SlideShare a Scribd company logo
1 of 42
HUAWEITECHNOLOGIES CO., LTD.
www.huawei.com
Huawei Confidential
Security Level:03/13/15
LTE RNPS
LTE RF
Optimization Guide
V1.0
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 2
Change History
Date Version Description Author
0.5 LTE RNPS
1.0 LTE RNPS
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 3
Preface
To meet customers' requirements for high-quality networks, LTE trial
networks must be optimized during and after project implementation. Radio
frequency (RF) optimization is necessary in the entire optimization process.
This document provides guidelines on network optimization for network
planning and optimization personnel.
To meet customers' requirements for high-quality networks, LTE trial
networks must be optimized during and after project implementation. Radio
frequency (RF) optimization is necessary in the entire optimization process.
This document provides guidelines on network optimization for network
planning and optimization personnel.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 4
Contents
 Network and RF Optimization Processes
 LTE RF Optimization Objects
 Troubleshooting
Coverage
Signal quality
Handover success rate
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 5
Network Optimization Flowchart
New site
on air
Single site
verification
Are clusters
ready?
RF optimization
Service test and
parameter optimization
Are KPI
requirements met?
No Yes Yes
No
End
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 6
Network Optimization Process
 Single site verification
Single site verification, the first phase of network optimization, involves
function verification at each new site. Single site verification aims to
ensure that each site is properly installed and that parameters are
correctly configured.
 RF optimization
RF (or cluster) optimization starts after all sites in a planned area are
installed and verified. RF optimization aims to control pilot pollution while
optimizing signal coverage, increase handover success rates, and ensure
normal distribution of radio signals before parameter optimization. RF
optimization involves optimization and adjustment of antenna system
hardware and neighbor lists. The first RF optimization test must traverse
all cells in an area to rectify hardware faults.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 7
RF Optimization Flowchart
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 8
Preparations for RF Optimization
Checklist
Network plan, network structure diagram, site distribution, site
information, and engineering parameters
Drive test results (such as service drop points and handover
failure points) in the current area
Reference signal received power (RSRP) coverage diagram
Signal to interference plus noise ratio (SINR) distribution diagram
Measured handover success rates
Areas to be optimized can be determined by comparing the
distribution of RSRPs, SINRs, and handover success rates with the
optimization baseline.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 9
Network Optimization Methods
RF optimization involves adjustment of azimuths, tilts, antenna height, eNodeB transmit
power, feature algorithms, and performance parameters. Optimization methods in different
standards are similar, but each standard has its own measurement definition.
Network
Optimization
Azimuth AdjustmentTilt Adjustment
Feature Configuration
Reselection and
Handover
Parameter Adjustment
Power Adjustment
Antenna Height
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 10
Contents
 Network and RF Optimization Processes
 LTE RF Optimization Objects
 Troubleshooting
Coverage
Signal quality
Handover success rate
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 11
LTE RF Optimization Objects and
Target Baseline
What are
differences
between LTE
and 3G
optimization?
Text
RSRP
SINR
Handover
success rate
How are
these
counters
defined?
LTE
optimization
objects
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 12
RSRP
 Note: Different from GSM or TD-SCDMA systems, TD-LTE systems have multiple subcarriers multiplexed.
Therefore, the measured pilot signal strength is the RSRP of a single subcarrier (15 kHz) not the total
bandwidth power of the frequency.
The RSRPs near a cell, in the middle of a cell, and at the edge of a cell are determined based on the
distribution of signals on the entire network. Generally, the RSRP near a cell is -85 dBm, the RSRP in the
middle of a cell is -95 dBm, and the RSRP at the edge of a cell is -105 dBm.
Currently, the minimum RSRP for UEs to camp on a cell is -120 dBm.
 Empirical RSRP at the edge of a cell:
The RSRP is greater than -110 dBm in 99% areas at the TD-LTE site in Norway.
The RSRP is greater than -110 dBm in 98.09% areas in the Huayang field in Chengdu.
Reference signal received power (RSRP), is determined for a
considered cell as the linear average over the power
contributions (in [W]) of the resource elements that carry cell-
specific reference signals within the considered measurement
frequency bandwidth.
3GPP
definition
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 13
SINR
The SINR is not specifically defined in 3GPP specifications. A common formula is as
follows:
SINR = S/(I + N)
 S: indicates the power of measured usable signals. Reference signals (RS) and physical
downlink shared channels (PDSCHs) are mainly involved.
 I: indicates the power of measured signals or channel interference signals from other
cells in the current system and from inter-RAT cells.
 N: indicates background noise, which is related to measurement bandwidths and receiver
noise coefficients.
Empirical SINR at the edge of a cell:
The SINR is greater than -3 dB in 99% areas in Norway.
The SINR is greater than -3 dB in 99.25% areas in the Huayang field in Chengdu.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 14
Handover Success Rate
According to the signaling process in 3GPP TS 36.331,
 eNodeB statistics
(1) Handover success rate = Number of handovers/Number of handover
attempts x 100%
(2) Number of handover attempts: indicates the number of eNodeB-
transmitted RRCConnectionReconfiguration messages for handovers.
(3) Number of handovers: indicates the number of eNodeB-received
RRCConnectionReconfigurationComplete messages for handovers.
Handover success rate
The handover success rate is greater than 97% at the TD-LTE site in
Norway.
The handover success rate is 100% in the Huayang field in Chengdu.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 15
Power Adjustment Method
Service power configuration (calculating PDSCH power based
on RS power)
RS power PA and PB are delivered using RRC signaling. For
two antennas, PA is ρA and ρB is calculated based on the right
table. PDSCH power is calculated based on PA and PB.
Currently, it is recommended that PB be set to 1 dB and PA be
set to -3 dB. That is, the pilot power for symbols including pilot
symbols accounts for 1/3. This setting optimizes network
performance and ensures that the pilot power for Type A and
Type B symbols is equivalent to the service channel power. In
scenarios with special requirements, for example, in rural
scenarios requiring low edge rates, PB can be set to 2 or 3 dB to
enhance coverage.
Subcarriers share the transmit power of an eNodeB, and therefore the transmit power
of each subcarrier depends on the configured system bandwidth (such as 5 MHz and 10
MHz). A larger bandwidth will result in lower power of each subcarrier. LTE uses PA and
PB parameters to adjust power.
ρA: indicates the ratio of the data subcarrier power of OFDM symbols excluding pilot
symbols to the pilot subcarrier power.
ρB: indicates the ratio of the data subcarrier power of OFDM symbols including pilot
symbols to the pilot subcarrier power.
Definitions in
3GPP
specifications
Control channels
Power of PDCCHs, PHICHs, PCFICHs,
PBCHs, primary synchronization channels,
and secondary synchronization channels is
set using an offset from RS power.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 16
Contents
 Network and RF Optimization Processes
 LTE RF Optimization Objects
 Troubleshooting
Coverage
Signal quality
Handover success rate
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 17
Classification of Coverage Problems
(RSRP is mainly involved)
Weak coverage and
coverage holes Cross coverage
Imbalance between
uplink and downlink
Lack of a
dominant cell
Continuous
coverage must be
ensured.
The actual
coverage must be
consistent with the
planned one to
prevent service
drops caused by
isolated islands
during handovers.
Uplink and
downlink losses
must be balanced
to resolve uplink
and downlink
coverage
problems.
Each cell on a
network must
have a dominant
coverage area to
prevent frequent
reselections or
handovers
caused by signal
changes.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 18
Factors Affecting Coverage
1
Downlink:
•Equivalent isotropic
radiated power (EIRP)
•Total transmit power
•Combining loss
•Path loss (PL)
•Frequency band
•Distance between a receive
point and an eNodeB
•Scenarios (urban and
suburban areas) and terrains
(plains, mountains, and hills)
of electric wave propagation
•Antenna gain
•Antenna height
•Antenna parameters
(antenna pattern)
•Antenna tilt
•Antenna azimuth
2
Uplink:
•eNodeB receiver sensitivity
•Antenna diversity gain
•UE transmit power
•Propagation loss of uplink
radio signals
•Impact of tower-mounted
amplifiers (TMAs) on uplink
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 19
Weak Coverage and Coverage Holes
The signal quality in cells is poorer than the optimization baseline in an area.
As a result, UEs cannot be registered with the network or accessed services
cannot meet QoS requirements.
If there is no network coverage or coverage levels are excessively low in an area, the
area is called a weak coverage area. The receive level of a UE is less than its
minimum access level (RXLEV_ACCESS_MIN) because downlink receive levels in a
weak coverage area are unstable. In this situation, the UE is disconnected from the
network. After entering a weak coverage area, UEs in connected mode cannot be
handed over to a high-level cell, and even service drops occur because of low levels
and signal quality.
Weak
coverag
e
Coverage holes
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 20
Resolving Weak Coverage Problems
Analyze geographical
environments and check the
receive levels of adjacent
eNodeBs.
Analyze the EIRP of each
sector based on parameter
configurations and ensure
EIRPs can reach maximum
values if possible.
Increase pilot power.
Adjust antenna azimuths and
tilts, increase antenna height,
and use high-gain antennas.
Analyze geographical
environments and check the
receive levels of adjacent
eNodeBs.
Analyze the EIRP of each
sector based on parameter
configurations and ensure
EIRPs can reach maximum
values if possible.
Increase pilot power.
Adjust antenna azimuths and
tilts, increase antenna height,
and use high-gain antennas.
Deploy new eNodeBs if
coverage hole problems
cannot be resolved by
adjusting antennas.
Increase coverage by
adjacent eNodeBs to achieve
large coverage overlapping
between two eNodeBs and
ensure a moderate handover
area.
Note: Increasing coverage
may lead to co-channel and
adjacent-channel
interference.
Deploy new eNodeBs if
coverage hole problems
cannot be resolved by
adjusting antennas.
Increase coverage by
adjacent eNodeBs to achieve
large coverage overlapping
between two eNodeBs and
ensure a moderate handover
area.
Note: Increasing coverage
may lead to co-channel and
adjacent-channel
interference.
Use RRUs, indoor
distribution systems, leaky
feeders, and directional
antennas to resolve the
problem with blind spots in
elevator shafts, tunnels,
underground garages or
basements, and high
buildings.
Analyze the impact of
scenarios and terrains on
coverage.
Use RRUs, indoor
distribution systems, leaky
feeders, and directional
antennas to resolve the
problem with blind spots in
elevator shafts, tunnels,
underground garages or
basements, and high
buildings.
Analyze the impact of
scenarios and terrains on
coverage.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 21
Case: Searching for a Weak Coverage Area by
Using a Scanner or Performing Drive Tests on
UEs
Weak
coverage
area
Perform drive tests in zero-
load environments to obtain
the distribution of signals on
test routes. Then, find a
weak coverage area based
on the distribution, as
shown in the figure.
Adjust RF parameters of the
eNodeB covering the area.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 22
Lack of a Dominant Cell
In an area without a dominant cell, the receive level of the serving cell is similar to the
receive levels of its neighboring cells and the receive levels of downlink signals between
different cells are close to cell reselection thresholds. Receive levels in an area without a
dominant cell are also unsatisfactory. The SINR of the serving cell becomes unstable
because of frequency reuse, and even receive quality becomes unsatisfactory. In this
situation, a dominant cell is frequently reselected and changed in idle mode. As a result,
frequent handovers or service drops occur on UEs in connected mode because of poor
signal quality. An area without a dominant cell can also be regarded as a weak coverage
area.
Lack of a
dominant
cell
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 23
Resolving Problems with Lack of a
Dominant Cell
…
Adjust engineering
parameters of a cell that can
optimally cover the area as
required.
Adjust engineering
parameters of a cell that can
optimally cover the area as
required.
Determine cells covering an
area without a dominant cell
during network planning, and
adjust antenna tilts and
azimuths to increase coverage
by a cell with strong signals
and decrease coverage of
other cells with weak signals.
Determine cells covering an
area without a dominant cell
during network planning, and
adjust antenna tilts and
azimuths to increase coverage
by a cell with strong signals
and decrease coverage of
other cells with weak signals.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 24
Symptom
UEs frequently perform cell reselections
or handovers between identical cells.
Analysis
Analysis can be based on signaling
procedures and PCI distribution.
According to PCI distribution shown in
the figure, PCIs alternate in two or more
colors if there is no dominant cell.
Solution
According to the coverage plan, cell 337
is a dominant cell covering the area and cell
49 also has strong signals. To ensure
handovers between cells 337 and 49 at
crossroads, increase tilts in cell 49.
1.PCI distribution in cluster xx
Lack of a
dominant
cell
Case: Searching for an Area
Without a Dominant Cell
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 25
Cross Coverage
Cross coverage means that the coverage scope of an eNodeB exceeds the planned one and
generates discontinuous dominant areas in the coverage scope of other eNodeBs. For
example, if the height of a site is much higher than the average height of surrounding
buildings, its transmit signals propagate far along hills or roads and form dominant
coverage in the coverage scope of other eNodeBs. This is an “island” phenomenon. If a call
is connected to an island that is far away from an eNodeB but is still served by the eNodeB,
and cells around the island are not configured as neighboring cells of the current cell when
cell handover parameters are configured, call drops may occur immediately once UEs leave
the island. If neighboring cells are configured but the island is excessively small, call drops
may also occur because UEs are not promptly handed over. In addition, cross coverage
occurs on two sides of a bay because a short distance between the two sides. Therefore,
eNodeBs on two sides of a bay must be specifically designed.
Cross
coverage
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 26
Resolving Cross Coverage Problems
…
Adjust antenna tilts or
replace antennas with large-tilt
antennas while ensuring
proper antenna azimuths. Tilt
adjustment is the most
effective approach to control
coverage. Tilts are classified
into electrical tilts and
mechanical tilts. Electrical tilts
are preferentially adjusted if
possible.
Adjust antenna tilts or
replace antennas with large-tilt
antennas while ensuring
proper antenna azimuths. Tilt
adjustment is the most
effective approach to control
coverage. Tilts are classified
into electrical tilts and
mechanical tilts. Electrical tilts
are preferentially adjusted if
possible.
Adjust antenna azimuths
properly so that the direction
of the main lobe slightly
obliques from the direction of
a street. This reduces
excessively far coverage by
electric waves because of
reflection from buildings on
two sides of the street.
Adjust antenna azimuths
properly so that the direction
of the main lobe slightly
obliques from the direction of
a street. This reduces
excessively far coverage by
electric waves because of
reflection from buildings on
two sides of the street.
Decrease the antenna
height for a high site.
Decrease transmit power of
carriers when cell
performance is not affected.
Decrease the antenna
height for a high site.
Decrease transmit power of
carriers when cell
performance is not affected.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 27
Case: Cross Coverage Caused
by Improper Tilt Settings
 Symptom
As shown in the upper right figure, cross
coverage occurs in a cell whose PCI is
288. Therefore, the cell interferes with
other cells, which increases the
probability of service drops.
 Analysis
The most possible cause for cross
coverage is excessively antenna height
or improper tilt settings. According to a
check on the current engineering
parameter settings, the tilt is set to an
excessively small value. Therefore, it is
recommended that the tilt be increased.
 Solution
Adjust the tilt of cell 288 from 3 to 6. As
shown in the lower right figure, cross
coverage of cell 288 is significantly
reduced after the tilt is adjusted.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 28
Case: Inverse Connections Involved
in the Antenna System
 Symptom
The RSRPs of cells 0 and 2 at the Expo Village site are low and high respectively in
the red area shown in the figure. The signal quality of cells 0 and 2 is satisfactory in
the areas covered by cells 2 and 0 respectively.
 Analysis
After installation and commissioning are complete, the RSRP in the direction of the
main lobe in cell 0 is low. After cell 0 is disabled and cell 2 is enabled, the RSRP in
cell 2 is normal and the SINR is higher than that tested in cell 0. Therefore, this
problem may occur because the antenna systems in the two cells are connected
inversely. Test results are as expected after optical fibers on the baseband board are
swapped.
 Solution
Swap optical fibers on the baseband board or adjust feeders and antennas properly. It
is recommended that optical fibers on the baseband board be swapped because this
operation can be performed in the equipment room.
 Suggestions
Network planning personnel must participate in installation. Alternatively, customer
service personnel have detailed network planning materials and strictly supervise
project constructors for installation. After installation is complete, labels must be
attached and installation materials must be filed.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 29
Imbalance Between Uplink and
DownlinkWhen UE transmit power is less than eNodeB transmit power, UEs in idle mode may receive
eNodeB signals and successfully register in cells. However, the eNodeB cannot receive
uplink signals because of limited power when UEs perform random access or upload data.
In this situation, the uplink coverage distance is less than the downlink coverage distance.
Imbalance between uplink and downlink involves limited uplink or downlink coverage. In
limited uplink coverage, UE transmit power reaches its maximum but still cannot meet the
requirement for uplink BLERs. In limited downlink coverage, the downlink DCH transmit
code power reaches its maximum but still cannot meet the requirement for the downlink
BLER. Imbalance between uplink and downlink leads to service drops. The most common
cause is limited uplink coverage.
Imbalance
between
uplink and
downlink
Uplink coverage area
Downlink coverage area
coverage area
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 30
Resolving Problems with Imbalance
Between Uplink and Downlink
…
If no performance data is available for
RF optimization, trace a single user in the
OMC equipment room to obtain uplink
measurement reports on the Uu interface,
and then analyze the measurement
reports and drive test files.
If performance data is available, check
each carrier in each cell for imbalance
between uplink and downlink based on
uplink and downlink balance
measurements.
If no performance data is available for
RF optimization, trace a single user in the
OMC equipment room to obtain uplink
measurement reports on the Uu interface,
and then analyze the measurement
reports and drive test files.
If performance data is available, check
each carrier in each cell for imbalance
between uplink and downlink based on
uplink and downlink balance
measurements.
If uplink interference leads to imbalance
between uplink and downlink, monitor
eNodeB alarms to check for interference.
Check whether equipment works properly
and whether alarms are generated if
imbalance between uplink and downlink is
caused by other factors, for example, uplink
and downlink gains of repeaters and trunk
amplifiers are set incorrectly, the antenna
system for receive diversity is faulty when
reception and transmission are separated,
or power amplifiers are faulty. If equipment
works properly or alarms are generated,
take measures such as replacement,
isolation, and adjustment.
If uplink interference leads to imbalance
between uplink and downlink, monitor
eNodeB alarms to check for interference.
Check whether equipment works properly
and whether alarms are generated if
imbalance between uplink and downlink is
caused by other factors, for example, uplink
and downlink gains of repeaters and trunk
amplifiers are set incorrectly, the antenna
system for receive diversity is faulty when
reception and transmission are separated,
or power amplifiers are faulty. If equipment
works properly or alarms are generated,
take measures such as replacement,
isolation, and adjustment.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 31
Contents
 Network and RF Optimization Processes
 LTE RF Optimization Objects
 Troubleshooting
Coverage
Signal quality
Handover success rate
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 32
Signal Quality (SINR is mainly
involved)
a. Frequency
plan
c. Site
selection
d. Antenna
height
Process of analyzing SINR problems
e. Antenna
azimuths
f. Antenna tilts
b. Cell layout
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 33
Resolving Signal Quality Problems
Caused by Improper Parameter Settings
Change and optimize frequencies based on drive test and
performance measurement data.
Optimizing
frequencies
Adjust antenna azimuths and tilts to change the distribution of signals in an
interfered area by increasing the level of a dominant sector and decreasing levels of
other sectors.
Adjusting the
antenna
system
Increase power of a cell and decrease power of other cells to form a dominant
cell.
Decrease RS power to reduce coverage if the antenna pattern is distorted because
of a large antenna tilt.
Power adjustment and antenna system adjustment can be used together.
Adding
dominant
coverage
Adjusting
power
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 34
Case: Adjusting Antenna Azimuths and Tilts
to Reduce Interference
 Symptom
Cross coverage occurs at sites 1, 2, 3, 7, 8, 9, 10, 11, and 12, and co-channel interference occurs
in many areas.
 Analysis
According to the analysis of engineering parameters and drive test data, cell density is large in
coverage areas. Coverage by each cell can be reduced by adjusting antenna azimuths and tilts.
 Solution
Change the tilt in cell 28 from 2 degrees to 4 degrees so that the direction points to a
demonstration route. Change the tilt in cell 33 from 3 degrees to 6 degrees so that the direction
points to the Wanke Pavilion. Change the tilt in cells 50 and 51 from 3 degrees to 6 degrees so
that the direction points to the Communication Pavilion. Decrease the transmit power in cell 33 by
3 dB to reduce its interference to overhead footpaths near China Pavilion.
SINR before optimization in Puxi SINR after optimization in Puxi
Poor signal
quality before
optimization
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 35
Case: Changing PCIs of Intra-frequency Cells
to Reduce Interference Symptom
Near Japan Pavilion, UEs access a cell whose PCI is 3 and SINRs are low. UEs are about 200 m away from the
eNodeB. This problem may be caused by co-channel interference.
 Analysis
This problem is not caused by co-channel interference because no neighboring cell has the same frequency as
the current cell. Cell 6 interferes with cell 3. SINRs increase after cell 6 is disabled. In theory, staggered PCIs can
reduce interference.
 Solution
Change PCI 6 to PCI 8. Test results show that SINRs increase by about 10 dB.
SINR when cell 6 is enabled SINR when cell 6 is disabled SINR when PCI 6 is changed to PCI 8
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 36
Case: Handover Failure Caused by
Severe Interference
 Symptom
During a test, handovers from PCI 281 to PCI 279 fail.
 Analysis
Cell 281 is a source cell and is interfered by cells 279 and 178. Delivered handover
commands always fail and cannot be received correctly by UEs. Cell 279 is a target cell
for handover, and its coverage is not adjusted preferentially because the signal
strength in the handover area can ensure signal quality after handovers. Therefore, cell
178 must be adjusted to reduce its interference to cell 281.
 Solution
Adjust antenna tilts to decrease coverage by cell 178.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 37
Contents
 Network and RF Optimization Processes
 LTE RF Optimization Objects
 Troubleshooting
Coverage
Signal quality
Handover success rate
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 38
Analysis of Handover Success Rate
Problems
Neighboring cell optimization must be performed to ensure that UEs in idle or
connected mode can promptly perform reselection to or be handed over to
optimal serving cells. This helps achieve continuous coverage. In addition,
problems with delay, ping-pong, and non-logical handovers can be resolved by
optimizing coverage, interference, and handover parameters.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 39
Handover Problem Analysis

Checking handover validity
Obtain source and target cells using drive test software and then check whether handovers are
performed between two cells that are geographically far using Mapinfo.

Checking interference
Check interference in both source and target cells because handover failures may be caused
by uplink or downlink interference.

Checking coverage
Check source and target cells for cross coverage, imbalance between uplink and downlink, and
carrier-level receive quality and level.

Check contents
Check handovers based on RSRPs measured in UE drive tests.
1. Verify that RSRPs in the expected source and target cells are maximum.
2. Verify that the absolute RSRPs in the source and target cells are reasonable at a
handover point. In other words, handovers are not allowed if signal quality is excessively
poor. Specific RSRPs are determined based on the entire RSRPs on a network.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 40
Case: Service Drops Caused by Missing
Neighboring Cell Configuration
 Symptom
As shown in the upper right figure, a
UE sends multiple measurement
reports but is not handed over,
which may be caused by missing
neighboring cell configuration.
 Analysis
According to measurement reports,
the UE sends an A3 report of cell
64. However, the
RRCConnectionReconfiguration
message in the lower right figure
shows that the current cell is cell
278 (the first cell) and cell 64 is not
included in the message. This
indicates that cells 278 and 64 are
not configured as neighboring cells.
Neighboring cell configuration on
live networks can be checked for
further confirmation.
 Solution
Configure cells 278 and 64 as
neighboring cells.
HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 41
Summary
RF optimization involves adjustment of neighboring cell lists and engineering parameters.
Most coverage and interference problems can be resolved by taking the following measures
(sorted in descending order by priority):
 Adjusting antenna tilts
 Adjusting antenna azimuths
 Adjusting antenna height
 Adjusting antenna position
 Adjusting antenna types
 Adding TMAs
 Adjusting site position
 Adding sites or RRUs
This document describes what are involved in the RF optimization phase of network optimization. RF optimization
focuses on improvement of signal distribution and provides a good radio signal environment for subsequent
service parameter optimization. RF optimization mainly use drive tests, which can be supplemented by other tests.
RF optimization focuses on coverage and handover problems, which can be supplemented by other problems. RF
optimization aims to resolve handover, service drop, access, and interference problems caused by these
problems. Engineering parameters and neighboring cell lists are adjusted in the RF optimization phase, while cell
parameters are adjusted in the parameter optimization phase.
Thank you
www.huawei.com
Muhaammad
MUHAMMAD JAVID.
CSSCorp Company.

More Related Content

What's hot

Call Setup Success Rate Definition and Troubleshooting
Call Setup Success Rate Definition and Troubleshooting Call Setup Success Rate Definition and Troubleshooting
Call Setup Success Rate Definition and Troubleshooting Assim Mubder
 
395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptxSudheeraIndrajith
 
Hw lte rf-optimization-guide
Hw lte rf-optimization-guideHw lte rf-optimization-guide
Hw lte rf-optimization-guidetharinduwije
 
Umts access kpi troubleshooting guide rrc
Umts access kpi troubleshooting guide   rrcUmts access kpi troubleshooting guide   rrc
Umts access kpi troubleshooting guide rrcPrashant Gaurav
 
4.oeo000040 lte traffic fault diagnosis issue 1
4.oeo000040 lte traffic fault diagnosis issue 14.oeo000040 lte traffic fault diagnosis issue 1
4.oeo000040 lte traffic fault diagnosis issue 1Klajdi Husi
 
Huawei - Access failures troubleshooting work shop
Huawei - Access failures troubleshooting work shopHuawei - Access failures troubleshooting work shop
Huawei - Access failures troubleshooting work shopnavaidkhan
 
Top 10 3 G Radio Optimisation Actions
Top 10 3 G Radio Optimisation ActionsTop 10 3 G Radio Optimisation Actions
Top 10 3 G Radio Optimisation ActionsAbdul Muin
 
WCDMA RF optimization
WCDMA RF optimizationWCDMA RF optimization
WCDMA RF optimizationbasioni
 
WCDMA Tems Parameters Investigation and Drive Testing
WCDMA Tems Parameters Investigation and Drive TestingWCDMA Tems Parameters Investigation and Drive Testing
WCDMA Tems Parameters Investigation and Drive TestingS Mohib Naqvi
 
Lte network planning huawei technologies
Lte network planning huawei technologiesLte network planning huawei technologies
Lte network planning huawei technologiesChaudary Imran
 
Lte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTELte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTEmanish_sapra
 
Dt parameters
Dt parametersDt parameters
Dt parameterssangwa85
 
LTE KPIs and Formulae
LTE KPIs and FormulaeLTE KPIs and Formulae
LTE KPIs and FormulaeMradul Nagpal
 
Nokia kpi and_core_optimization
Nokia kpi and_core_optimizationNokia kpi and_core_optimization
Nokia kpi and_core_optimizationdebasish goswami
 
Tti bundling in fdd and tdd
Tti bundling in fdd and tddTti bundling in fdd and tdd
Tti bundling in fdd and tddLaxman Mewari
 

What's hot (20)

Drive Test
Drive TestDrive Test
Drive Test
 
Lte optimization
Lte optimizationLte optimization
Lte optimization
 
Call Setup Success Rate Definition and Troubleshooting
Call Setup Success Rate Definition and Troubleshooting Call Setup Success Rate Definition and Troubleshooting
Call Setup Success Rate Definition and Troubleshooting
 
395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx395317358-LTE-Resource-Usage-Optimization.pptx
395317358-LTE-Resource-Usage-Optimization.pptx
 
40234553 drive-test
40234553 drive-test40234553 drive-test
40234553 drive-test
 
LTE KPI
LTE KPILTE KPI
LTE KPI
 
Hw lte rf-optimization-guide
Hw lte rf-optimization-guideHw lte rf-optimization-guide
Hw lte rf-optimization-guide
 
Umts access kpi troubleshooting guide rrc
Umts access kpi troubleshooting guide   rrcUmts access kpi troubleshooting guide   rrc
Umts access kpi troubleshooting guide rrc
 
wcdma-paging-problem-analysis
wcdma-paging-problem-analysiswcdma-paging-problem-analysis
wcdma-paging-problem-analysis
 
4.oeo000040 lte traffic fault diagnosis issue 1
4.oeo000040 lte traffic fault diagnosis issue 14.oeo000040 lte traffic fault diagnosis issue 1
4.oeo000040 lte traffic fault diagnosis issue 1
 
Huawei - Access failures troubleshooting work shop
Huawei - Access failures troubleshooting work shopHuawei - Access failures troubleshooting work shop
Huawei - Access failures troubleshooting work shop
 
Top 10 3 G Radio Optimisation Actions
Top 10 3 G Radio Optimisation ActionsTop 10 3 G Radio Optimisation Actions
Top 10 3 G Radio Optimisation Actions
 
WCDMA RF optimization
WCDMA RF optimizationWCDMA RF optimization
WCDMA RF optimization
 
WCDMA Tems Parameters Investigation and Drive Testing
WCDMA Tems Parameters Investigation and Drive TestingWCDMA Tems Parameters Investigation and Drive Testing
WCDMA Tems Parameters Investigation and Drive Testing
 
Lte network planning huawei technologies
Lte network planning huawei technologiesLte network planning huawei technologies
Lte network planning huawei technologies
 
Lte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTELte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTE
 
Dt parameters
Dt parametersDt parameters
Dt parameters
 
LTE KPIs and Formulae
LTE KPIs and FormulaeLTE KPIs and Formulae
LTE KPIs and Formulae
 
Nokia kpi and_core_optimization
Nokia kpi and_core_optimizationNokia kpi and_core_optimization
Nokia kpi and_core_optimization
 
Tti bundling in fdd and tdd
Tti bundling in fdd and tddTti bundling in fdd and tdd
Tti bundling in fdd and tdd
 

Similar to Lte rf-optimization-guide

LTE RF Optimization.pdf
 LTE RF Optimization.pdf LTE RF Optimization.pdf
LTE RF Optimization.pdfRakhiJadav1
 
lte-optimization(1).pptx
lte-optimization(1).pptxlte-optimization(1).pptx
lte-optimization(1).pptxssuser9ad3ab
 
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUESLTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUESEMERSON EDUARDO RODRIGUES
 
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUESLTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUESEMERSON EDUARDO RODRIGUES
 
Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Terra Sacrifice
 
Lte rf optimization_guide
Lte rf optimization_guideLte rf optimization_guide
Lte rf optimization_guideHatim100
 
Wcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationWcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationPengpeng Song
 
Fyp Presentation
Fyp PresentationFyp Presentation
Fyp PresentationArsalan Mir
 
AIRCOM LTE Webinar 3 - LTE Carriers
AIRCOM LTE Webinar 3 - LTE CarriersAIRCOM LTE Webinar 3 - LTE Carriers
AIRCOM LTE Webinar 3 - LTE CarriersAIRCOM International
 
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...Jean de la Sagesse
 
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...Maria Anto Selvan
 
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...IJSRD
 
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...IJSRD
 
Powerful business model for fixed wireless data using outdoor antennas - Paper
Powerful business model for fixed wireless data using outdoor antennas - PaperPowerful business model for fixed wireless data using outdoor antennas - Paper
Powerful business model for fixed wireless data using outdoor antennas - PaperAndre Fourie
 
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...IRJET Journal
 

Similar to Lte rf-optimization-guide (20)

LTE RF Optimization.pdf
 LTE RF Optimization.pdf LTE RF Optimization.pdf
LTE RF Optimization.pdf
 
lte-optimization(1).pptx
lte-optimization(1).pptxlte-optimization(1).pptx
lte-optimization(1).pptx
 
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUESLTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide. EMERSON EDUARDO RODRIGUES
 
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUESLTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUES
LTE-RF-Optimization-Guide EMERSON EDUARDO RODRIGUES
 
Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02Hwlte rf-optimization-guide-140704020836-phpapp02
Hwlte rf-optimization-guide-140704020836-phpapp02
 
LTE Optimization
LTE OptimizationLTE Optimization
LTE Optimization
 
Lte rf optimization_guide
Lte rf optimization_guideLte rf optimization_guide
Lte rf optimization_guide
 
Wcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationWcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And Optimization
 
Fyp Presentation
Fyp PresentationFyp Presentation
Fyp Presentation
 
Umts
UmtsUmts
Umts
 
AIRCOM LTE Webinar 3 - LTE Carriers
AIRCOM LTE Webinar 3 - LTE CarriersAIRCOM LTE Webinar 3 - LTE Carriers
AIRCOM LTE Webinar 3 - LTE Carriers
 
EMEA Airheads – Aruba controller features used to optimize performance
EMEA Airheads – Aruba controller features used to optimize performanceEMEA Airheads – Aruba controller features used to optimize performance
EMEA Airheads – Aruba controller features used to optimize performance
 
E nodeb
E nodebE nodeb
E nodeb
 
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
 
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...
2gand3gkpiimprovementbyparameteroptimizationnsnericssonhuaweireckontalk 14121...
 
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
 
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
Comparative Analysis of PAPR Reduction Techniques in OFDM Using Precoding Tec...
 
Powerful business model for fixed wireless data using outdoor antennas - Paper
Powerful business model for fixed wireless data using outdoor antennas - PaperPowerful business model for fixed wireless data using outdoor antennas - Paper
Powerful business model for fixed wireless data using outdoor antennas - Paper
 
5 cc
5 cc5 cc
5 cc
 
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...
IRJET- Performance Comparison Analysis between Multi-FFT OFDM for Power Line ...
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 

Lte rf-optimization-guide

  • 1. HUAWEITECHNOLOGIES CO., LTD. www.huawei.com Huawei Confidential Security Level:03/13/15 LTE RNPS LTE RF Optimization Guide V1.0
  • 2. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 2 Change History Date Version Description Author 0.5 LTE RNPS 1.0 LTE RNPS
  • 3. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 3 Preface To meet customers' requirements for high-quality networks, LTE trial networks must be optimized during and after project implementation. Radio frequency (RF) optimization is necessary in the entire optimization process. This document provides guidelines on network optimization for network planning and optimization personnel. To meet customers' requirements for high-quality networks, LTE trial networks must be optimized during and after project implementation. Radio frequency (RF) optimization is necessary in the entire optimization process. This document provides guidelines on network optimization for network planning and optimization personnel.
  • 4. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 4 Contents  Network and RF Optimization Processes  LTE RF Optimization Objects  Troubleshooting Coverage Signal quality Handover success rate
  • 5. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 5 Network Optimization Flowchart New site on air Single site verification Are clusters ready? RF optimization Service test and parameter optimization Are KPI requirements met? No Yes Yes No End
  • 6. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 6 Network Optimization Process  Single site verification Single site verification, the first phase of network optimization, involves function verification at each new site. Single site verification aims to ensure that each site is properly installed and that parameters are correctly configured.  RF optimization RF (or cluster) optimization starts after all sites in a planned area are installed and verified. RF optimization aims to control pilot pollution while optimizing signal coverage, increase handover success rates, and ensure normal distribution of radio signals before parameter optimization. RF optimization involves optimization and adjustment of antenna system hardware and neighbor lists. The first RF optimization test must traverse all cells in an area to rectify hardware faults.
  • 7. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 7 RF Optimization Flowchart
  • 8. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 8 Preparations for RF Optimization Checklist Network plan, network structure diagram, site distribution, site information, and engineering parameters Drive test results (such as service drop points and handover failure points) in the current area Reference signal received power (RSRP) coverage diagram Signal to interference plus noise ratio (SINR) distribution diagram Measured handover success rates Areas to be optimized can be determined by comparing the distribution of RSRPs, SINRs, and handover success rates with the optimization baseline.
  • 9. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 9 Network Optimization Methods RF optimization involves adjustment of azimuths, tilts, antenna height, eNodeB transmit power, feature algorithms, and performance parameters. Optimization methods in different standards are similar, but each standard has its own measurement definition. Network Optimization Azimuth AdjustmentTilt Adjustment Feature Configuration Reselection and Handover Parameter Adjustment Power Adjustment Antenna Height
  • 10. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 10 Contents  Network and RF Optimization Processes  LTE RF Optimization Objects  Troubleshooting Coverage Signal quality Handover success rate
  • 11. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 11 LTE RF Optimization Objects and Target Baseline What are differences between LTE and 3G optimization? Text RSRP SINR Handover success rate How are these counters defined? LTE optimization objects
  • 12. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 12 RSRP  Note: Different from GSM or TD-SCDMA systems, TD-LTE systems have multiple subcarriers multiplexed. Therefore, the measured pilot signal strength is the RSRP of a single subcarrier (15 kHz) not the total bandwidth power of the frequency. The RSRPs near a cell, in the middle of a cell, and at the edge of a cell are determined based on the distribution of signals on the entire network. Generally, the RSRP near a cell is -85 dBm, the RSRP in the middle of a cell is -95 dBm, and the RSRP at the edge of a cell is -105 dBm. Currently, the minimum RSRP for UEs to camp on a cell is -120 dBm.  Empirical RSRP at the edge of a cell: The RSRP is greater than -110 dBm in 99% areas at the TD-LTE site in Norway. The RSRP is greater than -110 dBm in 98.09% areas in the Huayang field in Chengdu. Reference signal received power (RSRP), is determined for a considered cell as the linear average over the power contributions (in [W]) of the resource elements that carry cell- specific reference signals within the considered measurement frequency bandwidth. 3GPP definition
  • 13. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 13 SINR The SINR is not specifically defined in 3GPP specifications. A common formula is as follows: SINR = S/(I + N)  S: indicates the power of measured usable signals. Reference signals (RS) and physical downlink shared channels (PDSCHs) are mainly involved.  I: indicates the power of measured signals or channel interference signals from other cells in the current system and from inter-RAT cells.  N: indicates background noise, which is related to measurement bandwidths and receiver noise coefficients. Empirical SINR at the edge of a cell: The SINR is greater than -3 dB in 99% areas in Norway. The SINR is greater than -3 dB in 99.25% areas in the Huayang field in Chengdu.
  • 14. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 14 Handover Success Rate According to the signaling process in 3GPP TS 36.331,  eNodeB statistics (1) Handover success rate = Number of handovers/Number of handover attempts x 100% (2) Number of handover attempts: indicates the number of eNodeB- transmitted RRCConnectionReconfiguration messages for handovers. (3) Number of handovers: indicates the number of eNodeB-received RRCConnectionReconfigurationComplete messages for handovers. Handover success rate The handover success rate is greater than 97% at the TD-LTE site in Norway. The handover success rate is 100% in the Huayang field in Chengdu.
  • 15. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 15 Power Adjustment Method Service power configuration (calculating PDSCH power based on RS power) RS power PA and PB are delivered using RRC signaling. For two antennas, PA is ρA and ρB is calculated based on the right table. PDSCH power is calculated based on PA and PB. Currently, it is recommended that PB be set to 1 dB and PA be set to -3 dB. That is, the pilot power for symbols including pilot symbols accounts for 1/3. This setting optimizes network performance and ensures that the pilot power for Type A and Type B symbols is equivalent to the service channel power. In scenarios with special requirements, for example, in rural scenarios requiring low edge rates, PB can be set to 2 or 3 dB to enhance coverage. Subcarriers share the transmit power of an eNodeB, and therefore the transmit power of each subcarrier depends on the configured system bandwidth (such as 5 MHz and 10 MHz). A larger bandwidth will result in lower power of each subcarrier. LTE uses PA and PB parameters to adjust power. ρA: indicates the ratio of the data subcarrier power of OFDM symbols excluding pilot symbols to the pilot subcarrier power. ρB: indicates the ratio of the data subcarrier power of OFDM symbols including pilot symbols to the pilot subcarrier power. Definitions in 3GPP specifications Control channels Power of PDCCHs, PHICHs, PCFICHs, PBCHs, primary synchronization channels, and secondary synchronization channels is set using an offset from RS power.
  • 16. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 16 Contents  Network and RF Optimization Processes  LTE RF Optimization Objects  Troubleshooting Coverage Signal quality Handover success rate
  • 17. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 17 Classification of Coverage Problems (RSRP is mainly involved) Weak coverage and coverage holes Cross coverage Imbalance between uplink and downlink Lack of a dominant cell Continuous coverage must be ensured. The actual coverage must be consistent with the planned one to prevent service drops caused by isolated islands during handovers. Uplink and downlink losses must be balanced to resolve uplink and downlink coverage problems. Each cell on a network must have a dominant coverage area to prevent frequent reselections or handovers caused by signal changes.
  • 18. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 18 Factors Affecting Coverage 1 Downlink: •Equivalent isotropic radiated power (EIRP) •Total transmit power •Combining loss •Path loss (PL) •Frequency band •Distance between a receive point and an eNodeB •Scenarios (urban and suburban areas) and terrains (plains, mountains, and hills) of electric wave propagation •Antenna gain •Antenna height •Antenna parameters (antenna pattern) •Antenna tilt •Antenna azimuth 2 Uplink: •eNodeB receiver sensitivity •Antenna diversity gain •UE transmit power •Propagation loss of uplink radio signals •Impact of tower-mounted amplifiers (TMAs) on uplink
  • 19. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 19 Weak Coverage and Coverage Holes The signal quality in cells is poorer than the optimization baseline in an area. As a result, UEs cannot be registered with the network or accessed services cannot meet QoS requirements. If there is no network coverage or coverage levels are excessively low in an area, the area is called a weak coverage area. The receive level of a UE is less than its minimum access level (RXLEV_ACCESS_MIN) because downlink receive levels in a weak coverage area are unstable. In this situation, the UE is disconnected from the network. After entering a weak coverage area, UEs in connected mode cannot be handed over to a high-level cell, and even service drops occur because of low levels and signal quality. Weak coverag e Coverage holes
  • 20. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 20 Resolving Weak Coverage Problems Analyze geographical environments and check the receive levels of adjacent eNodeBs. Analyze the EIRP of each sector based on parameter configurations and ensure EIRPs can reach maximum values if possible. Increase pilot power. Adjust antenna azimuths and tilts, increase antenna height, and use high-gain antennas. Analyze geographical environments and check the receive levels of adjacent eNodeBs. Analyze the EIRP of each sector based on parameter configurations and ensure EIRPs can reach maximum values if possible. Increase pilot power. Adjust antenna azimuths and tilts, increase antenna height, and use high-gain antennas. Deploy new eNodeBs if coverage hole problems cannot be resolved by adjusting antennas. Increase coverage by adjacent eNodeBs to achieve large coverage overlapping between two eNodeBs and ensure a moderate handover area. Note: Increasing coverage may lead to co-channel and adjacent-channel interference. Deploy new eNodeBs if coverage hole problems cannot be resolved by adjusting antennas. Increase coverage by adjacent eNodeBs to achieve large coverage overlapping between two eNodeBs and ensure a moderate handover area. Note: Increasing coverage may lead to co-channel and adjacent-channel interference. Use RRUs, indoor distribution systems, leaky feeders, and directional antennas to resolve the problem with blind spots in elevator shafts, tunnels, underground garages or basements, and high buildings. Analyze the impact of scenarios and terrains on coverage. Use RRUs, indoor distribution systems, leaky feeders, and directional antennas to resolve the problem with blind spots in elevator shafts, tunnels, underground garages or basements, and high buildings. Analyze the impact of scenarios and terrains on coverage.
  • 21. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 21 Case: Searching for a Weak Coverage Area by Using a Scanner or Performing Drive Tests on UEs Weak coverage area Perform drive tests in zero- load environments to obtain the distribution of signals on test routes. Then, find a weak coverage area based on the distribution, as shown in the figure. Adjust RF parameters of the eNodeB covering the area.
  • 22. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 22 Lack of a Dominant Cell In an area without a dominant cell, the receive level of the serving cell is similar to the receive levels of its neighboring cells and the receive levels of downlink signals between different cells are close to cell reselection thresholds. Receive levels in an area without a dominant cell are also unsatisfactory. The SINR of the serving cell becomes unstable because of frequency reuse, and even receive quality becomes unsatisfactory. In this situation, a dominant cell is frequently reselected and changed in idle mode. As a result, frequent handovers or service drops occur on UEs in connected mode because of poor signal quality. An area without a dominant cell can also be regarded as a weak coverage area. Lack of a dominant cell
  • 23. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 23 Resolving Problems with Lack of a Dominant Cell … Adjust engineering parameters of a cell that can optimally cover the area as required. Adjust engineering parameters of a cell that can optimally cover the area as required. Determine cells covering an area without a dominant cell during network planning, and adjust antenna tilts and azimuths to increase coverage by a cell with strong signals and decrease coverage of other cells with weak signals. Determine cells covering an area without a dominant cell during network planning, and adjust antenna tilts and azimuths to increase coverage by a cell with strong signals and decrease coverage of other cells with weak signals.
  • 24. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 24 Symptom UEs frequently perform cell reselections or handovers between identical cells. Analysis Analysis can be based on signaling procedures and PCI distribution. According to PCI distribution shown in the figure, PCIs alternate in two or more colors if there is no dominant cell. Solution According to the coverage plan, cell 337 is a dominant cell covering the area and cell 49 also has strong signals. To ensure handovers between cells 337 and 49 at crossroads, increase tilts in cell 49. 1.PCI distribution in cluster xx Lack of a dominant cell Case: Searching for an Area Without a Dominant Cell
  • 25. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 25 Cross Coverage Cross coverage means that the coverage scope of an eNodeB exceeds the planned one and generates discontinuous dominant areas in the coverage scope of other eNodeBs. For example, if the height of a site is much higher than the average height of surrounding buildings, its transmit signals propagate far along hills or roads and form dominant coverage in the coverage scope of other eNodeBs. This is an “island” phenomenon. If a call is connected to an island that is far away from an eNodeB but is still served by the eNodeB, and cells around the island are not configured as neighboring cells of the current cell when cell handover parameters are configured, call drops may occur immediately once UEs leave the island. If neighboring cells are configured but the island is excessively small, call drops may also occur because UEs are not promptly handed over. In addition, cross coverage occurs on two sides of a bay because a short distance between the two sides. Therefore, eNodeBs on two sides of a bay must be specifically designed. Cross coverage
  • 26. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 26 Resolving Cross Coverage Problems … Adjust antenna tilts or replace antennas with large-tilt antennas while ensuring proper antenna azimuths. Tilt adjustment is the most effective approach to control coverage. Tilts are classified into electrical tilts and mechanical tilts. Electrical tilts are preferentially adjusted if possible. Adjust antenna tilts or replace antennas with large-tilt antennas while ensuring proper antenna azimuths. Tilt adjustment is the most effective approach to control coverage. Tilts are classified into electrical tilts and mechanical tilts. Electrical tilts are preferentially adjusted if possible. Adjust antenna azimuths properly so that the direction of the main lobe slightly obliques from the direction of a street. This reduces excessively far coverage by electric waves because of reflection from buildings on two sides of the street. Adjust antenna azimuths properly so that the direction of the main lobe slightly obliques from the direction of a street. This reduces excessively far coverage by electric waves because of reflection from buildings on two sides of the street. Decrease the antenna height for a high site. Decrease transmit power of carriers when cell performance is not affected. Decrease the antenna height for a high site. Decrease transmit power of carriers when cell performance is not affected.
  • 27. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 27 Case: Cross Coverage Caused by Improper Tilt Settings  Symptom As shown in the upper right figure, cross coverage occurs in a cell whose PCI is 288. Therefore, the cell interferes with other cells, which increases the probability of service drops.  Analysis The most possible cause for cross coverage is excessively antenna height or improper tilt settings. According to a check on the current engineering parameter settings, the tilt is set to an excessively small value. Therefore, it is recommended that the tilt be increased.  Solution Adjust the tilt of cell 288 from 3 to 6. As shown in the lower right figure, cross coverage of cell 288 is significantly reduced after the tilt is adjusted.
  • 28. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 28 Case: Inverse Connections Involved in the Antenna System  Symptom The RSRPs of cells 0 and 2 at the Expo Village site are low and high respectively in the red area shown in the figure. The signal quality of cells 0 and 2 is satisfactory in the areas covered by cells 2 and 0 respectively.  Analysis After installation and commissioning are complete, the RSRP in the direction of the main lobe in cell 0 is low. After cell 0 is disabled and cell 2 is enabled, the RSRP in cell 2 is normal and the SINR is higher than that tested in cell 0. Therefore, this problem may occur because the antenna systems in the two cells are connected inversely. Test results are as expected after optical fibers on the baseband board are swapped.  Solution Swap optical fibers on the baseband board or adjust feeders and antennas properly. It is recommended that optical fibers on the baseband board be swapped because this operation can be performed in the equipment room.  Suggestions Network planning personnel must participate in installation. Alternatively, customer service personnel have detailed network planning materials and strictly supervise project constructors for installation. After installation is complete, labels must be attached and installation materials must be filed.
  • 29. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 29 Imbalance Between Uplink and DownlinkWhen UE transmit power is less than eNodeB transmit power, UEs in idle mode may receive eNodeB signals and successfully register in cells. However, the eNodeB cannot receive uplink signals because of limited power when UEs perform random access or upload data. In this situation, the uplink coverage distance is less than the downlink coverage distance. Imbalance between uplink and downlink involves limited uplink or downlink coverage. In limited uplink coverage, UE transmit power reaches its maximum but still cannot meet the requirement for uplink BLERs. In limited downlink coverage, the downlink DCH transmit code power reaches its maximum but still cannot meet the requirement for the downlink BLER. Imbalance between uplink and downlink leads to service drops. The most common cause is limited uplink coverage. Imbalance between uplink and downlink Uplink coverage area Downlink coverage area coverage area
  • 30. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 30 Resolving Problems with Imbalance Between Uplink and Downlink … If no performance data is available for RF optimization, trace a single user in the OMC equipment room to obtain uplink measurement reports on the Uu interface, and then analyze the measurement reports and drive test files. If performance data is available, check each carrier in each cell for imbalance between uplink and downlink based on uplink and downlink balance measurements. If no performance data is available for RF optimization, trace a single user in the OMC equipment room to obtain uplink measurement reports on the Uu interface, and then analyze the measurement reports and drive test files. If performance data is available, check each carrier in each cell for imbalance between uplink and downlink based on uplink and downlink balance measurements. If uplink interference leads to imbalance between uplink and downlink, monitor eNodeB alarms to check for interference. Check whether equipment works properly and whether alarms are generated if imbalance between uplink and downlink is caused by other factors, for example, uplink and downlink gains of repeaters and trunk amplifiers are set incorrectly, the antenna system for receive diversity is faulty when reception and transmission are separated, or power amplifiers are faulty. If equipment works properly or alarms are generated, take measures such as replacement, isolation, and adjustment. If uplink interference leads to imbalance between uplink and downlink, monitor eNodeB alarms to check for interference. Check whether equipment works properly and whether alarms are generated if imbalance between uplink and downlink is caused by other factors, for example, uplink and downlink gains of repeaters and trunk amplifiers are set incorrectly, the antenna system for receive diversity is faulty when reception and transmission are separated, or power amplifiers are faulty. If equipment works properly or alarms are generated, take measures such as replacement, isolation, and adjustment.
  • 31. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 31 Contents  Network and RF Optimization Processes  LTE RF Optimization Objects  Troubleshooting Coverage Signal quality Handover success rate
  • 32. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 32 Signal Quality (SINR is mainly involved) a. Frequency plan c. Site selection d. Antenna height Process of analyzing SINR problems e. Antenna azimuths f. Antenna tilts b. Cell layout
  • 33. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 33 Resolving Signal Quality Problems Caused by Improper Parameter Settings Change and optimize frequencies based on drive test and performance measurement data. Optimizing frequencies Adjust antenna azimuths and tilts to change the distribution of signals in an interfered area by increasing the level of a dominant sector and decreasing levels of other sectors. Adjusting the antenna system Increase power of a cell and decrease power of other cells to form a dominant cell. Decrease RS power to reduce coverage if the antenna pattern is distorted because of a large antenna tilt. Power adjustment and antenna system adjustment can be used together. Adding dominant coverage Adjusting power
  • 34. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 34 Case: Adjusting Antenna Azimuths and Tilts to Reduce Interference  Symptom Cross coverage occurs at sites 1, 2, 3, 7, 8, 9, 10, 11, and 12, and co-channel interference occurs in many areas.  Analysis According to the analysis of engineering parameters and drive test data, cell density is large in coverage areas. Coverage by each cell can be reduced by adjusting antenna azimuths and tilts.  Solution Change the tilt in cell 28 from 2 degrees to 4 degrees so that the direction points to a demonstration route. Change the tilt in cell 33 from 3 degrees to 6 degrees so that the direction points to the Wanke Pavilion. Change the tilt in cells 50 and 51 from 3 degrees to 6 degrees so that the direction points to the Communication Pavilion. Decrease the transmit power in cell 33 by 3 dB to reduce its interference to overhead footpaths near China Pavilion. SINR before optimization in Puxi SINR after optimization in Puxi Poor signal quality before optimization
  • 35. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 35 Case: Changing PCIs of Intra-frequency Cells to Reduce Interference Symptom Near Japan Pavilion, UEs access a cell whose PCI is 3 and SINRs are low. UEs are about 200 m away from the eNodeB. This problem may be caused by co-channel interference.  Analysis This problem is not caused by co-channel interference because no neighboring cell has the same frequency as the current cell. Cell 6 interferes with cell 3. SINRs increase after cell 6 is disabled. In theory, staggered PCIs can reduce interference.  Solution Change PCI 6 to PCI 8. Test results show that SINRs increase by about 10 dB. SINR when cell 6 is enabled SINR when cell 6 is disabled SINR when PCI 6 is changed to PCI 8
  • 36. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 36 Case: Handover Failure Caused by Severe Interference  Symptom During a test, handovers from PCI 281 to PCI 279 fail.  Analysis Cell 281 is a source cell and is interfered by cells 279 and 178. Delivered handover commands always fail and cannot be received correctly by UEs. Cell 279 is a target cell for handover, and its coverage is not adjusted preferentially because the signal strength in the handover area can ensure signal quality after handovers. Therefore, cell 178 must be adjusted to reduce its interference to cell 281.  Solution Adjust antenna tilts to decrease coverage by cell 178.
  • 37. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 37 Contents  Network and RF Optimization Processes  LTE RF Optimization Objects  Troubleshooting Coverage Signal quality Handover success rate
  • 38. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 38 Analysis of Handover Success Rate Problems Neighboring cell optimization must be performed to ensure that UEs in idle or connected mode can promptly perform reselection to or be handed over to optimal serving cells. This helps achieve continuous coverage. In addition, problems with delay, ping-pong, and non-logical handovers can be resolved by optimizing coverage, interference, and handover parameters.
  • 39. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 39 Handover Problem Analysis  Checking handover validity Obtain source and target cells using drive test software and then check whether handovers are performed between two cells that are geographically far using Mapinfo.  Checking interference Check interference in both source and target cells because handover failures may be caused by uplink or downlink interference.  Checking coverage Check source and target cells for cross coverage, imbalance between uplink and downlink, and carrier-level receive quality and level.  Check contents Check handovers based on RSRPs measured in UE drive tests. 1. Verify that RSRPs in the expected source and target cells are maximum. 2. Verify that the absolute RSRPs in the source and target cells are reasonable at a handover point. In other words, handovers are not allowed if signal quality is excessively poor. Specific RSRPs are determined based on the entire RSRPs on a network.
  • 40. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 40 Case: Service Drops Caused by Missing Neighboring Cell Configuration  Symptom As shown in the upper right figure, a UE sends multiple measurement reports but is not handed over, which may be caused by missing neighboring cell configuration.  Analysis According to measurement reports, the UE sends an A3 report of cell 64. However, the RRCConnectionReconfiguration message in the lower right figure shows that the current cell is cell 278 (the first cell) and cell 64 is not included in the message. This indicates that cells 278 and 64 are not configured as neighboring cells. Neighboring cell configuration on live networks can be checked for further confirmation.  Solution Configure cells 278 and 64 as neighboring cells.
  • 41. HUAWEITECHNOLOGIES CO., LTD. Huawei Confidential Page 41 Summary RF optimization involves adjustment of neighboring cell lists and engineering parameters. Most coverage and interference problems can be resolved by taking the following measures (sorted in descending order by priority):  Adjusting antenna tilts  Adjusting antenna azimuths  Adjusting antenna height  Adjusting antenna position  Adjusting antenna types  Adding TMAs  Adjusting site position  Adding sites or RRUs This document describes what are involved in the RF optimization phase of network optimization. RF optimization focuses on improvement of signal distribution and provides a good radio signal environment for subsequent service parameter optimization. RF optimization mainly use drive tests, which can be supplemented by other tests. RF optimization focuses on coverage and handover problems, which can be supplemented by other problems. RF optimization aims to resolve handover, service drop, access, and interference problems caused by these problems. Engineering parameters and neighboring cell lists are adjusted in the RF optimization phase, while cell parameters are adjusted in the parameter optimization phase.

Editor's Notes

  1. 优化目标达到后,再通过得到客户认可后,
  2. 测试准备阶段首先应该依据合同确立优化KPI目标,其次合理划分Cluster,和运营商共同确定测试路线,尤其是KPI测试验收路线,准备好RF优化所需的工具和资料,保证RF优化工作顺利进行。 数据采集阶段的任务是通过DT、室内测试、信令跟踪等手段采集UE和Scanner数据,以及配合问题定位的eNB侧呼叫跟踪数据和配置数据,为随后的问题分析阶段做准备。 通过数据分析,发现网络中存在问题,重点分析覆盖问题、导频污染问题和切换问题,并提出相应的调整措施。 调整完毕后随即针对实施测试数据采集,如果测试结果不能满足目标KPI要求,进行新一轮问题分析、调整,直至满足所有KPI需求为止。 由于信号覆盖、导频污染、邻区漏配等原因产生的其他问题,如下行干扰、接入问题和掉话问题,往往和地理位置相关,规律固定,随着优化的深入会有明显改善。 至于信号覆盖良好且没有导频污染和邻区漏配等因素影响的接入、掉话等问题,需要在参数优化阶段加以解决,可以参照相应的指导书。 上行干扰问题(RTWP 过高而没有与之相当的高话务量存在)的处理周期通常周期较长,甚至可能延续到优化结束。 在 RF 优化后,需要输出更新后的工程参数列表和小区参数列表。 工程参数列表中反映了 RF 优化中对工程参数(如下倾角、方向角等)的调整。 小区参数列表中反映了 RF 优化中对小区参数(如邻区配置等)的调整。