SlideShare a Scribd company logo
1 of 50
Download to read offline
© A. Camps, UPC, 2018 1
Su
Small Satellites and Earth Observation. 
The UPC NanoSat program
Prof. A. Camps
CommSensLab, Dept. Teoria del Senyal i Comunicacions
Escola Tècnica Superior d’Enginyeria de Telecomunicacions de Barcelona
Universitat Politècnica de Catalunya‐Barcelona Tech, Spain
E-mail: camps@tsc.upc.edu
www.tsc.upc.edu/prs; www.tsc.upc.edu/nanosatlab
© A. Camps, UPC, 2018 2
1. Introduction: Small Satellites and Main Applications
2. Remote Sensing using Small Satellites
3. Remote Sensing Activities at UPC
4. The UPC NanoSat program
3Cat‐1, 3Cat‐2, 3Cat‐3, 3Cat‐4, and FSSCAT (3Cat‐5/A and 3Cat‐5/B)
Other activities supporting the NanoSat program
5. Current Trends in Earth Observation Missions with Small Satellites
6. Conclusions
Outline
© A. Camps, UPC, 2018 3
• At the beginning of the space age all satellites were “small.”
• 1st two decades of the space age: each satellite had its own design.
• Standard spacecraft buses practically unknown until end of ‘70s.
• Early ‘80s micro‐satellites emerged and adopted a radically different design
approach to reduce costs, focusing on available and existing technologies, and
using COTS components.
• “Small satellite mission philosophy” implies a design‐to‐cost approach, with
strict cost and schedule constraints, mostly combined with a single mission
objective so as to reduce the mission complexity.
Sputnik‐1  Explorer‐1 Vanguard‐1
1. Small Satellites and Main Applications (i)
© A. Camps, UPC, 2018 4
Satellite subsystems:
• Electrical Power Supply (EPS): 
solar panels, battery charger,
and batteries
• On Board Computer (OBC): 
CPU, memory
• Communications Systems (COMS)
transmitter(s) + antennas
• Attitude Determination and Control System (ADCS):
sensors + actuators (wheels & magnetorquers)
• Payloads (P/L)
[http://www.danielledelatte.com/build‐a‐candy‐satellite/]
1. Small Satellites and Main Applications (ii)
© A. Camps, UPC, 2018 5
• “CubeSat standard” (1999) definition by professors Jordi Puig‐Suari of 
California Polytechnic State University and Bob Twiggs of Stanford University.
• Goal: to allow graduate students to conceive, design, implement, test and 
operate in space a complete spacecraft, often using COTS components.
• Because of the simplicity of the CubeSat “standard” 
[http://www.cubesat.org/resources/], it became a “de facto” standard. 
• 1st CubeSats launched on a Russian Eurockot in June 2003. 
CubeSat “Kit”
Dimensions: 10 cm x 10 cm x 10 cm
Weight: < 1.3 kg
Average power : ~1 W
Peak power: ~2‐3 W
P‐POD
1. Small Satellites and Main Applications (iii)
© A. Camps, UPC, 2018 6
Pumpkin development kit includes most of the satellite subsystems:
 1U Cubesat accepts 5 standard PCB
 2U and 3U CubeSats accept more
 Development kit includs: 
 Skeletonized structure 
 On Board Computer (FM430) 
 MHX Transceiver (920 or 2400 MHz) 
 Linear EPS (power supply) 
 Does not include:
 Solar panels (very expensive ~15‐30 K€ !)
 Antennas
 Payload (only 1 PCB  left!)[http://www.cubesatkit.com/]
The “Cubesat” concept (i):
1. Small Satellites and Main Applications (iv)
© A. Camps, UPC, 2018 7
 Some companies have appeared in the USA and Europe that manufacture 
resell satellite subsystems (Pumpkin, Tyvak, ISIS, GomSpace…), or even broke 
satellite launches.
Also available in the market…
Solar panels (~2 K€)  Magnetometer (~8K€)   ADACS (40‐70K$)   GPS (SGR‐05 ~18 K$) 
etc.
… but they do not fit in 1U CubeSat, and it is not a kit!
EPS On Board Computer
ARM9 @ 400 MHz
The “Cubesat” concept (ii):
1. Small Satellites and Main Applications (v)
https://www.cubesatshop.com/
https://gomspace.com/Shop/subsystems/Default.aspx
https://www.clyde.space/products
© A. Camps, UPC, 2018 8
Cubesat Size Comparison (from [Radius Space, 2016]).
• Current CubeSat Design Specification defines the envelopes for 1U, 1.5U, 
2U, 3U, and 3U+ form factors, and a provisional CDS for 6U CubeSats has 
also been issued
1. Small Satellites and Main Applications (vi)
A CubeSat is NOT a kit, this commercial “abuse of language” has led to many 
misconceptions
© A. Camps, UPC, 2018 9
Global satellite launches by mass 
[Belle, 2015] Number of nano‐satellites by types as of 
November 2016 [nanosats.eu, 2016]
• Today 3U CubeSats are dominating the scene, and they will over the next decade. 
• Next wave of growth will be based on 6U and 12U CubeSats: 
right balance between very capable payloads, and limited manufacturing and 
launch costs.
1. Small Satellites and Main Applications (vii)
© A. Camps, UPC, 2018 10
1. Small Satellites and Main Applications (viii)
http://www.nanosats.eu/
CubeSats Commercial Constellations, Form Factor, Investments, and Applications:
Light blue: Earth Observation, light Green: Communications
© A. Camps, UPC, 2018 11
GomSpace selected for the delivery of a constellation of communication satellites 
to Sky and Space Global (UK) Ltd.
Tue, Feb 28, 2017 18:15 CET 
GomSpace ApS (”GomSpace”) a subsidiary of GS Sweden AB (publ) ("the Company”) has been 
selected by and has entered into a procurement contract with the UK company Sky and Space Global 
(UK) Ltd. to develop and deliver a constellation of satellites within a 4 year period. The first delivery 
of satellites will be in 2018. The revenue will be distributed over the term of the agreement. The 
total value of this order is depending on several options including development, services and choice 
of satellites and will therefore range between approximately EUR 35.0 and 55.0 million. 
3 Diamonds nanosatellites
1. Small Satellites and Main Applications (ix)
© A. Camps, UPC, 2018 12
Pictured are signals of aircraft in flight made by CubeSat GomX‐3 during the last 
six months, since it was released from the ISS. Built by GomSpace in Denmark, 
the tiny 3‐unit CubeSat has picked up millions of ADS‐B signals which give flight 
information such as speed, position and altitude
1. Small Satellites and Main Applications (x)
© A. Camps, UPC, 2018 13
1. Small Satellites and Main Applications (xi)
How are CubeSats launched?
Example: Indian Space Research Organization (ISRO) onboard video with record‐
setting launch of the country’s Polar Satellite Launch Vehicle (PSLV) with 104 
satellites (February 15, 2017).
© A. Camps, UPC, 2018 14
• Increases our capability to observe, limited to just the visible part of the
electromagnetic spectrum, to the radio and microwave bands, Infrared, and
ultra‐violet bands… using either active or passive techniques
• Each frequency band is useful to sense some parameters, but the atmosphere
plays a key role.
[http://www.altimetry.info/html/alti/principle/frequencies/welcome_en.html] (credits ESA)
2. Remote Sensing using Small Satellites (i)
© A. Camps, UPC, 2018 15
Active:
Passive:
Frequency
Microwaves Optical
RADAR LIDAR
Microwave Radiometers Optical Radiometers
[http://web.physik.uni‐rostock.de/
cluster/students/fp3/lidar_en.html][http://www.srh.noaa.gov/srh/sod/radar/radinfo/radinfo.html]
[http://lcogt.net/spacebook/black-body-radiation]
[http://dusty.physics.uiowa.edu/~goree/
teaching/thermal.html]
[http://www.smos-bec.icm.csic.es/
south_america_seen_by_smos]
2. Remote Sensing using Small Satellites (ii)
© A. Camps, UPC, 2018 16
• Passive sensors using signals of opportunity:
e.g. TV, GNSS (GPS, GLONASS, Galileo, Beidou...) used for navigation…
GNSS-R GNSS-RO
Reflectometry Radio Occultations
2. Remote Sensing using Small Satellites (iii)
© A. Camps, UPC, 2018 17
Technology Selva and Krejci, 2012 Freeman et al. 2016 Justification
Atmospheric chemistry
instruments
Problematic Feasible PICASSO, IR sounders
Atmospheric temperature and
humidity sounders
Feasible Feasible -
Cloud profile and rain radars Infeasible Feasible JPL RainCube demo
Earth radiation budget
radiometers
Feasible Feasible SERB, RAVAN
Gravity instruments Feasible Feasible No demo mission
Hi-res optical imagers Infeasible Feasible Planet
Imaging microwave radars Infeasible Problematic Ka-Band 12U design
Imaging multi-spectral
radiometers (Vis/IR)
Problematic Feasible AstroDigital
Imaging multi-spectral
radiometers (μWave)
Problematic Feasible TEMPEST
Lidars Infeasible Problematic DIAL laser occultation
Lightning imagers Feasible Feasible -
Magnetic field Feasible Feasible InSPIRE
Multiple direction / polarization
radiometers
Problematic Feasible HARP Polarimeter
Ocean color instruments Feasible Feasible SeaHawk
• Science mission feasibility based on nanosatellites: huge change in just 4 years!
2. Remote Sensing using Small Satellites (iv)
© A. Camps, UPC, 2018 18
• Main Cubesat Commercial Earth Observation Constellations [nanosats.eu, 2016] (i)
2. Remote Sensing using Small Satellites (v)
© A. Camps, UPC, 2018 19
2. Remote Sensing using Small Satellites (vi)
• Commercial Earth Observation Constellations have appeared today because there 
is a killer application: (very) high resolution with (very) short revisit times
“looking at the planet in real time”
[Source: Satellite‐Based Earth Observation: 
Market Prospects to 2023, Euroconsult 2014]
© A. Camps, UPC, 2018 20
MOUSE 2004 MOUSE 2004
T‐REX 2004SMOS REFLEX 2003WISE 2000 & 2001 Radiometer LAURA
FROG 2003
1. Instrument: Analysis, performance,  calibration, imaging...
 Subsystem specificacions (EADS‐CASA, MIER, YLINEN...)
SEPS:
SMOS End‐to‐end
Perf. Simulator
FROG 2003
2. Numerical Emission models: sea and vegetation‐covered land
3. Field experiments: sea and land emissivity
4. Developmentof sea surfacesalinityand soilmoistureretrievalalgorithms
frommulti‐angular radiometricmeasurements
SMOS activities (1993‐today)
…
3. Remote Sensing and Nano‐satellite Activities at UPC (i):
Microwave Radiometry
© A. Camps, UPC, 2018 21
PAU‐Real Aperture: Radiometer
with digital beamforming and 
polarization synthesis
PAU‐Synthetic Aperture: Fully digital Synthetic Aperture
Radiometer to test new technological concepts for future
aperture synthesis missions
MERITXELL: multifreq. Radiometer
For RFI detection/mmitigation studies
New Sensors Development:
3. Remote Sensing and Nano‐satellite Activities at UPC (ii):
Microwave Radiometry
© A. Camps, UPC, 2018 22
DoDeRec (2001)                 griPAU: real time DDM GPS L1 PAU: 
(developed for IEEC) (ERC EURYI Award 2004) GNSS‐R + L‐band rad.
space‐borne version
for INTA MicroSat‐1
(mission cancelled)
SMIGOL: Interference Pattern Tech.
Soil moisture, vegetation & snow height, 
sea state… 
LARGO: real time GPS‐R L1 C/A  
3. Remote Sensing and Nano‐satellite Activities at UPC (iii):
GNSS‐R
© A. Camps, UPC, 2018 23
4 beams/array
MIR (Microwave Interferometric Reflectometer): 
2 x beams x 2 freqs (L1/E1+L5/E5) x 2 arrays of 19 elem. 
3Cat‐2: includes PYCARO  
(P(Y) and C/A ReflectOmeter) payload
McGiver: GNSS‐T
Vegetation opacity 
Other activities: P2EPS simulator (core of GEROS‐SIM L1 
simulator), RFI assessment, RFI detection & mitigation (FENIX)….
3. Remote Sensing and Nano‐satellite Activities at UPC (iv):
GNSS‐R
© A. Camps, UPC, 2018 24
• FENIX = RFI canceller: placed between the antenna and the front‐end and 
subtracts (most of) the RFI: e.g. GNSS receivers do not loose tracks
“System and Method for detecting and Eliminating 
Radio Frequency Interferences in Real Time”
(US Patent No.: 15/222036)
MITIC Solutions SL (UPC spin off)
3. Remote Sensing and Nano‐satellite Activities at UPC (v):
RFI detection & mitigation in Earth Observation and Navigation
© A. Camps, UPC, 2018 25
3Cat‐1 (pronounced CubeCat‐1)  Structure = 1U CubeSat
 Technology demonstrators:
• Energy harvesting from thermal gradients 
using TEC devices
• New solar cell designs (CellSat): 
manufactured at UPC/Electronics Dpt. 
Clean room
• Monoatomic oxygen MEM sensor
• Graphene transistor
• MEM‐based gyroscope and IMU
 Small scientific experiments
• VGA visible camera (FOV = 15)
• Geiger counter
• Experiment to test effect of plasma in 
wireless power transfer using resonant 
magnetic coupling.
Final integration at UPC‐EEL clean room 
Bottom right: UPC‐designed and manufactured
experimental solar cells
4. The UPC NanoSat Program (i):
© A. Camps, UPC, 2018 26
Integration into Quadpack deployer at launch broker premises
4. The UPC NanoSat Program (ii):
© A. Camps, UPC, 2018 27
After two Falcon‐9 failures on June 2015 and September 2016, a new launch
window starting H2 2018 using a PSLV (ISRO) is foreseen.
(Launch sponsored by IEEC‐ Institut d’Estudis Espacials de Catalunya)
4. The UPC NanoSat Program (iii):
© A. Camps, UPC, 2018 28
3Cat‐2  GNSS‐R experimental mission 
(tech. & sci. demo) :
• cGNSS‐R, rGNSS‐R, iGNSS‐R, 
• dual‐band: L1, L2
• dual‐polarization: LHCP, RHCP
• multi‐constellation: GPS, Galileo, Glonass
and Beidou
 EM & FM models, environmental tests 
performed, and delivered to launch broker
 Contract to use Svalvard S‐band GS (2 
passes/day).
 ISSUES: very strong RFI at VHF in BCN area
4. The UPC NanoSat Program (iv):
© A. Camps, UPC, 2018 29
Determination: not
needed
Control: B‐dot control
law
START‐UP
Sensors & actuators: gyroscopes, photodiodes, 
magnetometers and magnetorquers
Speed: x100
Satellite size factor: x1000
Simulation
Control Mode:
Detumbling
Initial attitude: random
Orbit
LEO Sun-Synchronus
Inclination ~ 98º
Altitude ~ 500 km
----- ECI
----- ECEF
----- BODY
----- SUN
Boot sequence
• Start‐Up: UHF/VHF antenna deployment,
S‐band antenna already deployed from launch,
beacon
• Sun‐Safe: Detumbling (B‐dot), Sun‐track, loss of
power (V < 0.9 Vnominal)
• Survival: Critical errors, upload SW, critical loss of
power (V < 0.8 Vnominal)
• Nominal: PYCARO payload (primary objective),
ESA eLISA magnetometer (secondary objective)
4. The UPC NanoSat Program (v):
© A. Camps, UPC, 2018 30
TESTING:
• Subsystem validation following each 
subsystem/payload validation plan
• Vibration tests (shake table)
• System functional tests during thermal cycling 
and high vacuum (TVAC)
• System functional tests and power budget 
validation with air bearing and sun simulator
• In‐house testing facilities www.tsc.upc.edu/nanosatlab
Shake table
TVAC
sun simulator
Helmholtz coils
& air bearing
• Access on Campus to Microwave Lab, Anechoic Chamber, Faraday chamber for      
EMI tests, and clean room @ Telecom Barcelona, UPC Campus Nord
4. The UPC NanoSat Program (vi):
© A. Camps, UPC, 2018 31
• Successful integration in Duopack at ISL premises on June 21st, 2016 and 
launched on August 15th, 2016 19:40 CEST
4. The UPC NanoSat Program (vii):
© A. Camps, UPC, 2018 32
Launched on August 15th, 2016 19:40 CEST using a LM2D from Jiuquan, China
4. The UPC NanoSat Program (viii):
© A. Camps, UPC, 2018 33
https://www.n2yo.com/?s=41732
First beacons received
http://destevez.net/2016/08/
decoding‐packets‐from‐3cat2/
1st satellite uplink and successful 
downlink from Vilassar de Mar on 
September 7th, 2016 
(special thanks to Mr. Luis del Molino)
Strong RFI coming from taxi drivers 
in Barcelona metropolitan area as 
measured at UPC ground station
3Cat‐2 signal RFI signal
4. The UPC NanoSat Program (ix):
© A. Camps, UPC, 2018 34
4. The UPC NanoSat Program (x):
Ground Station under construction 
at
Montsec Observatory 
(42°03' 05" N, 00°43' 46" E)
• VHF & UHF for 3Cat‐1 and 3Cat‐4
• UHF and S‐band for FSSCAT
© A. Camps, UPC, 2018 35
• 6 U CubeSat: 80 x 60 km imagery, 4‐5 spectral bands, and 5‐10 m resolution.
• High scalability → nano‐sat constella on  → short revisit  me 
• Forest, crop, and smart cities applications.
• Feasibility study finished for ICGC 
• Project on hold because of budget extensions (i.e. no new budgets)
3Cat‐3: Multi‐spectral medium resolution imaging mission
Phase A Study for Aistech (details not to be disclosed)
4. The UPC NanoSat Program (xi):
© A. Camps, UPC, 2018 36
• Selected for ESA Fly your Satellite 2017 program
• Launch from ISS H1 2019
• http://www.esa.int/Education/CubeSats_‐
_Fly_Your_Satellite/Six_new_CubeSat_missions_selected_for_next_cycle_of_F
ly_Your_Satellite
3Cat‐4: Passive Microwave Payload (GNSS‐R & microwave radiometer) 
+ AIS receiver 
4. The UPC NanoSat Program (xii):
© A. Camps, UPC, 2018 37
3Cat‐4: Nadir‐looking LHCP L‐band antennas
4. The UPC NanoSat Program (xiii):
Antenna deployment system test set‐up
Deployed antenna and gravity boom
Antenna 
deployment 
electronics
3Cat‐4 3D CAD drawing:
VHF, UHF and L‐band 
antennas deployed
© A. Camps, UPC, 2018 38
FSSCat:
• An innovative and groundbreaking mission consisting of two federated 6U 
Cubesats in support of Copernicus Land and Marine Environment services 
(Sentinels 1, 2, 3).
• With an innovative dual microwave payload (microwave radiometer + GNSS‐
Reflectometer), a multi‐spectral optical payload, a radio & optical inter‐satellite 
links, and an Iridium inter‐satellite link.
• To measure soil moisture, ice extent and thickness, and to detect melting ponds 
over ice, and to test techniques for future satellite federations.
• The precursor of an scalable constellation of federated small EO satellites and it 
has the potential to dramatically change the way ESA procures its satellites in 
the future.
4. The UPC NanoSat Program (xiv):
3Cat-5/A3Cat-5/B
© A. Camps, UPC, 2018 39
3D CAD of the inside components:
Based on Tyvak Endeavour platform
• 3Cat‐5/A: 1U by microwave payload, nadir looking face has a 3x2 microstrip
patch array based on UPC heritage in 3Cat‐2 and 3Cat‐4 + 1U O‐ISL
• 3Cat‐5/B: 1.1U by Hyperscout camera, and 1U by O‐ISL. Other subsystems 
as in 3Cat‐5/A.
Optical ISL:
• Based on Skoltech
development
• Variable divergence to 
focus the laser beam
3Cat-5/A
3Cat-5/B
4. The UPC NanoSat Program (xv):
© A. Camps, UPC, 2018 40
• “Space Uber” or “Space Cloud” requires agile ISL for
distributed tasking and exploitation of the capacity not used
(data acquisition, storage, processing, download…) in orbit.
• Low cost LEO-to-LEO optical ISL for nanosatellites is a key
technology building block for scalable federated satellite
systems,
• Optical ISL will allow the development of in-space services
fulfilling short-term user needs by renting unused capacity on
the cloud (e.g. Amazon Web Services business model) – what
we call: “Virtual Space Missions”,
• Pave the path to larger and agile optical communication
systems.
A precursor mission to Federated Satellite Systems
(FSS) and Virtual Space Missions (“Space Uber”)
4. The UPC NanoSat Program (xvi):
© A. Camps, UPC, 2018 41
Implementation:
If successful FSSCat’s (3Cat‐5/A and /B) will be the pioneers of a series of 
3Cat‐5’s federated small EO satellites:
1. Payload development: UPC or spin‐off company Balamis incubated at ESA 
BIC Barcelona  (http://www.balamis.com/)
2. Optical ISL development: Estonian Skoltech spin‐off company: Golbriak
Space oü incubated at ESA BIC Estonia
3. Satellite integration: at NanoSatLab clean room and testing facilities 
(also 100 K€ project received in July from Catalan government to support 
creation of a start‐up company)
4. Data collection, processing and distribution: use DEIMOS‐1/‐2 DPGS 
facilities and distribution system
4. The UPC NanoSat Program (xvii):
© A. Camps, UPC, 2018 42
Free and open data products distribution will benefit from:
1. Deimos ground segment systems 
and experience in satellite imagery 
commercialization (Deimos‐1 and ‐2)
2. Current state of the art operational 
Deimos platform based on 
SIMOcean: Data processing, 
storage, search and delivery cloud 
based platform to support EO 
based products
http://catalogue.simocean.pt
http://geoportal.simocean.pt
4. The UPC NanoSat Program (xviii):
© A. Camps, UPC, 2018 43
Down‐looking
antenna array
325 mm
213  mm
• PYCARO reflectometer in closed‐loop mode
• Array gain: 12.9 dB (LHCP,L1), 11.6 dB (LHCP,L2), 
13.3 dB (RHCP,L1), 11.6 dB (RHCP, L2).
Up‐looking
antenna
Other activities supporting the NanoSat program: 
Stratospheric balloon experiments:
ESA Educational office: BEXUS 19 (October 8th, 2014)
PYCARO GNSS‐R stratospheric balloon experiment
4. The UPC NanoSat Program (xix):
© A. Camps, UPC, 2018 44
4. The UPC NanoSat Program (xx):
Stratospheric balloon experiments:
ESA Educational office: BEXUS 19 (October 8th, 2014)
First ever multi‐frequency (L1, L2), multi‐constellation (GPS, 
Glonass, Galileo) and dual‐pol GNSS‐R measurements 
© A. Camps, UPC, 2018 45
4. The UPC NanoSat Program (xxi):
Stratospheric balloon experiments:
Flights of opportunity: 
Add for Barbie “Star Light Adventure” (October 4, 2016)
Testing of real time video downlink at 5 Mbps
© A. Camps, UPC, 2018 46
Two of the 28 Planet Labs Dove 
satellites that make up the Flock 
1 constellation being launched 
into orbit from the International 
Space Station on February 11, 
2013 (from [Planet Labs Photo 
Gallery, 2014]).
SPIRE’s Lemur‐2 satellites carry 
two payloads: STRATOS GPS 
radio occultation payload and 
the SENSE AIS payload (from 
[LEMUR‐2, 2016]).
Contract awarded by NOAA on 
September 2016 to Spire to 
provide GPS‐RO data for 
weather forecast.
Arkyd 100 spacecraft 
(from [PlanetaryResources_2, 2016])
• Main Cubesat Commercial Earth Observation Constellations [nanosats.eu, 2016] (i)
5. Current Trends in E.O. Missions with Small Satellites (i)
© A. Camps, UPC, 2018 47
CYGNSS constellation:
8 x 6U Cubesats
Launched 2017‐12‐15
GNSS‐R data to improve 
hurricane forecasts.
Credits: U. of Michigan
RAVAN CubeSat 
Demonstrate new technologies for 
measuring Earth’s energy balance.
Credits: Johns Hopkins Univ. APL
5. Current Trends in E.O. Missions with Small Satellites (ii)
• Main Cubesat Research/Operational Earth Observation Constellations:
NASA and NSF are taking the lead!
• CYGNSS and TROPICS P/Ls are GNSS‐R and microwave radiometers… 
passive microwave systems suitable for small sats.
TROPICS constellation: 
12 x 3 U Cubesats
To study the insides 
of hurricanes with a 
Credits: MIT Lincoln Labs.
© A. Camps, UPC, 2018 48
… and space mining is “just” around the corner
5. Current Trends in E.O. Missions with Small Satellites (iii)
© A. Camps, UPC, 2018 49
New “low cost” launchers
5. Current Trends in E.O. Missions with Small Satellites (iv)
© Celestia Aerospace
© A. Camps, UPC, 2018 50
6. Conclusions
• Small Sats may provide much shorter revisit times and much better connectivity, 
but not better quality or bandwidth: 
https://www.linkedin.com/pulse/why‐did‐google‐dump‐skybox‐tom‐segert/
• “Small Sats are the Next Big Thing…” and we want to be there
• “Rocket science” is not easy, but we have a lot of fun!
https://www.youtube.com/watch?v=Z2nZSrSnbnE
Thanks for your attention!

More Related Content

What's hot

Satelite communication
Satelite communicationSatelite communication
Satelite communication
Syam Kumar
 
Synthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptxSynthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptx
sapna kinattinkara
 
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptxHISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
ChrissyMee
 
Differential gps (dgps) 09 04-12
Differential gps (dgps) 09 04-12Differential gps (dgps) 09 04-12
Differential gps (dgps) 09 04-12
Sumant Diwakar
 

What's hot (20)

Satellite Applications
Satellite ApplicationsSatellite Applications
Satellite Applications
 
Gps ppt
Gps pptGps ppt
Gps ppt
 
Gps
GpsGps
Gps
 
Satelite communication
Satelite communicationSatelite communication
Satelite communication
 
satellite-communication-ppt
satellite-communication-pptsatellite-communication-ppt
satellite-communication-ppt
 
Ppt satellite com.
Ppt satellite com.Ppt satellite com.
Ppt satellite com.
 
introduction-of-GNSS-1
introduction-of-GNSS-1introduction-of-GNSS-1
introduction-of-GNSS-1
 
Lidar
LidarLidar
Lidar
 
Synthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptxSynthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptx
 
GNSS
GNSSGNSS
GNSS
 
Role of Remote Sensing(RS) and Geographical Information System (GIS) in Geogr...
Role of Remote Sensing(RS) and Geographical Information System (GIS) in Geogr...Role of Remote Sensing(RS) and Geographical Information System (GIS) in Geogr...
Role of Remote Sensing(RS) and Geographical Information System (GIS) in Geogr...
 
Radar
RadarRadar
Radar
 
Introduction to global position system
Introduction to global position systemIntroduction to global position system
Introduction to global position system
 
Gps
GpsGps
Gps
 
Presentation on GPS (Global Positioning System)
Presentation on GPS (Global Positioning System)Presentation on GPS (Global Positioning System)
Presentation on GPS (Global Positioning System)
 
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptxHISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
HISTORY AND DEVELOPMENT OF REMOTE SENSING (FRM 180).pptx
 
GPS (Global Positioning System)
GPS (Global Positioning System)GPS (Global Positioning System)
GPS (Global Positioning System)
 
Satellite communication
Satellite communicationSatellite communication
Satellite communication
 
Differential gps (dgps) 09 04-12
Differential gps (dgps) 09 04-12Differential gps (dgps) 09 04-12
Differential gps (dgps) 09 04-12
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GIS
 

Similar to Small Satellites and Earth Observation. The UPC NanoSat program

japanese space development(part 1)
 japanese space development(part 1) japanese space development(part 1)
japanese space development(part 1)
hepta-sat
 
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
Francisco Javier Mora Serrano
 
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Leonardo
 

Similar to Small Satellites and Earth Observation. The UPC NanoSat program (20)

2017 01-12 esa-gep_overview
2017 01-12 esa-gep_overview2017 01-12 esa-gep_overview
2017 01-12 esa-gep_overview
 
Better Hackathon 2020 - SatCen - SAR-Based Change Detection - Enhanced Analys...
Better Hackathon 2020 - SatCen - SAR-Based Change Detection - Enhanced Analys...Better Hackathon 2020 - SatCen - SAR-Based Change Detection - Enhanced Analys...
Better Hackathon 2020 - SatCen - SAR-Based Change Detection - Enhanced Analys...
 
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
 
PERICLES Preserving space data
PERICLES Preserving space dataPERICLES Preserving space data
PERICLES Preserving space data
 
japanese space development(part 1)
 japanese space development(part 1) japanese space development(part 1)
japanese space development(part 1)
 
2b intro num-cube_sat_v3
2b   intro num-cube_sat_v32b   intro num-cube_sat_v3
2b intro num-cube_sat_v3
 
2017 esa gep_overview
2017 esa gep_overview2017 esa gep_overview
2017 esa gep_overview
 
ASICs for particle and radiation detection
ASICs for particle and radiation detectionASICs for particle and radiation detection
ASICs for particle and radiation detection
 
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
Paula Lomascolo Pujadó (2023), Provision of Earth Observation data sources fo...
 
YP in space2018_bcn_all_slides_theory_x2
YP in space2018_bcn_all_slides_theory_x2YP in space2018_bcn_all_slides_theory_x2
YP in space2018_bcn_all_slides_theory_x2
 
How the space and non-space communities can engage for mutual benefit
How the space and non-space communities can engage for mutual benefitHow the space and non-space communities can engage for mutual benefit
How the space and non-space communities can engage for mutual benefit
 
K Grothe - What's New With CubeSats? - AIAA OC ASAT 2017
K Grothe - What's New With CubeSats? - AIAA OC ASAT 2017K Grothe - What's New With CubeSats? - AIAA OC ASAT 2017
K Grothe - What's New With CubeSats? - AIAA OC ASAT 2017
 
A COMMUNICATIONS AND PNT INTEGRATED NETWORK INFRASTRUCTURE FOR THE MOON VILLAGE
A COMMUNICATIONS AND PNT INTEGRATED NETWORK INFRASTRUCTURE  FOR THE MOON VILLAGEA COMMUNICATIONS AND PNT INTEGRATED NETWORK INFRASTRUCTURE  FOR THE MOON VILLAGE
A COMMUNICATIONS AND PNT INTEGRATED NETWORK INFRASTRUCTURE FOR THE MOON VILLAGE
 
Marine and maritime challenges: the EU space programme
Marine and maritime challenges: the EU space programmeMarine and maritime challenges: the EU space programme
Marine and maritime challenges: the EU space programme
 
Small Satellite ppt by Ashish Kr. Singh
Small Satellite ppt by Ashish Kr. SinghSmall Satellite ppt by Ashish Kr. Singh
Small Satellite ppt by Ashish Kr. Singh
 
Beyond the sky
Beyond the skyBeyond the sky
Beyond the sky
 
satellite communication system
satellite communication system satellite communication system
satellite communication system
 
ESA Education Supplement.pdf
ESA Education Supplement.pdfESA Education Supplement.pdf
ESA Education Supplement.pdf
 
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
 
Current & Future Services - EUMETCast User Forum 2014
Current & Future Services -  EUMETCast User Forum 2014Current & Future Services -  EUMETCast User Forum 2014
Current & Future Services - EUMETCast User Forum 2014
 

Recently uploaded

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

Small Satellites and Earth Observation. The UPC NanoSat program

  • 1. © A. Camps, UPC, 2018 1 Su Small Satellites and Earth Observation.  The UPC NanoSat program Prof. A. Camps CommSensLab, Dept. Teoria del Senyal i Comunicacions Escola Tècnica Superior d’Enginyeria de Telecomunicacions de Barcelona Universitat Politècnica de Catalunya‐Barcelona Tech, Spain E-mail: camps@tsc.upc.edu www.tsc.upc.edu/prs; www.tsc.upc.edu/nanosatlab
  • 2. © A. Camps, UPC, 2018 2 1. Introduction: Small Satellites and Main Applications 2. Remote Sensing using Small Satellites 3. Remote Sensing Activities at UPC 4. The UPC NanoSat program 3Cat‐1, 3Cat‐2, 3Cat‐3, 3Cat‐4, and FSSCAT (3Cat‐5/A and 3Cat‐5/B) Other activities supporting the NanoSat program 5. Current Trends in Earth Observation Missions with Small Satellites 6. Conclusions Outline
  • 3. © A. Camps, UPC, 2018 3 • At the beginning of the space age all satellites were “small.” • 1st two decades of the space age: each satellite had its own design. • Standard spacecraft buses practically unknown until end of ‘70s. • Early ‘80s micro‐satellites emerged and adopted a radically different design approach to reduce costs, focusing on available and existing technologies, and using COTS components. • “Small satellite mission philosophy” implies a design‐to‐cost approach, with strict cost and schedule constraints, mostly combined with a single mission objective so as to reduce the mission complexity. Sputnik‐1  Explorer‐1 Vanguard‐1 1. Small Satellites and Main Applications (i)
  • 4. © A. Camps, UPC, 2018 4 Satellite subsystems: • Electrical Power Supply (EPS):  solar panels, battery charger, and batteries • On Board Computer (OBC):  CPU, memory • Communications Systems (COMS) transmitter(s) + antennas • Attitude Determination and Control System (ADCS): sensors + actuators (wheels & magnetorquers) • Payloads (P/L) [http://www.danielledelatte.com/build‐a‐candy‐satellite/] 1. Small Satellites and Main Applications (ii)
  • 5. © A. Camps, UPC, 2018 5 • “CubeSat standard” (1999) definition by professors Jordi Puig‐Suari of  California Polytechnic State University and Bob Twiggs of Stanford University. • Goal: to allow graduate students to conceive, design, implement, test and  operate in space a complete spacecraft, often using COTS components. • Because of the simplicity of the CubeSat “standard”  [http://www.cubesat.org/resources/], it became a “de facto” standard.  • 1st CubeSats launched on a Russian Eurockot in June 2003.  CubeSat “Kit” Dimensions: 10 cm x 10 cm x 10 cm Weight: < 1.3 kg Average power : ~1 W Peak power: ~2‐3 W P‐POD 1. Small Satellites and Main Applications (iii)
  • 6. © A. Camps, UPC, 2018 6 Pumpkin development kit includes most of the satellite subsystems:  1U Cubesat accepts 5 standard PCB  2U and 3U CubeSats accept more  Development kit includs:   Skeletonized structure   On Board Computer (FM430)   MHX Transceiver (920 or 2400 MHz)   Linear EPS (power supply)   Does not include:  Solar panels (very expensive ~15‐30 K€ !)  Antennas  Payload (only 1 PCB  left!)[http://www.cubesatkit.com/] The “Cubesat” concept (i): 1. Small Satellites and Main Applications (iv)
  • 7. © A. Camps, UPC, 2018 7  Some companies have appeared in the USA and Europe that manufacture  resell satellite subsystems (Pumpkin, Tyvak, ISIS, GomSpace…), or even broke  satellite launches. Also available in the market… Solar panels (~2 K€)  Magnetometer (~8K€)   ADACS (40‐70K$)   GPS (SGR‐05 ~18 K$)  etc. … but they do not fit in 1U CubeSat, and it is not a kit! EPS On Board Computer ARM9 @ 400 MHz The “Cubesat” concept (ii): 1. Small Satellites and Main Applications (v) https://www.cubesatshop.com/ https://gomspace.com/Shop/subsystems/Default.aspx https://www.clyde.space/products
  • 8. © A. Camps, UPC, 2018 8 Cubesat Size Comparison (from [Radius Space, 2016]). • Current CubeSat Design Specification defines the envelopes for 1U, 1.5U,  2U, 3U, and 3U+ form factors, and a provisional CDS for 6U CubeSats has  also been issued 1. Small Satellites and Main Applications (vi) A CubeSat is NOT a kit, this commercial “abuse of language” has led to many  misconceptions
  • 9. © A. Camps, UPC, 2018 9 Global satellite launches by mass  [Belle, 2015] Number of nano‐satellites by types as of  November 2016 [nanosats.eu, 2016] • Today 3U CubeSats are dominating the scene, and they will over the next decade.  • Next wave of growth will be based on 6U and 12U CubeSats:  right balance between very capable payloads, and limited manufacturing and  launch costs. 1. Small Satellites and Main Applications (vii)
  • 10. © A. Camps, UPC, 2018 10 1. Small Satellites and Main Applications (viii) http://www.nanosats.eu/ CubeSats Commercial Constellations, Form Factor, Investments, and Applications: Light blue: Earth Observation, light Green: Communications
  • 11. © A. Camps, UPC, 2018 11 GomSpace selected for the delivery of a constellation of communication satellites  to Sky and Space Global (UK) Ltd. Tue, Feb 28, 2017 18:15 CET  GomSpace ApS (”GomSpace”) a subsidiary of GS Sweden AB (publ) ("the Company”) has been  selected by and has entered into a procurement contract with the UK company Sky and Space Global  (UK) Ltd. to develop and deliver a constellation of satellites within a 4 year period. The first delivery  of satellites will be in 2018. The revenue will be distributed over the term of the agreement. The  total value of this order is depending on several options including development, services and choice  of satellites and will therefore range between approximately EUR 35.0 and 55.0 million.  3 Diamonds nanosatellites 1. Small Satellites and Main Applications (ix)
  • 12. © A. Camps, UPC, 2018 12 Pictured are signals of aircraft in flight made by CubeSat GomX‐3 during the last  six months, since it was released from the ISS. Built by GomSpace in Denmark,  the tiny 3‐unit CubeSat has picked up millions of ADS‐B signals which give flight  information such as speed, position and altitude 1. Small Satellites and Main Applications (x)
  • 13. © A. Camps, UPC, 2018 13 1. Small Satellites and Main Applications (xi) How are CubeSats launched? Example: Indian Space Research Organization (ISRO) onboard video with record‐ setting launch of the country’s Polar Satellite Launch Vehicle (PSLV) with 104  satellites (February 15, 2017).
  • 14. © A. Camps, UPC, 2018 14 • Increases our capability to observe, limited to just the visible part of the electromagnetic spectrum, to the radio and microwave bands, Infrared, and ultra‐violet bands… using either active or passive techniques • Each frequency band is useful to sense some parameters, but the atmosphere plays a key role. [http://www.altimetry.info/html/alti/principle/frequencies/welcome_en.html] (credits ESA) 2. Remote Sensing using Small Satellites (i)
  • 15. © A. Camps, UPC, 2018 15 Active: Passive: Frequency Microwaves Optical RADAR LIDAR Microwave Radiometers Optical Radiometers [http://web.physik.uni‐rostock.de/ cluster/students/fp3/lidar_en.html][http://www.srh.noaa.gov/srh/sod/radar/radinfo/radinfo.html] [http://lcogt.net/spacebook/black-body-radiation] [http://dusty.physics.uiowa.edu/~goree/ teaching/thermal.html] [http://www.smos-bec.icm.csic.es/ south_america_seen_by_smos] 2. Remote Sensing using Small Satellites (ii)
  • 16. © A. Camps, UPC, 2018 16 • Passive sensors using signals of opportunity: e.g. TV, GNSS (GPS, GLONASS, Galileo, Beidou...) used for navigation… GNSS-R GNSS-RO Reflectometry Radio Occultations 2. Remote Sensing using Small Satellites (iii)
  • 17. © A. Camps, UPC, 2018 17 Technology Selva and Krejci, 2012 Freeman et al. 2016 Justification Atmospheric chemistry instruments Problematic Feasible PICASSO, IR sounders Atmospheric temperature and humidity sounders Feasible Feasible - Cloud profile and rain radars Infeasible Feasible JPL RainCube demo Earth radiation budget radiometers Feasible Feasible SERB, RAVAN Gravity instruments Feasible Feasible No demo mission Hi-res optical imagers Infeasible Feasible Planet Imaging microwave radars Infeasible Problematic Ka-Band 12U design Imaging multi-spectral radiometers (Vis/IR) Problematic Feasible AstroDigital Imaging multi-spectral radiometers (μWave) Problematic Feasible TEMPEST Lidars Infeasible Problematic DIAL laser occultation Lightning imagers Feasible Feasible - Magnetic field Feasible Feasible InSPIRE Multiple direction / polarization radiometers Problematic Feasible HARP Polarimeter Ocean color instruments Feasible Feasible SeaHawk • Science mission feasibility based on nanosatellites: huge change in just 4 years! 2. Remote Sensing using Small Satellites (iv)
  • 18. © A. Camps, UPC, 2018 18 • Main Cubesat Commercial Earth Observation Constellations [nanosats.eu, 2016] (i) 2. Remote Sensing using Small Satellites (v)
  • 19. © A. Camps, UPC, 2018 19 2. Remote Sensing using Small Satellites (vi) • Commercial Earth Observation Constellations have appeared today because there  is a killer application: (very) high resolution with (very) short revisit times “looking at the planet in real time” [Source: Satellite‐Based Earth Observation:  Market Prospects to 2023, Euroconsult 2014]
  • 20. © A. Camps, UPC, 2018 20 MOUSE 2004 MOUSE 2004 T‐REX 2004SMOS REFLEX 2003WISE 2000 & 2001 Radiometer LAURA FROG 2003 1. Instrument: Analysis, performance,  calibration, imaging...  Subsystem specificacions (EADS‐CASA, MIER, YLINEN...) SEPS: SMOS End‐to‐end Perf. Simulator FROG 2003 2. Numerical Emission models: sea and vegetation‐covered land 3. Field experiments: sea and land emissivity 4. Developmentof sea surfacesalinityand soilmoistureretrievalalgorithms frommulti‐angular radiometricmeasurements SMOS activities (1993‐today) … 3. Remote Sensing and Nano‐satellite Activities at UPC (i): Microwave Radiometry
  • 21. © A. Camps, UPC, 2018 21 PAU‐Real Aperture: Radiometer with digital beamforming and  polarization synthesis PAU‐Synthetic Aperture: Fully digital Synthetic Aperture Radiometer to test new technological concepts for future aperture synthesis missions MERITXELL: multifreq. Radiometer For RFI detection/mmitigation studies New Sensors Development: 3. Remote Sensing and Nano‐satellite Activities at UPC (ii): Microwave Radiometry
  • 22. © A. Camps, UPC, 2018 22 DoDeRec (2001)                 griPAU: real time DDM GPS L1 PAU:  (developed for IEEC) (ERC EURYI Award 2004) GNSS‐R + L‐band rad. space‐borne version for INTA MicroSat‐1 (mission cancelled) SMIGOL: Interference Pattern Tech. Soil moisture, vegetation & snow height,  sea state…  LARGO: real time GPS‐R L1 C/A   3. Remote Sensing and Nano‐satellite Activities at UPC (iii): GNSS‐R
  • 23. © A. Camps, UPC, 2018 23 4 beams/array MIR (Microwave Interferometric Reflectometer):  2 x beams x 2 freqs (L1/E1+L5/E5) x 2 arrays of 19 elem.  3Cat‐2: includes PYCARO   (P(Y) and C/A ReflectOmeter) payload McGiver: GNSS‐T Vegetation opacity  Other activities: P2EPS simulator (core of GEROS‐SIM L1  simulator), RFI assessment, RFI detection & mitigation (FENIX)…. 3. Remote Sensing and Nano‐satellite Activities at UPC (iv): GNSS‐R
  • 24. © A. Camps, UPC, 2018 24 • FENIX = RFI canceller: placed between the antenna and the front‐end and  subtracts (most of) the RFI: e.g. GNSS receivers do not loose tracks “System and Method for detecting and Eliminating  Radio Frequency Interferences in Real Time” (US Patent No.: 15/222036) MITIC Solutions SL (UPC spin off) 3. Remote Sensing and Nano‐satellite Activities at UPC (v): RFI detection & mitigation in Earth Observation and Navigation
  • 25. © A. Camps, UPC, 2018 25 3Cat‐1 (pronounced CubeCat‐1)  Structure = 1U CubeSat  Technology demonstrators: • Energy harvesting from thermal gradients  using TEC devices • New solar cell designs (CellSat):  manufactured at UPC/Electronics Dpt.  Clean room • Monoatomic oxygen MEM sensor • Graphene transistor • MEM‐based gyroscope and IMU  Small scientific experiments • VGA visible camera (FOV = 15) • Geiger counter • Experiment to test effect of plasma in  wireless power transfer using resonant  magnetic coupling. Final integration at UPC‐EEL clean room  Bottom right: UPC‐designed and manufactured experimental solar cells 4. The UPC NanoSat Program (i):
  • 26. © A. Camps, UPC, 2018 26 Integration into Quadpack deployer at launch broker premises 4. The UPC NanoSat Program (ii):
  • 27. © A. Camps, UPC, 2018 27 After two Falcon‐9 failures on June 2015 and September 2016, a new launch window starting H2 2018 using a PSLV (ISRO) is foreseen. (Launch sponsored by IEEC‐ Institut d’Estudis Espacials de Catalunya) 4. The UPC NanoSat Program (iii):
  • 28. © A. Camps, UPC, 2018 28 3Cat‐2  GNSS‐R experimental mission  (tech. & sci. demo) : • cGNSS‐R, rGNSS‐R, iGNSS‐R,  • dual‐band: L1, L2 • dual‐polarization: LHCP, RHCP • multi‐constellation: GPS, Galileo, Glonass and Beidou  EM & FM models, environmental tests  performed, and delivered to launch broker  Contract to use Svalvard S‐band GS (2  passes/day).  ISSUES: very strong RFI at VHF in BCN area 4. The UPC NanoSat Program (iv):
  • 29. © A. Camps, UPC, 2018 29 Determination: not needed Control: B‐dot control law START‐UP Sensors & actuators: gyroscopes, photodiodes,  magnetometers and magnetorquers Speed: x100 Satellite size factor: x1000 Simulation Control Mode: Detumbling Initial attitude: random Orbit LEO Sun-Synchronus Inclination ~ 98º Altitude ~ 500 km ----- ECI ----- ECEF ----- BODY ----- SUN Boot sequence • Start‐Up: UHF/VHF antenna deployment, S‐band antenna already deployed from launch, beacon • Sun‐Safe: Detumbling (B‐dot), Sun‐track, loss of power (V < 0.9 Vnominal) • Survival: Critical errors, upload SW, critical loss of power (V < 0.8 Vnominal) • Nominal: PYCARO payload (primary objective), ESA eLISA magnetometer (secondary objective) 4. The UPC NanoSat Program (v):
  • 30. © A. Camps, UPC, 2018 30 TESTING: • Subsystem validation following each  subsystem/payload validation plan • Vibration tests (shake table) • System functional tests during thermal cycling  and high vacuum (TVAC) • System functional tests and power budget  validation with air bearing and sun simulator • In‐house testing facilities www.tsc.upc.edu/nanosatlab Shake table TVAC sun simulator Helmholtz coils & air bearing • Access on Campus to Microwave Lab, Anechoic Chamber, Faraday chamber for       EMI tests, and clean room @ Telecom Barcelona, UPC Campus Nord 4. The UPC NanoSat Program (vi):
  • 31. © A. Camps, UPC, 2018 31 • Successful integration in Duopack at ISL premises on June 21st, 2016 and  launched on August 15th, 2016 19:40 CEST 4. The UPC NanoSat Program (vii):
  • 32. © A. Camps, UPC, 2018 32 Launched on August 15th, 2016 19:40 CEST using a LM2D from Jiuquan, China 4. The UPC NanoSat Program (viii):
  • 33. © A. Camps, UPC, 2018 33 https://www.n2yo.com/?s=41732 First beacons received http://destevez.net/2016/08/ decoding‐packets‐from‐3cat2/ 1st satellite uplink and successful  downlink from Vilassar de Mar on  September 7th, 2016  (special thanks to Mr. Luis del Molino) Strong RFI coming from taxi drivers  in Barcelona metropolitan area as  measured at UPC ground station 3Cat‐2 signal RFI signal 4. The UPC NanoSat Program (ix):
  • 34. © A. Camps, UPC, 2018 34 4. The UPC NanoSat Program (x): Ground Station under construction  at Montsec Observatory  (42°03' 05" N, 00°43' 46" E) • VHF & UHF for 3Cat‐1 and 3Cat‐4 • UHF and S‐band for FSSCAT
  • 35. © A. Camps, UPC, 2018 35 • 6 U CubeSat: 80 x 60 km imagery, 4‐5 spectral bands, and 5‐10 m resolution. • High scalability → nano‐sat constella on  → short revisit  me  • Forest, crop, and smart cities applications. • Feasibility study finished for ICGC  • Project on hold because of budget extensions (i.e. no new budgets) 3Cat‐3: Multi‐spectral medium resolution imaging mission Phase A Study for Aistech (details not to be disclosed) 4. The UPC NanoSat Program (xi):
  • 36. © A. Camps, UPC, 2018 36 • Selected for ESA Fly your Satellite 2017 program • Launch from ISS H1 2019 • http://www.esa.int/Education/CubeSats_‐ _Fly_Your_Satellite/Six_new_CubeSat_missions_selected_for_next_cycle_of_F ly_Your_Satellite 3Cat‐4: Passive Microwave Payload (GNSS‐R & microwave radiometer)  + AIS receiver  4. The UPC NanoSat Program (xii):
  • 37. © A. Camps, UPC, 2018 37 3Cat‐4: Nadir‐looking LHCP L‐band antennas 4. The UPC NanoSat Program (xiii): Antenna deployment system test set‐up Deployed antenna and gravity boom Antenna  deployment  electronics 3Cat‐4 3D CAD drawing: VHF, UHF and L‐band  antennas deployed
  • 38. © A. Camps, UPC, 2018 38 FSSCat: • An innovative and groundbreaking mission consisting of two federated 6U  Cubesats in support of Copernicus Land and Marine Environment services  (Sentinels 1, 2, 3). • With an innovative dual microwave payload (microwave radiometer + GNSS‐ Reflectometer), a multi‐spectral optical payload, a radio & optical inter‐satellite  links, and an Iridium inter‐satellite link. • To measure soil moisture, ice extent and thickness, and to detect melting ponds  over ice, and to test techniques for future satellite federations. • The precursor of an scalable constellation of federated small EO satellites and it  has the potential to dramatically change the way ESA procures its satellites in  the future. 4. The UPC NanoSat Program (xiv): 3Cat-5/A3Cat-5/B
  • 39. © A. Camps, UPC, 2018 39 3D CAD of the inside components: Based on Tyvak Endeavour platform • 3Cat‐5/A: 1U by microwave payload, nadir looking face has a 3x2 microstrip patch array based on UPC heritage in 3Cat‐2 and 3Cat‐4 + 1U O‐ISL • 3Cat‐5/B: 1.1U by Hyperscout camera, and 1U by O‐ISL. Other subsystems  as in 3Cat‐5/A. Optical ISL: • Based on Skoltech development • Variable divergence to  focus the laser beam 3Cat-5/A 3Cat-5/B 4. The UPC NanoSat Program (xv):
  • 40. © A. Camps, UPC, 2018 40 • “Space Uber” or “Space Cloud” requires agile ISL for distributed tasking and exploitation of the capacity not used (data acquisition, storage, processing, download…) in orbit. • Low cost LEO-to-LEO optical ISL for nanosatellites is a key technology building block for scalable federated satellite systems, • Optical ISL will allow the development of in-space services fulfilling short-term user needs by renting unused capacity on the cloud (e.g. Amazon Web Services business model) – what we call: “Virtual Space Missions”, • Pave the path to larger and agile optical communication systems. A precursor mission to Federated Satellite Systems (FSS) and Virtual Space Missions (“Space Uber”) 4. The UPC NanoSat Program (xvi):
  • 41. © A. Camps, UPC, 2018 41 Implementation: If successful FSSCat’s (3Cat‐5/A and /B) will be the pioneers of a series of  3Cat‐5’s federated small EO satellites: 1. Payload development: UPC or spin‐off company Balamis incubated at ESA  BIC Barcelona  (http://www.balamis.com/) 2. Optical ISL development: Estonian Skoltech spin‐off company: Golbriak Space oü incubated at ESA BIC Estonia 3. Satellite integration: at NanoSatLab clean room and testing facilities  (also 100 K€ project received in July from Catalan government to support  creation of a start‐up company) 4. Data collection, processing and distribution: use DEIMOS‐1/‐2 DPGS  facilities and distribution system 4. The UPC NanoSat Program (xvii):
  • 42. © A. Camps, UPC, 2018 42 Free and open data products distribution will benefit from: 1. Deimos ground segment systems  and experience in satellite imagery  commercialization (Deimos‐1 and ‐2) 2. Current state of the art operational  Deimos platform based on  SIMOcean: Data processing,  storage, search and delivery cloud  based platform to support EO  based products http://catalogue.simocean.pt http://geoportal.simocean.pt 4. The UPC NanoSat Program (xviii):
  • 43. © A. Camps, UPC, 2018 43 Down‐looking antenna array 325 mm 213  mm • PYCARO reflectometer in closed‐loop mode • Array gain: 12.9 dB (LHCP,L1), 11.6 dB (LHCP,L2),  13.3 dB (RHCP,L1), 11.6 dB (RHCP, L2). Up‐looking antenna Other activities supporting the NanoSat program:  Stratospheric balloon experiments: ESA Educational office: BEXUS 19 (October 8th, 2014) PYCARO GNSS‐R stratospheric balloon experiment 4. The UPC NanoSat Program (xix):
  • 44. © A. Camps, UPC, 2018 44 4. The UPC NanoSat Program (xx): Stratospheric balloon experiments: ESA Educational office: BEXUS 19 (October 8th, 2014) First ever multi‐frequency (L1, L2), multi‐constellation (GPS,  Glonass, Galileo) and dual‐pol GNSS‐R measurements 
  • 45. © A. Camps, UPC, 2018 45 4. The UPC NanoSat Program (xxi): Stratospheric balloon experiments: Flights of opportunity:  Add for Barbie “Star Light Adventure” (October 4, 2016) Testing of real time video downlink at 5 Mbps
  • 46. © A. Camps, UPC, 2018 46 Two of the 28 Planet Labs Dove  satellites that make up the Flock  1 constellation being launched  into orbit from the International  Space Station on February 11,  2013 (from [Planet Labs Photo  Gallery, 2014]). SPIRE’s Lemur‐2 satellites carry  two payloads: STRATOS GPS  radio occultation payload and  the SENSE AIS payload (from  [LEMUR‐2, 2016]). Contract awarded by NOAA on  September 2016 to Spire to  provide GPS‐RO data for  weather forecast. Arkyd 100 spacecraft  (from [PlanetaryResources_2, 2016]) • Main Cubesat Commercial Earth Observation Constellations [nanosats.eu, 2016] (i) 5. Current Trends in E.O. Missions with Small Satellites (i)
  • 47. © A. Camps, UPC, 2018 47 CYGNSS constellation: 8 x 6U Cubesats Launched 2017‐12‐15 GNSS‐R data to improve  hurricane forecasts. Credits: U. of Michigan RAVAN CubeSat  Demonstrate new technologies for  measuring Earth’s energy balance. Credits: Johns Hopkins Univ. APL 5. Current Trends in E.O. Missions with Small Satellites (ii) • Main Cubesat Research/Operational Earth Observation Constellations: NASA and NSF are taking the lead! • CYGNSS and TROPICS P/Ls are GNSS‐R and microwave radiometers…  passive microwave systems suitable for small sats. TROPICS constellation:  12 x 3 U Cubesats To study the insides  of hurricanes with a  Credits: MIT Lincoln Labs.
  • 48. © A. Camps, UPC, 2018 48 … and space mining is “just” around the corner 5. Current Trends in E.O. Missions with Small Satellites (iii)
  • 49. © A. Camps, UPC, 2018 49 New “low cost” launchers 5. Current Trends in E.O. Missions with Small Satellites (iv) © Celestia Aerospace
  • 50. © A. Camps, UPC, 2018 50 6. Conclusions • Small Sats may provide much shorter revisit times and much better connectivity,  but not better quality or bandwidth:  https://www.linkedin.com/pulse/why‐did‐google‐dump‐skybox‐tom‐segert/ • “Small Sats are the Next Big Thing…” and we want to be there • “Rocket science” is not easy, but we have a lot of fun! https://www.youtube.com/watch?v=Z2nZSrSnbnE Thanks for your attention!