SlideShare a Scribd company logo
1 of 59
Download to read offline
BIOPROCESOS
INGENIERÍABIOQUÍMICA
SÉPTIMO NIVEL
Patricio Orozco Freire
MSc Plant Genetic Manipulation
Marzo – Septiembre 2017
Introducción a los bioprocesos
 Un bioproceso es cualquier reacción química o física de un sustrato que
usa organismos o microorganismos vivos, subcomponentes celulares o
metabolitos secundarios (por ejemplo bacterias, levaduras, enzimas,
cloroplastos, etc.) como intermediarios de la reacción para obtener los
cambios físicos o químicos deseados en un proceso generando varios
subproductos y biomasa.
Otras definiciones
 La bioingeniería o Ingeniería de Bioprocesos Industriales es una
rama interdisciplinaria que integra los conocimientos químicos,
biológicos y principios tradicionales de la ingeniería, con el fin de
solucionar diversos problemas a nivel de producción, salud y
energía
 Trata del manejo de los equipos y los procesos que mediante la
propagación de pequeños seres vivos, se pueden generar
productos interesantes para el ser humano (antibióticos, alimentos,
bebidas, enzimas, productos industriales obtenidos por
fermentación, cultivos celulares, tisulares y parenquimáticos)
 Incluye diferentes disciplinas, como la ingeniería bioquímica, la
ingeniería biomédica, la ingeniería de procesos biológicos, la
ingeniería de biosistemas, entre otras
BIOTRANSFORMACIÓN
• Son los procesos en los que los sustratos naturales o sintéticos
son modificados por medio de una ACTIVIDAD ENZIMÁTICA
Elaboración de Cerveza
¿Cómo se denomina a este
bioproceso?
¿Cómo se denomina a este
bioproceso?
Fermentación alcohólica
 La fermentación alcohólica, también conocida como,
fermentación etílica, o del etanol, es un proceso de tipo
biológico, en el cual se lleva a cabo una fermentación sin
presencia de oxígeno. Este tipo de fermentación se debe a las
actividades de ciertos microorganismos, los cuales se
encargan de procesar azúcares, como la glucosa, la fructosa,
etc. (hidratos de carbono), dando como resultado un alcohol a
modo de etanol, CO2 (gas) y ATP (adenosín trifosfato),
moléculas que son utilizadas por los propios microorganismos
en sus metabolismos energéticos.
 Numerosos hongos, bacterias, algas y algunos protozoos,
fermentan azúcares, transformándolos en etanol y CO2.
Finalidad de la fermentación
alcohólica
• La fermentación alcohólica, al igual que otro tipo de
fermentaciones, como es el caso de la fermentación láctica,
es de gran utilidad para el hombre, pues por ejemplo, la
fermentación alcohólica llevada a cabo por las levaduras, sirve
para la fabricación de bebidas alcohólicas (como el vino o la
cerveza), y el CO2 procedente de la fermentación, es utilizado
para hacer crecer el pan y otros alimentos.
¿Cuál es la levadura utilizada
para elaborar cerveza?
Saccharomyces cerevisiae
Desde la Antigüedad
• “ La fermentación alcohólica es utilizada desde antiguo para
realizar productos como la cerveza o el vino. Los griegos
otorgaban el descubrimiento de este proceso al dios Dionisio.
Y algunos procesos similares, como la destilación de alcohol,
se llevaban a cabo ya en el año 1150. Sin duda, dichos
procesos fueron esenciales para el desarrollo de la alquimia
en la Edad Media ”
EN LA ACTUALIDAD
• Hoy en día existen bioprocesos con usos diversos en la
industria, como por ejemplo:
• La producción de cosméticos,
• Productos de limpieza,
• Biocombustibles,
• Pesticidas biológicos,
• Vacunas recombinantes,
• Enzimas para la industria,
• Fármacos: antibióticos, proteínas terapéuticas
• Biorremediación,
• Biomasa, etc.
VIDEO DE CARNE
DE LABORATORIO
BIOPRODUCTOS MICROALGAS
1. Las microalgas son consideras una fuente
prometedora de nuevos Bioproductos: son una
fuente más sustentable de ácidos grasos
(omega 3) que el aceite de pescado y una
fuente tan poderosa de antioxidantes como
los carotenoides. Así mismo son una fuente
natural rica en antioxidantes, los cuales las
protegen de radicales libres generados durante
la fotosíntesis
http://nopr.niscair.res.in/bitstream/123456789
/42258/1/IJMS%2046%287%29%201239-
1244.pdf
2. Las microalgas son la única
fuente de biocombustible no
emisora de carbono (huella
ecológica cero) que tiene el
potencial de sustituir una parte
significativa de nuestra demanda
de combustible sin influenciar
negativamente a la agricultura
para la producción de alimento
3. El tratamiento de aguas residuales
usando microalgas es más eficiente
energéticamente que las tecnologías de
tratamiento de aguas residuales que se
utilizan en la actualidad. En lugar de
remover nutrientes valiosos esta técnica
permite que los nutrientes puedan ser
reciclados a biomasa que puede ser usada
como fuente de alimento para animales,
energía o material de construcción para la
industria química.
http://www.sciencedirect.com/science/art
icle/pii/S0196890410002207
http://www.sciencedirect.com/sci
ence/article/pii/S09596526150070
39
CHALLENGES
 El avance de los BIOPROCESOS se ha venido dando gracias al
continuo desarrollo de otras ciencias que apoyan y en conjunto al
ser interdisciplinarias intervienen para el desarrollo de nuevas
tecnologías.
 Microbiología, bioquímica, fisiología, genética, biología molecular.
 Herramientas de la biotecnología moderna: DNA recombinante,
fusión celular (híbridos somáticos, sexuales), gene probes, cultivo de
tejidos animales y vegetales.
 Han permitido la creación de medicinas sofisticadas, el cultivo de
tejidos humanos y órganos, biochips para una nueva era en la
computación, pesticidas compatibles con el ambiente y poderosos
microorganismos que degradan contaminantes.
 Sin embargo estos nuevos productos y procesos pueden ser
desarrollados parcialmente en el laboratorio y algunos de
estos llevan muchos años para finalizarlos, como por ejemplo
los fármacos.
 Se requiere de habilidades en ingeniería y como se dice en
inglés el “know how”.
 Los sistemas biológicos pueden ser complejos y muy difíciles
de controlar.
 Hay que apoyarse de la ingeniería: diseño y operación de
bioreactores, equipos de recuperación de los productos,
desarrollo de sistemas para la automatización y control, etc.
REGENERACIÓN DE TEJIDOS Y ÓRGANOS HUMANOS
ETAPAS EN EL DESARROLLO DE LOS
BIOPROCESOS
 En general el desarrollo de un bioproceso está comprendido de
las siguientes etapas:
 UPSTREAM PROCESS: elección de los microorganismos, repique de
cepas, medio de cultivo (estéril), preparación del inóculo, etc.
 PROCESS: BIOCATALIZADOR: enzimas, virus, bacterias, levaduras,
hongos filamentosos, algas, células de tejidos vegetales y animales.
BIORREACTOR: elección del tipo y operación del biorreactor,
automatización y control, nutrición y metabolismo, estequiometria,
cinética, etc.
 DOWNSTREAM PROCESS: purificación y recuperación del producto.
Separación sólido-líquido, ruptura celular, solubilización, extracción
en dos fases, precipitación selectiva, separación con membranas,
cromatografía. ACONDICIONAMIENTO FINAL: secado, cristalización,
estabilización en medio líquido
PLANT SEEDSAS GREENFACTORIESFOR
RECOMBINANT THERAPEUTICPROTEINS
 “Molecular farming has been considered as one of the
promising approaches for the production of recombinant
proteins (RP) including not only therapeutic compounds to
treat human or animal pathologies but also proteins used in
the agriculture and industry areas” (Xu et al., 2012).”
Benefits to use plants
 Plants are well known because of their capacity to synthetize high
protein levels and also great amounts of biomass just using the sun
energy which is exploited through photosynthesis (Paul and Ma, 2011).
 Post-translational machinery required for performing all of the
necessary modifications to synthetize many eukaryotic proteins, giving
remarkable flexibility in bio-production platforms (Pogue et al., 2010; Xu
et al., 2012).
 Plants cannot suffer human or animal diseases or carry foreign
pathogens in their system; therefore, synthesized proteins have low risk
of contamination, providing more safety to patients. On the other side,
this not occurs in mammalian and bacterial systems (Shih and Doran,
2009).
 Biosafety is imperative when RP are commercialized because it helps to
reduce the purification costs, minimizes the decontamination processes
and avoid possible patient demands (Sharma and Sharma, 2009; Xu et
al., 2012).
Seed platformsystem advantages
 “Seed platform provides several advantages, for example,
higher protein yields and stable storage compared with other
systems. It is estimated that in the near future, there will be a
tremendous demand for recombinant therapeutic proteins
(Mett et al., 2008).”
 Several antibodies, vaccine antigens and other therapeutic
proteins can be accumulated in seeds showing high yields,
stability and functionality during long periods of time, under
room temperature (Lau and Sun, 2009).
Disadvantages
 “Despite the advantages that transgenic plant systems provide
in the production of RP, some safety and regulatory directions
have been applied, allowing the use of this technology just
inside contained greenhouses. This is an important concern
because the cost of the downstream phase is directly related
with the upstream process. Also, the scale-up costs are
affected being more expensive (Wilken and Nikolov, 2012).”
Current status of plan molecular
farming
 A diverse number of RP have been effectively developed in
plants, including: vaccine antigens, antibodies, enzymes and
diagnostic proteins (Table 1) (Ma et al.,2003).
Lau and Sun (2009) confirmed the commercialization of eleven non-pharmaceutical
proteins in the market; however, they also affirmed that some plant pharmaceutical
productswereinthefinalstagesofdevelopment(Table2).
Recombinanttherapeutic proteins
 Various studies have reported the expression of different
mammalian proteins in plants such as vaccines antigens, blood
proteins, growth hormones, growth factors, diagnostic
proteins including therapeutic enzymes and monoclonal
antibodies (mAbs), auxiliary proteins such as Factor VIII for
hemophiliacs or insulin for the treatment of diabetic people,
immune system stimulators or suppressants such as cytokines,
interleukins and interferons (Sharma and Sharma, 2009; Xu et
al., 2012).
 The yield of the RP obtained can vary significantly from 0.01%
of total soluble protein and 0.1 μg/L, up to 25% of TSP and
247 mg/L. There are several strategies to improve the yield
(Xu et al., 2012).
Translational modifications
 There are certain conditions that these proteins require to
have an effective bio-activity in humans including: protein
folding, disulfide bond development, glycosylation, and
subunit assembly; however plants have demonstrated the
capacity to perform these changes through post-translational
modifications (PTMs) ability.
 The second generation of RP in plant systems has been
focused in research and exploits all of the benefits provided by
PTMs, looking for the creation of new biosimilars and high
efficiency proteins with new motifs of fusion, facilitating the
stability, longevity, solubility, assembly, delivery and trafficking
Glycosylation
 One of the most important concerns in the production of RP is
their glycosylation; although plants can glycosylate proteins
effectively, they do not employ similar upstream processing
to complex glycans at the Golgi level; in other words, the
mechanism is different than in mammalian cells.
 To solve this issue, xylose and α-1, 3-fucose sugars have to be
included in the process
Plants cannot perform mammalian sugars
 Furthermore, plants cannot synthesize mammalian sugars, for
example β-1, 4-galactose residues.
 However, recent studies in Arabidopsis thaliana and Nicotiana
benthamiana have tried to decrease the expression of certain
genes, including those that encode for fucosyl- and xylosyl-
transferases, and in the same time overexpressing a human or
chimeric β-1, 4-galactosyl transferase.
 The result allowed the production of antibodies adapted for
the human organism with N-glycans
Plantibodies
 Among the group of therapeutic proteins, antibodies
produced in plants adopted the denomination of Plantibodies
which have a cost of production relatively lower than in
mammalian cells.
 Currently, all of the efforts in this area are focused in the
“humanization” of Plantibodies.
Plant expression platforms
 Based on molecular, tissue culture and genetic studies, various
plant-based production platforms have been developed,
including whole plants specially tobacco, aquatic plants such
as Lemna minor, leafy crops including alfalfa and lettuce,
cellular suspension systems like rice and carrot, and culture of
specific tissues for example hairy roots
Table 3 Comparison between the expression platforms producing RP (Xu et al., 2012)
Expression system
Commercially viable
species
Time for
production
Scalability
Regulatory
compliance
Whole plants
Stable transgenic plants Corn, soy, safflower, rice 3–6 months Unlimited field culture Difficult
Transient plants Nicotiana sp., lettuce 2–7 days Greenhouse limited Moderate
In vitro cultured plant cells and species
Hairy roots Nicotiana sp. 14–30 days 20,000 L Easy
Cell suspension culture Tobacco BY-2, carrot, rice 7–20 days 100,000 L Easy
Moss Physcomitrella patens 14–30 days 200 L Easy
Aquatic plants
Duckweed (closed system) Lemna sp.,spirodela sp. 20–40 days 10,000 L Moderate
Microalgae Chlamydomonas reinhardtii
Open system 20–40 days Limited by water surface area Difficult
Photobioreactor 14–30 days 10,000 L Moderate
Conventional bioreactor 7–20 days 200 L Easy
Select the appropiate platform
• To choose the appropriate platform, it is necessary to
understand the biochemical characteristics of the target
protein and the regulatory network behind the plant-based
system (Paul and Ma, 2011).
Table 4 Plant expression systems developed for the production of therapeutic proteins (Paul and Ma, 2011)
Open-field
tobacco
Glasshouse
tobacco
Rhizosecretion
N. benthamiana
transient expression
Cell culture
Typical model PMP or
product
Antibodies,
antigens
Antibodies,
antigens
Small proteins
(CV-N),
antibodies
Antibodies, antigens
Veterinary vaccines,
glucocerebrosidase
(UPLYSO)
Yield (range)
++ (15–50
mg/kg leaf fresh
weight)
++ (15–50
mg/kg leaf
fresh weight)
+ (0.25–3 µg/mL/
24 H)
+++ (0.5–4 g/kg leaf fresh
weight)
+++
Scalability +++ + ++ ++ +
Consistency + ++ ++ ++ +++
Downstream purification
burden
+ + +++ + ++
Regulatory development + ++ ++ + +++
Seeds as bioreactor model
 There are many advantages that are mentioned when seeds are
used as bioreactors for protein production, for example, the protein
stability and storage which are variables easier to control compared
with leaf systems
 The proteolytic degradation is commonly avoided and also, with the
adequate cold storage conditions, it is possible to conserve the
seeds for a long period of time, in some cases more than three
years, leading to the minimal reduction of the protein activity
 The reported quantity of protein achieved in seeds is approximately
7% to 10%, transforming them in one of the promising platforms for
the manufacture of several targeted proteins
 Different grains have been used as expression models to produce
therapeutic proteins, such as canola, corn, soybean, rice, wheat,
barley and maize, among others
Example
 One clear example of the benefits provided by seed systems is
the assembly of HIV neutralizing antibody 2 G12 in maize
seeds
 As a potential topical microbicide, not only demonstrating
lower production costs, but also a purification process less
complicated. The downstream processes including the
purification are considered the most expensive procedures
involved in the production of therapeutic proteins
 The use of oil seeds instead of common crops has been
implemented due to the facility to separate the protein from
the complex, via oil body isolation.
 One of the pioneer companies in this area is SemBioSys
Genetics located in Canada, which has created the oleosin-
fusion platform widely used for the production of human
insulin biosimilar at low costs. “The RP is mixed with oleosin
and subsequently targeted to oil bodies, subcellular organelles
which store oils. The protein recovery is performed by a
simple purification of the oil bodies followed by the separation
of the protein from the oleosin by endoprotease digestion”.
 Other examples include Ventria Biosciences and Meristem
Therapeutics that developed rice systems for the manufacture
of lactoferrin and lysozyme, both human proteins
 And ORF Genetics Ltd. located in Iceland, which developed
barley grains as targeted seeds for the expression of growth
factors and cytokines
Recovery and purification methods
 The scientific effort has been focused in the development of
effective recovery and purification processes of RP; however,
the major progress was achieved in the pretreatment and
extraction areas
 The production of specific proteins were evaluated
individually, therefore the extraction protocols have been
standardized case-by-case, creating dependent platforms.
 On the other hand, the advance in the pretreatment was
possible with the knowledge that plant extracts and
homogenates required different conditions after the
purification
Purification
 In the case of purification, scientists developed new protocols
based on prior purification models created for other protein
production hosts; the promising methods as cheap
alternatives are non-chromatographic and include aqueous
two phase partitioning and membrane filtration
Selection of downstreammethod
 The downstream process is very important because in some
cases, it represents the major percentage of the total costs.
 The selection of the downstream method depends of the
following characteristics: required protein concentration and
purity and the complexity of the plant extract.
 The downstream process can be classified into two stages:
primary recovery and purification. Figure 3 summarizes the
downstream process of different platforms
Primary recovery
 The function of this phase is to increase the product yield in
the extract, decrease the volume of the media and clarify it
for the next step, the purification.
 In the case of primary recovery from seed platforms, the
following steps are required: aqueous extraction or
homogenization to release the product from the biomass,
solid-liquid separation and clarification
Fractionation
 This process is especially used in seed-based systems and
provides a mechanism to increase the RP yield and generate
sub products, reducing the volume and solid composition.
 The common methods include: dry milling, dry fractionation,
and wet milling. In the case of oilseeds, the oil separation is
necessary to avoid the emulsification
Tissue disruption and productisolation
 This stage is crucial because its efficiency is correlated with the total
volume extracted, purity and concentration of the RP and the
magnitude of impurities which have to be removed from the extract
in the purification phase.
 The whole process depends on the effective plant tissue
homogenization and the rupture of the plant cell walls.
 To homogenize seeds with a low content of oil, it is recommended
to apply a method called dry grinding/pulverization and then the
grounded seed are processed with low-shear mixers, applying
approximately four or five liters of buffer per kilogram of dry seed.
 In the case of oil bodies, they require more water for their
extraction
Issues
 The proteolysis and phenol oxidation of the RP is considered
as one of the issues during this process, therefore, it is
necessary to use adequate buffers with protein stabilizing
agents, for example protease inhibitors (EDTA, PMSF), metal
chelators, antioxidants and in some cases detergents (Triton
X-100)
Solid-liquid separation
 The most common approach used to remove the solid content
of an extract is the centrifugation. Using seed systems benefit
this stage due to the difference in the density between the
solids and liquids is large, therefore the required G-force in the
centrifugation is lower.
Conditioningand pretreatment
 In order to improve the extract quality before the purification,
some clarification and pretreatment processes can be
performed, such as the regulation of the pH, buffer
composition, volume reduction and ionic strength.
 Despite of the availability of these methods, new ones were
developed, for example adsorption, precipitation, two-phase
partitioning and membrane filtration.
 In the case of seed extracts the process is less complicated; pH
adjustment and a subsequent clarification through a simple
centrifugation or depth filtration are commonly required,
helping to remove phytic acid precipitates
Purification
 The pre-purification procedure begins with a capture process which
helps to increase the concentration of the RP and also, it removes
the impurity particles that at the end of the purification can affect
the protein quality and yield.
 When a major purity is required, for example in the development of
therapeutic proteins, a polishing procedure is necessary to remove
the remaining impurities.
 Immediately after the capture and polishing, the purification process
is applied, which is selected depending on the protein nature and
the amount of residual impurities. Commonly, the same purification
methods developed for biopharmaceutical products are used, and
the most widely applied is adsorption chromatography due to its
higher resolution compared to other methods
ETAPASQUEINTERVIENENENELPROCESODE
RECUPERACIÓNYPURIFICACIÓNDELPRODUCTO
 1. Remoción Celular – Centrifugación – Centrifuga
 2. Disrupción celular – Ruptura química; MECÁNICOS
homogeneizador: de alta presión, microfluidizadores;
sonicadores-ultrasonido (cavitación); bead mills; morteros.
Métodos no mecánicos
 Químicos: 1) con solventes orgánicos (cloroformo, tolueno) que
permeabilizan la membrana, disuelven compuestos hidrofóbicos como
los fosfolípidos de la membrana interna en bacterias gram negativas;
 2) Alcalis (hidróxido de sodio e hipoclorito), se da la saponificación de
los lípidos de membrana
 3) Agentes caotrópicos (úrea, clorhidrato de guanidina), interfieren con
los enlaces no covalentes como los puentes de hidrógeno y las fuerzas
de van der Walls
 4) Agentes quelantes (EDTA): quela los iones Ca2+ y Mg2+ que unen los
lipopolisacáridos que contienen proteínas
 5) Antibióticos contra bacterias gram negativas
 6) Detergentes (SDS, tritón) forma micelas con lípidos de membrana
• Físicos: 1) Shock osmótico, utilizando medios hiper e
hipoosmóticos
• 2) Congelamiento y descongelamiento
• 3) Descompresión causada por el uso de un gas presurizado
• 4) Termólisis: altas temperaturas
• Enzimáticos: 1) Disrupción enzimática
• 2) Auto-lisis
• Métodos combinados
ETAPASQUEINTERVIENENENELPROCESODE
RECUPERACIÓNYPURIFICACIÓNDELPRODUCTO
 3. Concentración: ultrafiltración, evaporación.
 4. Extracción del producto: cromatografía de intercambio
iónico, afinidad, etc.
 5. Purificación de alta resolución: afinidad
 6. Formulación, esterilización:
 Estabilidad: parámetros de calidad
 Actividad biológica: libre de pirógenos
 pH
 Conductividad
 Concentración
Microorganismos utilizados en la
industria
Bioprocesos Tema 1.pdf
Bioprocesos Tema 1.pdf
Bioprocesos Tema 1.pdf
Bioprocesos Tema 1.pdf

More Related Content

What's hot

Sistemas de fermentación
Sistemas de fermentaciónSistemas de fermentación
Sistemas de fermentaciónRicardo Mirón
 
Esquema de producción de Acido Cítrico
Esquema de producción de Acido CítricoEsquema de producción de Acido Cítrico
Esquema de producción de Acido CítricoNatalia De la Hoz
 
Balance de materia en bioprocesos
Balance de materia en bioprocesosBalance de materia en bioprocesos
Balance de materia en bioprocesosJulio Tirado
 
Actividad de-agua-alimentos
Actividad de-agua-alimentosActividad de-agua-alimentos
Actividad de-agua-alimentoskakaw11
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-artNorman Rivera
 
Crecimiento microbiano
Crecimiento microbianoCrecimiento microbiano
Crecimiento microbianoIPN
 
Diseño de Biorreactores
Diseño de Biorreactores Diseño de Biorreactores
Diseño de Biorreactores Anibal Quintana
 
enzimas y proteinas de interes industrial
enzimas y proteinas de interes industrial   enzimas y proteinas de interes industrial
enzimas y proteinas de interes industrial Myshell Aquino
 
Leyes de la termodinamica y ciclos
Leyes de la termodinamica y ciclosLeyes de la termodinamica y ciclos
Leyes de la termodinamica y ciclosCarolina Herrera
 
Balance de materia y energia en reacciones quimicas
Balance de materia y energia en reacciones quimicasBalance de materia y energia en reacciones quimicas
Balance de materia y energia en reacciones quimicasIsabelaCeci08
 
Lab.h2o.met.winkler
Lab.h2o.met.winklerLab.h2o.met.winkler
Lab.h2o.met.winklerheicy
 
Guìa 6 levaduras y fermentacion.docx
Guìa 6   levaduras y fermentacion.docxGuìa 6   levaduras y fermentacion.docx
Guìa 6 levaduras y fermentacion.docxAdriana Libertad
 
Muestreo y técnicas para la determinación de sulfatos
Muestreo y técnicas para la determinación de sulfatosMuestreo y técnicas para la determinación de sulfatos
Muestreo y técnicas para la determinación de sulfatosVictor Jimenez
 
Enzimas polifenoloxidasa
Enzimas polifenoloxidasaEnzimas polifenoloxidasa
Enzimas polifenoloxidasaJaime Valls
 

What's hot (20)

Sistemas de fermentación
Sistemas de fermentaciónSistemas de fermentación
Sistemas de fermentación
 
2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores2.4 balance de masa en bioreactores
2.4 balance de masa en bioreactores
 
Esquema de producción de Acido Cítrico
Esquema de producción de Acido CítricoEsquema de producción de Acido Cítrico
Esquema de producción de Acido Cítrico
 
Balance de materia en bioprocesos
Balance de materia en bioprocesosBalance de materia en bioprocesos
Balance de materia en bioprocesos
 
Bioreactores
BioreactoresBioreactores
Bioreactores
 
Actividad de-agua-alimentos
Actividad de-agua-alimentosActividad de-agua-alimentos
Actividad de-agua-alimentos
 
VINAGRE: Aprovisionamiento de materias primas.
VINAGRE: Aprovisionamiento de materias primas.VINAGRE: Aprovisionamiento de materias primas.
VINAGRE: Aprovisionamiento de materias primas.
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-art
 
Crecimiento microbiano
Crecimiento microbianoCrecimiento microbiano
Crecimiento microbiano
 
Diseño de Biorreactores
Diseño de Biorreactores Diseño de Biorreactores
Diseño de Biorreactores
 
enzimas y proteinas de interes industrial
enzimas y proteinas de interes industrial   enzimas y proteinas de interes industrial
enzimas y proteinas de interes industrial
 
Leyes de la termodinamica y ciclos
Leyes de la termodinamica y ciclosLeyes de la termodinamica y ciclos
Leyes de la termodinamica y ciclos
 
Balance de materia y energia en reacciones quimicas
Balance de materia y energia en reacciones quimicasBalance de materia y energia en reacciones quimicas
Balance de materia y energia en reacciones quimicas
 
Lab.h2o.met.winkler
Lab.h2o.met.winklerLab.h2o.met.winkler
Lab.h2o.met.winkler
 
Informe 3 alcalinidad
Informe 3 alcalinidadInforme 3 alcalinidad
Informe 3 alcalinidad
 
Guía 8 de balance de masa y energía
Guía 8 de balance de masa y energíaGuía 8 de balance de masa y energía
Guía 8 de balance de masa y energía
 
Guìa 6 levaduras y fermentacion.docx
Guìa 6   levaduras y fermentacion.docxGuìa 6   levaduras y fermentacion.docx
Guìa 6 levaduras y fermentacion.docx
 
Muestreo y técnicas para la determinación de sulfatos
Muestreo y técnicas para la determinación de sulfatosMuestreo y técnicas para la determinación de sulfatos
Muestreo y técnicas para la determinación de sulfatos
 
Enzimas polifenoloxidasa
Enzimas polifenoloxidasaEnzimas polifenoloxidasa
Enzimas polifenoloxidasa
 
Acidez titulable
Acidez titulableAcidez titulable
Acidez titulable
 

Similar to Bioprocesos Tema 1.pdf

Introduction to Bioprocess Engineering
Introduction to Bioprocess EngineeringIntroduction to Bioprocess Engineering
Introduction to Bioprocess EngineeringNafizur Rahman
 
Role of biotechnology in environmental pollution
Role of biotechnology in environmental pollutionRole of biotechnology in environmental pollution
Role of biotechnology in environmental pollutionABBASSHAIKMUGATHI
 
Cleaner Production opportunities and its benefits in Biotech Industry
Cleaner Production opportunities and its benefits in Biotech IndustryCleaner Production opportunities and its benefits in Biotech Industry
Cleaner Production opportunities and its benefits in Biotech Industryijsrd.com
 
Chapter differenttypesofbioreactorsinbioprocesses (1)
Chapter differenttypesofbioreactorsinbioprocesses (1)Chapter differenttypesofbioreactorsinbioprocesses (1)
Chapter differenttypesofbioreactorsinbioprocesses (1)ssusere49174
 
Fermentation Biotechnology by Salman Saeed
Fermentation Biotechnology by Salman SaeedFermentation Biotechnology by Salman Saeed
Fermentation Biotechnology by Salman SaeedSalman Saeed
 
Biotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptxBiotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptxshabirhassan4585
 
2 Fermentation.ppt
2 Fermentation.ppt2 Fermentation.ppt
2 Fermentation.pptHagerAttiya1
 
Microbial bioprocessing
Microbial bioprocessingMicrobial bioprocessing
Microbial bioprocessingShivangi Gupta
 
Industrial biotechnology in Nepal
Industrial biotechnology in Nepal Industrial biotechnology in Nepal
Industrial biotechnology in Nepal Suman Bhattarai
 
Biotechnology
Biotechnology Biotechnology
Biotechnology Sham Sadiq
 
Bioreactor design and implementation strategies for the cultivation of filame...
Bioreactor design and implementation strategies for the cultivation of filame...Bioreactor design and implementation strategies for the cultivation of filame...
Bioreactor design and implementation strategies for the cultivation of filame...Kutaibaa Akraa
 
Chapter 1 The nature of biotechnology.pptx
Chapter 1 The nature of biotechnology.pptxChapter 1 The nature of biotechnology.pptx
Chapter 1 The nature of biotechnology.pptxanilasajjad
 
Chapter 4 principles and process of biotechnology
Chapter 4 principles and process of biotechnologyChapter 4 principles and process of biotechnology
Chapter 4 principles and process of biotechnologyMosesPackiaraj2
 
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfPlant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfMianHusnainIqbal2
 
Upstream and Downstream Processing of Fermentation.pptx
Upstream and Downstream Processing of Fermentation.pptxUpstream and Downstream Processing of Fermentation.pptx
Upstream and Downstream Processing of Fermentation.pptxKaviKumar46
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDFpoovel4788
 
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdfnekhalmanhas
 
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdfSrimathideviJ
 
Biotechnology a multidisciplinary field
Biotechnology a multidisciplinary fieldBiotechnology a multidisciplinary field
Biotechnology a multidisciplinary fieldZahra Naz
 

Similar to Bioprocesos Tema 1.pdf (20)

Introduction to Bioprocess Engineering
Introduction to Bioprocess EngineeringIntroduction to Bioprocess Engineering
Introduction to Bioprocess Engineering
 
Role of biotechnology in environmental pollution
Role of biotechnology in environmental pollutionRole of biotechnology in environmental pollution
Role of biotechnology in environmental pollution
 
Cleaner Production opportunities and its benefits in Biotech Industry
Cleaner Production opportunities and its benefits in Biotech IndustryCleaner Production opportunities and its benefits in Biotech Industry
Cleaner Production opportunities and its benefits in Biotech Industry
 
Chapter differenttypesofbioreactorsinbioprocesses (1)
Chapter differenttypesofbioreactorsinbioprocesses (1)Chapter differenttypesofbioreactorsinbioprocesses (1)
Chapter differenttypesofbioreactorsinbioprocesses (1)
 
Fermentation Biotechnology by Salman Saeed
Fermentation Biotechnology by Salman SaeedFermentation Biotechnology by Salman Saeed
Fermentation Biotechnology by Salman Saeed
 
Biotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptxBiotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptx
 
2 Fermentation.ppt
2 Fermentation.ppt2 Fermentation.ppt
2 Fermentation.ppt
 
Microbial bioprocessing
Microbial bioprocessingMicrobial bioprocessing
Microbial bioprocessing
 
Industrial biotechnology in Nepal
Industrial biotechnology in Nepal Industrial biotechnology in Nepal
Industrial biotechnology in Nepal
 
Biotechnology
Biotechnology Biotechnology
Biotechnology
 
Bioreactor design and implementation strategies for the cultivation of filame...
Bioreactor design and implementation strategies for the cultivation of filame...Bioreactor design and implementation strategies for the cultivation of filame...
Bioreactor design and implementation strategies for the cultivation of filame...
 
Chapter 1 The nature of biotechnology.pptx
Chapter 1 The nature of biotechnology.pptxChapter 1 The nature of biotechnology.pptx
Chapter 1 The nature of biotechnology.pptx
 
Chapter 4 principles and process of biotechnology
Chapter 4 principles and process of biotechnologyChapter 4 principles and process of biotechnology
Chapter 4 principles and process of biotechnology
 
Bioreactors
BioreactorsBioreactors
Bioreactors
 
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdfPlant Design for bioplastic production from Microalgae in Pakistan.pdf
Plant Design for bioplastic production from Microalgae in Pakistan.pdf
 
Upstream and Downstream Processing of Fermentation.pptx
Upstream and Downstream Processing of Fermentation.pptxUpstream and Downstream Processing of Fermentation.pptx
Upstream and Downstream Processing of Fermentation.pptx
 
652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF652196837-Microbes-in-Human-Welfare-Project.PDF
652196837-Microbes-in-Human-Welfare-Project.PDF
 
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
 
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
14-th-PPT-of-Foods-and-Industrial-MicrobiologyCourse-No.-DTM-321.pdf
 
Biotechnology a multidisciplinary field
Biotechnology a multidisciplinary fieldBiotechnology a multidisciplinary field
Biotechnology a multidisciplinary field
 

More from Christian Gavilánez

More from Christian Gavilánez (7)

Gavilanez_Christian_Articulo 30 al 38.pptx
Gavilanez_Christian_Articulo 30 al 38.pptxGavilanez_Christian_Articulo 30 al 38.pptx
Gavilanez_Christian_Articulo 30 al 38.pptx
 
microscopio.pdf
microscopio.pdfmicroscopio.pdf
microscopio.pdf
 
expo enzimas.pptx
expo enzimas.pptxexpo enzimas.pptx
expo enzimas.pptx
 
Cisneros_Ruth y Gavilanez_Christian_Comunicación.pptx
Cisneros_Ruth y Gavilanez_Christian_Comunicación.pptxCisneros_Ruth y Gavilanez_Christian_Comunicación.pptx
Cisneros_Ruth y Gavilanez_Christian_Comunicación.pptx
 
Biotecnologia animal Caracteristicas.pptx
Biotecnologia animal Caracteristicas.pptxBiotecnologia animal Caracteristicas.pptx
Biotecnologia animal Caracteristicas.pptx
 
Fisica Ley de Hooke.pptx
Fisica Ley de Hooke.pptxFisica Ley de Hooke.pptx
Fisica Ley de Hooke.pptx
 
aprendizaje basado en proyectos
aprendizaje basado en proyectosaprendizaje basado en proyectos
aprendizaje basado en proyectos
 

Recently uploaded

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 

Recently uploaded (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 

Bioprocesos Tema 1.pdf

  • 1. BIOPROCESOS INGENIERÍABIOQUÍMICA SÉPTIMO NIVEL Patricio Orozco Freire MSc Plant Genetic Manipulation Marzo – Septiembre 2017
  • 2. Introducción a los bioprocesos  Un bioproceso es cualquier reacción química o física de un sustrato que usa organismos o microorganismos vivos, subcomponentes celulares o metabolitos secundarios (por ejemplo bacterias, levaduras, enzimas, cloroplastos, etc.) como intermediarios de la reacción para obtener los cambios físicos o químicos deseados en un proceso generando varios subproductos y biomasa.
  • 3. Otras definiciones  La bioingeniería o Ingeniería de Bioprocesos Industriales es una rama interdisciplinaria que integra los conocimientos químicos, biológicos y principios tradicionales de la ingeniería, con el fin de solucionar diversos problemas a nivel de producción, salud y energía  Trata del manejo de los equipos y los procesos que mediante la propagación de pequeños seres vivos, se pueden generar productos interesantes para el ser humano (antibióticos, alimentos, bebidas, enzimas, productos industriales obtenidos por fermentación, cultivos celulares, tisulares y parenquimáticos)  Incluye diferentes disciplinas, como la ingeniería bioquímica, la ingeniería biomédica, la ingeniería de procesos biológicos, la ingeniería de biosistemas, entre otras
  • 4. BIOTRANSFORMACIÓN • Son los procesos en los que los sustratos naturales o sintéticos son modificados por medio de una ACTIVIDAD ENZIMÁTICA
  • 6. ¿Cómo se denomina a este bioproceso?
  • 7. ¿Cómo se denomina a este bioproceso?
  • 8. Fermentación alcohólica  La fermentación alcohólica, también conocida como, fermentación etílica, o del etanol, es un proceso de tipo biológico, en el cual se lleva a cabo una fermentación sin presencia de oxígeno. Este tipo de fermentación se debe a las actividades de ciertos microorganismos, los cuales se encargan de procesar azúcares, como la glucosa, la fructosa, etc. (hidratos de carbono), dando como resultado un alcohol a modo de etanol, CO2 (gas) y ATP (adenosín trifosfato), moléculas que son utilizadas por los propios microorganismos en sus metabolismos energéticos.  Numerosos hongos, bacterias, algas y algunos protozoos, fermentan azúcares, transformándolos en etanol y CO2.
  • 9. Finalidad de la fermentación alcohólica • La fermentación alcohólica, al igual que otro tipo de fermentaciones, como es el caso de la fermentación láctica, es de gran utilidad para el hombre, pues por ejemplo, la fermentación alcohólica llevada a cabo por las levaduras, sirve para la fabricación de bebidas alcohólicas (como el vino o la cerveza), y el CO2 procedente de la fermentación, es utilizado para hacer crecer el pan y otros alimentos.
  • 10. ¿Cuál es la levadura utilizada para elaborar cerveza? Saccharomyces cerevisiae
  • 11. Desde la Antigüedad • “ La fermentación alcohólica es utilizada desde antiguo para realizar productos como la cerveza o el vino. Los griegos otorgaban el descubrimiento de este proceso al dios Dionisio. Y algunos procesos similares, como la destilación de alcohol, se llevaban a cabo ya en el año 1150. Sin duda, dichos procesos fueron esenciales para el desarrollo de la alquimia en la Edad Media ”
  • 12.
  • 13. EN LA ACTUALIDAD • Hoy en día existen bioprocesos con usos diversos en la industria, como por ejemplo: • La producción de cosméticos, • Productos de limpieza, • Biocombustibles, • Pesticidas biológicos, • Vacunas recombinantes, • Enzimas para la industria, • Fármacos: antibióticos, proteínas terapéuticas • Biorremediación, • Biomasa, etc. VIDEO DE CARNE DE LABORATORIO
  • 14. BIOPRODUCTOS MICROALGAS 1. Las microalgas son consideras una fuente prometedora de nuevos Bioproductos: son una fuente más sustentable de ácidos grasos (omega 3) que el aceite de pescado y una fuente tan poderosa de antioxidantes como los carotenoides. Así mismo son una fuente natural rica en antioxidantes, los cuales las protegen de radicales libres generados durante la fotosíntesis http://nopr.niscair.res.in/bitstream/123456789 /42258/1/IJMS%2046%287%29%201239- 1244.pdf
  • 15. 2. Las microalgas son la única fuente de biocombustible no emisora de carbono (huella ecológica cero) que tiene el potencial de sustituir una parte significativa de nuestra demanda de combustible sin influenciar negativamente a la agricultura para la producción de alimento 3. El tratamiento de aguas residuales usando microalgas es más eficiente energéticamente que las tecnologías de tratamiento de aguas residuales que se utilizan en la actualidad. En lugar de remover nutrientes valiosos esta técnica permite que los nutrientes puedan ser reciclados a biomasa que puede ser usada como fuente de alimento para animales, energía o material de construcción para la industria química. http://www.sciencedirect.com/science/art icle/pii/S0196890410002207 http://www.sciencedirect.com/sci ence/article/pii/S09596526150070 39
  • 16. CHALLENGES  El avance de los BIOPROCESOS se ha venido dando gracias al continuo desarrollo de otras ciencias que apoyan y en conjunto al ser interdisciplinarias intervienen para el desarrollo de nuevas tecnologías.  Microbiología, bioquímica, fisiología, genética, biología molecular.  Herramientas de la biotecnología moderna: DNA recombinante, fusión celular (híbridos somáticos, sexuales), gene probes, cultivo de tejidos animales y vegetales.  Han permitido la creación de medicinas sofisticadas, el cultivo de tejidos humanos y órganos, biochips para una nueva era en la computación, pesticidas compatibles con el ambiente y poderosos microorganismos que degradan contaminantes.
  • 17.  Sin embargo estos nuevos productos y procesos pueden ser desarrollados parcialmente en el laboratorio y algunos de estos llevan muchos años para finalizarlos, como por ejemplo los fármacos.  Se requiere de habilidades en ingeniería y como se dice en inglés el “know how”.  Los sistemas biológicos pueden ser complejos y muy difíciles de controlar.  Hay que apoyarse de la ingeniería: diseño y operación de bioreactores, equipos de recuperación de los productos, desarrollo de sistemas para la automatización y control, etc. REGENERACIÓN DE TEJIDOS Y ÓRGANOS HUMANOS
  • 18. ETAPAS EN EL DESARROLLO DE LOS BIOPROCESOS  En general el desarrollo de un bioproceso está comprendido de las siguientes etapas:  UPSTREAM PROCESS: elección de los microorganismos, repique de cepas, medio de cultivo (estéril), preparación del inóculo, etc.  PROCESS: BIOCATALIZADOR: enzimas, virus, bacterias, levaduras, hongos filamentosos, algas, células de tejidos vegetales y animales. BIORREACTOR: elección del tipo y operación del biorreactor, automatización y control, nutrición y metabolismo, estequiometria, cinética, etc.  DOWNSTREAM PROCESS: purificación y recuperación del producto. Separación sólido-líquido, ruptura celular, solubilización, extracción en dos fases, precipitación selectiva, separación con membranas, cromatografía. ACONDICIONAMIENTO FINAL: secado, cristalización, estabilización en medio líquido
  • 19.
  • 20. PLANT SEEDSAS GREENFACTORIESFOR RECOMBINANT THERAPEUTICPROTEINS  “Molecular farming has been considered as one of the promising approaches for the production of recombinant proteins (RP) including not only therapeutic compounds to treat human or animal pathologies but also proteins used in the agriculture and industry areas” (Xu et al., 2012).”
  • 21.
  • 22. Benefits to use plants  Plants are well known because of their capacity to synthetize high protein levels and also great amounts of biomass just using the sun energy which is exploited through photosynthesis (Paul and Ma, 2011).  Post-translational machinery required for performing all of the necessary modifications to synthetize many eukaryotic proteins, giving remarkable flexibility in bio-production platforms (Pogue et al., 2010; Xu et al., 2012).  Plants cannot suffer human or animal diseases or carry foreign pathogens in their system; therefore, synthesized proteins have low risk of contamination, providing more safety to patients. On the other side, this not occurs in mammalian and bacterial systems (Shih and Doran, 2009).  Biosafety is imperative when RP are commercialized because it helps to reduce the purification costs, minimizes the decontamination processes and avoid possible patient demands (Sharma and Sharma, 2009; Xu et al., 2012).
  • 23. Seed platformsystem advantages  “Seed platform provides several advantages, for example, higher protein yields and stable storage compared with other systems. It is estimated that in the near future, there will be a tremendous demand for recombinant therapeutic proteins (Mett et al., 2008).”  Several antibodies, vaccine antigens and other therapeutic proteins can be accumulated in seeds showing high yields, stability and functionality during long periods of time, under room temperature (Lau and Sun, 2009).
  • 24. Disadvantages  “Despite the advantages that transgenic plant systems provide in the production of RP, some safety and regulatory directions have been applied, allowing the use of this technology just inside contained greenhouses. This is an important concern because the cost of the downstream phase is directly related with the upstream process. Also, the scale-up costs are affected being more expensive (Wilken and Nikolov, 2012).”
  • 25. Current status of plan molecular farming  A diverse number of RP have been effectively developed in plants, including: vaccine antigens, antibodies, enzymes and diagnostic proteins (Table 1) (Ma et al.,2003).
  • 26. Lau and Sun (2009) confirmed the commercialization of eleven non-pharmaceutical proteins in the market; however, they also affirmed that some plant pharmaceutical productswereinthefinalstagesofdevelopment(Table2).
  • 27. Recombinanttherapeutic proteins  Various studies have reported the expression of different mammalian proteins in plants such as vaccines antigens, blood proteins, growth hormones, growth factors, diagnostic proteins including therapeutic enzymes and monoclonal antibodies (mAbs), auxiliary proteins such as Factor VIII for hemophiliacs or insulin for the treatment of diabetic people, immune system stimulators or suppressants such as cytokines, interleukins and interferons (Sharma and Sharma, 2009; Xu et al., 2012).  The yield of the RP obtained can vary significantly from 0.01% of total soluble protein and 0.1 μg/L, up to 25% of TSP and 247 mg/L. There are several strategies to improve the yield (Xu et al., 2012).
  • 28. Translational modifications  There are certain conditions that these proteins require to have an effective bio-activity in humans including: protein folding, disulfide bond development, glycosylation, and subunit assembly; however plants have demonstrated the capacity to perform these changes through post-translational modifications (PTMs) ability.  The second generation of RP in plant systems has been focused in research and exploits all of the benefits provided by PTMs, looking for the creation of new biosimilars and high efficiency proteins with new motifs of fusion, facilitating the stability, longevity, solubility, assembly, delivery and trafficking
  • 29. Glycosylation  One of the most important concerns in the production of RP is their glycosylation; although plants can glycosylate proteins effectively, they do not employ similar upstream processing to complex glycans at the Golgi level; in other words, the mechanism is different than in mammalian cells.  To solve this issue, xylose and α-1, 3-fucose sugars have to be included in the process
  • 30. Plants cannot perform mammalian sugars  Furthermore, plants cannot synthesize mammalian sugars, for example β-1, 4-galactose residues.  However, recent studies in Arabidopsis thaliana and Nicotiana benthamiana have tried to decrease the expression of certain genes, including those that encode for fucosyl- and xylosyl- transferases, and in the same time overexpressing a human or chimeric β-1, 4-galactosyl transferase.  The result allowed the production of antibodies adapted for the human organism with N-glycans
  • 31. Plantibodies  Among the group of therapeutic proteins, antibodies produced in plants adopted the denomination of Plantibodies which have a cost of production relatively lower than in mammalian cells.  Currently, all of the efforts in this area are focused in the “humanization” of Plantibodies.
  • 32. Plant expression platforms  Based on molecular, tissue culture and genetic studies, various plant-based production platforms have been developed, including whole plants specially tobacco, aquatic plants such as Lemna minor, leafy crops including alfalfa and lettuce, cellular suspension systems like rice and carrot, and culture of specific tissues for example hairy roots
  • 33.
  • 34. Table 3 Comparison between the expression platforms producing RP (Xu et al., 2012) Expression system Commercially viable species Time for production Scalability Regulatory compliance Whole plants Stable transgenic plants Corn, soy, safflower, rice 3–6 months Unlimited field culture Difficult Transient plants Nicotiana sp., lettuce 2–7 days Greenhouse limited Moderate In vitro cultured plant cells and species Hairy roots Nicotiana sp. 14–30 days 20,000 L Easy Cell suspension culture Tobacco BY-2, carrot, rice 7–20 days 100,000 L Easy Moss Physcomitrella patens 14–30 days 200 L Easy Aquatic plants Duckweed (closed system) Lemna sp.,spirodela sp. 20–40 days 10,000 L Moderate Microalgae Chlamydomonas reinhardtii Open system 20–40 days Limited by water surface area Difficult Photobioreactor 14–30 days 10,000 L Moderate Conventional bioreactor 7–20 days 200 L Easy
  • 35. Select the appropiate platform • To choose the appropriate platform, it is necessary to understand the biochemical characteristics of the target protein and the regulatory network behind the plant-based system (Paul and Ma, 2011). Table 4 Plant expression systems developed for the production of therapeutic proteins (Paul and Ma, 2011) Open-field tobacco Glasshouse tobacco Rhizosecretion N. benthamiana transient expression Cell culture Typical model PMP or product Antibodies, antigens Antibodies, antigens Small proteins (CV-N), antibodies Antibodies, antigens Veterinary vaccines, glucocerebrosidase (UPLYSO) Yield (range) ++ (15–50 mg/kg leaf fresh weight) ++ (15–50 mg/kg leaf fresh weight) + (0.25–3 µg/mL/ 24 H) +++ (0.5–4 g/kg leaf fresh weight) +++ Scalability +++ + ++ ++ + Consistency + ++ ++ ++ +++ Downstream purification burden + + +++ + ++ Regulatory development + ++ ++ + +++
  • 36. Seeds as bioreactor model  There are many advantages that are mentioned when seeds are used as bioreactors for protein production, for example, the protein stability and storage which are variables easier to control compared with leaf systems  The proteolytic degradation is commonly avoided and also, with the adequate cold storage conditions, it is possible to conserve the seeds for a long period of time, in some cases more than three years, leading to the minimal reduction of the protein activity  The reported quantity of protein achieved in seeds is approximately 7% to 10%, transforming them in one of the promising platforms for the manufacture of several targeted proteins  Different grains have been used as expression models to produce therapeutic proteins, such as canola, corn, soybean, rice, wheat, barley and maize, among others
  • 37. Example  One clear example of the benefits provided by seed systems is the assembly of HIV neutralizing antibody 2 G12 in maize seeds  As a potential topical microbicide, not only demonstrating lower production costs, but also a purification process less complicated. The downstream processes including the purification are considered the most expensive procedures involved in the production of therapeutic proteins
  • 38.  The use of oil seeds instead of common crops has been implemented due to the facility to separate the protein from the complex, via oil body isolation.  One of the pioneer companies in this area is SemBioSys Genetics located in Canada, which has created the oleosin- fusion platform widely used for the production of human insulin biosimilar at low costs. “The RP is mixed with oleosin and subsequently targeted to oil bodies, subcellular organelles which store oils. The protein recovery is performed by a simple purification of the oil bodies followed by the separation of the protein from the oleosin by endoprotease digestion”.
  • 39.  Other examples include Ventria Biosciences and Meristem Therapeutics that developed rice systems for the manufacture of lactoferrin and lysozyme, both human proteins  And ORF Genetics Ltd. located in Iceland, which developed barley grains as targeted seeds for the expression of growth factors and cytokines
  • 40. Recovery and purification methods  The scientific effort has been focused in the development of effective recovery and purification processes of RP; however, the major progress was achieved in the pretreatment and extraction areas  The production of specific proteins were evaluated individually, therefore the extraction protocols have been standardized case-by-case, creating dependent platforms.  On the other hand, the advance in the pretreatment was possible with the knowledge that plant extracts and homogenates required different conditions after the purification
  • 41. Purification  In the case of purification, scientists developed new protocols based on prior purification models created for other protein production hosts; the promising methods as cheap alternatives are non-chromatographic and include aqueous two phase partitioning and membrane filtration
  • 42. Selection of downstreammethod  The downstream process is very important because in some cases, it represents the major percentage of the total costs.  The selection of the downstream method depends of the following characteristics: required protein concentration and purity and the complexity of the plant extract.  The downstream process can be classified into two stages: primary recovery and purification. Figure 3 summarizes the downstream process of different platforms
  • 43.
  • 44. Primary recovery  The function of this phase is to increase the product yield in the extract, decrease the volume of the media and clarify it for the next step, the purification.  In the case of primary recovery from seed platforms, the following steps are required: aqueous extraction or homogenization to release the product from the biomass, solid-liquid separation and clarification
  • 45. Fractionation  This process is especially used in seed-based systems and provides a mechanism to increase the RP yield and generate sub products, reducing the volume and solid composition.  The common methods include: dry milling, dry fractionation, and wet milling. In the case of oilseeds, the oil separation is necessary to avoid the emulsification
  • 46. Tissue disruption and productisolation  This stage is crucial because its efficiency is correlated with the total volume extracted, purity and concentration of the RP and the magnitude of impurities which have to be removed from the extract in the purification phase.  The whole process depends on the effective plant tissue homogenization and the rupture of the plant cell walls.  To homogenize seeds with a low content of oil, it is recommended to apply a method called dry grinding/pulverization and then the grounded seed are processed with low-shear mixers, applying approximately four or five liters of buffer per kilogram of dry seed.  In the case of oil bodies, they require more water for their extraction
  • 47. Issues  The proteolysis and phenol oxidation of the RP is considered as one of the issues during this process, therefore, it is necessary to use adequate buffers with protein stabilizing agents, for example protease inhibitors (EDTA, PMSF), metal chelators, antioxidants and in some cases detergents (Triton X-100)
  • 48. Solid-liquid separation  The most common approach used to remove the solid content of an extract is the centrifugation. Using seed systems benefit this stage due to the difference in the density between the solids and liquids is large, therefore the required G-force in the centrifugation is lower.
  • 49. Conditioningand pretreatment  In order to improve the extract quality before the purification, some clarification and pretreatment processes can be performed, such as the regulation of the pH, buffer composition, volume reduction and ionic strength.  Despite of the availability of these methods, new ones were developed, for example adsorption, precipitation, two-phase partitioning and membrane filtration.  In the case of seed extracts the process is less complicated; pH adjustment and a subsequent clarification through a simple centrifugation or depth filtration are commonly required, helping to remove phytic acid precipitates
  • 50. Purification  The pre-purification procedure begins with a capture process which helps to increase the concentration of the RP and also, it removes the impurity particles that at the end of the purification can affect the protein quality and yield.  When a major purity is required, for example in the development of therapeutic proteins, a polishing procedure is necessary to remove the remaining impurities.  Immediately after the capture and polishing, the purification process is applied, which is selected depending on the protein nature and the amount of residual impurities. Commonly, the same purification methods developed for biopharmaceutical products are used, and the most widely applied is adsorption chromatography due to its higher resolution compared to other methods
  • 51. ETAPASQUEINTERVIENENENELPROCESODE RECUPERACIÓNYPURIFICACIÓNDELPRODUCTO  1. Remoción Celular – Centrifugación – Centrifuga  2. Disrupción celular – Ruptura química; MECÁNICOS homogeneizador: de alta presión, microfluidizadores; sonicadores-ultrasonido (cavitación); bead mills; morteros.
  • 52. Métodos no mecánicos  Químicos: 1) con solventes orgánicos (cloroformo, tolueno) que permeabilizan la membrana, disuelven compuestos hidrofóbicos como los fosfolípidos de la membrana interna en bacterias gram negativas;  2) Alcalis (hidróxido de sodio e hipoclorito), se da la saponificación de los lípidos de membrana  3) Agentes caotrópicos (úrea, clorhidrato de guanidina), interfieren con los enlaces no covalentes como los puentes de hidrógeno y las fuerzas de van der Walls  4) Agentes quelantes (EDTA): quela los iones Ca2+ y Mg2+ que unen los lipopolisacáridos que contienen proteínas  5) Antibióticos contra bacterias gram negativas  6) Detergentes (SDS, tritón) forma micelas con lípidos de membrana
  • 53. • Físicos: 1) Shock osmótico, utilizando medios hiper e hipoosmóticos • 2) Congelamiento y descongelamiento • 3) Descompresión causada por el uso de un gas presurizado • 4) Termólisis: altas temperaturas • Enzimáticos: 1) Disrupción enzimática • 2) Auto-lisis • Métodos combinados
  • 54. ETAPASQUEINTERVIENENENELPROCESODE RECUPERACIÓNYPURIFICACIÓNDELPRODUCTO  3. Concentración: ultrafiltración, evaporación.  4. Extracción del producto: cromatografía de intercambio iónico, afinidad, etc.  5. Purificación de alta resolución: afinidad  6. Formulación, esterilización:  Estabilidad: parámetros de calidad  Actividad biológica: libre de pirógenos  pH  Conductividad  Concentración