SlideShare a Scribd company logo
1 of 57
Download to read offline
A Spectrum-based Regularization
Approach to Linear Inverse Problems:
Models, Learned Parameters and
Algorithms
Jorge A. Castañón	

Advisor: Dr. Yin Zhang	

November 7, 2014
This work is partially funded by NSF Grants DMS-0811188 and DMS-1115950
and by CONACYT Grant 212611/307450.
1
Outline
• Linear Inverse Problems and Regularization	

• Motivation	

• Algorithms to Learn and Solve the Models	

• Results	

• Summary of Contributions
2
Medical Imaging
Image taken from www.siemens.co.uk
• Goal: minimize the time patients spend inside the
machine while getting a high quality image
3
Data Acquisition Processes
Object of Interest	

	

!
b = Ax⇤
+ !
4
Data Acquisition Processes
Sampling Scheme	

Object of Interest
b = Ax⇤
+ !
5
Data Acquisition Processes
Measured Data
Sampling Scheme
Object of Interest
b = Ax⇤
+ !
6
Data Acquisition Processes
Measured Data
Sampling Scheme
Object of Interest
b = Ax⇤
+ !
Noise
7
Data Acquisition Processes
Measured Data
Sampling Scheme
Object of Interest
b = Ax⇤
+ !
Noise
Underdetermined System
A 2 Rm⇥n
, m  n
8
where
Goal: estimate givenx⇤
x 2 Rn
, m  n
9
A, b
Find a desirable x s.t. Ax = b
Goal: estimate givenx⇤
10
A, b
where
x 2 Rn
, m  n
Find a desirable x s.t. Ax = b
Linear Regularization
min R( x) s.t. Ax = b
Tikhonov (1963)
Goal: estimate givenx⇤
11
A, b
where
x 2 Rn
, m  n
Find a desirable x s.t. Ax = b
Linear Regularization
min R( x) s.t. Ax = b
R( x) = || x||2
2: “smooth” x⇤
Goal: estimate givenx⇤
12
A, b
where
x 2 Rn
, m  n
Find a desirable x s.t. Ax = b
Linear Regularization
min R( x) s.t. Ax = b
Tikhonov (1963)
R( x) = || x||2
2: “smooth” x⇤ R( x) = || x||1: sparse x⇤
e.g., Santosa-Symes (1986)
Minimum 1-norm and 2-norm solutions
`1 vs `2
13
||x||1
||x||2
Ax = b
Motivation
• Improve TotalVariation (TV) and Tikhonov
models for some practical situations	

• Approach: look at finite difference matrices
differently
14
Why Derivatives of Images? Sparse Gradients
• Let be a first order finite difference matrix= D1
D1 =
0
B
B
B
@
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...
...
...
...
...
...
0 0 0 · · · 1 1
1
C
C
C
A
D1
15
TotalVariation
• Rudin, Osher and Fatemi (1992) proposed to use
TV for image denoising	

• TV has been widely used for a variety of imaging
problems
16
TotalVariation
• A form of the discrete TV model:	

!
!
• where
17
min TV(x) s.t. Ax = b
• TV(x) = ||D1x||1 (Anisotropic)
• D1 = 2D first order finite di↵erence
• x is the vectorized imaege
SingularValue Decomposition
D1 = U⌃V T
18
where
• U and V are unitary
• ⌃ diagonal
A Deeper Look into Derivatives
D1 = U⌃V T
n columns of V (DCT)
n−1columnsofU(DST)
Diagonal
19
.	

.	

.
.	

.	

.
columns of a	

DCT matrix
columns of a 	

DST matrix
A Deeper Look into Derivatives
D1x = U⌃(V T
x)
20
A Deeper Look into Derivatives
x,
n−1columnsofU(DST)
D1x = U⌃(V T
x)
Diagonal Inner Products with
cosines
Expanded in a basis
of sines
21
n columns of V (DCT)
The Derivative “likes” Low Frequencies
n columns of V (DCT)
5 10 15 20 25 30 35 40 45
10
−1
10
0
Σ : sigular values of D1
j
σj
22
Singular values
A New Idea…
23
Singular values
We can use a different
distribution of the singular
values to build a model
that is more adequate
to recover signals that
are not only correlated
with low frequencies
50 100 150 200 250 300 350 400 450 500
10
−4
10
−3
10
−2
10
−1
10
0
σj
j
Profiles
TV
Proposed
medium
frequencies
Model and Learning
24
50 100 150 200 250 300 350 400 450 500
10
−4
10
−3
10
−2
10
−1
10
0
σj
j
Profiles
TV
Proposed
medium
frequencies
min
x
||U ˆ⌃V T
x||q
q s.t. Ax = b
ˆ⌃
1. How do we Estimate the Profile?
25
50 100 150 200 250 300 350 400 450 500
10
−4
10
−3
10
−2
10
−1
10
0
σj
j
Profiles
TV
Proposed
medium
frequencies
min
x
||U ˆ⌃V T
x||q
q s.t. Ax = b
ˆ⌃
2. How do we Solve the Model?
26
50 100 150 200 250 300 350 400 450 500
10
−4
10
−3
10
−2
10
−1
10
0
σj
j
Profiles
TV
Proposed
medium
frequencies
min
x
||U ˆ⌃V T
x||q
q s.t. Ax = b
ˆ⌃
Methods!
1. How to estimate the profile 	

2. How to solve the regularization models	

27
ˆ⌃
• Fast Multiplication	

• Storage-Free
Both algorithms exploit
the following properties
of the matrices:
Learning Model
28
• Randomly pick some rows or
columns 	

{p1, p2, · · · pk} ⇢ Rn
• To avoid a trivial solution
ˆ⌃ = arg min
2⌦
kX
j=1
||U⌃V T
pj||q
q
⌦ = {v 2 Rn
|
P
vj = 1, v 0}
• where and= diag(⌃)
• Solve the learning model
q = 1, 2
Sparse Learning
29
• Suppose that makes sparse 	

⌦ = {v 2 Rn
|
P
vj = 1, v 0}• where and= diag(⌃)
• Solve the learning model
min
2⌦
kX
j=1
||U⌃V T
pj||1
!
• Can be solved as a Linear Program 	

!
ˆ⌃ U ˆ⌃V T
pj 8j
An Example!
• Given a set of piecewise constant training vectors	

• Estimate the singular values of the first order
finite difference matrix:	

!
30
⇤
j =
s
2 2 cos
✓
2⇡
n j
n 1
◆
0 10 20 30 40 50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
j
σj
k = 1, RE = 2.05
0 10 20 30 40 50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
j
σj
k = 2, RE = 1.38
0 10 20 30 40 50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
j
σj
k = 3, RE = 1.47e-12
0 10 20 30 40 50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
jσj
k = 4, RE = 9.77e-11
True
Estimated
True
Estimated
True
Estimated
True
Estimated
k=1 k=2 k=3 k=4
-Learning
31
⌦ = {v 2 Rn
|
P
vj = 1, v 0}• where and= diag(⌃)
• Solve the learning model:
!
• Quadratic objective with a linear constraint	

!
min
2⌦
kX
j=1
||U⌃V T
pj||2
2
`2
• Suppose that makes “smooth” 	

ˆ⌃ U ˆ⌃V T
pj 8j
32
!
• Note that	

min
2⌦
kX
j=1
||U⌃V T
pj||2
2 () min
2⌦
T
S
!
• where 	

S = diag{(V T
p1).2
+ · · · + (V T
pk).2
}!
• Thus, the solution is given by	

⇤
=
S 1
e
eT S 1e!
• where 	

eT
= (1, 1, · · · , 1) 2 Rn
-Learning`2
This is the
training method
used for our
proposed
models
2D Problems
33
The 2D training reduces 	

to two independent 	

1D training problems!
• Signal is vectorized x⇤
2 RN
, where N = n2
• Sampling scheme A 2 RM⇥N
, where M  N
• Regularization matrix is = U ˆ⌃V
1. V = (V ⌦ V ) 2 RN⇥N
and
2. ˆ⌃ =
✓
ˆ⌃row ⌦ In
In ⌦ ˆ⌃col
◆
2 R2N⇥N
Regularization Models
!
!
• Spectrum-Learning Regularization model (SLR)	

!
34
min
x
1
2
|| ˆ⌃VT
x||2
2 s.t. Ax = b
!
!
• SLR-TV hybrid model	

!
min
x
1
2
|| ˆ⌃VT
x||2
2 + ↵||D1x||1 s.t. Ax = b
• where ↵ > 0 and
• D1 2D finite di↵erence
SLR Model
35
!
• Given a trained profile 	

• Spectrum-Learning Regularization (SLR) model is	

!
min
x
1
2
|| ˆ⌃VT
x||2
2 s.t. Ax = b
!
• By standard (KKT), find such that	

(x⇤
, ⇤
)
x⇤
= V( ˆ⌃T ˆ⌃) 1
VT ⇤
AV( ˆ⌃T ˆ⌃) 1
(AV)T ⇤
= b
M ⇥ M symmetric positive definite
system of equations: CG
ˆ⌃
Accelerated CG
36
0 1000 2000 3000 4000 5000 6000 7000
10
0
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
Dimension of Linear System M
ConditionnumberofCγ
κ( ˆΣT ˆΣ)
κ(C0)
κ(C10−4)
κ(C10−2)
κ(C10−1)
• Let C = AV( ˆ⌃T ˆ⌃ ) 1
VT
where > 0 and
ˆ⌃ =
✓
(ˆ⌃row + In) ⌦ In
In ⌦ (ˆ⌃col + In)
◆
• The convergence rate of CG
for solving C = b, depends
on the condition number (C )
• The larger the > 0,
the smaller the (C )
Accelerated CG ~ 80% Faster
37
150
200
250
300
350
400
1 2
Regular CG Accelarated CG
CPUTime(s)
Algorithm:
Given an initial guess 0
and 1
· · · l
0
For k = 1 : l
1. k
2. k
CG (C , k 1
)
End
CG Accelerated	

CG
Motivation of the SLR-TV Hybrid Model
38
Absolute Error Maps: |X X⇤
| 2 Rn⇥n
TV: 30.4 dB Tik: 27 dB SLR: 33.1 dB
0
10
20
30
40
50
The error is measured with Peak Signal to Noise Ratio
PSNR (dB): the higher, the better.
SLR-TV Hybrid Model
39
• Given by
min
x
1
2
|| ˆ⌃VT
x||2
2 + ↵||D1x||1 s.t. Ax = b,
where ↵ > 0 and D1 is a 2D first order finite di↵erence matrix
• Let y = D1x be a splitting variable, then
min
x
1
2
|| ˆ⌃VT
x||2
2 + ↵||y||1 s.t.
✓
A
D1
◆
x
✓
0
I
◆
y =
✓
b
0
◆
• Two separable convex blocks with linear constraints
• Suitable for Alternating Direction Method (ADM)
ADM
40
• Proposed by Glowinski and Marocco (1975) and Gabay and Mercier (1976)
to solve
min
x,y
f(x) + g(y) s.t. Dx + Ey = c
• Form the augmented Lagrangian function
LA(x, y, ) = f(x) + g(y) T
(Dx + Ey c) +
2
||Dx + Ey c||2
2,
where > 0
• Given x0
, y0
and 0
, the iteration is
1. xk+1
= arg minx L(x, yk
, k
)
2. yk+1
= arg miny L(xk+1
, y, k
)
3. k+1
= k
⇢(Dxk+1
+ Eyk+1
c),
where ⇢ 2 (0, (1 +
p
5)/2).
ADM for SLR-TV
41
• The ADM applied to the SLR-TV is given by
1. f(x) = 1
2 || ˆ⌃VT
x||2
2 and g(y) = ↵||y||1
2. D =
✓
A
D1
◆
, E =
✓
0
I
◆
and c =
✓
b
0
◆
• The x-subproblem is equivalent to solving an (N ⇥ N) linear system
1. Sherman-Morrison to reduce the dimension of the system to solve
from N to M (M  N)
2. CG to solve the (M ⇥ M) system
• The y-subproblem is solved exactly (Shrinkage formula)
Parameter-Free ADM
42
• Objective function of the SLR-TV
1
2
|| ˆ⌃VT
x||2
2 + ↵||D1x||1,
• Balancing parameter ↵ > 0 is hard to choose
• Provide a diagonal matrix W to replace ↵ > 0
1
2
||W ˆ⌃VT
x||2
2 + ||D1x||1,
• Matrix of weights is
W =
(ˆ⌃
1/2
row ⌦ In) 0N⇥N
0N⇥N (In ⌦ ˆ⌃
1/2
col )
!
Results
!
• Visualization of the 2D profiles	

• Learning does not need a lot of prior information
(we saw earlier that it is cheap!)	

• The proposed models enhance the quality of the
recovered images	

!
!
43
Interpretation of the 2D Profiles
44
Low	

Frequencies
High	

Frequencies
1. ˆ⌃ =
✓
ˆ⌃row ⌦ In
In ⌦ ˆ⌃col
◆
2 R2N⇥N
2. diag ˆ⌃T ˆ⌃ 2 RN
3. Reshape (diag ˆ⌃T ˆ⌃) 2 Rn⇥n
2D Finite Difference and Learned Profiles
45
heart1 heart2
heart3 heart4
shoulder1 shoulder2
shoulder3 shoulder4
thorax1 thorax2 thorax3
thorax4 thorax5 thorax6
thorax7
brain1 brain2 brain3
brain4 brain5 brain6
brain7
Compressive Sensing
!
Randomized 	

Walsh-Hadamard 	

Matrices:
Medical images from
b = Ax⇤
+ !
Gaussian noise	

46
Sampling 5%,10%,15%,20%
siemens.healthcare.com	

and	

radiopaedia.org
How Many TrainingVectors? Just a Few…
47
0 20 40 60 80 100 120 140 160 180 200
21
22
23
24
25
26
27
28
29
Training Data Size: k
PSNR(dB)
Size of Training Set vs. Quality
heart
shoulder
brain
thorax
• Training data size
versus quality	

• Quality does not
improve
significantly when
increasing the size
of the training set
Training Data: randomly chose k rows and k columns from
each of the image that are not being recovered.
Quality Enhancement
48
Original: 1024 × 1024
Sampling @ 10%
knee4
TV
PSNR = 33.27dB
RelErr = 8.46%
CPU = 100.63s
Tikhonov
PSNR = 33.60dB
RelErr = 8.15%
CPU = 54.93s
SLR
PSNR = 43.36dB
RelErr = 2.65%
CPU = 151.21s
• The quality of SLR
is 10 dB higher than
TV and Tikhonov	

• SLR recovers better
bone structures
(zoom in next slide)
Quality Enhancement
49
Original: 1024 × 1024
Sampling @ 10%
knee4
TV
PSNR = 33.27dB
RelErr = 8.46%
CPU = 100.63s
Tikhonov
PSNR = 33.60dB
RelErr = 8.15%
CPU = 54.93s
SLR
PSNR = 43.36dB
RelErr = 2.65%
CPU = 151.21s
Original: 1024 × 1024
Sampling @ 10%
knee7
TV
PSNR = 28.88dB
RelErr = 8.53%
CPU = 101.28s
Tikhonov
PSNR = 26.31dB
RelErr = 11.47%
CPU = 54.72s
SLR
PSNR = 28.94dB
RelErr = 8.48%
CPU = 153.67s
Quality for Each Group
50
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
22
24
26
28
30
32
34
36
38
40
42
Sampling Ratio
AveragePSNR(dB)
Heart images
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
20
25
30
35
Sampling Ratio
AveragePSNR(dB)
Shoulder images
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
18
20
22
24
26
28
30
Sampling Ratio
AveragePSNR(dB)
Brain images
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
18
20
22
24
26
28
30
32
Sampling Ratio
AveragePSNR(dB)
Thorax images
TV
Tik
SLR
Hybrid
Average CPU Time
51
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
20
40
60
80
100
120
140
160
Sampling Ratio
CPUtime(s)
Siemens images
TV
Tik
SLR
Hybrid
When Adding Noise
52
0 0.05 0.1 0.15
20
25
30
35
40
Noise Level (%)
AveragePSNR(dB)
Heart images
TV
Tik
SLR
Hybrid
0 0.05 0.1 0.15
14
16
18
20
22
24
26
28
30
32
Noise Level (%)
AveragePSNR(dB)
Shoulder images
0 0.05 0.1 0.15
14
16
18
20
22
24
26
Noise Level (%)
AveragePSNR(dB)
Brain images
0 0.05 0.1 0.15
14
16
18
20
22
24
26
28
Noise Level (%)
AveragePSNR(dB)
Thorax images
Absolute Error Maps
53
Absolute Errors
0
20
40
60
80
100
120
140
TV: 22.03 dB Tik: 31.22 dB
SLR: 30.99 dB HYB: 46.65dB
TV versus SLR
54
Piecewise constant signals 	

can be recovered exactly 	

with TV model*
Other more complex 	

signals can be recovered 	

with higher accuracy	

using SLR model
*Candes,Tao and Romberg,“Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information”, 2006
Summary of Major Contributions
• Proposed Spectrum-Learning Regularization (SLR)
and hybrid models that only require a few parameters
to learn	

• Developed computationally inexpensive training
strategies to estimate the profile of a signal of interest	

• Designed convergent algorithms to solve the
proposed regularization models	

• The quality of the recovered images by SLR and SLR-
TV is considerably enhanced	

55
Remarks
• SLR improves the accuracy of the recovery in
scenarios where compressive sensing theory does
not hold	

• SLR methods do not rely on the choice of the
sampling matrix	

• DCT basis was used for SLR; nonetheless, a different
choice of basis may be more adequate for other
applications	

• A pre-conditioner for CG could potentially improve
the performance of the proposed algorithms
56
ThankYou!
57

More Related Content

What's hot

Image enhancement
Image enhancementImage enhancement
Image enhancement
Ayaelshiwi
 

What's hot (20)

Unit 2
Unit 2Unit 2
Unit 2
 
Lectures 1 3 final (4)
Lectures 1 3 final (4)Lectures 1 3 final (4)
Lectures 1 3 final (4)
 
Pixelrelationships
PixelrelationshipsPixelrelationships
Pixelrelationships
 
Computer Graphics
Computer GraphicsComputer Graphics
Computer Graphics
 
Chapter 1 introduction (Image Processing)
Chapter 1 introduction (Image Processing)Chapter 1 introduction (Image Processing)
Chapter 1 introduction (Image Processing)
 
Detailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss FunctionDetailed Description on Cross Entropy Loss Function
Detailed Description on Cross Entropy Loss Function
 
Unit 3
Unit 3Unit 3
Unit 3
 
Image Enhancement
Image Enhancement Image Enhancement
Image Enhancement
 
A Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR Filters
 
Histogram processing
Histogram processingHistogram processing
Histogram processing
 
Supervised Learning of Semantic Classes for Image Annotation and Retrieval
Supervised Learning of Semantic Classes for Image Annotation and RetrievalSupervised Learning of Semantic Classes for Image Annotation and Retrieval
Supervised Learning of Semantic Classes for Image Annotation and Retrieval
 
Chapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel RelationChapter 2 Image Processing: Pixel Relation
Chapter 2 Image Processing: Pixel Relation
 
Image sampling and quantization
Image sampling and quantizationImage sampling and quantization
Image sampling and quantization
 
3 intensity transformations and spatial filtering slides
3 intensity transformations and spatial filtering slides3 intensity transformations and spatial filtering slides
3 intensity transformations and spatial filtering slides
 
04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detection
 
Image enhancement
Image enhancementImage enhancement
Image enhancement
 
Image restoration1
Image restoration1Image restoration1
Image restoration1
 
Image enhancement
Image enhancementImage enhancement
Image enhancement
 
Spatial filtering
Spatial filteringSpatial filtering
Spatial filtering
 
MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3MLHEP 2015: Introductory Lecture #3
MLHEP 2015: Introductory Lecture #3
 

Viewers also liked

Presentazione infanzia
Presentazione infanziaPresentazione infanzia
Presentazione infanzia
iclonato
 
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
Danis Vanandi
 
Facility ab cacc15-homework_7.5
Facility ab cacc15-homework_7.5Facility ab cacc15-homework_7.5
Facility ab cacc15-homework_7.5
aljaz86
 
Referentie Praktijkmanager Medisch Centrum Sint Anna
Referentie Praktijkmanager Medisch Centrum Sint AnnaReferentie Praktijkmanager Medisch Centrum Sint Anna
Referentie Praktijkmanager Medisch Centrum Sint Anna
Marie-Antoinette Westra
 

Viewers also liked (16)

Presentazione infanzia
Presentazione infanziaPresentazione infanzia
Presentazione infanzia
 
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
Daftarregularverbdanirregularverbartibahasaindonesia 140210161049-phpapp01
 
Servicio de bebidas
Servicio de bebidasServicio de bebidas
Servicio de bebidas
 
Facility ab cacc15-homework_7.5
Facility ab cacc15-homework_7.5Facility ab cacc15-homework_7.5
Facility ab cacc15-homework_7.5
 
paese pe paese
paese pe paesepaese pe paese
paese pe paese
 
Referentie Praktijkmanager Medisch Centrum Sint Anna
Referentie Praktijkmanager Medisch Centrum Sint AnnaReferentie Praktijkmanager Medisch Centrum Sint Anna
Referentie Praktijkmanager Medisch Centrum Sint Anna
 
Update on ILRI in Southern Africa
Update on ILRI in Southern AfricaUpdate on ILRI in Southern Africa
Update on ILRI in Southern Africa
 
Energy Services
Energy ServicesEnergy Services
Energy Services
 
Guide To Interview English Part 2 Interview, Negotiation And Contract Reading...
Guide To Interview English Part 2 Interview, Negotiation And Contract Reading...Guide To Interview English Part 2 Interview, Negotiation And Contract Reading...
Guide To Interview English Part 2 Interview, Negotiation And Contract Reading...
 
Libro de Zacatecas
Libro de ZacatecasLibro de Zacatecas
Libro de Zacatecas
 
MTV Youth Marketing Forum - Age of Sinnocence
MTV Youth Marketing Forum - Age of SinnocenceMTV Youth Marketing Forum - Age of Sinnocence
MTV Youth Marketing Forum - Age of Sinnocence
 
Método de observación para una investigación de mercado
Método de observación para una investigación de mercadoMétodo de observación para una investigación de mercado
Método de observación para una investigación de mercado
 
Haila 4 bedrooms 4 toilet & bath house and lot rush rush for sale brgy ma...
Haila 4 bedrooms 4 toilet & bath house and lot rush rush for sale brgy ma...Haila 4 bedrooms 4 toilet & bath house and lot rush rush for sale brgy ma...
Haila 4 bedrooms 4 toilet & bath house and lot rush rush for sale brgy ma...
 
Mount vesuvius
Mount vesuviusMount vesuvius
Mount vesuvius
 
Test de Inteligencia
Test de InteligenciaTest de Inteligencia
Test de Inteligencia
 
Relación de la administración con otras ciencias
Relación de la administración con otras cienciasRelación de la administración con otras ciencias
Relación de la administración con otras ciencias
 

Similar to Defense_Talk

Quantum factorization.pdf
Quantum factorization.pdfQuantum factorization.pdf
Quantum factorization.pdf
ssuser8b461f
 

Similar to Defense_Talk (20)

Lec15 sfm
Lec15 sfmLec15 sfm
Lec15 sfm
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
module 1.pdf
module 1.pdfmodule 1.pdf
module 1.pdf
 
Introduction to Neural Networks and Deep Learning
Introduction to Neural Networks and Deep LearningIntroduction to Neural Networks and Deep Learning
Introduction to Neural Networks and Deep Learning
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPT
 
Computer graphics 2
Computer graphics 2Computer graphics 2
Computer graphics 2
 
Robot maptalk
Robot maptalkRobot maptalk
Robot maptalk
 
Face recognition and deep learning โดย ดร. สรรพฤทธิ์ มฤคทัต NECTEC
Face recognition and deep learning  โดย ดร. สรรพฤทธิ์ มฤคทัต NECTECFace recognition and deep learning  โดย ดร. สรรพฤทธิ์ มฤคทัต NECTEC
Face recognition and deep learning โดย ดร. สรรพฤทธิ์ มฤคทัต NECTEC
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
 
Mit6 094 iap10_lec03
Mit6 094 iap10_lec03Mit6 094 iap10_lec03
Mit6 094 iap10_lec03
 
Output primitives in Computer Graphics
Output primitives in Computer GraphicsOutput primitives in Computer Graphics
Output primitives in Computer Graphics
 
Computer Graphics Unit 1
Computer Graphics Unit 1Computer Graphics Unit 1
Computer Graphics Unit 1
 
digital logic circuits, digital component floting and fixed point
digital logic circuits, digital component floting and fixed pointdigital logic circuits, digital component floting and fixed point
digital logic circuits, digital component floting and fixed point
 
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
Mca i-u-1.1 digital logic circuits, digital component floting and fixed pointMca i-u-1.1 digital logic circuits, digital component floting and fixed point
Mca i-u-1.1 digital logic circuits, digital component floting and fixed point
 
Cgm Lab Manual
Cgm Lab ManualCgm Lab Manual
Cgm Lab Manual
 
cheb_conf_aksenov.pdf
cheb_conf_aksenov.pdfcheb_conf_aksenov.pdf
cheb_conf_aksenov.pdf
 
Image denoising using curvelet transform
Image denoising using curvelet transformImage denoising using curvelet transform
Image denoising using curvelet transform
 
DimensionalityReduction.pptx
DimensionalityReduction.pptxDimensionalityReduction.pptx
DimensionalityReduction.pptx
 
Quantum factorization.pdf
Quantum factorization.pdfQuantum factorization.pdf
Quantum factorization.pdf
 

Defense_Talk

  • 1. A Spectrum-based Regularization Approach to Linear Inverse Problems: Models, Learned Parameters and Algorithms Jorge A. Castañón Advisor: Dr. Yin Zhang November 7, 2014 This work is partially funded by NSF Grants DMS-0811188 and DMS-1115950 and by CONACYT Grant 212611/307450. 1
  • 2. Outline • Linear Inverse Problems and Regularization • Motivation • Algorithms to Learn and Solve the Models • Results • Summary of Contributions 2
  • 3. Medical Imaging Image taken from www.siemens.co.uk • Goal: minimize the time patients spend inside the machine while getting a high quality image 3
  • 4. Data Acquisition Processes Object of Interest ! b = Ax⇤ + ! 4
  • 5. Data Acquisition Processes Sampling Scheme Object of Interest b = Ax⇤ + ! 5
  • 6. Data Acquisition Processes Measured Data Sampling Scheme Object of Interest b = Ax⇤ + ! 6
  • 7. Data Acquisition Processes Measured Data Sampling Scheme Object of Interest b = Ax⇤ + ! Noise 7
  • 8. Data Acquisition Processes Measured Data Sampling Scheme Object of Interest b = Ax⇤ + ! Noise Underdetermined System A 2 Rm⇥n , m  n 8
  • 9. where Goal: estimate givenx⇤ x 2 Rn , m  n 9 A, b Find a desirable x s.t. Ax = b
  • 10. Goal: estimate givenx⇤ 10 A, b where x 2 Rn , m  n Find a desirable x s.t. Ax = b Linear Regularization min R( x) s.t. Ax = b
  • 11. Tikhonov (1963) Goal: estimate givenx⇤ 11 A, b where x 2 Rn , m  n Find a desirable x s.t. Ax = b Linear Regularization min R( x) s.t. Ax = b R( x) = || x||2 2: “smooth” x⇤
  • 12. Goal: estimate givenx⇤ 12 A, b where x 2 Rn , m  n Find a desirable x s.t. Ax = b Linear Regularization min R( x) s.t. Ax = b Tikhonov (1963) R( x) = || x||2 2: “smooth” x⇤ R( x) = || x||1: sparse x⇤ e.g., Santosa-Symes (1986)
  • 13. Minimum 1-norm and 2-norm solutions `1 vs `2 13 ||x||1 ||x||2 Ax = b
  • 14. Motivation • Improve TotalVariation (TV) and Tikhonov models for some practical situations • Approach: look at finite difference matrices differently 14
  • 15. Why Derivatives of Images? Sparse Gradients • Let be a first order finite difference matrix= D1 D1 = 0 B B B @ 1 1 0 · · · 0 0 0 1 1 · · · 0 0 ... ... ... ... ... ... 0 0 0 · · · 1 1 1 C C C A D1 15
  • 16. TotalVariation • Rudin, Osher and Fatemi (1992) proposed to use TV for image denoising • TV has been widely used for a variety of imaging problems 16
  • 17. TotalVariation • A form of the discrete TV model: ! ! • where 17 min TV(x) s.t. Ax = b • TV(x) = ||D1x||1 (Anisotropic) • D1 = 2D first order finite di↵erence • x is the vectorized imaege
  • 18. SingularValue Decomposition D1 = U⌃V T 18 where • U and V are unitary • ⌃ diagonal
  • 19. A Deeper Look into Derivatives D1 = U⌃V T n columns of V (DCT) n−1columnsofU(DST) Diagonal 19 . . . . . . columns of a DCT matrix columns of a DST matrix
  • 20. A Deeper Look into Derivatives D1x = U⌃(V T x) 20
  • 21. A Deeper Look into Derivatives x, n−1columnsofU(DST) D1x = U⌃(V T x) Diagonal Inner Products with cosines Expanded in a basis of sines 21 n columns of V (DCT)
  • 22. The Derivative “likes” Low Frequencies n columns of V (DCT) 5 10 15 20 25 30 35 40 45 10 −1 10 0 Σ : sigular values of D1 j σj 22 Singular values
  • 23. A New Idea… 23 Singular values We can use a different distribution of the singular values to build a model that is more adequate to recover signals that are not only correlated with low frequencies 50 100 150 200 250 300 350 400 450 500 10 −4 10 −3 10 −2 10 −1 10 0 σj j Profiles TV Proposed medium frequencies
  • 24. Model and Learning 24 50 100 150 200 250 300 350 400 450 500 10 −4 10 −3 10 −2 10 −1 10 0 σj j Profiles TV Proposed medium frequencies min x ||U ˆ⌃V T x||q q s.t. Ax = b ˆ⌃
  • 25. 1. How do we Estimate the Profile? 25 50 100 150 200 250 300 350 400 450 500 10 −4 10 −3 10 −2 10 −1 10 0 σj j Profiles TV Proposed medium frequencies min x ||U ˆ⌃V T x||q q s.t. Ax = b ˆ⌃
  • 26. 2. How do we Solve the Model? 26 50 100 150 200 250 300 350 400 450 500 10 −4 10 −3 10 −2 10 −1 10 0 σj j Profiles TV Proposed medium frequencies min x ||U ˆ⌃V T x||q q s.t. Ax = b ˆ⌃
  • 27. Methods! 1. How to estimate the profile 2. How to solve the regularization models 27 ˆ⌃ • Fast Multiplication • Storage-Free Both algorithms exploit the following properties of the matrices:
  • 28. Learning Model 28 • Randomly pick some rows or columns {p1, p2, · · · pk} ⇢ Rn • To avoid a trivial solution ˆ⌃ = arg min 2⌦ kX j=1 ||U⌃V T pj||q q ⌦ = {v 2 Rn | P vj = 1, v 0} • where and= diag(⌃) • Solve the learning model q = 1, 2
  • 29. Sparse Learning 29 • Suppose that makes sparse ⌦ = {v 2 Rn | P vj = 1, v 0}• where and= diag(⌃) • Solve the learning model min 2⌦ kX j=1 ||U⌃V T pj||1 ! • Can be solved as a Linear Program ! ˆ⌃ U ˆ⌃V T pj 8j
  • 30. An Example! • Given a set of piecewise constant training vectors • Estimate the singular values of the first order finite difference matrix: ! 30 ⇤ j = s 2 2 cos ✓ 2⇡ n j n 1 ◆ 0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 j σj k = 1, RE = 2.05 0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 j σj k = 2, RE = 1.38 0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 j σj k = 3, RE = 1.47e-12 0 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 jσj k = 4, RE = 9.77e-11 True Estimated True Estimated True Estimated True Estimated k=1 k=2 k=3 k=4
  • 31. -Learning 31 ⌦ = {v 2 Rn | P vj = 1, v 0}• where and= diag(⌃) • Solve the learning model: ! • Quadratic objective with a linear constraint ! min 2⌦ kX j=1 ||U⌃V T pj||2 2 `2 • Suppose that makes “smooth” ˆ⌃ U ˆ⌃V T pj 8j
  • 32. 32 ! • Note that min 2⌦ kX j=1 ||U⌃V T pj||2 2 () min 2⌦ T S ! • where S = diag{(V T p1).2 + · · · + (V T pk).2 }! • Thus, the solution is given by ⇤ = S 1 e eT S 1e! • where eT = (1, 1, · · · , 1) 2 Rn -Learning`2 This is the training method used for our proposed models
  • 33. 2D Problems 33 The 2D training reduces to two independent 1D training problems! • Signal is vectorized x⇤ 2 RN , where N = n2 • Sampling scheme A 2 RM⇥N , where M  N • Regularization matrix is = U ˆ⌃V 1. V = (V ⌦ V ) 2 RN⇥N and 2. ˆ⌃ = ✓ ˆ⌃row ⌦ In In ⌦ ˆ⌃col ◆ 2 R2N⇥N
  • 34. Regularization Models ! ! • Spectrum-Learning Regularization model (SLR) ! 34 min x 1 2 || ˆ⌃VT x||2 2 s.t. Ax = b ! ! • SLR-TV hybrid model ! min x 1 2 || ˆ⌃VT x||2 2 + ↵||D1x||1 s.t. Ax = b • where ↵ > 0 and • D1 2D finite di↵erence
  • 35. SLR Model 35 ! • Given a trained profile • Spectrum-Learning Regularization (SLR) model is ! min x 1 2 || ˆ⌃VT x||2 2 s.t. Ax = b ! • By standard (KKT), find such that (x⇤ , ⇤ ) x⇤ = V( ˆ⌃T ˆ⌃) 1 VT ⇤ AV( ˆ⌃T ˆ⌃) 1 (AV)T ⇤ = b M ⇥ M symmetric positive definite system of equations: CG ˆ⌃
  • 36. Accelerated CG 36 0 1000 2000 3000 4000 5000 6000 7000 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Dimension of Linear System M ConditionnumberofCγ κ( ˆΣT ˆΣ) κ(C0) κ(C10−4) κ(C10−2) κ(C10−1) • Let C = AV( ˆ⌃T ˆ⌃ ) 1 VT where > 0 and ˆ⌃ = ✓ (ˆ⌃row + In) ⌦ In In ⌦ (ˆ⌃col + In) ◆ • The convergence rate of CG for solving C = b, depends on the condition number (C ) • The larger the > 0, the smaller the (C )
  • 37. Accelerated CG ~ 80% Faster 37 150 200 250 300 350 400 1 2 Regular CG Accelarated CG CPUTime(s) Algorithm: Given an initial guess 0 and 1 · · · l 0 For k = 1 : l 1. k 2. k CG (C , k 1 ) End CG Accelerated CG
  • 38. Motivation of the SLR-TV Hybrid Model 38 Absolute Error Maps: |X X⇤ | 2 Rn⇥n TV: 30.4 dB Tik: 27 dB SLR: 33.1 dB 0 10 20 30 40 50 The error is measured with Peak Signal to Noise Ratio PSNR (dB): the higher, the better.
  • 39. SLR-TV Hybrid Model 39 • Given by min x 1 2 || ˆ⌃VT x||2 2 + ↵||D1x||1 s.t. Ax = b, where ↵ > 0 and D1 is a 2D first order finite di↵erence matrix • Let y = D1x be a splitting variable, then min x 1 2 || ˆ⌃VT x||2 2 + ↵||y||1 s.t. ✓ A D1 ◆ x ✓ 0 I ◆ y = ✓ b 0 ◆ • Two separable convex blocks with linear constraints • Suitable for Alternating Direction Method (ADM)
  • 40. ADM 40 • Proposed by Glowinski and Marocco (1975) and Gabay and Mercier (1976) to solve min x,y f(x) + g(y) s.t. Dx + Ey = c • Form the augmented Lagrangian function LA(x, y, ) = f(x) + g(y) T (Dx + Ey c) + 2 ||Dx + Ey c||2 2, where > 0 • Given x0 , y0 and 0 , the iteration is 1. xk+1 = arg minx L(x, yk , k ) 2. yk+1 = arg miny L(xk+1 , y, k ) 3. k+1 = k ⇢(Dxk+1 + Eyk+1 c), where ⇢ 2 (0, (1 + p 5)/2).
  • 41. ADM for SLR-TV 41 • The ADM applied to the SLR-TV is given by 1. f(x) = 1 2 || ˆ⌃VT x||2 2 and g(y) = ↵||y||1 2. D = ✓ A D1 ◆ , E = ✓ 0 I ◆ and c = ✓ b 0 ◆ • The x-subproblem is equivalent to solving an (N ⇥ N) linear system 1. Sherman-Morrison to reduce the dimension of the system to solve from N to M (M  N) 2. CG to solve the (M ⇥ M) system • The y-subproblem is solved exactly (Shrinkage formula)
  • 42. Parameter-Free ADM 42 • Objective function of the SLR-TV 1 2 || ˆ⌃VT x||2 2 + ↵||D1x||1, • Balancing parameter ↵ > 0 is hard to choose • Provide a diagonal matrix W to replace ↵ > 0 1 2 ||W ˆ⌃VT x||2 2 + ||D1x||1, • Matrix of weights is W = (ˆ⌃ 1/2 row ⌦ In) 0N⇥N 0N⇥N (In ⌦ ˆ⌃ 1/2 col ) !
  • 43. Results ! • Visualization of the 2D profiles • Learning does not need a lot of prior information (we saw earlier that it is cheap!) • The proposed models enhance the quality of the recovered images ! ! 43
  • 44. Interpretation of the 2D Profiles 44 Low Frequencies High Frequencies 1. ˆ⌃ = ✓ ˆ⌃row ⌦ In In ⌦ ˆ⌃col ◆ 2 R2N⇥N 2. diag ˆ⌃T ˆ⌃ 2 RN 3. Reshape (diag ˆ⌃T ˆ⌃) 2 Rn⇥n
  • 45. 2D Finite Difference and Learned Profiles 45 heart1 heart2 heart3 heart4 shoulder1 shoulder2 shoulder3 shoulder4 thorax1 thorax2 thorax3 thorax4 thorax5 thorax6 thorax7 brain1 brain2 brain3 brain4 brain5 brain6 brain7
  • 46. Compressive Sensing ! Randomized Walsh-Hadamard Matrices: Medical images from b = Ax⇤ + ! Gaussian noise 46 Sampling 5%,10%,15%,20% siemens.healthcare.com and radiopaedia.org
  • 47. How Many TrainingVectors? Just a Few… 47 0 20 40 60 80 100 120 140 160 180 200 21 22 23 24 25 26 27 28 29 Training Data Size: k PSNR(dB) Size of Training Set vs. Quality heart shoulder brain thorax • Training data size versus quality • Quality does not improve significantly when increasing the size of the training set Training Data: randomly chose k rows and k columns from each of the image that are not being recovered.
  • 48. Quality Enhancement 48 Original: 1024 × 1024 Sampling @ 10% knee4 TV PSNR = 33.27dB RelErr = 8.46% CPU = 100.63s Tikhonov PSNR = 33.60dB RelErr = 8.15% CPU = 54.93s SLR PSNR = 43.36dB RelErr = 2.65% CPU = 151.21s • The quality of SLR is 10 dB higher than TV and Tikhonov • SLR recovers better bone structures (zoom in next slide)
  • 49. Quality Enhancement 49 Original: 1024 × 1024 Sampling @ 10% knee4 TV PSNR = 33.27dB RelErr = 8.46% CPU = 100.63s Tikhonov PSNR = 33.60dB RelErr = 8.15% CPU = 54.93s SLR PSNR = 43.36dB RelErr = 2.65% CPU = 151.21s Original: 1024 × 1024 Sampling @ 10% knee7 TV PSNR = 28.88dB RelErr = 8.53% CPU = 101.28s Tikhonov PSNR = 26.31dB RelErr = 11.47% CPU = 54.72s SLR PSNR = 28.94dB RelErr = 8.48% CPU = 153.67s
  • 50. Quality for Each Group 50 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 22 24 26 28 30 32 34 36 38 40 42 Sampling Ratio AveragePSNR(dB) Heart images 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 20 25 30 35 Sampling Ratio AveragePSNR(dB) Shoulder images 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 18 20 22 24 26 28 30 Sampling Ratio AveragePSNR(dB) Brain images 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 18 20 22 24 26 28 30 32 Sampling Ratio AveragePSNR(dB) Thorax images TV Tik SLR Hybrid
  • 51. Average CPU Time 51 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 20 40 60 80 100 120 140 160 Sampling Ratio CPUtime(s) Siemens images TV Tik SLR Hybrid
  • 52. When Adding Noise 52 0 0.05 0.1 0.15 20 25 30 35 40 Noise Level (%) AveragePSNR(dB) Heart images TV Tik SLR Hybrid 0 0.05 0.1 0.15 14 16 18 20 22 24 26 28 30 32 Noise Level (%) AveragePSNR(dB) Shoulder images 0 0.05 0.1 0.15 14 16 18 20 22 24 26 Noise Level (%) AveragePSNR(dB) Brain images 0 0.05 0.1 0.15 14 16 18 20 22 24 26 28 Noise Level (%) AveragePSNR(dB) Thorax images
  • 53. Absolute Error Maps 53 Absolute Errors 0 20 40 60 80 100 120 140 TV: 22.03 dB Tik: 31.22 dB SLR: 30.99 dB HYB: 46.65dB
  • 54. TV versus SLR 54 Piecewise constant signals can be recovered exactly with TV model* Other more complex signals can be recovered with higher accuracy using SLR model *Candes,Tao and Romberg,“Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information”, 2006
  • 55. Summary of Major Contributions • Proposed Spectrum-Learning Regularization (SLR) and hybrid models that only require a few parameters to learn • Developed computationally inexpensive training strategies to estimate the profile of a signal of interest • Designed convergent algorithms to solve the proposed regularization models • The quality of the recovered images by SLR and SLR- TV is considerably enhanced 55
  • 56. Remarks • SLR improves the accuracy of the recovery in scenarios where compressive sensing theory does not hold • SLR methods do not rely on the choice of the sampling matrix • DCT basis was used for SLR; nonetheless, a different choice of basis may be more adequate for other applications • A pre-conditioner for CG could potentially improve the performance of the proposed algorithms 56