Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Cardiovascular Physiology and Monitoring<br /> Tariq AlZahrani  M.D<br />Assistant professor <br /> College of medicine<br...
Coronary Circulation<br /><ul><li>Blood Supply</li></ul>      RCA<br />LCA<br /><ul><li>Conduction System</li></ul>      S...
Cardiac Cell Types<br />• Electrical cells <br />Generate and conduct impulses rapidly<br />• SA and AV nodes<br />• Nodal...
Atrio-ventricular (AV) node<br />Sino-atrial<br />(SA) node<br />BUNDLE<br />BRANCHES<br />PURKINJE FIBERS<br />
INTERCALATED  DISC  (TIGHT JUNCTION)<br />
Nerve impulse Terminology<br />• Resting state<br /> The relative electrical charges found on each side of the membrane at...
Action Potential Terms<br />• Depolarization<br />The sudden reversal of electrical charges<br />across the neuron membran...
Automaticity (P Cells)<br />Prepotential,<br />    Resting Potential, Diastolic Depolarization<br />Action Potential<br />...
Conduction Speed<br />A-V nodal conduction:<br />One way conduction<br />A-V nodal Delay (0.1 sec)<br />Factors Affecting ...
PHASE<br />Mechanical Response<br />0 = Rapid Depolarization<br />     (inward Na+ current)      <br />1 = Overshoot<br />...
ACTION  POTENTIALS<br />VENTRICULULAR<br />CELL<br />SAN<br />1<br />2<br />0<br />0<br />0<br />3<br />0<br />3<br />4<br...
Cardiac Myocyte<br /><ul><li>Structure
Ca++ Release
Excitation-Contraction Coupling</li></li></ul><li>The Fibrous A-V Ring<br />
THE ANATOMY OF BLOOD VESSELS<br />Layers:<br />Tunica interna (intima)<br />Tunica media<br />Tunica externa (adventitia)<...
Comparison of Veins and Arteries<br />Arteries:				Veins:	<br />
The Distribution of Blood<br />
Cardiac Output<br />CO = SV x HR<br />• The amount of blood ejected from the<br />ventricle in one minute<br />• Stroke vo...
Determination of Stroke Volume<br />• Preload<br /> Amount of blood delivered to the chamber<br /> Depend upon venous retu...
• End-diastolic volume (110-120 mL)<br />• End-systolic volume (40-50 mL)<br />• Stroke volume (70 mL)<br />• Ejection fra...
Pressure-Volume Loops<br />
Volume Load  ►<br />Pressure  Load ►<br />
Regulation of Cardiovascular System<br />Neural Mechanisms<br />Vasoconstriction<br />Vaosdilation<br />Baroreceptors<br /...
Nerve Supply of the Conduction System<br />
HORMONAL  REGULATION<br />Epinephrine & Norepinephrine<br />From the adrenal medulla<br />Renin-angiotensin-aldosterone<br...
RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM<br />Angiotensinogen (renin substrate)<br />Angiotensin<br />		Aldosterone<br />	K...
VASOPRESSIN<br />(ANTIDIURETIC  HORMONE)<br />	Hypothalamic<br />Osmoreceptors<br /> BP via Posterior Pituitary		  Vasop...
How To interpret ECG?<br />1.  Rate?<br />2. QRS Duration?<br />3. Stability?<br />
ECG limb leads<br />
Normal ECG<br />
<ul><li>P wave corresponds to depolarization of SA node
 QRS complex corresponds to ventricular  Depolarization
T wave corresponds to ventricular repolarization
Atrial repolarization record is masked by the larger QRS complex</li></li></ul><li>Measurements<br />Small square = 0.04 s...
Remember This 3, 3, 3 and 5<br />P duration = 3 small sqs = 0.12 sec.<br />P height = 3 small sqs = 0.12 sec.<br />QRS dur...
Right ventricular hypertrophy (precordial leads)<br />
Left ventricular hypertrophy (precordial leads)<br />
QRS voltage decrease<br />• Myocardial infarction (decrease of<br />      excitable myocardium mass)<br />• Fluids in the ...
J-point:<br />-Time point of completeddepolarization (zero reference)<br />-The junction of the QRS and the ST segment<br ...
Injury currents: constant source<br />• Mechanical trauma<br />• Infectious process<br />• Ischemia<br />
Ischemia=ST depression or T-wave inversion<br />   Represents lack of oxygen to myocardial tissue<br />
Injury = ST elevation -- represents prolonged ischemia; significant when &gt; 1 mm above the baseline of the segment in tw...
Infarct = Q wave— represented by first negative deflection after P wave; must be pathological to indicate MI<br />
What part of the heart is affected ?<br /><ul><li>II, III, aVF = </li></ul>Inferior Wall<br />I<br />II<br />III<br />aVR<...
Which part of the heart is affected ?<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<b...
What part of the heart is affected ?<br /><ul><li>I, aVL, V5 and V6</li></ul>Lateral wall of left ventricle<br />I<br />II...
I, aVL, V5 + V6 = <br />    Lateral Wall = <br />    Circumflex Artery<br />    Blockage<br />
 Rate<br />If regular: Divide 300/ number of large squares between 2 Rs = HR<br />If irregular: count number of complexes ...
Supraventricular Rhythm<br />Rate &gt; 100.<br />QRS: Narrow.<br />Stable or unstable.<br />Rate &lt; 60.<br />QRS: Narrow...
Supraventricular Rhythm: Tachycardia<br />Sinus Tachycardia<br />
Supraventricular Rhythm: Tachycardia<br />Paroxysmal SVT<br />
Supraventricular Rhythm: Tachycardia<br />Atrial Flutter<br />
Supraventricular Rhythm: Tachycardia<br />Atrial Fibrillations<br />
Supraventricular Rhythm: Bradycardia<br />Normal Sinus Rhythm<br />Sinus Bradycardia<br />
Supraventricular Rhythm: Bradycardia<br />1st Degree HB<br />
Supraventricular Rhythm: Bradycardia<br />2nd  Degree HB: Mobitz 1 Wenckebach.<br />Progressive lengthening of the P-R int...
Supraventricular Rhythm: Bradycardia<br />2nd  Degree HB: Mobitz 2<br />Sudden drop of QRS without prior P-R changes<br />
Supraventricular Rhythm: Bradycardia<br />3rd Degree HB<br />
The right bundle brunch block (precordial leads)<br />
Left bundle branch block (precordial leads)<br />
Characteristics of PVCs<br />• QRS prolongation due to slower conduction in the<br />    muscle fibers<br />• QRS high amp...
Ventricular Rhythm<br />Idioventricular Rhythm.<br />
Ventricular Rhythm<br />Accelerated Idioventricular Rhythm.<br />
Ventricular Rhythm<br />
Ventricular Rhythm<br />
Ventricular Rhythm<br />Pacer Rhythm<br />
 Stability<br /> * Stable patient: think of drug therapy.<br /> * Unstable patient: think of electric therapy.<br />
Treatment<br />Supraventricular Rhythm:<br />Stable = Drugs <br />Adenosine.<br />B blocker.<br />Ca  channel blocker.<br ...
Treatment<br />Ventricular Rhythm:<br />Stable = Drugs <br />Amiodarone.<br />Lidocaine.<br />Procainamide.<br />Unstable ...
Normal Venous Tracing<br />a ► Atrial Contraction<br />c ► Isometric (V) Contraction<br />x ►Mid-Systole<br />v ►Venous Fi...
Upcoming SlideShare
Loading in …5
×

CVS PSL and Monitoring

1,437 views

Published on

By Dr.Tariq

  • Be the first to comment

CVS PSL and Monitoring

  1. 1. Cardiovascular Physiology and Monitoring<br /> Tariq AlZahrani M.D<br />Assistant professor <br /> College of medicine<br /> King Saud University<br />
  2. 2.
  3. 3. Coronary Circulation<br /><ul><li>Blood Supply</li></ul> RCA<br />LCA<br /><ul><li>Conduction System</li></ul> SAN <br /> AVN<br /><ul><li>Coronary Perfusion Pressure </li></ul>(50-120mmHg)<br /> ADBP – LVEDP<br />
  4. 4. Cardiac Cell Types<br />• Electrical cells <br />Generate and conduct impulses rapidly<br />• SA and AV nodes<br />• Nodal pathways<br />• No contractile properties<br />• Muscle (myocardial) cells<br /> Main function is contraction<br />• Atrial muscle<br />• Ventricular muscle<br />• Able to conduct electrical impulses<br />• May generate its own impulses with certain types of stimuli<br />
  5. 5. Atrio-ventricular (AV) node<br />Sino-atrial<br />(SA) node<br />BUNDLE<br />BRANCHES<br />PURKINJE FIBERS<br />
  6. 6. INTERCALATED DISC (TIGHT JUNCTION)<br />
  7. 7. Nerve impulse Terminology<br />• Resting state<br /> The relative electrical charges found on each side of the membrane at rest<br />• Net positive charge on the outside<br /> • Net negative charge on the inside<br />• Action Potential<br />Change in the electrical charge caused by<br />stimulation of a neuron<br />
  8. 8. Action Potential Terms<br />• Depolarization<br />The sudden reversal of electrical charges<br />across the neuron membrane, causing the<br />transmission of an impulse<br />• Minimum voltage must be met in order to do this<br />• Repolarization<br /> Return of electrical charges to their original<br />resting state<br />
  9. 9. Automaticity (P Cells)<br />Prepotential,<br /> Resting Potential, Diastolic Depolarization<br />Action Potential<br />Repolarization<br />Distribution Of P Cells<br />Factors That Affect Automaticity:<br />Sympathetic and parasympathetic outflow will affect the prepotential phase<br />Temperature<br />RA and SAN stretch<br />Hormones<br />Drugs<br />
  10. 10. Conduction Speed<br />A-V nodal conduction:<br />One way conduction<br />A-V nodal Delay (0.1 sec)<br />Factors Affecting Conductivity:<br />Sympathetic and vagal infuince<br />Temperature<br />Hormons<br />Ischemia<br />Acidosis<br />Drugs<br />
  11. 11. PHASE<br />Mechanical Response<br />0 = Rapid Depolarization<br /> (inward Na+ current) <br />1 = Overshoot<br /> (outward K+ current)<br />1<br />2<br />0<br />2 = Plateau<br /> (inward Ca++ current)<br />3 = Repolarization<br /> (outward K+ current)<br />0<br />MEMBRANE POTENTIAL (mV)<br />4 = Resting Potential<br />3<br />(outward K+ current)<br />(inward Na+ current) <br />4<br />-90<br />TIME<br />
  12. 12. ACTION POTENTIALS<br />VENTRICULULAR<br />CELL<br />SAN<br />1<br />2<br />0<br />0<br />0<br />3<br />0<br />3<br />4<br />-50<br />-50<br />MEMBRANE POTENTIAL (mV)<br />4<br />-100<br />-100<br />
  13. 13. Cardiac Myocyte<br /><ul><li>Structure
  14. 14. Ca++ Release
  15. 15. Excitation-Contraction Coupling</li></li></ul><li>The Fibrous A-V Ring<br />
  16. 16. THE ANATOMY OF BLOOD VESSELS<br />Layers:<br />Tunica interna (intima)<br />Tunica media<br />Tunica externa (adventitia)<br />
  17. 17. Comparison of Veins and Arteries<br />Arteries: Veins: <br />
  18. 18. The Distribution of Blood<br />
  19. 19. Cardiac Output<br />CO = SV x HR<br />• The amount of blood ejected from the<br />ventricle in one minute<br />• Stroke volume<br /> Amount of blood ejected from the ventricle in<br />one contraction<br />• Heart rate<br />The # of cardiac cycles in one minute<br />
  20. 20. Determination of Stroke Volume<br />• Preload<br /> Amount of blood delivered to the chamber<br /> Depend upon venous return to the heart<br /> Also dependent upon the amount of blood delivered to the ventricle by the atrium<br />• Contractility<br /> The efficiency and strength of contraction<br /> Frank Starling’s Law<br />• Afterload<br /> Resistance to forward blood flow by the vessel walls<br />
  21. 21. • End-diastolic volume (110-120 mL)<br />• End-systolic volume (40-50 mL)<br />• Stroke volume (70 mL)<br />• Ejection fraction (60%)<br />
  22. 22. Pressure-Volume Loops<br />
  23. 23. Volume Load ►<br />Pressure Load ►<br />
  24. 24. Regulation of Cardiovascular System<br />Neural Mechanisms<br />Vasoconstriction<br />Vaosdilation<br />Baroreceptors<br />Chemoreceptors<br />
  25. 25. Nerve Supply of the Conduction System<br />
  26. 26.
  27. 27. HORMONAL REGULATION<br />Epinephrine & Norepinephrine<br />From the adrenal medulla<br />Renin-angiotensin-aldosterone<br />Renin from the kidney<br />Angiotensin, a plasma protein<br />Aldosterone from the adrenal cortex<br />Vasopressin (Antidiuretic Hormone-ADH)<br /> _ ADH from the posterior pituitary<br />ANP from RA<br />
  28. 28. RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM<br />Angiotensinogen (renin substrate)<br />Angiotensin<br /> Aldosterone<br /> Kidney<br />sodium & water retention<br /> BP (Kidney)<br /> Renin<br />Vasoconstriction<br /> Venoconstriction<br />
  29. 29. VASOPRESSIN<br />(ANTIDIURETIC HORMONE)<br /> Hypothalamic<br />Osmoreceptors<br /> BP via Posterior Pituitary  Vasopressin (ADH)<br /> Vasoconstriction  Water<br />Venoconstriction Retention<br />
  30. 30.
  31. 31.
  32. 32.
  33. 33. How To interpret ECG?<br />1. Rate?<br />2. QRS Duration?<br />3. Stability?<br />
  34. 34. ECG limb leads<br />
  35. 35.
  36. 36. Normal ECG<br />
  37. 37. <ul><li>P wave corresponds to depolarization of SA node
  38. 38. QRS complex corresponds to ventricular Depolarization
  39. 39. T wave corresponds to ventricular repolarization
  40. 40. Atrial repolarization record is masked by the larger QRS complex</li></li></ul><li>Measurements<br />Small square = 0.04 sec.<br />Large square = 5 small square = 0.2 sec.<br />One second = 5 large square.<br />One minute = 300 large square. <br />
  41. 41. Remember This 3, 3, 3 and 5<br />P duration = 3 small sqs = 0.12 sec.<br />P height = 3 small sqs = 0.12 sec.<br />QRS duration=3 small sq=0.12 sec.<br />P-R interval = 5 small sq = 0.2 sec. <br />
  42. 42. Right ventricular hypertrophy (precordial leads)<br />
  43. 43. Left ventricular hypertrophy (precordial leads)<br />
  44. 44. QRS voltage decrease<br />• Myocardial infarction (decrease of<br /> excitable myocardium mass)<br />• Fluids in the pericardium (short-circuits of<br /> currents within pericardium)<br />• Pulmonary emphysema (excessive<br /> quantities of air in the lungs)<br />
  45. 45. J-point:<br />-Time point of completeddepolarization (zero reference)<br />-The junction of the QRS and the ST segment<br />ST-segment shift –<br />sign of current of<br />injury<br />
  46. 46. Injury currents: constant source<br />• Mechanical trauma<br />• Infectious process<br />• Ischemia<br />
  47. 47. Ischemia=ST depression or T-wave inversion<br /> Represents lack of oxygen to myocardial tissue<br />
  48. 48. Injury = ST elevation -- represents prolonged ischemia; significant when &gt; 1 mm above the baseline of the segment in two or more leads<br />
  49. 49. Infarct = Q wave— represented by first negative deflection after P wave; must be pathological to indicate MI<br />
  50. 50. What part of the heart is affected ?<br /><ul><li>II, III, aVF = </li></ul>Inferior Wall<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br />
  51. 51. Which part of the heart is affected ?<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br /><ul><li>Leads V1, V2, V3, and V4 =</li></ul>Anterior Wall MI<br />
  52. 52. What part of the heart is affected ?<br /><ul><li>I, aVL, V5 and V6</li></ul>Lateral wall of left ventricle<br />I<br />II<br />III<br />aVR<br />aVL<br />aVF<br />V1<br />V2<br />V3<br />V4<br />V5<br />V6<br />
  53. 53. I, aVL, V5 + V6 = <br /> Lateral Wall = <br /> Circumflex Artery<br /> Blockage<br />
  54. 54. Rate<br />If regular: Divide 300/ number of large squares between 2 Rs = HR<br />If irregular: count number of complexes in 6 sec. and multiply by 10<br /> - Normal 60 -100<br /> - Bradycardia &lt; 60 <br /> - Tachycardia &gt; 100<br />P = Sinus<br />No P = Non sinus<br />
  55. 55. Supraventricular Rhythm<br />Rate &gt; 100.<br />QRS: Narrow.<br />Stable or unstable.<br />Rate &lt; 60.<br />QRS: Narrow.<br />Stable or unstable.<br />Sinus bradycardia.<br />1st degree HB.<br />2nd degree HB.<br />Complete HB.<br />Sinus tachycardia.<br />PSVT.<br />Atrialflutter.<br />Atrial fibrillations.<br />
  56. 56. Supraventricular Rhythm: Tachycardia<br />Sinus Tachycardia<br />
  57. 57. Supraventricular Rhythm: Tachycardia<br />Paroxysmal SVT<br />
  58. 58. Supraventricular Rhythm: Tachycardia<br />Atrial Flutter<br />
  59. 59. Supraventricular Rhythm: Tachycardia<br />Atrial Fibrillations<br />
  60. 60. Supraventricular Rhythm: Bradycardia<br />Normal Sinus Rhythm<br />Sinus Bradycardia<br />
  61. 61. Supraventricular Rhythm: Bradycardia<br />1st Degree HB<br />
  62. 62. Supraventricular Rhythm: Bradycardia<br />2nd Degree HB: Mobitz 1 Wenckebach.<br />Progressive lengthening of the P-R interval with intermittent dropped beat. <br />
  63. 63. Supraventricular Rhythm: Bradycardia<br />2nd Degree HB: Mobitz 2<br />Sudden drop of QRS without prior P-R changes<br />
  64. 64. Supraventricular Rhythm: Bradycardia<br />3rd Degree HB<br />
  65. 65. The right bundle brunch block (precordial leads)<br />
  66. 66. Left bundle branch block (precordial leads)<br />
  67. 67. Characteristics of PVCs<br />• QRS prolongation due to slower conduction in the<br /> muscle fibers<br />• QRS high amplitude due to lack of synchrony of<br /> excitation of RV and LV which causes partial<br /> neutralization of their contribution to the ECG<br />• QRS and T-wave have opposite polarities, again due to slow conduction which causes repolarization to follow depolarization.<br />
  68. 68. Ventricular Rhythm<br />Idioventricular Rhythm.<br />
  69. 69. Ventricular Rhythm<br />Accelerated Idioventricular Rhythm.<br />
  70. 70. Ventricular Rhythm<br />
  71. 71. Ventricular Rhythm<br />
  72. 72. Ventricular Rhythm<br />Pacer Rhythm<br />
  73. 73. Stability<br /> * Stable patient: think of drug therapy.<br /> * Unstable patient: think of electric therapy.<br />
  74. 74. Treatment<br />Supraventricular Rhythm:<br />Stable = Drugs <br />Adenosine.<br />B blocker.<br />Ca channel blocker.<br />Digoxin.<br />Unstable = Electric<br />DC, Synchronized<br />
  75. 75. Treatment<br />Ventricular Rhythm:<br />Stable = Drugs <br />Amiodarone.<br />Lidocaine.<br />Procainamide.<br />Unstable = Electric<br />DC, Non Synchronized<br />
  76. 76.
  77. 77. Normal Venous Tracing<br />a ► Atrial Contraction<br />c ► Isometric (V) Contraction<br />x ►Mid-Systole<br />v ►Venous Filling (Atrial)<br />y ►Rapid Filling (Ventricular)<br />
  78. 78.
  79. 79.
  80. 80. THANK YOU<br />

×