Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Launch a Successful LTE Footprints in Bangladesh

683 views

Published on

Launch a Successful LTE Footprints in Bangladesh

Published in: Internet
  • Be the first to comment

Launch a Successful LTE Footprints in Bangladesh

  1. 1. Launch  a  successful  LTE  Footprints  in  Bangladesh   –  Challenges  &  Achievements         Faisal  Mobarak     Assistant  General  Manager,     Ollo  Wireless  Internet  
  2. 2. Internet  in  Bangladesh    &  BIEL  4G  LTE  
  3. 3. BIEL  is  working  in  Bangladesh  since  2007   with  ISP  license  having  one  of  the  Iirst   and  biggest  large-­‐scale  deployment  of  a   3.5  GHz  WiMAX  network.     Currently,  it  covers  major  areas  of  Dhaka   including  Uttara,  Gulshan,  Mohakhali,   Dhanmondi,  Motijheel  &  its  surrounding   areas.   BIEL  has  been  granted  BWA  License   according  to  the  BWA  guidelines  by  the   Bangladesh  Telecommunication   Regulatory  Authority  (BTRC)  in  Nov,  2013     BIEL  has  compiled  with  all  Iinancial   conditions  for  obtaining  BWA  Services   License  successfully  which  allows  BIEL  to   provide  BWA  Services  in  2.5-­‐2.6  MHz   spectrum  brand.  
  4. 4. LTE  :  Long  Term  Evolution,  The  Basics  
  5. 5. IMT - Advance 4G CDMA2000 Evolution 2001-2005 2006 HSDPA Phase I 1.8M/3.6Mbps HSDPA Phase II 7.2/14.4Mbps HSUPA 2M/5.76Mbps LTE DL:100Mbps UL:50Mbps GSM/GPRS EDGE 171/384kbps WCDMA R99/R4 384kbps WCDMA Evolution 2007 2008 2009 HSPA+ DL >40Mbps UL >10Mbps 1xEV-DO Rev. 0 DL: 2.4Mbps UL:153.6kbps DO Rev. B (MC DO) DL:46.5Mbps UL: 27Mbps 1xEV-D0 Rev. A DL: 3.1Mbps UL: 1.8Mbps CDMA 1X 153kbps 2010 2011 IEEE802.16e 70Mbps IEEE802.16m DL:100Mbps UL: 50Mbps WiMAX Evolution IEEE802.16d 20Mbps Broadband  Trend  in  Wireless  Technology    
  6. 6. 4G  LTE     The  De6inition   LTE,  an  acronym  for  Long-­‐Term   Evolution,  commonly  marketed  as  4G   LTE,  is  a  standard  for  wireless   communication  of  high-­‐speed  data  for   mobile  phones  &  data  terminals.       It  is  based  on  the  GSM/EDGE  and   UMTS/HSPA  network  technologies,   increasing  the  capacity  and  speed  using   a  different  radio  interface  together  with   core  network  improvements.     Adoption  of  LTE  technology  as  of  February  15,  2014.              Countries  and  regions  with  commercial  LTE  service            Countries  and  regions  with  commercial  LTE  network  deployment  on-­‐going  or   planned            Countries  and  regions  with  LTE  trial  systems  (pre-­‐commitment)  
  7. 7. 4G  LTE  ARCHITECTURE   EPS  Network  Elements  
  8. 8. 4G  LTE  ARCHITECTURE   EPS  Node  Functionality  
  9. 9. An  IP  packet  for  a  UE  is  encapsulated  in  an  EPC-­‐speci6ic  protocol  and  tunneled  between  the  P-­‐GW  and  eNodeB   for  transmission  to  the  UE.  Different  tunneling  protocols  are  used  across  different  interfaces.  A  3GPP-­‐speci6ic   tunneling  protocol  called  the  GPRS  Tunneling  Protocol  (GTP)  is  used  over  the  CN  interfaces,  S1  &  S5/S8.       The  E-­‐UTRAN  user  plane  protocol  stack  is  shown  as  blue  in  above  6igure,  consisting  of  the  Packet  Data   Convergence  Protocol  (PDCP),  Radio  Link  Control  (RLC)  and  Medium  Access  Control  (MAC)  sub  layers  that  are   terminated  in  the  eNodeB  on  the  network  side.     4G  LTE  PROTOCOL  ARCHITECTURE   User  plane  protocol  stack  
  10. 10. The  protocol  stack  for  the  control  plane  between  the  UE  and  MME  is  shown  in  above  Figure.     The  blue  region  of  the  stack  indicates  the  AS  protocols.  The  lower  layers  perform  the  same   functions  as  for  the  user  plane  with  the  exception  that  there  is  no  header  compression   function  for  the  control  plane.     The  Radio  Resource  Control  (RRC)  protocol  is  known  as  “layer  3”  in  the  AS  protocol  stack.  It  is   the  main  controlling  function  in  the  AS,  being  responsible  for  establishing  the  radio  bearers   and  con6iguring  all  the  lower  layers  using  RRC  signaling  between  the  eNodeB  and  the  UE.     4G  LTE  PROTOCOL  ARCHITECTURE   Control  plane  protocol  stack  
  11. 11. There  are  two  major  differences  between  TD-­‐LTE  and  LTE  FDD:  how  data   is  uploaded  and  downloaded,  and  what  frequency  spectra  the  networks   are  deployed  in.  While  LTE  FDD  uses  paired  frequencies  to  upload  and   download  data,  TD-­‐LTE  uses  a  single  frequency,  alternating  between   uploading  and  downloading  data  through  time.  The  ratio  between  uploads   &  downloads  on  a  TD-­‐LTE  network  can  be  changed  dynamically,   depending  on  whether  more  data  needs  to  be  sent  or  received.       TD-­‐LTE  and  LTE  FDD  also  operate  on  different  frequency  bands,  with  TD-­‐ LTE  working  better  at  higher  frequencies,  and  LTE  FDD  working  better  at   lower  frequencies.  Frequencies  used  for  TD-­‐LTE  range  from  1850  MHz  to   3800  MHz,  with  several  different  bands  being  used.  The  TD-­‐LTE  spectrum   is  generally  cheaper  to  access,  and  has  less  traf6ic.  Further,  the  bands  for   TD-­‐LTE  overlap  with  those  used  for  WiMAX,  which  can  easily  be  upgraded   to  support  TD-­‐LTE.     FDD  is  still  leading  the  game,  however.  Most  commercial  LTE  networks  are   based  on  FDD  because  the  FDD  ecosystem  is  more  mature  and  is  still   where  most  of  the  spectrum  allocation  is  done.  All  major  operators  around   the  world  are  already  acquiring  wide  bands  of  FDD  spectrum  for  their  4G   LTE  networks,  which  is  well  suited  for  voice  because  it  is  inherently   symmetric  in  the  UL  and  DL.  In  addition,  FDD  can  provide  better  coverage   of  a  larger  area  due  to  the  6ixed  DL/UL  on  different  frequencies.     4G  LTE  PROTOCOL  ARCHITECTURE   LTE-­‐FDD  vs  LTE-­‐TDD  
  12. 12. 4G  LTE  Deployment  :  Challenges  
  13. 13. Problem   4G  LTE  DEPLOYMENT  :  CHALLENGES   WiMAX  to  LTE    Migration   Mitigation   Hot Swap Easy Migration Mode No Regulatory Issue Existing Customer New Rollout CAPEX Dual Mode Minimum CAPEX No Regulatory Issue Capacity Reduce Complex Network Coexistence Smooth Migration No Customer Trouble Regulatory Issue OPEX
  14. 14. 4G  LTE  DEPLOYMENT  :  CHALLENGES   WiMAX  to  LTE    Migration   WiMAX 4G LTE WiMAX 4G LTE WiMAX 4G LTE WiMAX 4G LTEWiMAX
  15. 15. Problem   4G  LTE  DEPLOYMENT  :  CHALLENGES   Coding  scheme  &  bitrate   Mitigation  
  16. 16. Problem   4G  LTE  DEPLOYMENT  :  CHALLENGES   QoS   Mitigation  
  17. 17. Problem   4G  LTE  DEPLOYMENT  :  CHALLENGES   CPE  Price   Mitigation   0   20   40   60   80   100   120   140   2011   2012   2013   2014   2015   2016   2017   2018   Price  in  USD   Wimax     LTE   Use  of  SIM   FDD-­‐LTE   2.6  GHz   Economies  of  Scale  
  18. 18. 4G  LTE  Deployment  :  Testing  
  19. 19. 4G  LTE  Test  Methodologies     Ø  Protocol  and  Functional  testing   Ø  Load  and  Stress  testing   Ø  Result  Checklist  
  20. 20. 4G  LTE  Test  Methodologies   End-­‐to-­‐end  LTE  Test  Topology  
  21. 21. 4G  LTE  Test  Methodologies   Protocol  and  Functional  testing   Protocol  and  functional  testing  involves  verifying  the  operation  of  elementary  procedures  de6ined   in  the  3GPP  speci6ications,  possibly  for  each  protocol  layer  individually,  or  the  complete  protocol   stack  as  a  whole.  For  example,  we  wanted  to  test  the  “Attach”  procedure  by  itself,  using  one  User   Equipment  (UE),  or  test  the  Tracking  Area  Update  (TAU)  procedure.  Each  and  every  step  of  the   procedure  analyzed  for  correctness  in  terms  of  the  signaling  6low  and  content  of  each  of  the   message  Information  Elements  (IEs).       Where  the  attach  procedure  fails,  additional  paths  were  considered.  Here,  we  conducted  “negative   testing”  in  which  conditions  are  generated  in  order  to  trigger  different  types  of  reactions.       The  failure  response  is  usually  a  rejected  procedure  with  an  appropriate  failure  code.  Examples  are   attach  attempts  with  missing  IEs,  or  in  the  improper  sequence.  We  executed  Protocol  and   functional  tests  during  the  network  design  and  early  QA  phases  of  LTE  deployment.  
  22. 22. 4G  LTE  Test  Methodologies   Load  and  Stress  testing   Stress  testing  involves  simulating  large  amounts  of  traf6ic  in  order  to  measure  performance,   capacity,  and  key  performance  indicators  (KPI)  for  quality  of  service  (QoS)  under  load  conditions.         Its  objective  was  to  stress  the  Test  User  Equipment  (UE)  for  both  performance  and  capacity.     Stress  dimensions  are  varied  including:     •    User  plane  traf6ic     •    Control  plane  traf6ic       The  use  of  control  and  user  plane  traf6ic,  or  a  combination  of  both,  depends  on  the  UE.    An  MME  or   Home  Subscriber  Server  (HSS)  demands  a  control  plane  load,  while  the  serving  gateway  (SGW)  and   packet  data  network  gateway  (PGW)  require  a  user  plane  load.       However,  since  the  SGW  and  PGW  are  responsible  for  both  user  and  control  plane  traf6ic,  we  used  a   mix  of  both  in  order  to  execute  a  realistic  test.    
  23. 23. 4G  LTE  Test  Methodologies   Load  and  Stress  testing   Control  Plane  Events   The  events,  performed  by  a  subscriber,  that   generate  control  plane  signaling.  The  most     signi6icant  control  plane  events  include:       •    Attach   •    Authentication     •    Session  establishment     •    Dedicated  bearer  establishment  and  deletion     •    Tracking  Area  Update  (TAU)     •    Service  request     •    Handover   •    Detach   User  Plane  TrafIic     These  events  determine  which  type  of  user  plane   traf6ic  will  6low  through  the  network  under  test.     The  most  common  types  of  user  plane  traf6ic  are:       •    http:  to  simulate  web  browsing,  Facebook,  etc     •    ftp:  for  6ile  transfers     •    OTT  video:  to  simulate  OTT  services  like  YouTube     •    On  demand  video     •    Conversational  video   •    DNS     •    Email:  IMAP,  POP3  and  SMTP     •    Instant  messaging  
  24. 24. 4G  LTE  Test  Methodologies   Result  Checklist   q  Application  QoS      •    Download  times    •    Dedicated  bearer  vs  best  effort  traf6ic      •    GBR  vs  non-­‐GBR  traf6ic     q  Control  plane  latencies      •    Attach      •    Session  establishment      •    Handover      •    Dedicated  bearer  establishment     q  Packet  forwarding  performance      •    Latencies    •    TCP  connection  resets      •    TCP  retries  and  retransmissions      •    Lost  packets     q  Throughput     q  Capacity      •    Amount  of  active  UEs      •    Amount  of  active  bearers     q  Policy      •    Application  of  rules     q  DNS      •    Query  rates      •    Query  failures     q  Service  availability   q  Errors      •    Handover  failures    •    Session  establishment  failures      •    Dedicated  bearer  establishment  failures      •    Policy  installation  failures    
  25. 25. 4G  LTE  :  Achievements  
  26. 26. 4G  LTE  :  ACHIEVEMENTS   More  Devices  
  27. 27. 4G  LTE  :  ACHIEVEMENTS   More  Speed  
  28. 28. 4G  LTE  :  ACHIEVEMENTS   More  Throughput  
  29. 29. 4G  LTE  :  ACHIEVEMENTS   More  Coverage   600k   60k   50k   30k   30k  80k  150k  
  30. 30. Please  send  your  feedback  to  -­‐     faisal.mobarak@ollo.com.bd  

×