SlideShare a Scribd company logo
1 of 48
Download to read offline
Introduction to Metamaterials
Richard D. Averitt
Research Themes
“Equilibrium	
  is	
  when	
  all	
  of	
  the	
  fast	
  stuff	
  has	
  happened,	
  and	
  all	
  of	
  the	
  slow	
  stuff	
  hasn’t.”	
  
-­‐Feynman	
  
Metamaterials: a new field
J. B. Pendry, A. J. Holden, D.
J. Robbins, W. J. Stewart,
“Magnetism from conductors
and enhanced non-linear
phenomena,” IEEE Trans. MTT
47, 2075 (1999)
D. R. Smith, et al.,
Phys. Rev. Lett. 84, 4184 (2000)
New	
  York	
  Times,	
  2007	
  
The Irresistible Fantasy of the Invisible Man, and Machine
The Chameleon
The Stealth Fighter:
Invisible to Radar?
Very small radar cross section: shape and absorbing paint
From:  http://www.star.t.u-­tokyo.ac.jp
A camera and a projector
by  Lee  &  Kirby  (1961)
"...  she  achieves  these  feats  by  
bending  all  wavelengths  of  light  in  
the  vicinity  around  herself  ...  
without  causing  any  visible  
distortion.” -­-­ Introduction  from  
Wikipedia
Fantastic 4: The Invisible Woman
"...  it  was  an  idea  ...  to  lower  the  
refractive  index  of  a  substance,  
solid  or  liquid,  to  that  of  air  — so  
far  as  all  practical  purposes  are  
concerned.” -­-­ Chapter  19  
"Certain  First  Principles"
The Invisible Man by H.G. Wells (1897)
Key	
  Concept:	
  
	
  The	
  Refrac2ve	
  Index	
  à	
  n	
  
	
  
Velocity	
  of	
  light	
  in	
  free	
  space:	
  c	
  
In	
  a	
  material:	
  c/n	
  
	
  
The  bending  of  light  due  to  the  gradient  in  refractive  index  
in  a  desert  mirage
Mirage: Optical Illusion
Tearing	
  Space:	
  conformal	
  map	
  
Wegner,	
  Linden	
  in	
  Physics	
  Today,	
  2010	
  
We	
  can’t	
  tear	
  space:	
  
	
  
Mimic	
  by	
  shaping	
  
the	
  refrac2ve	
  index	
  n	
  
	
  
The	
  New	
  York	
  Times;	
  3-­‐D	
  model	
  by	
  Christoph	
  Hormann	
  and	
  Gunnar	
  Dolling,	
  Karslruhe	
  University	
  
Snell’s	
  Law	

•  Reflection: θi = θr
•  Refraction: n1sinθi=n2sinθt
The refraction beam is at
the other side of the incident
normal.
NegaUve	
  RefracUve	
  Index:	
  A	
  long	
  history	
  
•  A.	
  Schuster,	
  An	
  IntroducUon	
  to	
  the	
  Theory	
  of	
  OpUcs,	
  (1904)	
  
	
  	
  	
  	
  -­‐	
  Discussed	
  in	
  the	
  context	
  of	
  anomalous	
  dispersion	
  as	
  occurs	
  at	
  any	
  absorpUon	
  band.	
  
•  L.I.	
  Mandelshtam,	
  May	
  5	
  1944	
  (last	
  lecture)	
  
In fact, the direction of wave propagation is determined by
its phase velocity, while energy is transported at the group velocity.
- Translated by E. F. Keuster
PosiUve	
  RefracUon	
  
X. Huang, W. L. Schaich, Am. J. Phys.72, 1232 (2004)
NegaUve	
  RefracUon	
  
X. Huang, W. L. Schaich, Am. J. Phys.72, 1232 (2004)
Sir	
  John	
  Pendry	
  –	
  leading	
  theorist	
  in	
  
the	
  area:	
  
In	
  convenUonal	
  materials,	
  the	
  dielectric	
  response	
  derives	
  from	
  the	
  consUtuent	
  
atoms.	
  As	
  discussed,	
  negaUve	
  or	
  posiUve	
  ε(ω)	
  is	
  possible	
  over	
  a	
  broad	
  spectral	
  
range.	
  However,	
  natural	
  materials	
  with	
  a	
  resonant	
  magneUc	
  permeability	
  µ(ω)	
  
don t	
  exist	
  above	
  a	
  few	
  THz	
  (e.g.	
  FerromagneUc	
  resonance	
  in	
  Fe	
  at	
  microwave	
  
frequencies,	
  or	
  	
  anUferromagneUc	
  resonance	
  in	
  MnF2	
  at	
  ~2THz).	
  
Pendry,	
  Contemporary	
  Physics	
  
-55
-50
-45
-40
-35
-30
-25
4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5
TransmittedPower(dBm)
Frequency (GHz)
J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from
conductors and enhanced non-linear phenomena,” IEEE Trans. MTT 47,
2075 (1999).	

Metamaterials: Expanding our Space
Pendry et al. suggested
that an array of ring
resonators could respond
to the magnetic
component light.	
  
LCR	
  circuits	
  
•  A	
  circuit	
  with	
  an	
  inductor	
  (L)	
  and	
  capacitor	
  (C)	
  
saUsfies	
  the	
  same	
  equaUon	
  as	
  the	
  mass	
  spring	
  
system	
  for	
  simple	
  harmonic	
  oscillaUon.	
  
•  If	
  we	
  added	
  a	
  resistor	
  (R)	
  that	
  we	
  get	
  the	
  
damped	
  oscillator	
  equaUon.	
  
–  as	
  for	
  the	
  mechanical	
  oscillator,	
  the	
  
soluUon	
  can	
  be	
  	
  
•  under	
  damped:	
  	
  	
  (	
  γ	
  <	
  	
  2	
  ω0	
  )	
  
•  criUcally	
  damped:	
  	
  (	
  γ	
  	
  =	
  	
  2	
  ω0	
  )	
  	
  
•  over	
  damped:	
  	
  	
  (	
  γ	
  	
  >	
  	
  2	
  ω0	
  )	
  
•  We	
  can	
  choose	
  the	
  values	
  of	
  L,	
  C,	
  and	
  R	
  to	
  
determine	
  which	
  kind	
  of	
  damping	
  we	
  have.	
  
Comparison	
  between	
  mass-­‐spring	
  systems	
  and	
  LCR	
  circuits.	
  
γ	
  	
  is	
  the	
  full-­‐width	
  half	
  maximum	
  (fwhm)	
  of	
  the	
  power	
  
absorpUon	
  curve	
  quality	
  factor	
  Q :	
  
Magnetic Metamaterials: Shaping a resonance
Dimensions	
  <	
  λ	

0
1
LC
ω =
Effective Medium: µ(ω)
The first negative index material, meta or
otherwise!
D.	
  R.	
  Smith,	
  W.	
  J.	
  Padilla,	
  et	
  al,	
  Phys.	
  Rev.	
  Leh.	
  14,	
  234	
  (2000)	
  
Experimental Demonstration of NI
Microwave: ease of fabrication
R. A. Shelby, D. R. Smith, S. Schultz, Science 84, 4184 (2001)
The Electromagnetic Cloak (2006)
J. B. Pendry, et al., Science 312, 1780 (2006)
D. Schurig, et al., Science, 314, 2006.
The Electromagnetic Cloak
Simulation Experiment
Cloaking Other Waves:
Sound, Water, Earth
The Cone of Silence
Would you believe?.........
M.  Farhat,  S.  Enoch,  S.  Guenneau,  and  A.  B.  Movchan,  "Broadband  cylindrical  acoustic  
cloak  for  linear  surface  waves  in  a  fluid",  Physical  Review  Letters  101,.134501  (2008).
Cloaking Water Waves
Cloaking Water Waves
Metamaterials at BU
Terahertz
•  Microwave	
  
Electronics:	
  Antenna,	
  high	
  
speed	
  transistor	
  circuits	
  for	
  
microwave	
  generaUon,	
  
detecUon,	
  control	
  and	
  
manipulaUon	
  
	
  
ApplicaUons:	
  wireless	
  
communicaUons,	
  radar…	
  
•  Terahertz	
  gap	
  
Progress	
  in	
  sources	
  and	
  detectors.	
  	
  
Also	
  need	
  funcUonal	
  devices	
  such	
  
as	
  filters,	
  switches,	
  
modulators	
  which	
  largely	
  do	
  
not	
  exist	
  
•  Infrared	
  and	
  visible	
  
Photonics:	
  	
  
Source:	
  lasers,	
  LEDs	
  
Detector:	
  Photodiodes	
  
FuncUonal:	
  lens,	
  polarizer,	
   	
  	
  	
  	
  	
  	
  
opUcal	
  switch	
  
	
  
ApplicaUons:	
  opUcal	
  
fiber	
  communicaUons…	
  
1 THz à 4 meV à 48K à 300 μm à 33 cm-1
Terahertz Region of the EM Spectrum
B.B.	
  Hu,	
  M.	
  Nuss,	
  Opt.	
  LeQ.	
  20,	
  1716	
  (1995)	
  
THz Metamaterials
36	
  µm	
  X	
  36	
  µm	
  
4	
  µm	
  linewidth	
  
2	
  µm	
  gap	
  
0
1
LC
ω =
Experimental Setup: THz-TDS
Bi-material Cantilever Based Metamaterials
A Mechanical Chameleon
Au / Silicon nitride
cantilever arrays:
Thermal Actuation
Phys. Rev. Lett. 103, 147410 (2009)
The SRRs are 72 µm X 72 µm with
an in-plane periodicity of 100 µm
and an overall dimension of 1 cm X
1cm.
Turning On The Refractive Index Mechanically
Control of the EM response at the unit cell level
Resonant Detectors Fabricated
at 95 and 690 GHz
95	
  GHz	
   690	
  GHz	
  
95 GHz MM-Based Thermal Detector:
Single Pixel Characterization
Spectrally Selective and Polarization Sensitive!
•  Room T
•  Ambient
•  Optical Readout
•  15 Hz
	
  
	
  
Magnetic Metamaterials
3D Stand-up Metamaterials: Pure Magnetic
Excitation at Terahertz Frequencies
(a)	
  
(b)	
  
(c)	
  
(d)	
  
(e)	
  
(f)	
  
(g)	
  
Cu	
  electroplaUng	
  with	
  Cu/Ti	
  seed	
  layers	
  
3D Stand-up Metamaterials: Pure Magnetic
Excitation at Terahertz Frequencies
Metamaterials
Sub-λ “LC” Resonators
Array à effective n(λ)
Create complex materials by combining metamaterials
with other materials including transition metal oxides
Correlated Electron Matter
Competing DOF
Mode selec. excitationà
Phase control
M. K. Liu, et al, Nature 487, 345 (2012)
Field enhancement in the capacitive gaps
•  Large field
enhancement
•  Extreme sub-λ regime
•  Separation of E and H
Above Damage Threshold: ~4 MV/cm
M. K. Liu, et al, Nature 487, 345 (2012)

More Related Content

What's hot

optical fiber and laser
optical fiber and laseroptical fiber and laser
optical fiber and laser
sweety13696
 
Fabry–pérot interferometer picoseconds dispersive properties
Fabry–pérot interferometer picoseconds dispersive propertiesFabry–pérot interferometer picoseconds dispersive properties
Fabry–pérot interferometer picoseconds dispersive properties
IAEME Publication
 
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk LaserSurface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
Oka Kurniawan
 
Optical fiber communication presentation
Optical fiber communication presentationOptical fiber communication presentation
Optical fiber communication presentation
palme mawagali
 

What's hot (20)

Metamaterials, A great achievement of material science
Metamaterials, A great achievement of material scienceMetamaterials, A great achievement of material science
Metamaterials, A great achievement of material science
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Metamaterials
Metamaterials Metamaterials
Metamaterials
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Javediqbal
JavediqbalJavediqbal
Javediqbal
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
optical fiber and laser
optical fiber and laseroptical fiber and laser
optical fiber and laser
 
Fabry–pérot interferometer picoseconds dispersive properties
Fabry–pérot interferometer picoseconds dispersive propertiesFabry–pérot interferometer picoseconds dispersive properties
Fabry–pérot interferometer picoseconds dispersive properties
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Plasmonics
PlasmonicsPlasmonics
Plasmonics
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Febry perot sensor
Febry perot sensorFebry perot sensor
Febry perot sensor
 
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk LaserSurface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
Surface Plasmon Hybridization of Whispering Gallery Mode Microdisk Laser
 
Optical Communication unit 1 (part 1)
Optical Communication unit 1 (part 1)Optical Communication unit 1 (part 1)
Optical Communication unit 1 (part 1)
 
APPLICATIONS OF METAMATERIAL IN ANTENNA ENGINEERING
APPLICATIONS OF METAMATERIAL IN ANTENNA ENGINEERINGAPPLICATIONS OF METAMATERIAL IN ANTENNA ENGINEERING
APPLICATIONS OF METAMATERIAL IN ANTENNA ENGINEERING
 
Optical fiber communication presentation
Optical fiber communication presentationOptical fiber communication presentation
Optical fiber communication presentation
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle waves
 
plasmonics pdf
plasmonics pdfplasmonics pdf
plasmonics pdf
 
Nanomaterial and meta materials
Nanomaterial and meta materialsNanomaterial and meta materials
Nanomaterial and meta materials
 

Viewers also liked

SEMINAR DOC.finally completed
SEMINAR DOC.finally completedSEMINAR DOC.finally completed
SEMINAR DOC.finally completed
Ramana Reddy
 
[Challenge:Future] Semi finals - Invisibility Mastering
[Challenge:Future] Semi finals - Invisibility Mastering[Challenge:Future] Semi finals - Invisibility Mastering
[Challenge:Future] Semi finals - Invisibility Mastering
Challenge:Future
 
Optical Camouflage
Optical CamouflageOptical Camouflage
Optical Camouflage
Govind Raj
 
Cloaking making visible things into invisible
Cloaking  making visible things into invisibleCloaking  making visible things into invisible
Cloaking making visible things into invisible
PraDeep Reddy
 

Viewers also liked (19)

Presentation 3
Presentation 3Presentation 3
Presentation 3
 
SEMINAR DOC.finally completed
SEMINAR DOC.finally completedSEMINAR DOC.finally completed
SEMINAR DOC.finally completed
 
Optical camouflage ....
Optical camouflage ....Optical camouflage ....
Optical camouflage ....
 
METAMATERIALS
METAMATERIALSMETAMATERIALS
METAMATERIALS
 
Invisible cloak!!
Invisible cloak!!Invisible cloak!!
Invisible cloak!!
 
Invisible invasion
Invisible invasionInvisible invasion
Invisible invasion
 
Network cloaking sansv2_
Network cloaking sansv2_Network cloaking sansv2_
Network cloaking sansv2_
 
[Challenge:Future] Semi finals - Invisibility Mastering
[Challenge:Future] Semi finals - Invisibility Mastering[Challenge:Future] Semi finals - Invisibility Mastering
[Challenge:Future] Semi finals - Invisibility Mastering
 
Using Digital Portfolios to Remove the Cloak of Invisibility
Using Digital Portfolios to Remove the Cloak of InvisibilityUsing Digital Portfolios to Remove the Cloak of Invisibility
Using Digital Portfolios to Remove the Cloak of Invisibility
 
Invisibility for Muggles!
Invisibility for Muggles!Invisibility for Muggles!
Invisibility for Muggles!
 
复旦【部队提案】 隐身材料0523版)
复旦【部队提案】 隐身材料0523版)复旦【部队提案】 隐身材料0523版)
复旦【部队提案】 隐身材料0523版)
 
Optical camouflage-2
Optical camouflage-2Optical camouflage-2
Optical camouflage-2
 
My presentation
My presentationMy presentation
My presentation
 
Optical Camouflage
Optical CamouflageOptical Camouflage
Optical Camouflage
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Cloaking making visible things into invisible
Cloaking  making visible things into invisibleCloaking  making visible things into invisible
Cloaking making visible things into invisible
 
Invisible technology
Invisible technologyInvisible technology
Invisible technology
 
seminar on invisible eye
seminar on invisible eyeseminar on invisible eye
seminar on invisible eye
 
gsk Invisible eye advanced security system ppt
gsk Invisible eye advanced security system pptgsk Invisible eye advanced security system ppt
gsk Invisible eye advanced security system ppt
 

Similar to Averitt slides

Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo ModelCoherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Pratik Tarafdar
 

Similar to Averitt slides (20)

lezione_3.ppt
lezione_3.pptlezione_3.ppt
lezione_3.ppt
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 
The Missing Fundamental Element
The Missing Fundamental ElementThe Missing Fundamental Element
The Missing Fundamental Element
 
Aspelmeyer
AspelmeyerAspelmeyer
Aspelmeyer
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Lasers1.ppt
Lasers1.pptLasers1.ppt
Lasers1.ppt
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
 
Evolution of quantum chemistry.pptx
Evolution of quantum chemistry.pptxEvolution of quantum chemistry.pptx
Evolution of quantum chemistry.pptx
 
Rtu ch-2-qauntum mech
Rtu ch-2-qauntum mechRtu ch-2-qauntum mech
Rtu ch-2-qauntum mech
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo ModelCoherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
Coherence and Stochastic Resonances in Fitz-Hugh-Nagumo Model
 
2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx
 
Gravitational Radiation
Gravitational RadiationGravitational Radiation
Gravitational Radiation
 
Magnetic resonance imaging
Magnetic resonance imagingMagnetic resonance imaging
Magnetic resonance imaging
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Laser &amp; x rays 2
Laser &amp; x  rays 2Laser &amp; x  rays 2
Laser &amp; x rays 2
 
Principles of (N)MR Imaging
Principles of (N)MR Imaging Principles of (N)MR Imaging
Principles of (N)MR Imaging
 
Dynamical localization in the microwave ionization of Rydberg atoms
Dynamical localization in the microwave ionization of Rydberg atomsDynamical localization in the microwave ionization of Rydberg atoms
Dynamical localization in the microwave ionization of Rydberg atoms
 
7,atomic structure and preriodicity
7,atomic structure and preriodicity7,atomic structure and preriodicity
7,atomic structure and preriodicity
 
Radioactivity.pptx
Radioactivity.pptxRadioactivity.pptx
Radioactivity.pptx
 

Averitt slides

  • 2. Research Themes “Equilibrium  is  when  all  of  the  fast  stuff  has  happened,  and  all  of  the  slow  stuff  hasn’t.”   -­‐Feynman  
  • 3. Metamaterials: a new field J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. MTT 47, 2075 (1999) D. R. Smith, et al., Phys. Rev. Lett. 84, 4184 (2000)
  • 4. New  York  Times,  2007   The Irresistible Fantasy of the Invisible Man, and Machine
  • 6. The Stealth Fighter: Invisible to Radar? Very small radar cross section: shape and absorbing paint
  • 8. by  Lee  &  Kirby  (1961) "...  she  achieves  these  feats  by   bending  all  wavelengths  of  light  in   the  vicinity  around  herself  ...   without  causing  any  visible   distortion.” -­-­ Introduction  from   Wikipedia Fantastic 4: The Invisible Woman
  • 9. "...  it  was  an  idea  ...  to  lower  the   refractive  index  of  a  substance,   solid  or  liquid,  to  that  of  air  — so   far  as  all  practical  purposes  are   concerned.” -­-­ Chapter  19   "Certain  First  Principles" The Invisible Man by H.G. Wells (1897) Key  Concept:    The  Refrac2ve  Index  à  n     Velocity  of  light  in  free  space:  c   In  a  material:  c/n    
  • 10. The  bending  of  light  due  to  the  gradient  in  refractive  index   in  a  desert  mirage Mirage: Optical Illusion
  • 11. Tearing  Space:  conformal  map   Wegner,  Linden  in  Physics  Today,  2010   We  can’t  tear  space:     Mimic  by  shaping   the  refrac2ve  index  n    
  • 12. The  New  York  Times;  3-­‐D  model  by  Christoph  Hormann  and  Gunnar  Dolling,  Karslruhe  University  
  • 13. Snell’s  Law •  Reflection: θi = θr •  Refraction: n1sinθi=n2sinθt The refraction beam is at the other side of the incident normal.
  • 14. NegaUve  RefracUve  Index:  A  long  history   •  A.  Schuster,  An  IntroducUon  to  the  Theory  of  OpUcs,  (1904)          -­‐  Discussed  in  the  context  of  anomalous  dispersion  as  occurs  at  any  absorpUon  band.   •  L.I.  Mandelshtam,  May  5  1944  (last  lecture)   In fact, the direction of wave propagation is determined by its phase velocity, while energy is transported at the group velocity. - Translated by E. F. Keuster
  • 15. PosiUve  RefracUon   X. Huang, W. L. Schaich, Am. J. Phys.72, 1232 (2004)
  • 16. NegaUve  RefracUon   X. Huang, W. L. Schaich, Am. J. Phys.72, 1232 (2004)
  • 17. Sir  John  Pendry  –  leading  theorist  in   the  area:   In  convenUonal  materials,  the  dielectric  response  derives  from  the  consUtuent   atoms.  As  discussed,  negaUve  or  posiUve  ε(ω)  is  possible  over  a  broad  spectral   range.  However,  natural  materials  with  a  resonant  magneUc  permeability  µ(ω)   don t  exist  above  a  few  THz  (e.g.  FerromagneUc  resonance  in  Fe  at  microwave   frequencies,  or    anUferromagneUc  resonance  in  MnF2  at  ~2THz).   Pendry,  Contemporary  Physics  
  • 18. -55 -50 -45 -40 -35 -30 -25 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 TransmittedPower(dBm) Frequency (GHz) J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. MTT 47, 2075 (1999). Metamaterials: Expanding our Space Pendry et al. suggested that an array of ring resonators could respond to the magnetic component light.  
  • 19. LCR  circuits   •  A  circuit  with  an  inductor  (L)  and  capacitor  (C)   saUsfies  the  same  equaUon  as  the  mass  spring   system  for  simple  harmonic  oscillaUon.   •  If  we  added  a  resistor  (R)  that  we  get  the   damped  oscillator  equaUon.   –  as  for  the  mechanical  oscillator,  the   soluUon  can  be     •  under  damped:      (  γ  <    2  ω0  )   •  criUcally  damped:    (  γ    =    2  ω0  )     •  over  damped:      (  γ    >    2  ω0  )   •  We  can  choose  the  values  of  L,  C,  and  R  to   determine  which  kind  of  damping  we  have.  
  • 20. Comparison  between  mass-­‐spring  systems  and  LCR  circuits.  
  • 21.
  • 22. γ    is  the  full-­‐width  half  maximum  (fwhm)  of  the  power   absorpUon  curve  quality  factor  Q :  
  • 23. Magnetic Metamaterials: Shaping a resonance Dimensions  <  λ 0 1 LC ω = Effective Medium: µ(ω)
  • 24.
  • 25. The first negative index material, meta or otherwise! D.  R.  Smith,  W.  J.  Padilla,  et  al,  Phys.  Rev.  Leh.  14,  234  (2000)  
  • 26. Experimental Demonstration of NI Microwave: ease of fabrication R. A. Shelby, D. R. Smith, S. Schultz, Science 84, 4184 (2001)
  • 28. J. B. Pendry, et al., Science 312, 1780 (2006) D. Schurig, et al., Science, 314, 2006. The Electromagnetic Cloak Simulation Experiment
  • 29. Cloaking Other Waves: Sound, Water, Earth The Cone of Silence Would you believe?.........
  • 30. M.  Farhat,  S.  Enoch,  S.  Guenneau,  and  A.  B.  Movchan,  "Broadband  cylindrical  acoustic   cloak  for  linear  surface  waves  in  a  fluid",  Physical  Review  Letters  101,.134501  (2008). Cloaking Water Waves
  • 33. Terahertz •  Microwave   Electronics:  Antenna,  high   speed  transistor  circuits  for   microwave  generaUon,   detecUon,  control  and   manipulaUon     ApplicaUons:  wireless   communicaUons,  radar…   •  Terahertz  gap   Progress  in  sources  and  detectors.     Also  need  funcUonal  devices  such   as  filters,  switches,   modulators  which  largely  do   not  exist   •  Infrared  and  visible   Photonics:     Source:  lasers,  LEDs   Detector:  Photodiodes   FuncUonal:  lens,  polarizer,               opUcal  switch     ApplicaUons:  opUcal   fiber  communicaUons…   1 THz à 4 meV à 48K à 300 μm à 33 cm-1
  • 34. Terahertz Region of the EM Spectrum B.B.  Hu,  M.  Nuss,  Opt.  LeQ.  20,  1716  (1995)  
  • 35. THz Metamaterials 36  µm  X  36  µm   4  µm  linewidth   2  µm  gap   0 1 LC ω =
  • 37. Bi-material Cantilever Based Metamaterials A Mechanical Chameleon Au / Silicon nitride cantilever arrays: Thermal Actuation Phys. Rev. Lett. 103, 147410 (2009) The SRRs are 72 µm X 72 µm with an in-plane periodicity of 100 µm and an overall dimension of 1 cm X 1cm.
  • 38. Turning On The Refractive Index Mechanically Control of the EM response at the unit cell level
  • 39. Resonant Detectors Fabricated at 95 and 690 GHz 95  GHz   690  GHz  
  • 40. 95 GHz MM-Based Thermal Detector: Single Pixel Characterization Spectrally Selective and Polarization Sensitive! •  Room T •  Ambient •  Optical Readout •  15 Hz    
  • 41.
  • 43. 3D Stand-up Metamaterials: Pure Magnetic Excitation at Terahertz Frequencies (a)   (b)   (c)   (d)   (e)   (f)   (g)   Cu  electroplaUng  with  Cu/Ti  seed  layers  
  • 44. 3D Stand-up Metamaterials: Pure Magnetic Excitation at Terahertz Frequencies
  • 45. Metamaterials Sub-λ “LC” Resonators Array à effective n(λ) Create complex materials by combining metamaterials with other materials including transition metal oxides Correlated Electron Matter Competing DOF Mode selec. excitationà Phase control
  • 46. M. K. Liu, et al, Nature 487, 345 (2012)
  • 47. Field enhancement in the capacitive gaps •  Large field enhancement •  Extreme sub-λ regime •  Separation of E and H
  • 48. Above Damage Threshold: ~4 MV/cm M. K. Liu, et al, Nature 487, 345 (2012)