SlideShare a Scribd company logo
1 of 94
Download to read offline
• Time derivatives of the loop-closure
expressions allow the analysis of velocities
& accelerations, i.e.:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
VELOCITY CLOSURE
ACCELERATION CLOSURE
• Review of time derivatives of displacement
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Example: Velocity analysis of the offset
slider-crank
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
2
3
1
0
Displacement closure:
• Taking the time derivative:
• Rearranging and substituting:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Taking the time derivative:
• Rearranging and substituting:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Taking the time derivative:
• Rearranging and substituting:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Taking the time derivative:
• Rearranging and substituting:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Splitting into real and imaginary eqns
• The solution for is obtained by solving
the imaginary equation as:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
REAL
IMAGINARY
• Substituting this solution back into the real
equation gives the other unknown:
Velocity & Acceleration Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
REAL EQUATION
• The velocity of one point can be expressed
as the velocity of another point, plus the
relative velocity of the two points
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Example
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
• Example
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VB
Absolute velocity of point B
• Example
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VA
Absolute velocity of point A
• Example
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VB/A
Relative velocity of point B w.r.t. point A
• Example
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VA
VB/A
VB
• Note that:
– The direction and magnitude of VA is a known
function of the input angular velocity, ω2
– The mechanism’s joints define the direction of
many of the remaining relative and absolute
velocities
– This information can be manipulated to find the
velocity (direction and magnitude) of points not
on the input link
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• There are 4 distinct cases where relative
velocity analysis is applied (though only 3
are non-trivial)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Same Point Different Points
Same
Link
Different
Links
Case 1
TRIVIAL CASE
Case 2
DIFFERENCE
MOTION
Case 3
RELATIVE MOTION
Case 4
DIFFERENCE & RELATIVE
MOTION
• Case 2: Different points on the same link
– Want to find velocity of point B w.r.t. point A (VB|A)
– Take the derivative of the rel. position vector (RB|A)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VA
VB/A
VB
• Case 2: Different points on the same link
– Examining this result gives simple method for
calculation:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VA
VB/A
VB
Always = 0 for a rigid link
(no length change)
Equivalent to rotation through 90° in the sense
(CW or CCW) of ωB|A (i.e. ω3)
So, for a rigid link :
VB|A = (rB|A)(ω3), ┴ RB|A
• Case 2: Different points on the same link
– Recalling that VB = VA + VB|A we can set up a system
of equations to solve for VB:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
RA
RB/A
RB
A
B
O4O2
θ2
θ3
θ4
ω2
VA
VB/A
VB
Tricky to approach analytically, but graphical
methods can be used, and can be much more
intuitive
• Case 2 Example (Supp Ex V1)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
• Solve using a graphical method
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
• Find VB by relative velocity analysis:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
1 mm = 5 mm/s
• VA: direction, magnitude both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
1 mm = 5 mm/s
• VA: direction, magnitude both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
0V
VA
1 mm = 5 mm/s
A
• VA: direction, magnitude both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
VA
1 mm = 5 mm/s
A
• VB|A: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
• VB|A: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
0V
VA
1 mm = 5 mm/s
A
• VB|A: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
0V
VA
dir(V
B|A)
1 mm = 5 mm/s
A
• VB: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
VA
dir(V
B|A)
1 mm = 5 mm/s
A
C
B
A
O2 O4
3 4
2
ω2
• VB: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
0V
VA
dir(V
B|A)
1 mm = 5 mm/s
A
• VB: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
A
• Solution is obtained by intersection &
measurement
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
A
C
B
A
O2 O4
3 4
2
ω2
• Solution is obtained by intersection &
measurement
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
A
B
VB
C
B
A
O2 O4
3 4
2
ω2
• Solution is obtained by intersection &
measurement
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
A
B
VB
X
C
B
A
O2 O4
3 4
2
ω2
• Noticing that , we measure:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
A
B
VB
• Noticing that , we measure:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
X
• Noticing that , we measure:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
X
• And compute:
• Where the direction of rotation is inferred
from the direction of
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
X X
• Similarly:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
X X X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
• Now, VC can be found in a variety of ways:
– Intersect relative velocity directions w.r.t. A & B
– Compute directly, e.g. VC = VA+(ω3 X AC)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X X
• Using the first method, note that:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
X X X
C
B
A
O2 O4
3 4
2
ω2
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
• Using the first method, note that:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
and ,
X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
V
B|A
A
B
VB
• Using the first method, note that:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
and ,
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
A
B
VB
X
• Using the first method, note that:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
and ,
X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
A
B
VB
• Using the first method, note that:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
and ,
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
dir(VC|B
)
A
B
VB
X
• Intersection gives the solution for VC
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
dir(VC|B
)
A
B
VB
• Intersection gives the solution for VC
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
VC
dir(VC|B
)
A C
B
VB
X
• Intersection gives the solution for VC
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
X X
0V
VA
dir(VB)
dir(V
B|A)
1 mm = 5 mm/s
dir(VC|A)
V
B|A
VC
dir(VC|B
)
A C
B
VB
X X
• Another Case 2 Example (Supp Ex V2)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
• Solve using the same graphical method:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
1 mm = 10 mm/s
• Find VB by case 2 analysis:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
1 mm = 10 mm/s
• VA : magnitude, direction both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
1 mm = 10 mm/s
• VA : magnitude, direction both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
1 mm = 10 mm/s
• VA : magnitude, direction both known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
A
V
A
1 mm = 10 mm/s
• VB|A : direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
A
V
A
1 mm = 10 mm/s
• VB|A : direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
A
V
A
1 mm = 10 mm/s
• VB|A : direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
1 mm = 10 mm/s
• VB : direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
dir(VB|A)
A
V
A
1 mm = 10 mm/s
C
B
A
O2
3
2
ω2
4
• VB : direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
dir(VB|A)
A
V
A
dir(VB)
1 mm = 10 mm/s
C
B
A
O2
3
2
ω2
4
• Intersection & measurement give:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
B
1 mm = 10 mm/s
• Intersection & measurement give:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
B
1 mm = 10 mm/s
X
• And ω3 is found from:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
X
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
B
1 mm = 10 mm/s
X
• Solve for VC by intersection:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
B
1 mm = 10 mm/s
X X
• Solve for VC by intersection:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
B
dir(VC|A)
1 mm = 10 mm/s
X X
• Solve for VC by intersection:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
dir(VC|B
)
B
dir(VC|A)
1 mm = 10 mm/s
X X
• Measuring then gives:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2
3
2
ω2
4
0V
dir(VB|A)
A
V
A
dir(VB) VBVB|A
dir(VC|B
)
B
C VC
dir(VC|A)
1 mm = 10 mm/s
X XX
• Case 3: Coincident points on different links
– Occurs for slides & pistons, cams & followers:
• Two points on different links momentarily occupy
the same point in the plane
• Each has a different absolute velocity, therefore a
relative velocity exists
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Case 3: Coincident points on different links
– Calculate the slide (relative) velocity, VB3|B4
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
B2, B3, B4
4
2
3
• So far, we have taken the derivative of
the relative position vector, RB3|B4
• But how can we express this vector for
two coincident points?
• Intuitively, we can imagine displacing the
slide by some small distance along the
slide, then drawing RB3|B4
• Taking the limit as the displacement
approaches zero, we can see that RB3|B4
has zero length, and is directed along the
tangent to the slide (link 4) at point B
• Case 3: Coincident points on different links
– Calculate the slide (relative) velocity, VB3|B4
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
θslide
B2, B3, B4
4
2
3
• So:
• Taking the derivative:
• Case 3: Coincident points on different links
– Calculate the slide (relative) velocity, VB3|B4
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
θslide
B2, B3, B4
4
2
3
• Simplifying gives the final expression:
• Note that this deceptively simple
expression hides the potentially difficult
task of finding the slide tangent angle
• In the following examples, straight slides
are used to avoid this hassle (tangent
angle = link angle for a straight slide)
• Case 3 Example (Supp Ex V3)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
C
B
O2
2
ω2
4
O4
3
• Solve graphically
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
1 mm = 10 mm/s
C
B
O2
2
ω2
4
O4
3
• Use case 3 analysis to find VB4:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
1 mm = 10 mm/s
C
B
O2
2
ω2
4
O4
3
0V
1 mm = 10 mm/sC
B
O2
2
ω2
4
O4
3
• VB2: direction, magnitude both known:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
B2
VB2
1 mm = 10 mm/s
0V
B2
VB2
1 mm = 10 mm/s
0V
B2
VB2
dir(VB2|B4)
1 mm = 10 mm/sC
B
O2
2
ω2
4
O4
3
• VB2|B4: only direction is known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
C
B
O2
2
ω2
4
O4
3
C
B
O2
2
ω2
4
O4
3
0V
B2
VB2
dir(VB2|B4)
1 mm = 10 mm/s
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
1 mm = 10 mm/s
• VB4: direction known, magnitude unknown
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
• Obtain VB4 by intersection
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
1 mm = 10 mm/s
X
• ω4 follows immediately from VB4:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
1 mm = 10 mm/s
X X
• VC follows immediately from ω4, or by:
•
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
1 mm = 10 mm/s
X X
• VC follows immediately from ω4, or by:
• ,
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
X X
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
dir(VC|B4)
1 mm = 10 mm/s
• VC follows immediately from ω4, or by:
• , ,
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
O2
2
ω2
4
O4
3
X X
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
dir(VC)
dir(VC|B4)
1 mm = 10 mm/s
C
B
O2
2
ω2
4
O4
3
• Measuring:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
0V
dir(VB4)
B2
VB2
dir(VB2|B4)
VB4
B4
VB2|B4
dir(VC)
dir(VC|B4)
C
VC
1 mm = 10 mm/s
X X X
• Another Case 3 Example (Supp Ex V4)
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• Note: The 4-Bar was solved in Ex V1
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• VC is found by scaling arguments:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
VA
VB
V
B|A
A
B
0V
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• VC is found by scaling arguments:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
VA
VB
V
B|A
A
B
V
C|A
0V
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• Measuring:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
VA
VB
V
B|A
A
B
V
C|A
0V
C
VC
1 mm = 5 mm/s
X
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• VD5 is found by Case 3 analysis:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
X
VA
VB
V
B|A
A
B
V
C|A
0V
C
VC
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• VD5 : only the direction is known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
X
VA
VB
V
B|A
A
B
V
C|A
dir(VD5
)
0V
C
VC
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• VD5|C : only the direction is known
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
X
VA
VB
V
B|A
A
B
V
C|A
dir(VD5
)
0V
dir(VD5|C
)
C
VC
1 mm = 5 mm/s
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• Measuring:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
X
VA
VB
V
B|A
A
B
VD5
V
C|A
dir(VD5
)
0V
dir(VD5|C
)
VD5|C
C
D5
VC
1 mm = 5 mm/s
X
C
B
A
O2 O4
3 4
2
ω2
D5, D6
5
6
• ω5 is found immediately from:
Relative Velocity Analysis
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
VA
VB
V
B|A
A
B
VD5
V
C|A
dir(VD5
)
0V
dir(VD5|C
)
VD5|C
C
D5
VC
1 mm = 5 mm/s
X X X
END OF LECTURE PACK 3

More Related Content

Recently uploaded

Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
IJECEIAES
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
benjamincojr
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
BalamuruganV28
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
 

Recently uploaded (20)

CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTUUNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 

Featured

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Velocities1

  • 1. • Time derivatives of the loop-closure expressions allow the analysis of velocities & accelerations, i.e.: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 VELOCITY CLOSURE ACCELERATION CLOSURE
  • 2. • Review of time derivatives of displacement Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 3. • Example: Velocity analysis of the offset slider-crank Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 2 3 1 0 Displacement closure:
  • 4. • Taking the time derivative: • Rearranging and substituting: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 5. • Taking the time derivative: • Rearranging and substituting: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 6. • Taking the time derivative: • Rearranging and substituting: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 7. • Taking the time derivative: • Rearranging and substituting: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 8. • Splitting into real and imaginary eqns • The solution for is obtained by solving the imaginary equation as: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 REAL IMAGINARY
  • 9. • Substituting this solution back into the real equation gives the other unknown: Velocity & Acceleration Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 REAL EQUATION
  • 10. • The velocity of one point can be expressed as the velocity of another point, plus the relative velocity of the two points Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 11. • Example Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2
  • 12. • Example Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VB Absolute velocity of point B
  • 13. • Example Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VA Absolute velocity of point A
  • 14. • Example Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VB/A Relative velocity of point B w.r.t. point A
  • 15. • Example Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VA VB/A VB
  • 16. • Note that: – The direction and magnitude of VA is a known function of the input angular velocity, ω2 – The mechanism’s joints define the direction of many of the remaining relative and absolute velocities – This information can be manipulated to find the velocity (direction and magnitude) of points not on the input link Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 17. • There are 4 distinct cases where relative velocity analysis is applied (though only 3 are non-trivial) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 Same Point Different Points Same Link Different Links Case 1 TRIVIAL CASE Case 2 DIFFERENCE MOTION Case 3 RELATIVE MOTION Case 4 DIFFERENCE & RELATIVE MOTION
  • 18. • Case 2: Different points on the same link – Want to find velocity of point B w.r.t. point A (VB|A) – Take the derivative of the rel. position vector (RB|A) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VA VB/A VB
  • 19. • Case 2: Different points on the same link – Examining this result gives simple method for calculation: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VA VB/A VB Always = 0 for a rigid link (no length change) Equivalent to rotation through 90° in the sense (CW or CCW) of ωB|A (i.e. ω3) So, for a rigid link : VB|A = (rB|A)(ω3), ┴ RB|A
  • 20. • Case 2: Different points on the same link – Recalling that VB = VA + VB|A we can set up a system of equations to solve for VB: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 RA RB/A RB A B O4O2 θ2 θ3 θ4 ω2 VA VB/A VB Tricky to approach analytically, but graphical methods can be used, and can be much more intuitive
  • 21. • Case 2 Example (Supp Ex V1) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2
  • 22. • Solve using a graphical method Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2
  • 23. • Find VB by relative velocity analysis: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V 1 mm = 5 mm/s
  • 24. • VA: direction, magnitude both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V 1 mm = 5 mm/s
  • 25. • VA: direction, magnitude both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V 1 mm = 5 mm/s C B A O2 O4 3 4 2 ω2
  • 26. 0V VA 1 mm = 5 mm/s A • VA: direction, magnitude both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2
  • 27. 0V VA 1 mm = 5 mm/s A • VB|A: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2
  • 28. • VB|A: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 0V VA 1 mm = 5 mm/s A
  • 29. • VB|A: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 0V VA dir(V B|A) 1 mm = 5 mm/s A
  • 30. • VB: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V VA dir(V B|A) 1 mm = 5 mm/s A C B A O2 O4 3 4 2 ω2
  • 31. • VB: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 0V VA dir(V B|A) 1 mm = 5 mm/s A
  • 32. • VB: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s A
  • 33. • Solution is obtained by intersection & measurement Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s A C B A O2 O4 3 4 2 ω2
  • 34. • Solution is obtained by intersection & measurement Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s A B VB C B A O2 O4 3 4 2 ω2
  • 35. • Solution is obtained by intersection & measurement Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s A B VB X C B A O2 O4 3 4 2 ω2
  • 36. • Noticing that , we measure: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s A B VB
  • 37. • Noticing that , we measure: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB X
  • 38. • Noticing that , we measure: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB X
  • 39. • And compute: • Where the direction of rotation is inferred from the direction of Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB X X
  • 40. • Similarly: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB X X X
  • 41. 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB • Now, VC can be found in a variety of ways: – Intersect relative velocity directions w.r.t. A & B – Compute directly, e.g. VC = VA+(ω3 X AC) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X X
  • 42. • Using the first method, note that: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 X X X C B A O2 O4 3 4 2 ω2 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB
  • 43. • Using the first method, note that: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X and , X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s V B|A A B VB
  • 44. • Using the first method, note that: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X and , 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A A B VB X
  • 45. • Using the first method, note that: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X and , X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A A B VB
  • 46. • Using the first method, note that: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X and , 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A dir(VC|B ) A B VB X
  • 47. • Intersection gives the solution for VC Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A dir(VC|B ) A B VB
  • 48. • Intersection gives the solution for VC Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A VC dir(VC|B ) A C B VB X
  • 49. • Intersection gives the solution for VC Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 X X 0V VA dir(VB) dir(V B|A) 1 mm = 5 mm/s dir(VC|A) V B|A VC dir(VC|B ) A C B VB X X
  • 50. • Another Case 2 Example (Supp Ex V2) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4
  • 51. • Solve using the same graphical method: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V 1 mm = 10 mm/s
  • 52. • Find VB by case 2 analysis: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V 1 mm = 10 mm/s
  • 53. • VA : magnitude, direction both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V 1 mm = 10 mm/s
  • 54. • VA : magnitude, direction both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V 1 mm = 10 mm/s
  • 55. • VA : magnitude, direction both known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V A V A 1 mm = 10 mm/s
  • 56. • VB|A : direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V A V A 1 mm = 10 mm/s
  • 57. • VB|A : direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V A V A 1 mm = 10 mm/s
  • 58. • VB|A : direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A 1 mm = 10 mm/s
  • 59. • VB : direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V dir(VB|A) A V A 1 mm = 10 mm/s C B A O2 3 2 ω2 4
  • 60. • VB : direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V dir(VB|A) A V A dir(VB) 1 mm = 10 mm/s C B A O2 3 2 ω2 4
  • 61. • Intersection & measurement give: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A B 1 mm = 10 mm/s
  • 62. • Intersection & measurement give: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A B 1 mm = 10 mm/s X
  • 63. • And ω3 is found from: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 X 0V dir(VB|A) A V A dir(VB) VBVB|A B 1 mm = 10 mm/s X
  • 64. • Solve for VC by intersection: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A B 1 mm = 10 mm/s X X
  • 65. • Solve for VC by intersection: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A B dir(VC|A) 1 mm = 10 mm/s X X
  • 66. • Solve for VC by intersection: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A dir(VC|B ) B dir(VC|A) 1 mm = 10 mm/s X X
  • 67. • Measuring then gives: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 3 2 ω2 4 0V dir(VB|A) A V A dir(VB) VBVB|A dir(VC|B ) B C VC dir(VC|A) 1 mm = 10 mm/s X XX
  • 68. • Case 3: Coincident points on different links – Occurs for slides & pistons, cams & followers: • Two points on different links momentarily occupy the same point in the plane • Each has a different absolute velocity, therefore a relative velocity exists Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 69. • Case 3: Coincident points on different links – Calculate the slide (relative) velocity, VB3|B4 Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 B2, B3, B4 4 2 3 • So far, we have taken the derivative of the relative position vector, RB3|B4 • But how can we express this vector for two coincident points? • Intuitively, we can imagine displacing the slide by some small distance along the slide, then drawing RB3|B4 • Taking the limit as the displacement approaches zero, we can see that RB3|B4 has zero length, and is directed along the tangent to the slide (link 4) at point B
  • 70. • Case 3: Coincident points on different links – Calculate the slide (relative) velocity, VB3|B4 Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 θslide B2, B3, B4 4 2 3 • So: • Taking the derivative:
  • 71. • Case 3: Coincident points on different links – Calculate the slide (relative) velocity, VB3|B4 Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 θslide B2, B3, B4 4 2 3 • Simplifying gives the final expression: • Note that this deceptively simple expression hides the potentially difficult task of finding the slide tangent angle • In the following examples, straight slides are used to avoid this hassle (tangent angle = link angle for a straight slide)
  • 72. • Case 3 Example (Supp Ex V3) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3
  • 73. C B O2 2 ω2 4 O4 3 • Solve graphically Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V 1 mm = 10 mm/s
  • 74. C B O2 2 ω2 4 O4 3 • Use case 3 analysis to find VB4: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V 1 mm = 10 mm/s
  • 75. C B O2 2 ω2 4 O4 3 0V 1 mm = 10 mm/sC B O2 2 ω2 4 O4 3 • VB2: direction, magnitude both known: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V B2 VB2 1 mm = 10 mm/s
  • 76. 0V B2 VB2 1 mm = 10 mm/s 0V B2 VB2 dir(VB2|B4) 1 mm = 10 mm/sC B O2 2 ω2 4 O4 3 • VB2|B4: only direction is known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3
  • 77. C B O2 2 ω2 4 O4 3 C B O2 2 ω2 4 O4 3 0V B2 VB2 dir(VB2|B4) 1 mm = 10 mm/s 0V dir(VB4) B2 VB2 dir(VB2|B4) 1 mm = 10 mm/s • VB4: direction known, magnitude unknown Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009
  • 78. • Obtain VB4 by intersection Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 1 mm = 10 mm/s X
  • 79. • ω4 follows immediately from VB4: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 1 mm = 10 mm/s X X
  • 80. • VC follows immediately from ω4, or by: • Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 1 mm = 10 mm/s X X
  • 81. • VC follows immediately from ω4, or by: • , Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3 X X 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 dir(VC|B4) 1 mm = 10 mm/s
  • 82. • VC follows immediately from ω4, or by: • , , Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B O2 2 ω2 4 O4 3 X X 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 dir(VC) dir(VC|B4) 1 mm = 10 mm/s
  • 83. C B O2 2 ω2 4 O4 3 • Measuring: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 0V dir(VB4) B2 VB2 dir(VB2|B4) VB4 B4 VB2|B4 dir(VC) dir(VC|B4) C VC 1 mm = 10 mm/s X X X
  • 84. • Another Case 3 Example (Supp Ex V4) Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 D5, D6 5 6
  • 85. • Note: The 4-Bar was solved in Ex V1 Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 C B A O2 O4 3 4 2 ω2 D5, D6 5 6
  • 86. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • VC is found by scaling arguments: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 VA VB V B|A A B 0V 1 mm = 5 mm/s
  • 87. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • VC is found by scaling arguments: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 VA VB V B|A A B V C|A 0V 1 mm = 5 mm/s
  • 88. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • Measuring: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 VA VB V B|A A B V C|A 0V C VC 1 mm = 5 mm/s X
  • 89. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • VD5 is found by Case 3 analysis: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 X VA VB V B|A A B V C|A 0V C VC 1 mm = 5 mm/s
  • 90. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • VD5 : only the direction is known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 X VA VB V B|A A B V C|A dir(VD5 ) 0V C VC 1 mm = 5 mm/s
  • 91. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • VD5|C : only the direction is known Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 X VA VB V B|A A B V C|A dir(VD5 ) 0V dir(VD5|C ) C VC 1 mm = 5 mm/s
  • 92. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • Measuring: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 X VA VB V B|A A B VD5 V C|A dir(VD5 ) 0V dir(VD5|C ) VD5|C C D5 VC 1 mm = 5 mm/s X
  • 93. C B A O2 O4 3 4 2 ω2 D5, D6 5 6 • ω5 is found immediately from: Relative Velocity Analysis MECH 335 Lecture Notes © R.Podhorodeski, 2009 VA VB V B|A A B VD5 V C|A dir(VD5 ) 0V dir(VD5|C ) VD5|C C D5 VC 1 mm = 5 mm/s X X X
  • 94. END OF LECTURE PACK 3