Apache HDFS, the file system on which HBase is most commonly deployed, was originally designed for high-latency high-throughput batch analytic systems like MapReduce. Over the past two to three years, the rising popularity of HBase has driven many enhancements in HDFS to improve its suitability for real-time systems, including durability support for write-ahead logs, high availability, and improved low-latency performance. This talk will give a brief history of some of the enhancements from Hadoop 0.20.2 through 0.23.0, discuss some of the most exciting work currently under way, and explore some of the future enhancements we expect to develop in the coming years. We will include both high-level overviews of the new features as well as practical tips and benchmark results from real deployments.