  	
  1/2	
  x	
  (√2a)	
  x	
  (0.866	
  x	
  √2a)	
  =	
  0.866a2	
  	
  
	
  	
  PD	
  =	
  0.5	
  atom	
  /	
  0.866a2	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  0.577	
  /	
  a2	
  

 Planar	
  density	
  on	
  (100)	
  plane	
  in	
  a	
  	
  
 Body	
  Centred	
  Cubic	
  Structure:	
  
 • 	
  Number	
  of	
  atoms	
  on	
  (100)	
  plane	
  
 is	
  1	
  
 • 	
  Area	
  of	
  (100)	
  plane	
  (square	
  
 secBon)	
  is	
  a	
  x	
  a	
  =	
  a2	
  
 	
  	
  PD	
  =	
  1	
  atom	
  /	
  a2	
  =	
  1	
  /	
  a2	
  
                                                                                67	
  
Planar	
  density	
  on	
  (110)	
  plane	
  in	
  a	
  Body	
  
 Centered	
  Cubic	
  Structure:	
  
 • 	
  Number	
  of	
  atoms	
  on	
  (110)	
  plane	
  is	
  1/4	
  
 x	
  4	
  +	
  1	
  =	
  2	
  
 • 	
  Area	
  of	
  (110)	
  plane	
  (rectangle	
  AFGD)	
  is	
  
 a	
  x	
  √2a	
  	
  =	
  √2a2	
  	
  	
  
 	
  	
  PD	
  =	
  2	
  atoms	
  /	
  √2a2	
  =	
  	
  
 	
  	
  	
  	
  	
  	
  	
  	
  =	
  √2	
  	
  /	
  a2	
  =	
  1.414	
  /	
  a2	
  

Planar	
  density	
  on	
  (111)	
  plane	
  in	
  a	
  
Body	
  Centered	
  Cubic	
  Structure:	
  
• 	
  Number	
  of	
  atoms	
  on	
  (111)	
  plane	
  is	
  
1/6	
  x	
  3	
  +	
  1	
  =	
  1.5	
  
• 	
  Area	
  of	
  (111)	
  plane	
  (triangle	
  DEG)	
  is	
  
½	
  x	
  √2a	
  	
  
	
  	
  √2a	
  sin60o	
  	
  =	
  0.866	
  a2	
  
	
  	
  PD	
  =	
  1.5	
  atoms	
  /	
  0.866a2	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  =	
  1.732	
  /	
  a2	
  
                                                                                       68	
  
Voids	
  in	
  crystalline	
  structures	
  
  We have already seen that as spheres cannot fill entire space → the atomic
   packing fraction (APF) < 1 (for all crystals)
  This implies there are voids between the atoms. Lower the PF, larger the
   volume occupied by voids.
  These voids have complicated shapes; but we are mostly interested in the
   largest sphere which can fit into these voids
  The size and distribution of voids in materials play a role in determining
   aspects of material behaviour → e.g. solubility of interstitials and their
   diffusivity
  The position of the voids of a particular type will be consistent with the
   symmetry of the crystal
  In the close packed crystals (FCC, HCP) there are two types of voids →
   tetrahedral and octahedral voids (identical in both the structures as the voids
   are formed between two layers of atoms)
  The tetrahedral void has a coordination number of 4
  The octahedral void has a coordination number 6
                                                                                     69	
  
70	
  
Inters&&al	
  sites	
  /	
  voids	
  




                                        71	
  
Tetrahedral	
  sites	
  in	
  HCP	
  




                           Octahedral	
  sites	
  in	
  HCP	
  



                                                                  72	
  
Voids:	
  Tetrahedral	
  and	
  Octahedral	
  Sites	
  	
  
	
  


• 	
   Tetrahedral	
   and	
   octahedral	
   sites	
   in	
   a	
   close	
   packed	
   structure	
   can	
  
be	
  	
  	
  	
  
	
  	
  occupied	
  by	
  other	
  atoms	
  or	
  ions	
  in	
  crystal	
  structures	
  of	
  alloys.	
  	
  
	
  


• 	
  Thus,	
  recognizing	
  their	
  existence	
  and	
  their	
  geometrical	
  constrains	
  	
  
	
  	
  help	
  in	
  the	
  study	
  and	
  interpretaBon	
  of	
  crystal	
  chemistry.	
  	
  
	
  


• 	
  The	
  packing	
  of	
  spheres	
  and	
  the	
  formaBon	
  of	
  tetrahedral	
  and	
  	
  	
  
	
  	
  	
  octahedral	
  sites	
  or	
  holes	
  are	
  shown	
  below.	
  




                                                                                                          73	
  
74	
  
What is the radius of the largest sphere that can be placed in a tetrahedral
void without pushing the spheres apart?

To solve a problem of this type, we need to construct a model for the analysis.
Use the diagram shown here as a starting point, and construct a tetrahedral
arrangement by placing four spheres of radius R at alternate corners of a cube.
•  What is the length of the face diagonal fd of this cube in terms of R?
  Since the spheres are in contact at the centre of each cube face, fd = 2 R.
•  What is the length of the edge for such a cube, in terms of R?
  Cube edge length a = √2 R
•  What is the length of the body diagonal bd of the cube in R?
  bd = √6 R
•  Is the center of the cube also the center of the tetrahedral hole?
  Yes
•  Let the radius of the tetrahedral hole be r, express bd in terms
  of R and r
  If you put a small ball there, it will be in contact with all four spheres.
  bd = 2 (R + r). r = (2.45 R) / 2 - R
       = 1.225 R - R
       = 0.225 R
•  What is the radius ratio of tetrahedral holes to the spheres?
    r / R = 0.225                                                                 75	
  
Derive the relation between the radius (r) of the octahedral void and the
 radius (R) of the atom in a close packed structure
(Assume largest sphere in an octahedral void without pushing the parent atom)

   A sphere into the octahedral void is shown
   in the diagram. A sphere above and a
   sphere below this small sphere have not
   been shown in the figure. ABC is a right
   angled triangle. The centre of void is A. 	
  
         Applying Pythagoras theorem. 	
  
         BC2 = AB2 + AC2 	
  
             (2R)2 + (R + r)2 + (R + r)2 = 2(R + r)2
      	
  
              4R2/2 = (R + r)2 	
  
      	
  	
  	
  	
  	
  	
  
      2R2	
  =	
  (R	
  +	
  r)2	
  	
  
      √2R	
  =	
  R	
  +	
  	
  r	
  	
  
      r	
  =	
  √2R	
  –	
  R	
  =	
  (1.414	
  –1)R
      r	
  =	
  0.414	
  R	
                                             76	
  
Single	
  Crystal	
  and	
  Polycrystalline	
  

                        Stages	
  of	
  solidificaBon	
  of	
  a	
  polycrystalline	
  	
  
                        material	
  

Single	
  Crystal	
  




                                                                                     77	
  
silicon single crystal




Micrograph of a polycrystalline
stainless steel showing grains
and grain boundaries


                                  78	
  
79	
  
Polymorphism	
  




                   80	
  
Ceramic	
  Crystal	
  Structures	
  
• 	
  Ceramics	
  are	
  compounds	
  between	
  metallic	
  &	
  nonmetallic	
  
	
  	
  	
  elements	
  e.x.	
  Al2O3,	
  FeO,	
  SiC,	
  TiN,	
  NaCl	
  
• 	
  They	
  are	
  hard	
  and	
  briple	
  
• 	
  Typically	
  insulaBve	
  to	
  the	
  passage	
  of	
  electricity	
  &	
  heat	
  
	
  

Crystal	
  Structures	
  
• 	
  Atomic	
  bonding	
  is	
  mostly	
  ionic	
  i.e.	
  the	
  crystal	
  structure	
  is	
  
	
  	
  composed	
  of	
  electrically	
  charged	
  ions	
  instead	
  of	
  atoms.	
  
• 	
  The	
  metallic	
  ions,	
  or	
  caBons	
  are	
  posiBvely	
  charged	
  because	
  	
  
	
  	
  they	
  have	
  given	
  up	
  their	
  valence	
  electrons	
  to	
  the	
  	
  
	
  	
  nonmetallic	
  Ions	
  or	
  anions,	
  which	
  are	
  negaBvely	
  charged	
  
	
  
                                                                                        81	
  
Ionic	
  bonding	
  




                       82	
  
• 	
  In	
  a	
  ceramic	
  material	
  two	
  characterisBcs	
  of	
  the	
  	
  	
  
	
  	
  component	
  ions	
  influence	
  the	
  crystal	
  structure:	
  
	
  	
  	
  
	
   1.  Charge	
  neutrality	
  
             	
  
             2.	
  The	
  relaBve	
  sizes	
  of	
  the	
  caBons	
  and	
  anions	
  




                                                                                    83	
  
 	
  	
  	
  	
  1.	
  Charge	
  neutrality:	
  each	
  crystal	
  should	
  be	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  electrically	
  neutral	
  e.x.	
  NaCl	
  and	
  CaCl2	
  




                                                                                                      84	
  
2.	
  The	
  relaBve	
  sizes	
  of	
  the	
  caBons	
  and	
  anions	
  
	
  


• 	
  	
  Because	
  the	
  metallic	
  elements	
  give	
  up	
  electrons	
  when	
  	
  
	
  	
  	
  Ionized,	
  caBons	
  are	
  	
  
	
  	
  	
  smaller	
  than	
  anions	
  
	
  
	
  
	
  


• 	
  	
  Hence	
  rc	
  /	
  ra	
  is	
  less	
  than	
  unity	
  
	
  


• 	
  	
  Stable	
  ceramic	
  crystal	
  structures	
  form	
  when	
  those	
  
	
  	
  	
  	
  anions	
  surrounding	
  a	
  caBon	
  are	
  all	
  in	
  contact	
  with	
  the	
  
	
  	
  	
  	
  that	
  caBon	
  


                                                                                                85	
  
• 	
  CoordinaBon	
  number	
  is	
  related	
  to	
  the	
  caBon-­‐anion	
  raBo	
  
	
  

• 	
  For	
  a	
  specific	
  coordinaBon	
  number	
  there	
  is	
  a	
  criBcal	
  	
  
	
  	
  or	
  minimum	
  rc	
  /	
  ra	
  	
  raBo	
  	
  
	
  
	
  




                                                                                            86	
  
87	
  
88	
  
PredicBng	
  Structure	
  of	
  FeO	
  




                                          89	
  
90	
  
AX-­‐TYPE	
  STRUCTURES	
  
   • 	
  Equal	
  number	
  of	
  caBons	
  and	
  anions	
  referred	
  to	
  as	
  	
  
   	
  	
  AX	
  compounds	
  
   	
  


   A	
  denotes	
  the	
  caBon	
  and	
  
   X	
  denotes	
  the	
  anion	
  

          rNa	
  =	
  0.102	
  nm	
  
          	
  


   rCl	
  =	
  0.181	
  nm	
  
   	
  
  r	
  Na	
  /	
  rCl	
  	
  	
  	
  =	
  0.564	
  	
  
   	
  
   	
  
CaBons	
  prefer	
  octahedral	
  sites	
  
   	
  
   	
                                                     Rock	
  Salt	
  Structure	
       91	
  
AX-­‐TYPE	
  STRUCTURES	
  conBnued…	
  

       MgO	
  also	
  has	
  a	
  NaCl	
  type	
  structure	
  

rO	
  =	
  0.140	
  nm	
  
	
  


rMg	
  =	
  0.072	
  nm	
  
	
  
	
  
rMg	
  /	
  rO	
  	
  	
  	
  =	
  0.514	
  	
  
	
  
	
  
CaBons	
  prefer	
  octahedral	
  sites	
  
	
  
	
  
	
  
	
                                                                92	
  
AX-­‐TYPE	
  STRUCTURES	
  conBnued…	
  




                                           93	
  
AmXp-­‐TYPE	
  STRUCTURES	
  
• 	
  number	
  of	
  caBons	
  and	
  anions	
  are	
  different,	
  	
  	
  	
  
	
  	
  referred	
  to	
  as	
  AmXp	
  compounds	
  

 Calcium	
  Fluorite	
  Structure	
  




                                                                                    94	
  
AmBnXp-­‐TYPE	
  STRUCTURES	
  
• 	
  	
  Ceramic	
  compound	
  with	
  more	
  than	
  two	
  types	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  of	
  caBons,	
  referred	
  to	
  as	
  AmBnXp	
  compounds	
  




                                                                                                    95	
  
Crystal	
  defects	
  (ImperfecBons	
  in	
  Solids)	
  
•  Perfect order does not exist throughout a crystalline material
  on an atomic scale. All crystalline materials contain large
  number of various defects or imperfections.

•  Defects or imperfections influence properties such as
  mechanical, electrical, magnetic, etc.

•  Classification of crystalline defects is generally made
  according to geometry or dimensionality of the defect
  i.e. zero dimensional defects, one dimensional defects and
  two dimensional defects.


                                                               96	
  
Crystal defects / imperfections are broadly classified
into three classes:
    1. Point	
  defect	
  (zero	
  dimensional	
  defects)	
  
    	
  	
  	
  	
  	
  	
  Vacancy,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
    	
  	
  	
  	
  	
  	
  Impurity	
  atoms	
  (	
  subs&tu&onal	
  	
  and	
  inters&&al)	
  
    	
  	
  	
  	
  	
  	
  Frankel	
  and	
  Scho]ky	
  defect	
  	
  
    	
  


    2.	
  Line	
  defect	
  (one	
  dimensional	
  defects)	
  
    	
  	
  	
  	
  	
  Edge	
  disloca&on	
  
    	
  	
  	
  	
  	
  Screw	
  disloca&on,	
  	
  
    	
  	
  	
  	
  	
  Mixed	
  disloca&on	
  	
  
    	
  


    3.	
  Surface	
  defects	
  or	
  Planer	
  defects	
  (two	
  dimensional	
  
         defects)	
  
    	
  

    	
  	
  	
  	
  	
  	
  Grain	
  boundaries	
  
    	
  	
  	
  	
  	
  	
  Twin	
  boundary	
  	
  
    	
  	
  	
  	
  	
  	
  Stacking	
  faults	
  
                                                                                                   97	
  
    	
  	
  	
  	
  	
  	
  	
  
1. Point defects
Vacancy	
  




                           98	
  
Vacancy	
  
•  If an atom is missing from its regular site, the defect produced
  is called a vacancy
•  All crystalline solids contain vacancies and their number
   increases with temperature
•  The equilibrium concentration of vacancies Nv for a given
   quantity of material depends on & increases with temperature
   according to

Where:
N is the total number of atomic sites
Qv is the energy required for the formation of a vacancy
T is the absolute temperature &
k is the gas or Boltzmann s constant i.e. 1.38 x 10-23 J/atom-K or
8.62 X 10-5 eV/atom-K
                                                                     99	
  
100	
  
Vacancies aid in the movement (diffusion) of atoms




                                                101	
  
 Impurity	
  atoms	
  (	
  subs&tu&onal	
  	
  and	
  inters&&al)	
  




                                                                           102	
  
•  Impurity point defects are of two types
  1. Substitutional
  2. Interstitial

•  For substitutional, solute or impurity atoms replace or
  substitute for the host atoms

•  For interstitial, solute or impurity atoms fill the void or
  interstitial space among the host atoms

•  Both the substitutional and interstitial impurity atoms
  distort the crystal lattice affecting the mechanical and
  electrical / electronic properties

                                                            103	
  
•  Impurity atoms generate stress in the lattice by distorting the
   lattice
•  The stress is compressive in case of smaller substitutional
   atom and tensile in case of larger substitutional atom
•  These stresses act as barriers to movement of dislocations and
    thus improve the strength / hardness of a material
•  These stresses also act as barriers to the movement of
   electrons and lower the electrical conductivity (increases
   resistivity) of the material




                                                              104	
  
 Frankel	
  and	
  Scho]ky	
  defects	
  	
  




                                                   105	
  
•  Frenkel and Schottky defects occur in ionic solids like ceramics

•  An atom may leave its regular site and may occupy nearby
interstitial site of the matrix giving rise to two defects
simultaneously i.e. one vacancy and the other self interstitial.
These two defects together is called a Frenkel defect. This can
occur only for cations because of their smaller size as
compared to the size of anions.

•  When cation vacancy is associated with an anion vacancy, the
  defect is called Schottky defect.
  Schottky defects are more
  common in ionic solids because
  the lattice has to maintain
  electrical neutrality

                                                             106	
  
2. Line defects
DislocaBons	
  
	
  

• 	
  A	
  missing	
  line	
  or	
  row	
  of	
  atoms	
  in	
  a	
  regular	
  crystal	
  	
  	
  	
  
	
  	
  lace	
  is	
  called	
  a	
  dislocaBon	
  
• 	
  DislocaBon	
  is	
  a	
  boundary	
  between	
  the	
  slipped	
  region	
  	
  	
  
	
  	
  and	
  the	
  unslipped	
  region	
  and	
  lies	
  in	
  the	
  slip	
  plane	
  	
  
• 	
  Movement	
  of	
  dislocaBon	
  is	
  necessary	
  for	
  plasBc	
  	
  	
  	
  
	
  	
  deformaBon	
  
• 	
  There	
  are	
  mainly	
  two	
  types	
  of	
  dislocaBons	
  (a)	
  Edge	
  	
  
	
  	
  	
  dislocaBons	
  and	
  (b)	
  Screw	
  dislocaBons	
  




                                                                                                   107	
  
Edge Dislocation




DislocaBon	
  line	
  and	
  b	
  are	
  perpendicular	
  to	
  each	
  other	
     108	
  
Movement	
  of	
  edge	
  dislocaBon	
  




                                           109	
  
ElasBc	
  stress	
  field	
  responsible	
  for	
  electron	
  scapering	
  and	
  
	
  increase	
  in	
  electrical	
  resisBvity	
  




                                                      lace	
  strain	
  around	
  
                                                      dislocaBon	
                    110	
  
Screw Dislocation




DislocaBon	
  line	
  and	
  b	
  are	
  parallel	
  to	
  each	
  other	
     111	
  
	
  
Movement of Screw Dislocation




                                112	
  
When Dislocations Interact




                             113	
  
Mixed Dislocations




By	
  resolving,	
  the	
  contribuBon	
  
	
  from	
  both	
  types	
  of	
  
	
  dislocaBons	
  can	
  be	
  
	
  determined	
  




                                             114	
  
DislocaBons	
  	
  
as	
  seen	
  under	
  
Transmission	
  
Electron	
  Microscope	
  	
  
(TEM)	
  




                                 115	
  
3. Surface defects
Grain	
  Boundary	
  
•  Grain boundary is a defect which separates grains of different
  orientation from each other in a polycrystalline material.
•  When this orientation mismatch is slight, on the order of a few
  degrees (< 15 degrees) then the term small- (or low- ) angle
  grain boundary is used. When the same is more than 15
  degrees its is know as a high angle grain boundary.
•  The total interfacial energy is lower in large or coarse-grained
   materials than in fine-grained ones, since there is less total
   boundary area in the former.
•  Mechanical properties of materials like hardness, strength,
  ductility etc are influenced by the grain size.
•  Grains grow at elevated temperatures to reduce the total
  boundary energy.
                                                              116	
  
117	
  
Coarse and fine grain structure

                                  Grain boundaries acting as barriers
                                  to the movement of dislocations




                                  Deformation of grains during 118	
  
                                                                  cold
                                  working (cold rolling in this case)
Twin	
  Boundary	
  

Twin	
  boundary	
  
Atoms	
  on	
  one	
  side	
  of	
  the	
  boundary	
  are	
  located	
  in	
  	
  
Mirror	
  image	
  posiBons	
  of	
  the	
  atoms	
  on	
  the	
  other	
  side	
  




                                                                                      119	
  
A twin boundary is a special type of grain boundary across which there is
a specific mirror lattice symmetry; that is, atoms on one side of the
boundary are located in mirror-image positions of the atoms on the other
side.

The region of material between these boundaries is appropriately termed
a twin.

Twins result from atomic displacements that are produced from applied
mechanical shear forces (mechanical twins), and also during annealing
heat treatments following deformation (annealing twins).

Twinning occurs on a definite crystallographic plane and in
a specific direction, both of which depend on the crystal structure.

Annealing twins are typically found in metals that have the FCC crystal
structure, while mechanical twins are observed in BCC and HCP metals.

Twins contribute to plastic deformation in a small way
                                                                       120	
  
Stacking fault
• 	
  Occurs	
  when	
  there	
  is	
  a	
  flaw	
  in	
  the	
  stacking	
  sequence	
  
• 	
  Stacking	
  fault	
  results	
  from	
  the	
  stacking	
  of	
  one	
  atomic	
  plane	
  out	
  of	
  	
  	
  
	
  	
  sequence	
  on	
  another	
  and	
  the	
  lace	
  on	
  either	
  side	
  of	
  the	
  fault	
  is	
  	
  	
  
	
  	
  perfect	
  
• 	
  BCC	
  and	
  HCP	
  stacking	
  sequence:	
  ABABABAB……	
  
	
  	
  with	
  stacking	
  fault:	
  ABABBABAB……or	
  ABABAABABAB……..	
  
• 	
  FCC	
  stacking	
  sequence:	
  ABCABCABC….	
  
	
  	
  with	
  stacking	
  fault:	
  ABCABCABABCABC……	
  




              Stacking	
  fault	
  



                                   FCC
                                 Stacking                                                                    121	
  
PlasBc	
  DeformaBon	
  




                           122	
  
Principles	
  of	
  Alloy	
  FormaBon	
  
Solid	
  Solu&on:	
  	
  
• 	
  A	
  homogeneous	
  crystalline	
  phase	
  that	
  contains	
  two	
  or	
  	
  	
  
	
  	
  more	
  chemical	
  species	
  
• 	
  It	
  is	
  an	
  alloy	
  in	
  which	
  the	
  atoms	
  of	
  solute	
  are	
  distributed	
  	
  	
  	
  
	
  	
  in	
  the	
  solvent	
  and	
  has	
  the	
  same	
  structure	
  as	
  that	
  of	
  the	
  	
  	
  
	
  	
  solvent	
  	
  
	
  


Types	
  of	
  Solid	
  Solu&ons:	
  
	
  1.	
  IntersBBal	
  solid	
  soluBon,	
  ex.	
  Fe-­‐C	
                         IntersBBal	
  Solid	
  Soln	
  
	
  2.	
  SubsBtuBonal	
  solid	
  soluBon,	
  ex.	
  Au-­‐Cu	
  
	
  
                                                                                                             123	
  
                                                                                     SubsBtuBonal	
  Solid	
  Soln	
  
1.	
  Inters&&al	
  Solid	
  Solu&on	
  Alloys	
  
• 	
  Parent	
  metal	
  atoms	
  are	
  bigger	
  than	
  atoms	
  of	
  alloying	
  metal.	
  
• 	
  Smaller	
  atoms	
  fit	
  into	
  spaces,	
  (IntersBces),	
  between	
  larger	
  	
  	
  
	
  	
  atoms.	
  




                                                                                              124	
  
Inters&&al	
  sites	
  




                          125	
  
2.	
  Subs&tu&onal	
  Solid	
  Solu&on	
  Alloys	
  
• 	
  Atoms	
  of	
  both	
  metals	
  are	
  of	
  almost	
  similar	
  size.	
  
• 	
  Direct	
  subsBtuBon	
  takes	
  place.	
  




                                                                                     126	
  
Some Solid Solution Alloys


Alloy	
                             Unit	
  Cell	
  Structure	
  
Copper	
  -­‐	
  Nickel	
           FCC	
  
Copper	
  -­‐	
  Gold	
             FCC	
  
Gold	
  -­‐	
  Silver	
             FCC	
  
Nickel	
  -­‐	
  PlaBnum	
          FCC	
  
Molybdenum	
  -­‐	
  Tungsten	
     BCC	
  
Iron	
  -­‐	
  Chromium	
           BCC	
  



                                                                    127	
  
Hume-­‐Rothery s	
  Rules	
  of	
  Solid	
  Solubility	
  

    1.	
  Atomic	
  size	
  factor	
  
    	
  
    2.	
  Crystal	
  structure	
  factor	
  
    	
  
    3.	
  ElectronegaBvity	
  factor	
  
    	
  
    4.	
  RelaBve	
  valency	
  factor	
  

                                                             128	
  
1.  Atomic	
  size	
  factor:	
  If	
  the	
  atomic	
  sizes	
  of	
  solute	
  and	
  solvent	
  
    differ	
  by	
  less	
  than	
  15%,	
  it	
  is	
  said	
  to	
  have	
  a	
  favourable	
  size	
  
    factor	
  for	
  solid	
  soluBon	
  formaBon.	
  If	
  the	
  atomic	
  size	
  
    difference	
  exceeds	
  15%	
  solid	
  solubility	
  is	
  limited	
  
	
  
	
  
	
  
2.	
  Crystal	
  Structure	
  factor:	
  Metals	
  having	
  same	
  crystal	
  structure	
  
       will	
  have	
  greater	
  solubility.	
  Difference	
  in	
  crystal	
  structure	
  
       limits	
  the	
  solid	
  solubility	
  


                                  +	
  

               A	
  (fcc)	
                B	
  (fcc)	
                AB	
  solid	
  solu&on	
  (fcc)	
     129	
  
3.	
  Electronega&vity	
  factor:	
  
The	
  solute	
  and	
  solvent	
  should	
  have	
  similar	
  electronegaBvity.	
  If	
  
the	
  electronegaBvity	
  difference	
  is	
  too	
  great,	
  the	
  metals	
  will	
  tend	
  
to	
  form	
  compounds	
  instead	
  of	
  solid	
  soluBons.	
  
	
  If	
  electronegaBvity	
  difference	
  is	
  too	
  great	
  the	
  highly	
  electroposiBve	
  
	
  element	
  will	
  lose	
  electrons,	
  the	
  highly	
  electronegaBve	
  element	
  will	
  
	
  acquire	
  electrons,	
  and	
  compound	
  formaBon	
  will	
  take	
  place.	
  
	
  
4.	
  Rela&ve	
  Valency	
  factor:	
  Complete	
  solubility	
  occurs	
  when	
  the	
  
solvent	
  and	
  solute	
  have	
  the	
  same	
  valency.	
  
If	
  there	
  is	
  shortage	
  of	
  electrons	
  between	
  the	
  atoms,	
  the	
  binding	
  	
  
between	
  them	
  will	
  be	
  upset,	
  resulBng	
  in	
  condiBons	
  unfavourable	
  for	
  
solid	
  solubility	
  
	
  
	
                                                                                                130	
  
131	
  
Phase	
  Diagrams	
  

Phase	
  diagrams:	
  
Phase	
   or	
   equilibrium	
   diagrams	
   are	
   diagrams	
   which	
   indicate	
   the	
  
phases	
   exisBng	
   in	
   the	
   system	
   at	
   any	
   temperature,	
   pressure	
   and	
  
composiBon.	
  
	
  
Why	
  study	
  Phase	
  Diagrams?	
  
• 	
  Used	
  to	
  find	
  out	
  the	
  	
  amount	
  of	
  phases	
  exisBng	
  in	
  a	
  given	
  alloy	
  	
  	
  
	
  	
  	
  with	
  their	
  composiBon	
  at	
  any	
  temperature.	
  
	
  


• 	
  From	
  the	
  amount	
  of	
  phases	
  it	
  is	
  possible	
  to	
  esBmate	
  the	
  	
  	
  
	
  	
  	
  approximate	
  properBes	
  of	
  the	
  alloy.	
  
	
  


• 	
  Useful	
  in	
  design	
  and	
  control	
  of	
  heat	
  treatment	
  procedures	
  
	
  
                                                                                                                  132	
  
Terms:	
  
System:	
   A	
   system	
   is	
   that	
   part	
   of	
   the	
   universe	
   which	
   is	
   under    	
  
consideraBon.	
  	
  
Phase:	
  A	
  phase	
  is	
  a	
  physically	
  separable	
  part	
  of	
  the	
  system                   	
  
with	
  disBnct	
  physical	
  and	
  chemical	
  properBes.	
  (In	
  a	
  system                          	
  
consis6ng	
   of	
   ice	
   and	
   water	
   in	
   a	
   glass	
   jar,	
   the	
   ice	
   cubes	
   are	
  
one	
   phase,	
   the	
   water	
   is	
   a	
   second	
   phase,	
   and	
   the	
   humid	
   air       	
  
over	
   the	
   water	
   is	
   a	
   third	
   phase.	
   The	
   glass	
   of	
   the	
   jar	
   is    	
  
another	
  separate	
  phase.)	
  	
  
Variable:	
  A	
  parBcular	
  phase	
  exists	
  under	
  various	
  condiBons                             	
  
of	
   temperature,	
   pressure	
   and	
   concentraBon.	
   These                                        	
  
parameters	
  are	
  called	
  as	
  the	
  variables	
  of	
  the	
  phase	
  
Component:	
  	
   The	
   elements	
   present	
   in	
   the	
   system	
   are	
   called                	
  
as	
  components.	
  For	
  ex.	
  Ice,	
  water	
  or	
  steam	
  all	
  contain	
  H2O                    	
  
so	
  the	
  number	
  of	
  components	
  is	
  2,	
  i.e.	
  H	
  and	
  O.	
  
                                                                                                               133	
  
Gibb s	
  Phase	
  Rule:	
  
The	
  Gibb s	
  phase	
  rule	
  states	
  that	
  under	
  equilibrium	
  condiBons,	
  	
  
the	
  following	
  relaBon	
  must	
  be	
  saBsfied:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  P	
  +	
  	
  F	
  =	
  C	
  +	
  2	
  
Where,	
  
P	
  =	
  number	
  of	
  phases	
  exisBng	
  in	
  a	
  system	
  under	
  consideraBon.	
  
F	
  =	
  degree	
  of	
  freedom	
  i.e.	
  the	
  number	
  of	
  variables	
  such	
  as	
  	
  
	
  	
  	
  	
  	
  	
  temperature,	
  pressure	
  or	
  composiBon	
  (concentraBon)	
  that	
  can	
  	
  
	
  	
  	
  	
  	
  	
  be	
  changed	
  independently	
  without	
  changing	
  the	
  number	
  of	
  	
  
	
  	
  	
  	
  	
  	
  phases	
  exisBng	
  in	
  the	
  system.	
  
C	
  =	
  number	
  of	
  components	
  (i.e.	
  elements)	
  in	
  the	
  system,	
  and	
  	
  
2	
  =	
  represents	
  any	
  two	
  variables	
  out	
  of	
  the	
  above	
  three	
  i.e.	
  	
  
	
  	
  	
  	
  	
  	
  temperature	
  pressure	
  and	
  composiBon.


                                                                                                                                                                           134	
  
Most	
   of	
   the	
   studies	
   are	
   done	
   at	
   constant	
   pressure	
   i.e.	
   one	
  
atmospheric	
   pressure	
   and	
   hence	
   pressure	
   is	
   no	
   more	
   a	
  
variable.	
  For	
  such	
  cases,	
  Gibb s	
  phase	
  rule	
  becomes:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  P	
  +	
  	
  F	
  =	
  C	
  +	
  1	
  
	
  
In	
   the	
   above	
   rule,	
   1	
   represents	
   any	
   one	
   variable	
   out	
   of	
   the	
  
remaining	
  two	
  i.e.	
  temperature	
  and	
  concentraBon.	
  	
  
	
  
Hence,	
  Degree	
  of	
  Freedom	
  (F)	
  is	
  given	
  by	
  
	
  
	
                                                                                                                                                                         	
  F	
  =	
  C	
  –	
  P	
  +	
  1	
  
	
  



                                                                                                                                                                                                               135	
  
ApplicaBon	
  of	
  Gibbs	
  Phase	
  Rule	
  

                                  • 	
  C	
                                  At	
  point	
  A	
  
                                                                             P	
  =	
  1,	
  C	
  =	
  2	
  
                                                                             F	
  =	
  C	
  –	
  P	
  +	
  1	
  
                                                                             F	
  =	
  2	
  –	
  1	
  +1	
  
                                                                             F	
  =	
  2	
  
                                                                             The	
  meaning	
  of	
  F	
  =	
  2	
  is	
  that	
  both	
  temperature	
  
                                                                             and	
  concentraBon	
  can	
  be	
  varied	
  independently	
  
                                                                             without	
  changing	
  the	
  liquid	
  phase	
  exisBng	
  in	
  	
  
                                                                             the	
  system	
  
                                                                             	
  
At	
  point	
  C	
                                                           At	
  point	
  B	
  
P	
  =	
  1,	
  C	
  =	
  2	
                                                P	
  =	
  2,	
  C	
  =	
  2	
  
F	
  =	
  C	
  –	
  P	
  +	
  1	
                                            F	
  =	
  C	
  –	
  P	
  +	
  1	
  
F	
  =	
  2	
  –	
  1	
  +1	
                                                F	
  =	
  2	
  –	
  2	
  +1	
  
F	
  =	
  2	
                                                                F	
  =	
  1	
  
The	
  meaning	
  of	
  F	
  =	
  2	
  is	
  that	
  both	
  temperature	
   The	
  meaning	
  of	
  F	
  =	
  1	
  is	
  that	
  any	
  one	
  variable	
  
and	
  concentraBon	
  can	
  be	
  varied	
  independently	
   out	
  of	
  temperature	
  and	
  composiBon	
  can	
  be	
  	
  
	
  without	
  changing	
  the	
  liquid	
  phase	
  exisBng	
  in	
  	
   changed	
  independently	
  without	
  altering	
  the	
  	
  
the	
  system	
                                                              liquid	
  and	
  solid	
  phases	
  exisBng	
  in	
  the	
  system	
  
                                                                                                                                                    136	
  
                                                                             	
  
Types	
  of	
  Phase	
  Diagrams:	
  
    	
  


    • 	
  Unary	
  phase	
  diagram	
  

    • 	
  Binary	
  phase	
  diagram	
  

    • 	
  Ternary	
  phase	
  diagram	
  




                                            137	
  
1.  Unary	
  Phase	
  diagram	
  (one	
  component)	
  
	
  


The	
   simplest	
   phase	
   diagrams	
   are	
   pressure-­‐temperature                   	
  
diagrams	
   of	
   a	
   single	
   simple	
   substance,	
   such	
   as	
   water.	
   The	
  
axes	
  correspond	
  to	
  the	
  pressure	
  and	
  temperature.	
  	
  




                                                                                               138	
  
2.	
  Binary	
  Phase	
  diagram	
  (two	
  components)	
  
	
  
• 	
  A	
  phase	
  diagram	
  plot	
  of	
  	
  temperature	
  against	
  the	
  	
  	
  
	
  


	
  	
  relaBve	
  concentraBons	
  of	
  two	
  substances	
  in	
  a	
  binary	
  	
  	
  	
  
	
  
	
  	
  mixture	
  called	
  a	
  binary	
  phase	
  diagram	
  
• 	
  Types	
  of	
  binary	
  phase	
  diagrams:	
  
	
  1.	
  Isomorphous	
  
	
  2.	
  EutecBc	
  
	
  3.	
  ParBal	
  EutecBc	
  	
  




                                                                                                   139	
  
3.	
  Ternary	
  Phase	
  diagram	
  (three	
  components)	
  
    	
  
• 	
  A	
  ternary	
  phase	
  diagram	
  has	
  three	
  components.	
  	
  
 	
  


    	
  
• 	
  It	
  is	
  three	
  dimensional	
  put	
  ploped	
  in	
  two	
  dimensions	
  at	
  	
  	
  
	
  	
  	
  constant	
  temperature	
  
• 	
  Stainless	
  steel	
  (Fe-­‐Ni-­‐Cr)	
  is	
  a	
  perfect	
  example	
  of	
  a	
  metal	
  alloy	
  	
  
	
  	
  	
  that	
  is	
  represented	
  by	
  a	
  ternary	
  phase	
  diagram.	
  	
  




                                                                                                          140	
  
Binary	
  phase	
  diagram	
  
The	
  binary	
  phase	
  diagram	
  represents	
  the	
  concentraBon	
  (composiBon)	
  
along	
  the	
  x-­‐axis	
  and	
  the	
  temperature	
  along	
  the	
  y-­‐axis.	
  These	
  are	
  
ploped	
  at	
  atmospheric	
  pressure	
  hence	
  pressure	
  is	
  constant	
  i.e.	
  1	
  atm.	
  
pressure.	
  These	
  are	
  the	
  most	
  widely	
  used	
  phase	
  diagrams.	
  
	
  
Types	
  of	
  binary	
  phase	
  diagrams:	
  
• Binary	
  isomorphous	
  system:	
  Two	
  metals	
  having	
  complete	
  solubility	
  
in	
  the	
  liquid	
  as	
  well	
  as	
  the	
  solid	
  state.	
  
• Binary	
  eutecBc	
  system:	
  Two	
  metals	
  having	
  complete	
  solubility	
  in	
  the	
  
liquid	
  state	
  and	
  complete	
  insolubility	
  in	
  the	
  solid	
  state.	
  
• Binary	
  parBal	
  eutecBc	
  system:	
  Two	
  metals	
  having	
  complete	
  solubility	
  
in	
  the	
  liquid	
  state	
  and	
  parBal	
  solubility	
  in	
  the	
  solid	
  state.	
  
• Binary	
  layer	
  type	
  system:	
  Two	
  metals	
  having	
  complete	
  insolubility	
  in	
  
the	
  liquid	
  as	
  well	
  as	
  in	
  the	
  solid	
  state.	
  
                                                                                              141	
  
Cooling	
  curve	
  for	
  Pure	
  Metal	
  (one	
  component)	
  




                                                                     142	
  
Cooling	
  curve	
  for	
  an	
  alloy	
  /	
  solid	
  soluBon	
  
	
  (two	
  components)	
  




                                                                      143	
  
144	
  
Plong	
  of	
  Phase	
  Diagrams	
  




                                        145	
  
Binary	
  isomorphous	
  system:	
  	
  
• These	
  phase	
  diagrams	
  are	
  of	
  loop	
  type	
  and	
  are	
  obtained	
  for	
       	
  
	
  	
  two	
  metals	
  having	
  complete	
  solubility	
  in	
  the	
  liquid	
  as	
  well	
  
as	
  	
  	
  
	
  	
  solid	
  state.	
  
• 	
  Ex.:	
  Cu-­‐Ni,	
  Au-­‐Ag,	
  Au-­‐Cu,	
  Mo-­‐W,	
  Mo-­‐Ti,	
  W-­‐V.	
  
	
  
	
  
	
  




                                                                                                     146	
  
Lever	
  rule	
  
Finding	
  the	
  amounts	
  of	
  phases	
  in	
  a	
  two	
  phase	
  region	
  :	
  
1.	
  Locate	
  composiBon	
  and	
  temperature	
  in	
  phase	
  diagram	
  
2.	
  In	
  two	
  phase	
  region	
  draw	
  the	
  Be	
  line	
  or	
  isotherm	
  
3.	
  FracBon	
  of	
  a	
  phase	
  is	
  determined	
  by	
  taking	
  the	
  length	
  	
  of	
  the	
  
Be	
  line	
  to	
  the	
  phase	
  boundary	
  for	
  the	
  other	
  phase,	
  	
  and	
  dividing	
  
by	
  the	
  total	
  length	
  of	
  Be	
  line	
  
	
  




                                                                                                        147	
  
%	
  of	
  Solid	
  =	
  LO	
  /	
  LS	
  X	
  100=	
  (Wo-­‐Wi)	
  /	
  (Ws-­‐Wi)	
  X	
  100	
  
	
  
%	
  of	
  Liquid	
  =	
  OS	
  /	
  LS	
  X	
  100=	
  (Ws-­‐Wi)	
  /	
  (Ws-­‐Wi)	
  X	
  100	
  
or	
  simply	
  %	
  Liquid	
  =	
  100	
  -­‐	
  %	
  of	
  Solid	
  or	
  vice	
  versa	
  
	
  




                                                                                                      148	
  
Development	
  of	
  Microstructure	
  during	
  slow	
  cooling	
  in	
  	
  
                     isomorphous	
  alloys	
  




                                                                           149	
  
ProperBes	
  of	
  alloys	
  in	
  Isomorphous	
  systems	
  	
  
      with	
  variaBon	
  in	
  composiBon	
  	
  

                              (a)  Phase diagram of the Cu-Ni alloy system.
                              Above the liquidus line only the liquid phase
                              exists. In the L + S region, the liquid (L) and
                              solid (S) phases coexist whereas below the
                              solidus line, only the solid phase (a solid
                              solution) exists.




                                 (b) The resistivity of the Cu-Ni alloy as a
                                 Function of Ni content (at.%) at room
                                 temperature




                                                                          150	
  
151	
  
Binary	
  EutecBc	
  System:	
  	
  
	
  
These	
  diagrams	
  are	
  obtained	
  for	
  two	
  metals	
  having	
  complete	
  
solubility	
  (i.e.	
  miscibility)	
  in	
  the	
  liquid	
  state	
  and	
  complete	
  
insolubility	
  in	
  the	
  solid	
  state.	
  
Examples:	
  Pb-­‐As,	
  Bi-­‐Cd,	
  Th-­‐Ti,	
  and	
  Au-­‐Si.	
  	
  
	
  




                                                                                             152	
  
What	
  is	
  a	
  EutecBc?	
  
	
  
• 	
  A	
  eutec6c	
  or	
  eutec6c	
  mixture	
  is	
  a	
  mixture	
  of	
  two	
  or	
  more	
  phases	
  	
  
	
  	
  at	
  a	
  composiBon	
  that	
  has	
  the	
  lowest	
  melBng	
  point	
  
• 	
  EutecBc	
  ReacBon:	
  
	
  	
  Liquid	
  	
  ↔	
  	
  Solid	
  A	
  +	
  Solid	
  B	
  




                                                                                                         153	
  
Cooling	
  Curves	
  in	
  EutecBc	
  System	
  




                                                   154	
  
Plong	
  of	
  EutecBc	
  Phase	
  Diagrams	
  




                                                   155	
  
                     	
  Binary	
  Par&al	
  Eutec&c	
  System	
  
These	
  diagrams	
  are	
  obtained	
  for	
  two	
  metals	
  having	
  complete	
  	
  
solubility	
  (i.e.	
  miscibility)	
  in	
  the	
  liquid	
  state	
  and	
  parBal	
  solubility	
  	
  
in	
  the	
  solid	
  state.	
  
Examples:	
  Pb-­‐Sn,	
  Ag-­‐Cu,	
  Sn-­‐Bi,	
  Pb-­‐Sb,	
  Cd-­‐Zn	
  and	
  Al-­‐Si.	
  	
  




                                                                                                      156	
  
157	
  
Development	
  of	
  microstructure	
  in	
  binary	
  par&al	
  eutec&c	
  alloys	
  	
  
                      during	
  equilibrium	
  cooling	
  

   1.	
  SolidificaBon	
  of	
  the	
  eutecBc	
  composiBon	
  




                                                                                        158	
  
2.	
  SolidificaBon	
  of	
  the	
  off	
  -­‐	
  eutecBc	
  composiBon	
  




                                                                            159	
  
3.	
  SolidificaBon	
  of	
  composiBons	
  that	
  range	
  between	
  the	
  room	
  
temperature	
  solubility	
  limit	
  and	
  the	
  maximum	
  solid	
  solubility	
  at	
  
the	
  eutecBc	
  temperature	
  




                                                                                        160	
  
Uses	
  of	
  Eutec&c	
  /	
  Par&al	
  Eutec&c	
  Alloys	
  
	
  


Alloys	
  of	
  eutecBc	
  composiBons	
  have	
  some	
  specific	
  properBes	
  	
  
which	
  make	
  them	
  suitable	
  for	
  certain	
  applicaBons:	
  
• Since	
  they	
  fuse	
  at	
  constant	
  temperature,	
  they	
  are	
  used	
  for	
  	
  
	
  	
  electrical	
  and	
  thermal	
  fuses.	
  
• They	
  are	
  used	
  as	
  solders	
  due	
  to	
  their	
  lower	
  melBng	
  temperature.	
  
• Since	
  eutecBc	
  alloys	
  have	
  low	
  melBng	
  points,	
  some	
  of	
  them	
  are	
  	
  
	
  	
  used	
  coaBngs	
  by	
  spraying	
  techniques	
  
• Since	
  they	
  melt	
  at	
  constant	
  temperature	
  they	
  can	
  be	
  used	
  for	
  	
  	
  
	
  	
  temperature	
  measurement.	
  
• 	
  Majority	
  of	
  the	
  eutecBc	
  alloys	
  are	
  superplasBc	
  in	
  character.	
  
SuperplasBcity	
  is	
  the	
  phenomenon	
  by	
  which	
  an	
  alloy	
  exhibits	
  large	
  
extension	
  (ducBlity)	
  when	
  deformed	
  with	
  certain	
  rate	
  at	
  some	
  
temperature.	
  The	
  alloy	
  behaves	
  like	
  plasBc	
  and	
  can	
  be	
  formed	
  into	
  
many	
  shapes.
                                                                                                   161	
  
The	
  Iron	
  –	
  Carbon	
  System	
  
Allotrophic	
  TransformaBons	
  in	
  Iron	
  




                                                        162	
  
Iron	
  –	
  Carbon	
  Phase	
  Diagram	
  




                                              163	
  
Phases	
  in	
  Iron-­‐Carbon	
  Phase	
  Diagram	
  
1.	
  Ferrite:	
  Solid	
  soluBon	
  of	
  carbon	
  in	
  bcc	
  iron	
  
2.	
  Austenite:	
  Solid	
  soluBon	
  of	
  carbon	
  in	
  fcc	
  iron	
  
3.	
  δ-­‐iron:	
  Solid	
  soluBon	
  of	
  carbon	
  in	
  bcc	
  iron	
  
4.	
  Cemen&te	
  (Fe3C):	
  Intermetallic	
  compound	
  of	
  iron	
  	
  
and	
  carbon	
  with	
  a	
  fixed	
  carbon	
  content	
  of	
  6.67%	
  by	
  wt.	
  
5.	
  Pearlite:	
  It	
  is	
  a	
  two	
  phased	
  lamellar	
  (or	
  layered)	
  
structure	
  composed	
  of	
  alternaBng	
  layers	
  of	
  ferrite	
  and	
  
cemenBte	
  	
  
	
  
                                                                                  164	
  
Austenite	
  




Ferrite	
  and	
  	
  δ-­‐iron	
  

                                     Cemen&te	
   165	
  
166	
  
The	
  iron-­‐carbon	
  system	
  exhibits	
  three	
  important	
  
transformaBons	
  /	
  reacBons	
  as	
  described	
  below:	
  

   Eutectoid	
  Reac&on:	
  	
  	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Solid1	
  ↔	
  Solid2	
  +	
  Solid3	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Austenite	
  ↔	
  Ferrite	
  +	
  CemenBte	
  
   	
  

   Eutec&c	
  Reac&on:	
  	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Liquid	
  ↔	
  Solid1	
  +	
  Solid2	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Liquid	
  ↔	
  Austenite	
  +	
  CemenBte	
  
   	
  

   Peritec&c	
  Reac&on:	
  	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Solid1	
  +	
  Liquid	
  ↔	
  Solid2	
  	
  
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  δ-­‐iron	
  +	
  	
  Liquid	
  ↔	
  Austenite	
  
   	
  
   	
                                                                                                                                                                                  167	
  
What	
  is	
  Pearlite?	
  
Pearlite	
  is	
  a	
  two	
  phased	
  lamellar	
  (or	
  layered)	
  structure	
  composed	
  	
  
of	
  alternaBng	
  layers	
  of	
  ferrite	
  and	
  cemenBte	
  that	
  occurs	
  in	
  some	
  	
  
steels	
  and	
  cast	
  irons	
  
	
  
100%	
  pearlite	
  is	
  formed	
  at	
  0.8%C	
  at	
  727oC	
  by	
  the	
  eutectoid	
  reacBon	
  /	
  
PearliBc	
  transfromaBon	
  

 Eutectoid	
  Reac&on:	
  	
  	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  Solid1	
  ↔	
  Solid2	
  +	
  Solid3	
  
 	
  	
  Austenite	
  ↔	
  Ferrite	
  +	
  CemenBte	
  




                                                                                                  168	
  
Development	
  of	
  microstructures	
  in	
  steel	
  during	
  	
  
                             slow	
  cooling	
  
Eutectoid	
  Steel	
  




                                                                                169	
  
Hypoeutectoid	
  Steel	
  




                             170	
  
Hypereutectoid	
  Steel	
  




                              171	
  
Non-­‐Equilibrium	
  Cooling	
  
• 	
  Non-­‐equilibrium	
  cooling	
  leads	
  to	
  shil	
  in	
  the	
  transformaBon	
  
	
  	
  temperatures	
  that	
  appear	
  on	
  the	
  phase	
  diagram	
  
• 	
  Leads	
  to	
  development	
  of	
  non-­‐equilibrium	
  phases	
  that	
  do	
  not	
  	
  
	
  	
  appear	
  on	
  the	
  phase	
  diagram	
  
	
  	
  




                                                                                                     172	
  
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new
Mt 201 b material science new

More Related Content

What's hot

Crystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCPCrystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCPBSMRSTU
 
Crystallographic planes and directions
Crystallographic planes and directionsCrystallographic planes and directions
Crystallographic planes and directionsNicola Ergo
 
Lattice imperfection
Lattice imperfectionLattice imperfection
Lattice imperfectionKeval Patil
 
Crystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdfCrystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdfDrJayantaKumarMahato1
 
Basic crystallography
Basic crystallographyBasic crystallography
Basic crystallographyMukhlis Adam
 
Brillouin zone and wigner seitz cell
Brillouin zone and wigner  seitz cellBrillouin zone and wigner  seitz cell
Brillouin zone and wigner seitz cellPeter Believe Jr
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1Dr. Abeer Kamal
 
Dislocations in FCC Metals_Radwan
Dislocations in FCC Metals_RadwanDislocations in FCC Metals_Radwan
Dislocations in FCC Metals_RadwanOmar Radwan
 
Bravais lattices
Bravais latticesBravais lattices
Bravais latticesRagesh Nath
 
Crystal structures & Packing Fraction
Crystal structures & Packing FractionCrystal structures & Packing Fraction
Crystal structures & Packing Fractionbagga1212
 
Chapter_3c_X_Ray_Diffraction.ppt
Chapter_3c_X_Ray_Diffraction.pptChapter_3c_X_Ray_Diffraction.ppt
Chapter_3c_X_Ray_Diffraction.pptMithunSarkar33
 
Crystallographic planes
Crystallographic planesCrystallographic planes
Crystallographic planessandhya sharma
 
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSCRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSharikrishnaprabu
 
Solid state chemistry
Solid state chemistrySolid state chemistry
Solid state chemistryKumar
 

What's hot (20)

Crystal structures
Crystal structuresCrystal structures
Crystal structures
 
Crystal physics
Crystal physicsCrystal physics
Crystal physics
 
Crystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCPCrystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCP
 
Solid state
Solid state Solid state
Solid state
 
Crystallographic planes and directions
Crystallographic planes and directionsCrystallographic planes and directions
Crystallographic planes and directions
 
Lattice imperfection
Lattice imperfectionLattice imperfection
Lattice imperfection
 
Crystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdfCrystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdf
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Structure of solids
Structure of solidsStructure of solids
Structure of solids
 
Basic crystallography
Basic crystallographyBasic crystallography
Basic crystallography
 
Brillouin zone and wigner seitz cell
Brillouin zone and wigner  seitz cellBrillouin zone and wigner  seitz cell
Brillouin zone and wigner seitz cell
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1
 
Dislocations in FCC Metals_Radwan
Dislocations in FCC Metals_RadwanDislocations in FCC Metals_Radwan
Dislocations in FCC Metals_Radwan
 
Bravais lattices
Bravais latticesBravais lattices
Bravais lattices
 
Crystal structures & Packing Fraction
Crystal structures & Packing FractionCrystal structures & Packing Fraction
Crystal structures & Packing Fraction
 
Chapter_3c_X_Ray_Diffraction.ppt
Chapter_3c_X_Ray_Diffraction.pptChapter_3c_X_Ray_Diffraction.ppt
Chapter_3c_X_Ray_Diffraction.ppt
 
Crystallographic planes
Crystallographic planesCrystallographic planes
Crystallographic planes
 
Solid Solutions
Solid SolutionsSolid Solutions
Solid Solutions
 
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSCRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
 
Solid state chemistry
Solid state chemistrySolid state chemistry
Solid state chemistry
 

Viewers also liked

Crystal structures in material science
Crystal structures in material scienceCrystal structures in material science
Crystal structures in material scienceSachin Hariprasad
 
Crystallographic points, directions & planes
Crystallographic points, directions & planesCrystallographic points, directions & planes
Crystallographic points, directions & planesonlinemetallurgy.com
 
Unit i-crystal structure
Unit i-crystal structureUnit i-crystal structure
Unit i-crystal structureAkhil Chowdhury
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2praying1
 
crystal consist of voids ......
crystal consist of voids ......crystal consist of voids ......
crystal consist of voids ......ITC Limited
 
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHD
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHDSpace lattice and crystal structure,miller indices PEC UNIVERSITY CHD
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHDPEC University Chandigarh
 
Mme 323 materials science week 4 - structure of crystalline solids
Mme 323 materials science   week 4 - structure of crystalline solidsMme 323 materials science   week 4 - structure of crystalline solids
Mme 323 materials science week 4 - structure of crystalline solidsAdhi Primartomo
 
Crystalography
CrystalographyCrystalography
Crystalographymd5358dm
 
solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...shayangreen
 

Viewers also liked (20)

Packing density
Packing densityPacking density
Packing density
 
Crystal structures in material science
Crystal structures in material scienceCrystal structures in material science
Crystal structures in material science
 
Miller indecies
Miller indeciesMiller indecies
Miller indecies
 
The solid state part i
The solid state   part iThe solid state   part i
The solid state part i
 
Voids in crystals
Voids in crystalsVoids in crystals
Voids in crystals
 
Crystallographic points, directions & planes
Crystallographic points, directions & planesCrystallographic points, directions & planes
Crystallographic points, directions & planes
 
Hexagonal HCP
Hexagonal HCPHexagonal HCP
Hexagonal HCP
 
Unit i-crystal structure
Unit i-crystal structureUnit i-crystal structure
Unit i-crystal structure
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2
 
crystal consist of voids ......
crystal consist of voids ......crystal consist of voids ......
crystal consist of voids ......
 
Diamond Structure
Diamond StructureDiamond Structure
Diamond Structure
 
crystalstructure
crystalstructurecrystalstructure
crystalstructure
 
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHD
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHDSpace lattice and crystal structure,miller indices PEC UNIVERSITY CHD
Space lattice and crystal structure,miller indices PEC UNIVERSITY CHD
 
Mme 323 materials science week 4 - structure of crystalline solids
Mme 323 materials science   week 4 - structure of crystalline solidsMme 323 materials science   week 4 - structure of crystalline solids
Mme 323 materials science week 4 - structure of crystalline solids
 
Crystalography
CrystalographyCrystalography
Crystalography
 
Phys 4710 lec 3
Phys 4710 lec 3Phys 4710 lec 3
Phys 4710 lec 3
 
Xrd lecture 1
Xrd lecture 1Xrd lecture 1
Xrd lecture 1
 
MILLER INDICES FOR CRYSTALLOGRAPHY PLANES
MILLER INDICES FOR CRYSTALLOGRAPHY PLANESMILLER INDICES FOR CRYSTALLOGRAPHY PLANES
MILLER INDICES FOR CRYSTALLOGRAPHY PLANES
 
solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...solution for Materials Science and Engineering 7th edition by William D. Call...
solution for Materials Science and Engineering 7th edition by William D. Call...
 
Lecture 02
Lecture 02Lecture 02
Lecture 02
 

Similar to Mt 201 b material science new

Crystal structure of metal
Crystal structure of metalCrystal structure of metal
Crystal structure of metalinnocent Ejaz
 
crystal structure of metal.pptx
crystal structure of metal.pptxcrystal structure of metal.pptx
crystal structure of metal.pptxBilalTariq924851
 
Structure of Crystal Lattice - K Adithi Prabhu
Structure of Crystal Lattice - K Adithi PrabhuStructure of Crystal Lattice - K Adithi Prabhu
Structure of Crystal Lattice - K Adithi PrabhuBebeto G
 
Lecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptxLecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptxHdjd9
 
Crystal structure notes
Crystal structure notesCrystal structure notes
Crystal structure notesPraveen Vaidya
 
chapter three CRYSTALLINE STRUCTURE.pdf
chapter three  CRYSTALLINE STRUCTURE.pdfchapter three  CRYSTALLINE STRUCTURE.pdf
chapter three CRYSTALLINE STRUCTURE.pdfTsegaselase
 
Crystal and Crystal Systems PowerPoint Presentation
Crystal and Crystal Systems PowerPoint PresentationCrystal and Crystal Systems PowerPoint Presentation
Crystal and Crystal Systems PowerPoint PresentationMuhammadUsman1795
 
Material Science and Metallurgy
Material Science and MetallurgyMaterial Science and Metallurgy
Material Science and Metallurgytaruian
 
Crystal structure
Crystal structureCrystal structure
Crystal structurejo
 
Crystal structure
Crystal structureCrystal structure
Crystal structurejo
 
Chapter 3-Crystal Structure ceramic .pdf
Chapter 3-Crystal Structure ceramic .pdfChapter 3-Crystal Structure ceramic .pdf
Chapter 3-Crystal Structure ceramic .pdf7zarlamin1
 
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTION
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTIONCRYSTAL STRUCTURE AND X – RAYS DIFFRACTION
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTIONA K Mishra
 
Crystal structure.pptx
Crystal structure.pptxCrystal structure.pptx
Crystal structure.pptxAnchitAcharya
 

Similar to Mt 201 b material science new (20)

Crystal structure of metal
Crystal structure of metalCrystal structure of metal
Crystal structure of metal
 
MSE ACTIVITY TWO.pptx
MSE ACTIVITY TWO.pptxMSE ACTIVITY TWO.pptx
MSE ACTIVITY TWO.pptx
 
crystal structure of metal.pptx
crystal structure of metal.pptxcrystal structure of metal.pptx
crystal structure of metal.pptx
 
Structure of Crystal Lattice - K Adithi Prabhu
Structure of Crystal Lattice - K Adithi PrabhuStructure of Crystal Lattice - K Adithi Prabhu
Structure of Crystal Lattice - K Adithi Prabhu
 
Physics
Physics Physics
Physics
 
Crystal structures
Crystal structuresCrystal structures
Crystal structures
 
Lecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptxLecture 2-Crystal Structure.pptx
Lecture 2-Crystal Structure.pptx
 
Crystal structure notes
Crystal structure notesCrystal structure notes
Crystal structure notes
 
Crystallography
CrystallographyCrystallography
Crystallography
 
chapter three CRYSTALLINE STRUCTURE.pdf
chapter three  CRYSTALLINE STRUCTURE.pdfchapter three  CRYSTALLINE STRUCTURE.pdf
chapter three CRYSTALLINE STRUCTURE.pdf
 
Crystal and Crystal Systems PowerPoint Presentation
Crystal and Crystal Systems PowerPoint PresentationCrystal and Crystal Systems PowerPoint Presentation
Crystal and Crystal Systems PowerPoint Presentation
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Material Science and Metallurgy
Material Science and MetallurgyMaterial Science and Metallurgy
Material Science and Metallurgy
 
Deformation
DeformationDeformation
Deformation
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
Chapter 3-Crystal Structure ceramic .pdf
Chapter 3-Crystal Structure ceramic .pdfChapter 3-Crystal Structure ceramic .pdf
Chapter 3-Crystal Structure ceramic .pdf
 
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTION
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTIONCRYSTAL STRUCTURE AND X – RAYS DIFFRACTION
CRYSTAL STRUCTURE AND X – RAYS DIFFRACTION
 
Crystal structure.pptx
Crystal structure.pptxCrystal structure.pptx
Crystal structure.pptx
 
Jif 419 webex 1 2016-2017
Jif 419   webex 1 2016-2017Jif 419   webex 1 2016-2017
Jif 419 webex 1 2016-2017
 

Recently uploaded

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 

Recently uploaded (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 

Mt 201 b material science new

  • 2. Why  Study  Materials  Science?   1.  ApplicaBon  oriented  Proper&es       2.  Cost  consideraBon     3.  Processing  route     2  
  • 3. ClassificaBon  of  Materials   1.  Metals   2.  Ceramics   3.  Polymers   4.  Composites   5.  Semiconductors   6.  Biomaterials   7.  Nanomaterials     3  
  • 4. Syllabus   1.  IntroducBon  to  Crystallography   2.  Principle  of  Alloy  FormaBon   3.  Binary  Equilibria   4.  Mechanical  ProperBes   5.  Heat  Treatments   6.  Engineering  Materials   7.  Advanced  Materials     4  
  • 5. Recommended  Books   1.  Callister  W.D.,   Materials  Science  and   Engineering  an  Introduc&on   2.  Askeland  D.R.,   The  Science  and   Engineering  of  Materials   3.  Raghavan  V., Materials  Science  and   Engineering-­‐  A  first  Course,   4.  Avener  S.H,   IntroducBon  to  Physical   Metallurgy,   5  
  • 6. The  Structure  of  Crystalline  Solids   CRYSTALLINE  STATE     •   Most  solids  are  crystalline  with  their  atoms  arranged  in  a                regular  manner.   •   Long-­‐range  order:  the  regularity  can  extend  throughout  the            crystal.   •   Short-­‐range  order:  the  regularity  does  not  persist  over            appreciable  distances.  Ex.  amorphous  materials  such  as  glass              and  wax.   •   Liquids  have  short-­‐range  order,  but  lack  long-­‐range  order.   •   Gases  lack  both  long-­‐range  and  short-­‐range  order.   •   Some  of  the  properBes  of  crystalline  solids  depend  on  the        crystal  structure  of  the  material,  the  manner  in  which  atoms,          ions,  or  molecules  are  arranged.     6  
  • 7. Lace   •   SomeBmes  the  term  lace  is  used  in  the  context  of  crystal            structures;  in  this  sense   lace  means  a  three-­‐          dimensional  array  of  points  coinciding  with  atom  posiBons            (or  sphere  centers).    A  point  la*ce     7  
  • 8. Unit  Cells   •  The unit cell is the basic structural unit or building block of the crystal structure and defines the crystal structure by virtue of its geometry and the atom positions within. •  This size and shape of the unit cell can be described in terms of their lengths (a,b,c) and the angles between then (α,β,γ). These lengths and angles are the lattice constants or lattice parameters of the unit cell.  A  point  la*ce     A  unit  cell   8  
  • 9. Bravais  Lace   Table 1: Crystal systems and Bravais Lattices Crystal systems and Bravais Lattice 9  
  • 10. Types of crystals Three relatively simple crystal structures are found for most of the common metals; body-centered cubic, face-centered cubic, and hexagonal close-packed. 1. Body Centered Cubic Structure (BCC) 2. Face Centered Cubic Structure (FCC) 3. Hexagonal Close Packed (HCP) 10  
  • 11. 1.  Body Centered Cubic Structure (BCC) In these structures, there are 8 atoms at the 8 corners and one atom in the interior, i.e. in the centre of the unit cell with no atoms on the faces. 11  
  • 12. 2. Face Centered Cubic Structure (FCC) In these structures, there are 8 atoms at the 8 corners, 6 atoms at the centers of 6 faces and no interior atom. 12  
  • 13. 3. Hexagonal Close Packed (HCP) In these structures, there are 12 corner atoms (6 at the bottom face and 6 at the top face), 2 atoms at the centers of the above two faces and 3 atoms in the interior of the unit cell. 13  
  • 14. Average Number of Atoms per Unit Cell Since the atoms in a unit cell are shared by the neighboring cells it is important to know the average number of atoms per unit cell. In cubic structures, the corner atoms are shared by 8 cells (4 from below and 4 from above), face atoms are shared by adjacent two cells and atoms in the interior are shared by only that one cell. Therefore, general we can write: Nav = Nc / 8 + Nf / 2 + Ni / 1 Where, Nav = average number of atoms per unit cell. Nc = Total number of corner atoms in an unit cell. Nf = Total number of face atoms in an unit cell. Ni = Centre or interior atoms. 14  
  • 15. •  Simple cubic (SC) structures: In these structures there are 8 atoms corresponding to 8 corners and there are no atoms on the faces or in the interior of the unit cell. Therefore, Nc = 8, Nf = 0 and Ni = 0 Using above eqn. we get, Nav = 8/8 + 0/2 + 0/1 = 1 15  
  • 16. 2. Body centered cubic (BCC) structures: In these structures, there are 8 atoms at the 8 corners and one atom in the interior, i.e. in the centre of the unit cell with no atoms on the faces. Therefore Nc = 8, Nf = 0 and Ni = 1 Using above eqn. we get, Nav = 8/8 + 0/2 + 1/1 = 2 16  
  • 17. 3.  Face Centered Cubic Structure (FCC): In these structures, there are 8 atoms at the 8 corners, 6 atoms at the centers of 6 faces and no interior atom Therefore Nc = 8, Nf = 6 and Ni = 0 Using above eqn. we get, Nav = 8/8 + 6/2 + 0/1 = 4 17  
  • 18. 4. Hexagonal Close Packed (HCP) Structures: In these structures, there are 12 corner atoms (6 at the bottom face and 6 at the top face), 2 atoms at the centers of the above two faces and 3 atoms in the interior of the unit cell. For hexagonal structures, the corner atoms are shared by 6 cells (3 from below and 3 from above), face atoms are shared by adjacent 2 cells and atoms in the interior are shared by only one cell. Therefore, in general the number of atoms per unit cell will be as: Nav = Nc / 6 + Nf / 2 + Ni / 1 Here Nc = 12, Nf = 2 and Ni = 3 Hence, Nav = 12 / 6 + 2 / 2 + 3 / 1 = 6 18  
  • 19. Co-­‐ordina&on  Number   Co-­‐ordinaBon  number  is  the  number  of  nearest  equidistant    neighboring  atoms  surrounding  an  atom  under  consideraBon   1.  Simple  Cubic  Structure:     Simple  cubic  structure  has  a  coordinaBon  number  of  6   19  
  • 20. 2.  Body  Centered  Cubic  Structure:     Body  centered  cubic  structure     has  a  coordinaBon  number  of  8   20  
  • 21. 3.  Face  Centered  Cubic  Structure:     Face  centered  cubic  structure  has  a  coordinaBon  number  of  12   21  
  • 22. 4.  Hexagonal  Close  Packed  Structure:     Hexagonal  close  packed  structure  has  a  coordinaBon  number  of  12   22  
  • 23. Stacking  Sequence  for  SC,  BCC,  FCC  and  HCP   •   Lace  structures  are  described  by  stacking  of  idenBcal  planes          of  atoms  one  over  the  other  in  a  definite  manner     •   Different  crystal  structures  exhibit  different  stacking  sequences   1.  Stacking  Sequence  of  Simple  Cubic  Structure:     Stacking  sequence  of  simple  cubic  structure  is  AAAAA…..since  the   second  as  well  as  the  other  planes  are  stacked  in  a  similar  manner   as  the  first  i.e.  all  planes  are  stacked  in  the  same  manner.           A   A   A   23  
  • 24. 2.    Stacking  Sequence  of  Body  Centered  Cubic  Structure:     •   Stacking  sequence  of  body  centered  cubic  structure  is  ABABAB….         •   The  stacking  sequence  ABABAB  indicates  that  the  second  plane          is  stacked  in  a  different  manner  to  the  first.       •   Any  one  atom  from  the  second  plane  occupies  any  one  intersBBal        site  of  the  first  atom.       •   Third  plane  is  stacked  in  a  manner  idenBcal  to  the  first  and  fourth          plane  is  stacked  in  an  idenBcal          manner  to  the  second  and  so  on.     A        This  results  in  a  bcc  structure.     B   A B   24  
  • 25. 3.    Stacking  Sequence  of  Face  Centered  Cubic  Structure:     •   Stacking  sequence  of  face  centered  cubic  structure  is  ABCABC….         •   The  close  packed  planes  are  inclined  at  an  angle  to  the  cube  faces          and  are  known  as  octahedral  planes     •   The  stacking  sequence  ABCABC…  indicates  that  the  second  plane          is  stacked  in  a  different  manner  to  the  first  and  so  is  the  third  from        the  second  and  the  first.  The  fourth  plane  is  stacked  in  a  similar          fashion  to  the  first   25  
  • 26. 26  
  • 27. 4.    Stacking  Sequence  of  Hexagonal  Close  Packed  Structure:         •   Stacking  sequence  of  HCP  structure  is  ABABAB…..     •   HCP  structure  is  produced  by  stacking  sequence  of  the            type  ABABAB…..in  which  any  one  atom  from  the  second          plane  occupies  any  one  intersBBal  site  of  the  first  plane.     •   Third  plane  is  stacked  similar  to  first  and  fourth  similar  to            second  and  so  on.   27  
  • 28. Atomic Packing Factor (APF) Atomic packing factor is the fraction of volume or space occupied by atoms in an unit cell. Therefore, APF = Volume of atoms in unit cell Volume of the unit cell Since volume of atoms in a unit cell = Average number of atoms/cell x Volume of an atom   APF = Average number of atoms/cell x Volume of an atom Volume of the unit cell 28  
  • 29. 1.  Simple  Cubic  Structures:     In  simple  cubic  structures,  the  atoms  are  assumed  to  be  placed  in   such  a  way  that  any  two  adjacent  atoms  touch  each  other.  If   a  is   the  lace  parameter  of  the  simple  cubic  structure  and   r  is  the   radius  of  atoms,  it  is  clear  from  the  fig  that:  r  =  a/2     APF = Average number of atoms/cell x Volume of an atom Volume of the unit cell = 1 x 4/3 π r3 = 4/3 π r3 = 0.52 a3 (2r)3 APF  of  simple  cubic  structure  is  0.52  or  52%   29  
  • 30. 2.  Body  Centered  Cubic  (BCC)  Structures:   In  body  centred  cubic  structures,  the  centre  atom  touches  the   corner  atoms  as  shown  in  fig.     If   a  is  the  lace  parameter  of  BCC  structure  and     r  is  the  radius  of  atoms,  we  can  write                                                            (DF)2    =  (DG)2  +  (GF)2   Now                                          (DG)2    =  (DC)2  +  (CG)2  and  DF  =  4r   Therefore,                        (DF)2    =  (DC)2  +  (CG)2  +  (GF)2     30  
  • 31.                                              (4r)2    =  a2    +  a2      +  a2   Therefore,                        r  =  a√3  /  4   APF  =  Average  number  of  atoms/cell  x  Volume  of  an  atom                                                                  Volume  of  the  unit  cell                                            2  x  4/3  π  (a√3  /  4)3            =        0.68                                                                  a3   APF  of  body  centered  cubic  structure  is  0.68  or  68%   31  
  • 32. 3.  Face  Centered  Cubic  (FCC)  Structures:                  In  face  centred  cubic  structures,  the  atoms  at  the  centre  of  faces    touch  the                      corner  atoms  as  shown  in  figure.                    If   a  is  the  lace  parameter  of  FCC  structure  and   r  is  the  atomic  radius                                                          (DB)2      =    (DC)2      +      (CB)2                                                    i.e.  (4r)2      =  a2  +  a2                        Therefore,  r  =  a  /  2√2   APF  =  Average  number  of  atoms/cell  x  Volume  of  an  atom                                                                  Volume  of  the  unit  cell                                            =      4  x  4  /  3  x  π  (a/2√2)3      =        0.74                                                                                      a3   APF  of  face  centered  cubic  structure  is  0.74  or  74%   32  
  • 33. 4.  Hexagonal  Close  Packed  (HCP)  Structures   The  volume  of  the  unit  cell  for  HCP  can  be  found  by  finding  out  the  area   of  the  basal  plane  and  then  mulBplying  this  by  its  height   This  area  is  six  Bmes  the  area  of     equilateral  triangle  ABC   Area  of  triangle  ABC  =  ½  a2  sin  60   Total  area  ABDEFG  =  6  x  ½  a2  sin  60                                                                          =  3  a2  sin  60   Now  volume  of  unit  cell  =  3  a2  sin  60  x  c                For  HCP  structures,  the  corner  atoms                are  touching  the  centre  atoms,  i.e.  atoms                  at  ABDEFG  are  touching  the  C  atom.                Therefore  a  =  2r  or  r  =  a  /  2   33  
  • 34. APF  =  Average  number  of  atoms/cell  x  Volume  of  an  atom                                                                  Volume  of  the  unit  cell                                                                      APF  =  6  x  4π/3  r3                                                                                          3  a2  sin  60  x  c                                                                                                          APF  =        6  x  4π/3  (a/2)3                                                                                                3  a2  sin  60  x  c                                                                    APF  =                  π  a                                                                                                3  c  sin  60     The  c/a  raBo  for  an  ideal  HCP  structure  consisBng  of  uniform  spheres  packed  as    Bghtly  together  as  possible  is  1.633.   Therefore,  subsBtuBng  c/a  =  1.633  and  Sin  60o  =  0.866  in  above  equaBon  we  get:   APF  =      π  /  3  x  1.633  x  0.899    =  0.74   APF  of  face  centered  cubic  structure  is  0.74  or  74%   34  
  • 35. Atomic  Packing  Factor   1.  Simple  cubic  structure:  0.52     2.  Body  centered  cubic  structure:  0.68   3.  Face  centered  cubic  structure:  0.74   4.  Hexagonal  close  packed  structure:  0.74     35  
  • 36. Crystallographic  Points,  Planes  and  DirecBons   1.  Point  Coordinates                      When  dealing  with  crystalline  materials  it  olen  becomes  necessary  to   specify  a  parBcular  point  within  a  unit  cell.                      The  posiBon  of  any  point  located  within  a  unit  cell  may  be  specified  in   terms  of  its  coordinates  as  fracBonal  mulBples  of  the  unit  cell  edge  lengths.   36  
  • 37. 37  
  • 38. 2.  Plane  Coordinates     1.  Find  out  the  intercepts  made  by  the  plane  at  the  three   reference  axis  e.g.  p,q  and  r.   2.  Convert  these  intercepts  to  fracBonal  intercepts  by  dividing   with  their  axial  lengths.  If  the  axial  length  is  a,  b  and  c  the   fracBonal  intercepts  will  be  p/a,  q/b  and  r/c.   3.   Find  the  reciprocals  of  the  fracBonal  intercepts.  In  the  above   case  a/p,  b/q  and  c/r.   4.  Convert  these  reciprocals  to  the  minimum  of  whole  numbers   by  mulBplying  with  their  LCM.   5.  Enclose  these  numbers  in  brackets  (parenthesis)  as  (hkl)                  Note:  If  plane  passes  through  the  selected  origin,  either  another   parallel  plane  must  be  constructed  within  the  unit  cell  by  an   appropriate  translaBon  or  a  new  origin  must  be  established  at  the   corner  of  the  unit  cell.     38  
  • 39. 1.   Intercepts:  p,q  and  r.   2.  FracBonal  intercepts:  p/a,  q/b  and  r/c.   3.   Reciprocals:  a/p,  b/q  and  c/r.   4.  Convert  to  whole  numbers   5.  Enclose  these  numbers  in                  brackets  (parenthesis)  as  (hkl)     39  
  • 40. Step  1  :    IdenBfy  the  intercepts  on  the     x-­‐  ,  y-­‐  and  z-­‐  axes.  In  this  case  the  intercept  on  the     x-­‐axis  is  at  x  =  1  (  at  the  point  (1,0,0)  ),  but  the  surface     is  parallel  to  the  y-­‐  and  z-­‐axes  so  we  consider  the     intercept  to  be  at  infinity  (  ∞  )  for  the  special  case     where  the  plane  is  parallel  to  an  axis.     The  intercepts  on  the  x-­‐  ,  y-­‐  and  z-­‐axes  are  thus     Intercepts  :        1  ,  ∞  ,  ∞     Step  2  :    Specify  the  intercepts  in  fracBonal  co-­‐ordinates     Co-­‐ordinates  are  converted  to  fracBonal  co-­‐ordinates  by  dividing  by  the  respecBve     cell-­‐dimension  -­‐  This  gives     FracBonal  Intercepts  :        1/1  ,  ∞/1,  ∞/1        i.e.        1  ,  ∞  ,  ∞     Step  3  :    Take  the  reciprocals  of  the  fracBonal  intercepts     This  final  manipulaBon  generates  the  Miller  Indices  which  (by  convenBon)  should     then  be  specified  without  being  separated  by  any  commas  or  other  symbols.     The  Miller  Indices  are  also  enclosed  within  standard  brackets  (….).     The  reciprocals  of  1  and  ∞  are  1  and  0  respecBvely,  thus  yielding     Miller  Indices  :      (100)  So  the  surface/plane  illustrated  is  the  (100)  plane  of  the   cubic  crystal.   40  
  • 41. Intercepts  :      1  ,  1  ,  ∞     FracBonal  intercepts  :      1  ,  1  ,  ∞   Reciprocal:  1,1,0   Miller  Indices  :      (110)     Intercepts  :      1  ,  1  ,  1     FracBonal  intercepts  :      1  ,  1  ,  1     Reciprocal:  1,1,1   Miller  Indices  :      (111)     41  
  • 42. Intercepts  :      ½    ,  1  ,  ∞     FracBonal  intercepts  :      ½  ,  1  ,  ∞     Reciprocal:  2,1,0   Miller  Indices  :      (210)     Intercepts  :      1/3    ,  2/3  ,  1     FracBonal  intercepts  :      1/3    ,  2/3  ,   1     Reciprocal:  3,  3/2,  1   Miller  Indices  :      (632)     42  
  • 43. Exercise   43  
  • 44. Exercise   44  
  • 45. Exercise   45  
  • 46. Exercise   46  
  • 47. Exercise   47  
  • 48. 48  
  • 49. If  the  plane  passes  through  the  origin,  the  origin     has  to  be  shiled  for  indexing  the  plane   49  
  • 50. 50  
  • 51. Miller  Indices  of  Planes  for  Hexagonal  Crystals     •   Crystal  Plane  in  HCP  unit  cells  is  commonly  idenBfied  by  using  four  indices        instead  of  three.     • The  HCP  crystal  plane  indices  called  Miller-­‐Bravis  indices  are  denoted  by  the        lepers  h,  k,  i  and  l  are  enclosed  in  parentheses  as  (hkil)     • These   four   digit   hexagonal   indices   are   based   on   a   coordinate   system   with   four   axes.   • The  three  a1,  a2  and  a3  axes  are  all  contained  within  a  single  plane      (called  the  basal  plane),  and  at  1200  angles  to  one  another.  The  z-­‐axis  is      perpendicular  to  the  basal  plane.     • The  unit  of  measurement  along  the  a1,  a2  and  a3  axes  is  the  distance          between  the  atoms  along  these  axes.     • The  unit  of  measurement  along  the  z-­‐  axis  is  the  height  of  the  unit  cell.   •   The  reciprocals  of  the  intercepts  that  a  crystal  plane  makes  with  the        a1,  a2  and  a3  axes  give  the  h,  k  and  I  indices  while  the  reciprocal  of  the        intercept  with  the  z-­‐axis  gives  the  index  l.   51  
  • 52. 52  
  • 53. 53  
  • 54. Miller Indices of Directions for Cubic Crystals •  A  vector  of  convenient  length  is  posiBoned  such  that  it          passes  through  the  origin  of  the  coordinate  system.     •   The  length  of  the  vector  projecBon  on  each  of  the  three  axes            is  determined.   •   These  three  numbers  are  mulBplied  or  divided  by  a  common          factor  to  reduce  them  to  the  smallest  integer  values.     •   The  three  indices,  not  separated  by  commas,        are  enclosed  in  square  brackets  [uvw]     •   If  a  negaBve  sign  is  obtained  represent          the  –ve  sign  with  a              bar  over  the  number   54  
  • 55. 55  
  • 56. For  direcBon  not  originaBng  from  origin  the  origin  has  to  be  shiled     56  
  • 57. Examples  of  direcBons  with  shil  of  origin   57  
  • 58. 58  
  • 59. Family  of  Symmetry  Related  Planes   _   (  1  1  0  )   (1  1  0)   _   (  1  0  1  )   (  1  0  1  )   _   (  0  1  1  )   (  0  1  1  )   {  1  1  0  }   {  1  1  0  }  =  Plane  (  1  1  0  )  and  all  other  planes  related    by   symmetry  to  (  1  1  0  )   59  
  • 60. Family  of  Symmetry  Related  DirecBons   [  0  0  1  ]   IdenBcal  atomic  density   IdenBcal  properBes   _   [  1  0  0  ]   〈  1  0  0  〉   [  0  1  0  ]   _   [  1  0  0  ]   [  0  1  0  ]   〈1  0  0〉=  [  1  0  0  ]  and  all  other   z _   [  0  0  1  ]   direcBons  related  to  [  1  0  0  ]   by  symmetry   y x 60  
  • 61. SUMMARY OF MEANINGS OF PARENTHESES q r s represents a point (hkl) represents a plane {hkl} represents a family of planes [hkl] represents a direction <hkl> represents a family of directions 61  
  • 62. Anisotropy  of  crystals   191.1  GPa   Young s  modulus   of  FCC  Cu   130.3  GPa   66.7  GPa   62  
  • 63. Anisotropy  of  crystals  (contd.)   Different  crystallographic   planes  have  different   atomic  density   And  hence   different   properBes   Si  Wafer  for   computers   63  
  • 64. Linear  and  Planar  DensiBes   Linear  Density   •   Linear  density  (LD)  is  defined  as  the  number  of  atoms  per              unit  length  whose  centers  lie  on  the  direcBon  vector        LD  =  number  of  atoms  centered  on  direcBon  vector                                                        length  of  direcBon  vector       The  [110]  linear  density  for   FCC  is:     LD110  =  2  atoms/4R  =  1/2R     64  
  • 65. Planar  Density     •   Planar  density  (PD)  is  defined  as  the  number  of  atoms  per         unit  area  that  are  centered  on  a  parBcular  crystallographic              plane   •     PD  =  number  of  atoms  centered  on  a  plane                                                                    area  of  plane       Planar  density  on  (110)  plane  in  a  FCC  unit  cell   •   Number  of  atoms  on  (110)  plane  is  2   •   Area  of  (110)  plane  (rectangular  secBon)  is        4R  (length)  x  2√2R  (height)  =  8R2√2        PD  =  2  atoms  /  8R2√2  =                          1  /  4R2√2       65  
  • 66. Planar  density  on  (100)  plane  in  a  Simple  Cubic   Structure:   •   Number  of  atoms  on  (100)  plane  is  1   •   Area  of  (100)  plane  (square  secBon)  is        a  x  a  =  a2        PD  =  1  atom  /  a2  =                    =    1  /  a2   Planar  density  on  (110)  plane  in  a   Simple  Cubic  Structure:   •   Number  of  atoms  on  (110)  plane  is  1   •   Area  of  (110)  plane  (rectangular   secBon)  is  √2a2      PD  =  1  atom  /  √2  a2  =                    =    1  /  √2  a2   66  
  • 67. Planar  density  on  (111)  plane  in  a   Simple  Cubic  Structure:   •   Number  of  atoms  on  (111)  plane  is   1/6  x  3  =  0.5   •   Area  of  (111)  plane  (triangle  DEF)  is        1/2  x  (√2a)  x  (0.866  x  √2a)  =  0.866a2        PD  =  0.5  atom  /  0.866a2  =                    =    0.577  /  a2   Planar  density  on  (100)  plane  in  a     Body  Centred  Cubic  Structure:   •   Number  of  atoms  on  (100)  plane   is  1   •   Area  of  (100)  plane  (square   secBon)  is  a  x  a  =  a2      PD  =  1  atom  /  a2  =  1  /  a2   67  
  • 68. Planar  density  on  (110)  plane  in  a  Body   Centered  Cubic  Structure:   •   Number  of  atoms  on  (110)  plane  is  1/4   x  4  +  1  =  2   •   Area  of  (110)  plane  (rectangle  AFGD)  is   a  x  √2a    =  √2a2          PD  =  2  atoms  /  √2a2  =                    =  √2    /  a2  =  1.414  /  a2   Planar  density  on  (111)  plane  in  a   Body  Centered  Cubic  Structure:   •   Number  of  atoms  on  (111)  plane  is   1/6  x  3  +  1  =  1.5   •   Area  of  (111)  plane  (triangle  DEG)  is   ½  x  √2a        √2a  sin60o    =  0.866  a2      PD  =  1.5  atoms  /  0.866a2  =                    =  1.732  /  a2   68  
  • 69. Voids  in  crystalline  structures     We have already seen that as spheres cannot fill entire space → the atomic packing fraction (APF) < 1 (for all crystals)   This implies there are voids between the atoms. Lower the PF, larger the volume occupied by voids.   These voids have complicated shapes; but we are mostly interested in the largest sphere which can fit into these voids   The size and distribution of voids in materials play a role in determining aspects of material behaviour → e.g. solubility of interstitials and their diffusivity   The position of the voids of a particular type will be consistent with the symmetry of the crystal   In the close packed crystals (FCC, HCP) there are two types of voids → tetrahedral and octahedral voids (identical in both the structures as the voids are formed between two layers of atoms)   The tetrahedral void has a coordination number of 4   The octahedral void has a coordination number 6 69  
  • 70. 70  
  • 71. Inters&&al  sites  /  voids   71  
  • 72. Tetrahedral  sites  in  HCP   Octahedral  sites  in  HCP   72  
  • 73. Voids:  Tetrahedral  and  Octahedral  Sites       •    Tetrahedral   and   octahedral   sites   in   a   close   packed   structure   can   be            occupied  by  other  atoms  or  ions  in  crystal  structures  of  alloys.       •   Thus,  recognizing  their  existence  and  their  geometrical  constrains        help  in  the  study  and  interpretaBon  of  crystal  chemistry.       •   The  packing  of  spheres  and  the  formaBon  of  tetrahedral  and            octahedral  sites  or  holes  are  shown  below.   73  
  • 74. 74  
  • 75. What is the radius of the largest sphere that can be placed in a tetrahedral void without pushing the spheres apart? To solve a problem of this type, we need to construct a model for the analysis. Use the diagram shown here as a starting point, and construct a tetrahedral arrangement by placing four spheres of radius R at alternate corners of a cube. •  What is the length of the face diagonal fd of this cube in terms of R? Since the spheres are in contact at the centre of each cube face, fd = 2 R. •  What is the length of the edge for such a cube, in terms of R? Cube edge length a = √2 R •  What is the length of the body diagonal bd of the cube in R? bd = √6 R •  Is the center of the cube also the center of the tetrahedral hole? Yes •  Let the radius of the tetrahedral hole be r, express bd in terms of R and r If you put a small ball there, it will be in contact with all four spheres. bd = 2 (R + r). r = (2.45 R) / 2 - R = 1.225 R - R = 0.225 R •  What is the radius ratio of tetrahedral holes to the spheres? r / R = 0.225 75  
  • 76. Derive the relation between the radius (r) of the octahedral void and the radius (R) of the atom in a close packed structure (Assume largest sphere in an octahedral void without pushing the parent atom) A sphere into the octahedral void is shown in the diagram. A sphere above and a sphere below this small sphere have not been shown in the figure. ABC is a right angled triangle. The centre of void is A.   Applying Pythagoras theorem.   BC2 = AB2 + AC2   (2R)2 + (R + r)2 + (R + r)2 = 2(R + r)2   4R2/2 = (R + r)2               2R2  =  (R  +  r)2     √2R  =  R  +    r     r  =  √2R  –  R  =  (1.414  –1)R r  =  0.414  R   76  
  • 77. Single  Crystal  and  Polycrystalline   Stages  of  solidificaBon  of  a  polycrystalline     material   Single  Crystal   77  
  • 78. silicon single crystal Micrograph of a polycrystalline stainless steel showing grains and grain boundaries 78  
  • 79. 79  
  • 81. Ceramic  Crystal  Structures   •   Ceramics  are  compounds  between  metallic  &  nonmetallic        elements  e.x.  Al2O3,  FeO,  SiC,  TiN,  NaCl   •   They  are  hard  and  briple   •   Typically  insulaBve  to  the  passage  of  electricity  &  heat     Crystal  Structures   •   Atomic  bonding  is  mostly  ionic  i.e.  the  crystal  structure  is      composed  of  electrically  charged  ions  instead  of  atoms.   •   The  metallic  ions,  or  caBons  are  posiBvely  charged  because        they  have  given  up  their  valence  electrons  to  the        nonmetallic  Ions  or  anions,  which  are  negaBvely  charged     81  
  • 83. •   In  a  ceramic  material  two  characterisBcs  of  the          component  ions  influence  the  crystal  structure:           1.  Charge  neutrality     2.  The  relaBve  sizes  of  the  caBons  and  anions   83  
  • 84.          1.  Charge  neutrality:  each  crystal  should  be                            electrically  neutral  e.x.  NaCl  and  CaCl2   84  
  • 85. 2.  The  relaBve  sizes  of  the  caBons  and  anions     •     Because  the  metallic  elements  give  up  electrons  when          Ionized,  caBons  are          smaller  than  anions         •     Hence  rc  /  ra  is  less  than  unity     •     Stable  ceramic  crystal  structures  form  when  those          anions  surrounding  a  caBon  are  all  in  contact  with  the          that  caBon   85  
  • 86. •   CoordinaBon  number  is  related  to  the  caBon-­‐anion  raBo     •   For  a  specific  coordinaBon  number  there  is  a  criBcal        or  minimum  rc  /  ra    raBo         86  
  • 87. 87  
  • 88. 88  
  • 89. PredicBng  Structure  of  FeO   89  
  • 90. 90  
  • 91. AX-­‐TYPE  STRUCTURES   •   Equal  number  of  caBons  and  anions  referred  to  as        AX  compounds     A  denotes  the  caBon  and   X  denotes  the  anion   rNa  =  0.102  nm     rCl  =  0.181  nm     r  Na  /  rCl        =  0.564         CaBons  prefer  octahedral  sites       Rock  Salt  Structure   91  
  • 92. AX-­‐TYPE  STRUCTURES  conBnued…   MgO  also  has  a  NaCl  type  structure   rO  =  0.140  nm     rMg  =  0.072  nm       rMg  /  rO        =  0.514         CaBons  prefer  octahedral  sites           92  
  • 94. AmXp-­‐TYPE  STRUCTURES   •   number  of  caBons  and  anions  are  different,            referred  to  as  AmXp  compounds   Calcium  Fluorite  Structure   94  
  • 95. AmBnXp-­‐TYPE  STRUCTURES   •     Ceramic  compound  with  more  than  two  types                    of  caBons,  referred  to  as  AmBnXp  compounds   95  
  • 96. Crystal  defects  (ImperfecBons  in  Solids)   •  Perfect order does not exist throughout a crystalline material on an atomic scale. All crystalline materials contain large number of various defects or imperfections. •  Defects or imperfections influence properties such as mechanical, electrical, magnetic, etc. •  Classification of crystalline defects is generally made according to geometry or dimensionality of the defect i.e. zero dimensional defects, one dimensional defects and two dimensional defects. 96  
  • 97. Crystal defects / imperfections are broadly classified into three classes: 1. Point  defect  (zero  dimensional  defects)              Vacancy,                                          Impurity  atoms  (  subs&tu&onal    and  inters&&al)              Frankel  and  Scho]ky  defect       2.  Line  defect  (one  dimensional  defects)            Edge  disloca&on            Screw  disloca&on,              Mixed  disloca&on       3.  Surface  defects  or  Planer  defects  (two  dimensional   defects)                Grain  boundaries              Twin  boundary                Stacking  faults   97                
  • 99. Vacancy   •  If an atom is missing from its regular site, the defect produced is called a vacancy •  All crystalline solids contain vacancies and their number increases with temperature •  The equilibrium concentration of vacancies Nv for a given quantity of material depends on & increases with temperature according to Where: N is the total number of atomic sites Qv is the energy required for the formation of a vacancy T is the absolute temperature & k is the gas or Boltzmann s constant i.e. 1.38 x 10-23 J/atom-K or 8.62 X 10-5 eV/atom-K 99  
  • 100. 100  
  • 101. Vacancies aid in the movement (diffusion) of atoms 101  
  • 102.  Impurity  atoms  (  subs&tu&onal    and  inters&&al)   102  
  • 103. •  Impurity point defects are of two types 1. Substitutional 2. Interstitial •  For substitutional, solute or impurity atoms replace or substitute for the host atoms •  For interstitial, solute or impurity atoms fill the void or interstitial space among the host atoms •  Both the substitutional and interstitial impurity atoms distort the crystal lattice affecting the mechanical and electrical / electronic properties 103  
  • 104. •  Impurity atoms generate stress in the lattice by distorting the lattice •  The stress is compressive in case of smaller substitutional atom and tensile in case of larger substitutional atom •  These stresses act as barriers to movement of dislocations and thus improve the strength / hardness of a material •  These stresses also act as barriers to the movement of electrons and lower the electrical conductivity (increases resistivity) of the material 104  
  • 105.  Frankel  and  Scho]ky  defects     105  
  • 106. •  Frenkel and Schottky defects occur in ionic solids like ceramics •  An atom may leave its regular site and may occupy nearby interstitial site of the matrix giving rise to two defects simultaneously i.e. one vacancy and the other self interstitial. These two defects together is called a Frenkel defect. This can occur only for cations because of their smaller size as compared to the size of anions. •  When cation vacancy is associated with an anion vacancy, the defect is called Schottky defect. Schottky defects are more common in ionic solids because the lattice has to maintain electrical neutrality 106  
  • 107. 2. Line defects DislocaBons     •   A  missing  line  or  row  of  atoms  in  a  regular  crystal            lace  is  called  a  dislocaBon   •   DislocaBon  is  a  boundary  between  the  slipped  region          and  the  unslipped  region  and  lies  in  the  slip  plane     •   Movement  of  dislocaBon  is  necessary  for  plasBc            deformaBon   •   There  are  mainly  two  types  of  dislocaBons  (a)  Edge          dislocaBons  and  (b)  Screw  dislocaBons   107  
  • 108. Edge Dislocation DislocaBon  line  and  b  are  perpendicular  to  each  other   108  
  • 109. Movement  of  edge  dislocaBon   109  
  • 110. ElasBc  stress  field  responsible  for  electron  scapering  and    increase  in  electrical  resisBvity   lace  strain  around   dislocaBon   110  
  • 111. Screw Dislocation DislocaBon  line  and  b  are  parallel  to  each  other   111    
  • 112. Movement of Screw Dislocation 112  
  • 114. Mixed Dislocations By  resolving,  the  contribuBon    from  both  types  of    dislocaBons  can  be    determined   114  
  • 115. DislocaBons     as  seen  under   Transmission   Electron  Microscope     (TEM)   115  
  • 116. 3. Surface defects Grain  Boundary   •  Grain boundary is a defect which separates grains of different orientation from each other in a polycrystalline material. •  When this orientation mismatch is slight, on the order of a few degrees (< 15 degrees) then the term small- (or low- ) angle grain boundary is used. When the same is more than 15 degrees its is know as a high angle grain boundary. •  The total interfacial energy is lower in large or coarse-grained materials than in fine-grained ones, since there is less total boundary area in the former. •  Mechanical properties of materials like hardness, strength, ductility etc are influenced by the grain size. •  Grains grow at elevated temperatures to reduce the total boundary energy. 116  
  • 117. 117  
  • 118. Coarse and fine grain structure Grain boundaries acting as barriers to the movement of dislocations Deformation of grains during 118   cold working (cold rolling in this case)
  • 119. Twin  Boundary   Twin  boundary   Atoms  on  one  side  of  the  boundary  are  located  in     Mirror  image  posiBons  of  the  atoms  on  the  other  side   119  
  • 120. A twin boundary is a special type of grain boundary across which there is a specific mirror lattice symmetry; that is, atoms on one side of the boundary are located in mirror-image positions of the atoms on the other side. The region of material between these boundaries is appropriately termed a twin. Twins result from atomic displacements that are produced from applied mechanical shear forces (mechanical twins), and also during annealing heat treatments following deformation (annealing twins). Twinning occurs on a definite crystallographic plane and in a specific direction, both of which depend on the crystal structure. Annealing twins are typically found in metals that have the FCC crystal structure, while mechanical twins are observed in BCC and HCP metals. Twins contribute to plastic deformation in a small way 120  
  • 121. Stacking fault •   Occurs  when  there  is  a  flaw  in  the  stacking  sequence   •   Stacking  fault  results  from  the  stacking  of  one  atomic  plane  out  of          sequence  on  another  and  the  lace  on  either  side  of  the  fault  is          perfect   •   BCC  and  HCP  stacking  sequence:  ABABABAB……      with  stacking  fault:  ABABBABAB……or  ABABAABABAB……..   •   FCC  stacking  sequence:  ABCABCABC….      with  stacking  fault:  ABCABCABABCABC……   Stacking  fault   FCC Stacking 121  
  • 123. Principles  of  Alloy  FormaBon   Solid  Solu&on:     •   A  homogeneous  crystalline  phase  that  contains  two  or          more  chemical  species   •   It  is  an  alloy  in  which  the  atoms  of  solute  are  distributed            in  the  solvent  and  has  the  same  structure  as  that  of  the          solvent       Types  of  Solid  Solu&ons:    1.  IntersBBal  solid  soluBon,  ex.  Fe-­‐C   IntersBBal  Solid  Soln    2.  SubsBtuBonal  solid  soluBon,  ex.  Au-­‐Cu     123   SubsBtuBonal  Solid  Soln  
  • 124. 1.  Inters&&al  Solid  Solu&on  Alloys   •   Parent  metal  atoms  are  bigger  than  atoms  of  alloying  metal.   •   Smaller  atoms  fit  into  spaces,  (IntersBces),  between  larger          atoms.   124  
  • 126. 2.  Subs&tu&onal  Solid  Solu&on  Alloys   •   Atoms  of  both  metals  are  of  almost  similar  size.   •   Direct  subsBtuBon  takes  place.   126  
  • 127. Some Solid Solution Alloys Alloy   Unit  Cell  Structure   Copper  -­‐  Nickel   FCC   Copper  -­‐  Gold   FCC   Gold  -­‐  Silver   FCC   Nickel  -­‐  PlaBnum   FCC   Molybdenum  -­‐  Tungsten   BCC   Iron  -­‐  Chromium   BCC   127  
  • 128. Hume-­‐Rothery s  Rules  of  Solid  Solubility   1.  Atomic  size  factor     2.  Crystal  structure  factor     3.  ElectronegaBvity  factor     4.  RelaBve  valency  factor   128  
  • 129. 1.  Atomic  size  factor:  If  the  atomic  sizes  of  solute  and  solvent   differ  by  less  than  15%,  it  is  said  to  have  a  favourable  size   factor  for  solid  soluBon  formaBon.  If  the  atomic  size   difference  exceeds  15%  solid  solubility  is  limited         2.  Crystal  Structure  factor:  Metals  having  same  crystal  structure   will  have  greater  solubility.  Difference  in  crystal  structure   limits  the  solid  solubility   +   A  (fcc)   B  (fcc)   AB  solid  solu&on  (fcc)   129  
  • 130. 3.  Electronega&vity  factor:   The  solute  and  solvent  should  have  similar  electronegaBvity.  If   the  electronegaBvity  difference  is  too  great,  the  metals  will  tend   to  form  compounds  instead  of  solid  soluBons.    If  electronegaBvity  difference  is  too  great  the  highly  electroposiBve    element  will  lose  electrons,  the  highly  electronegaBve  element  will    acquire  electrons,  and  compound  formaBon  will  take  place.     4.  Rela&ve  Valency  factor:  Complete  solubility  occurs  when  the   solvent  and  solute  have  the  same  valency.   If  there  is  shortage  of  electrons  between  the  atoms,  the  binding     between  them  will  be  upset,  resulBng  in  condiBons  unfavourable  for   solid  solubility       130  
  • 131. 131  
  • 132. Phase  Diagrams   Phase  diagrams:   Phase   or   equilibrium   diagrams   are   diagrams   which   indicate   the   phases   exisBng   in   the   system   at   any   temperature,   pressure   and   composiBon.     Why  study  Phase  Diagrams?   •   Used  to  find  out  the    amount  of  phases  exisBng  in  a  given  alloy            with  their  composiBon  at  any  temperature.     •   From  the  amount  of  phases  it  is  possible  to  esBmate  the            approximate  properBes  of  the  alloy.     •   Useful  in  design  and  control  of  heat  treatment  procedures     132  
  • 133. Terms:   System:   A   system   is   that   part   of   the   universe   which   is   under   consideraBon.     Phase:  A  phase  is  a  physically  separable  part  of  the  system   with  disBnct  physical  and  chemical  properBes.  (In  a  system   consis6ng   of   ice   and   water   in   a   glass   jar,   the   ice   cubes   are   one   phase,   the   water   is   a   second   phase,   and   the   humid   air   over   the   water   is   a   third   phase.   The   glass   of   the   jar   is   another  separate  phase.)     Variable:  A  parBcular  phase  exists  under  various  condiBons   of   temperature,   pressure   and   concentraBon.   These   parameters  are  called  as  the  variables  of  the  phase   Component:     The   elements   present   in   the   system   are   called   as  components.  For  ex.  Ice,  water  or  steam  all  contain  H2O   so  the  number  of  components  is  2,  i.e.  H  and  O.   133  
  • 134. Gibb s  Phase  Rule:   The  Gibb s  phase  rule  states  that  under  equilibrium  condiBons,     the  following  relaBon  must  be  saBsfied:                                                                          P  +    F  =  C  +  2   Where,   P  =  number  of  phases  exisBng  in  a  system  under  consideraBon.   F  =  degree  of  freedom  i.e.  the  number  of  variables  such  as                temperature,  pressure  or  composiBon  (concentraBon)  that  can                be  changed  independently  without  changing  the  number  of                phases  exisBng  in  the  system.   C  =  number  of  components  (i.e.  elements)  in  the  system,  and     2  =  represents  any  two  variables  out  of  the  above  three  i.e.                temperature  pressure  and  composiBon. 134  
  • 135. Most   of   the   studies   are   done   at   constant   pressure   i.e.   one   atmospheric   pressure   and   hence   pressure   is   no   more   a   variable.  For  such  cases,  Gibb s  phase  rule  becomes:                                                                                                                                                              P  +    F  =  C  +  1     In   the   above   rule,   1   represents   any   one   variable   out   of   the   remaining  two  i.e.  temperature  and  concentraBon.       Hence,  Degree  of  Freedom  (F)  is  given  by        F  =  C  –  P  +  1     135  
  • 136. ApplicaBon  of  Gibbs  Phase  Rule   •   C   At  point  A   P  =  1,  C  =  2   F  =  C  –  P  +  1   F  =  2  –  1  +1   F  =  2   The  meaning  of  F  =  2  is  that  both  temperature   and  concentraBon  can  be  varied  independently   without  changing  the  liquid  phase  exisBng  in     the  system     At  point  C   At  point  B   P  =  1,  C  =  2   P  =  2,  C  =  2   F  =  C  –  P  +  1   F  =  C  –  P  +  1   F  =  2  –  1  +1   F  =  2  –  2  +1   F  =  2   F  =  1   The  meaning  of  F  =  2  is  that  both  temperature   The  meaning  of  F  =  1  is  that  any  one  variable   and  concentraBon  can  be  varied  independently   out  of  temperature  and  composiBon  can  be      without  changing  the  liquid  phase  exisBng  in     changed  independently  without  altering  the     the  system   liquid  and  solid  phases  exisBng  in  the  system   136    
  • 137. Types  of  Phase  Diagrams:     •   Unary  phase  diagram   •   Binary  phase  diagram   •   Ternary  phase  diagram   137  
  • 138. 1.  Unary  Phase  diagram  (one  component)     The   simplest   phase   diagrams   are   pressure-­‐temperature   diagrams   of   a   single   simple   substance,   such   as   water.   The   axes  correspond  to  the  pressure  and  temperature.     138  
  • 139. 2.  Binary  Phase  diagram  (two  components)     •   A  phase  diagram  plot  of    temperature  against  the            relaBve  concentraBons  of  two  substances  in  a  binary              mixture  called  a  binary  phase  diagram   •   Types  of  binary  phase  diagrams:    1.  Isomorphous    2.  EutecBc    3.  ParBal  EutecBc     139  
  • 140. 3.  Ternary  Phase  diagram  (three  components)     •   A  ternary  phase  diagram  has  three  components.         •   It  is  three  dimensional  put  ploped  in  two  dimensions  at            constant  temperature   •   Stainless  steel  (Fe-­‐Ni-­‐Cr)  is  a  perfect  example  of  a  metal  alloy          that  is  represented  by  a  ternary  phase  diagram.     140  
  • 141. Binary  phase  diagram   The  binary  phase  diagram  represents  the  concentraBon  (composiBon)   along  the  x-­‐axis  and  the  temperature  along  the  y-­‐axis.  These  are   ploped  at  atmospheric  pressure  hence  pressure  is  constant  i.e.  1  atm.   pressure.  These  are  the  most  widely  used  phase  diagrams.     Types  of  binary  phase  diagrams:   • Binary  isomorphous  system:  Two  metals  having  complete  solubility   in  the  liquid  as  well  as  the  solid  state.   • Binary  eutecBc  system:  Two  metals  having  complete  solubility  in  the   liquid  state  and  complete  insolubility  in  the  solid  state.   • Binary  parBal  eutecBc  system:  Two  metals  having  complete  solubility   in  the  liquid  state  and  parBal  solubility  in  the  solid  state.   • Binary  layer  type  system:  Two  metals  having  complete  insolubility  in   the  liquid  as  well  as  in  the  solid  state.   141  
  • 142. Cooling  curve  for  Pure  Metal  (one  component)   142  
  • 143. Cooling  curve  for  an  alloy  /  solid  soluBon    (two  components)   143  
  • 144. 144  
  • 145. Plong  of  Phase  Diagrams   145  
  • 146. Binary  isomorphous  system:     • These  phase  diagrams  are  of  loop  type  and  are  obtained  for        two  metals  having  complete  solubility  in  the  liquid  as  well   as          solid  state.   •   Ex.:  Cu-­‐Ni,  Au-­‐Ag,  Au-­‐Cu,  Mo-­‐W,  Mo-­‐Ti,  W-­‐V.         146  
  • 147. Lever  rule   Finding  the  amounts  of  phases  in  a  two  phase  region  :   1.  Locate  composiBon  and  temperature  in  phase  diagram   2.  In  two  phase  region  draw  the  Be  line  or  isotherm   3.  FracBon  of  a  phase  is  determined  by  taking  the  length    of  the   Be  line  to  the  phase  boundary  for  the  other  phase,    and  dividing   by  the  total  length  of  Be  line     147  
  • 148. %  of  Solid  =  LO  /  LS  X  100=  (Wo-­‐Wi)  /  (Ws-­‐Wi)  X  100     %  of  Liquid  =  OS  /  LS  X  100=  (Ws-­‐Wi)  /  (Ws-­‐Wi)  X  100   or  simply  %  Liquid  =  100  -­‐  %  of  Solid  or  vice  versa     148  
  • 149. Development  of  Microstructure  during  slow  cooling  in     isomorphous  alloys   149  
  • 150. ProperBes  of  alloys  in  Isomorphous  systems     with  variaBon  in  composiBon     (a)  Phase diagram of the Cu-Ni alloy system. Above the liquidus line only the liquid phase exists. In the L + S region, the liquid (L) and solid (S) phases coexist whereas below the solidus line, only the solid phase (a solid solution) exists. (b) The resistivity of the Cu-Ni alloy as a Function of Ni content (at.%) at room temperature 150  
  • 151. 151  
  • 152. Binary  EutecBc  System:       These  diagrams  are  obtained  for  two  metals  having  complete   solubility  (i.e.  miscibility)  in  the  liquid  state  and  complete   insolubility  in  the  solid  state.   Examples:  Pb-­‐As,  Bi-­‐Cd,  Th-­‐Ti,  and  Au-­‐Si.       152  
  • 153. What  is  a  EutecBc?     •   A  eutec6c  or  eutec6c  mixture  is  a  mixture  of  two  or  more  phases        at  a  composiBon  that  has  the  lowest  melBng  point   •   EutecBc  ReacBon:      Liquid    ↔    Solid  A  +  Solid  B   153  
  • 154. Cooling  Curves  in  EutecBc  System   154  
  • 155. Plong  of  EutecBc  Phase  Diagrams   155  
  • 156.    Binary  Par&al  Eutec&c  System   These  diagrams  are  obtained  for  two  metals  having  complete     solubility  (i.e.  miscibility)  in  the  liquid  state  and  parBal  solubility     in  the  solid  state.   Examples:  Pb-­‐Sn,  Ag-­‐Cu,  Sn-­‐Bi,  Pb-­‐Sb,  Cd-­‐Zn  and  Al-­‐Si.     156  
  • 157. 157  
  • 158. Development  of  microstructure  in  binary  par&al  eutec&c  alloys     during  equilibrium  cooling   1.  SolidificaBon  of  the  eutecBc  composiBon   158  
  • 159. 2.  SolidificaBon  of  the  off  -­‐  eutecBc  composiBon   159  
  • 160. 3.  SolidificaBon  of  composiBons  that  range  between  the  room   temperature  solubility  limit  and  the  maximum  solid  solubility  at   the  eutecBc  temperature   160  
  • 161. Uses  of  Eutec&c  /  Par&al  Eutec&c  Alloys     Alloys  of  eutecBc  composiBons  have  some  specific  properBes     which  make  them  suitable  for  certain  applicaBons:   • Since  they  fuse  at  constant  temperature,  they  are  used  for        electrical  and  thermal  fuses.   • They  are  used  as  solders  due  to  their  lower  melBng  temperature.   • Since  eutecBc  alloys  have  low  melBng  points,  some  of  them  are        used  coaBngs  by  spraying  techniques   • Since  they  melt  at  constant  temperature  they  can  be  used  for          temperature  measurement.   •   Majority  of  the  eutecBc  alloys  are  superplasBc  in  character.   SuperplasBcity  is  the  phenomenon  by  which  an  alloy  exhibits  large   extension  (ducBlity)  when  deformed  with  certain  rate  at  some   temperature.  The  alloy  behaves  like  plasBc  and  can  be  formed  into   many  shapes. 161  
  • 162. The  Iron  –  Carbon  System   Allotrophic  TransformaBons  in  Iron   162  
  • 163. Iron  –  Carbon  Phase  Diagram   163  
  • 164. Phases  in  Iron-­‐Carbon  Phase  Diagram   1.  Ferrite:  Solid  soluBon  of  carbon  in  bcc  iron   2.  Austenite:  Solid  soluBon  of  carbon  in  fcc  iron   3.  δ-­‐iron:  Solid  soluBon  of  carbon  in  bcc  iron   4.  Cemen&te  (Fe3C):  Intermetallic  compound  of  iron     and  carbon  with  a  fixed  carbon  content  of  6.67%  by  wt.   5.  Pearlite:  It  is  a  two  phased  lamellar  (or  layered)   structure  composed  of  alternaBng  layers  of  ferrite  and   cemenBte       164  
  • 165. Austenite   Ferrite  and    δ-­‐iron   Cemen&te   165  
  • 166. 166  
  • 167. The  iron-­‐carbon  system  exhibits  three  important   transformaBons  /  reacBons  as  described  below:   Eutectoid  Reac&on:                                                              Solid1  ↔  Solid2  +  Solid3                                            Austenite  ↔  Ferrite  +  CemenBte     Eutec&c  Reac&on:                                            Liquid  ↔  Solid1  +  Solid2                                            Liquid  ↔  Austenite  +  CemenBte     Peritec&c  Reac&on:                                                                      Solid1  +  Liquid  ↔  Solid2                                                                    δ-­‐iron  +    Liquid  ↔  Austenite       167  
  • 168. What  is  Pearlite?   Pearlite  is  a  two  phased  lamellar  (or  layered)  structure  composed     of  alternaBng  layers  of  ferrite  and  cemenBte  that  occurs  in  some     steels  and  cast  irons     100%  pearlite  is  formed  at  0.8%C  at  727oC  by  the  eutectoid  reacBon  /   PearliBc  transfromaBon   Eutectoid  Reac&on:                        Solid1  ↔  Solid2  +  Solid3      Austenite  ↔  Ferrite  +  CemenBte   168  
  • 169. Development  of  microstructures  in  steel  during     slow  cooling   Eutectoid  Steel   169  
  • 172. Non-­‐Equilibrium  Cooling   •   Non-­‐equilibrium  cooling  leads  to  shil  in  the  transformaBon      temperatures  that  appear  on  the  phase  diagram   •   Leads  to  development  of  non-­‐equilibrium  phases  that  do  not        appear  on  the  phase  diagram       172