SlideShare a Scribd company logo
1 of 42
Amphiphiles: A TaleAmphiphiles: A Tale
of Heads and Tailsof Heads and Tails
Alokmay Datta
Saha Institute of Nuclear
Physics
Saha Institute of Nuclear Physics, IndiaSaha Institute of Nuclear Physics, India
S. Kundu, M. K. Sanyal, S. Hazra
Northwestern University, USANorthwestern University, USA
P. Dutta
J. Kmetko (Cornell University)
C.-J. Yu (Pohang Light Source, Korea)
A.G. Richter (University of Memphis)
Université Paris-Sud, FranceUniversité Paris-Sud, France
J. Daillant, D. Luzet, C. Blot
Co-workersCo-workers
Amphiphiles and Langmuir Monolayers
Langmuir Monolayers with Metal Ions
The Bi-molecular Layer with Ferric Stearate
I shall talk about …I shall talk about …
AmphiphilesAmphiphiles
(found ~ 2000 B.C.)(found ~ 2000 B.C.)
1. The
Whalelephant
2. The Fatty
Acid
Head
Tail
Hydrophobic tail Hydrophilic head
Simpler Picture
Amphiphile – One Half Loves Water, Other Part Does Not
Hydrophobic head Hydrophilic tail
Langmuir MonolayersLangmuir Monolayers
(found in 1910-11)(found in 1910-11)
If an amphiphile is dissolved in some liquid which has Surface Tension,
Density and Boiling Point much less than Water and a Very Small Amount of
this Dilute Solution is Spread on Water
Then after the Solvent Spreads Evenly over the Water Surface and
Evaporates
The Amphiphiles form a Monomolecular Layer at the Air Water Interface
with Heads in Water and Tails in Air
This is the LANGMUIR MONOLAYER - Perhaps the Most Easily Achievable
Two-Dimensional System
Head
Tail
LANGMUIR MONOLAYER PHASES
A Langmuir Monolayer can be compressed two-dimensionally by pushing a
mechanical barrier across the water surface
The compressed monolayer becomes denser and its surface tension (measured
generally by Wilhelmy Plate) gradually reduces from that of pure water to
that of pure hydrocarbons (oils)
This drop in surface tension is called SURFACE PRESSURE and is the
measured two-dimensional analogue of pressure
π = γwater - γmonolayer
When surface pressure is plotted as a function of the area per amphiphile
molecule in the monolayer (A), we get a π-A isotherm which is again the
two-dimensional analogue of the p-V Isotherm of a three-dimensional system
The π-A isotherm shows discontinuities such as abrupt changes in slope (kinks)
and straight sections which were thought to be and are now known to be
Phase Transitions
20253035404550
0
10
20
30
40
50
S
L2
/
L2
IsothermforT=10
o
C
SurfacePressure(mN/m)
Area/Molecule
Langmuir Monolayer Phases
• Pressure-area isotherm
From the isotherms the Surface
Pressure-Temperature Phase
Diagrams are constructed
Kaganer, V. M.; Möhwald, H.; Dutta, P. Rev. Mod.Phys. 1999, 71(3), 779
How do we know whatHow do we know what
is going on?is going on?
Diffraction Studies of Langmuir Monolayers
Schematic View of Set-up
Actual Set-up at NSLS and APS
The Different Monolayer Phases have different 2D Lattices
These can be studied by Grazing Incidence Diffraction
Grazing IncidenceGrazing Incidence
DiffractionDiffraction
In GID technique, a total external reflection
occurs at the interface,
α< αc
α = incidence angle
αc = the critical angle (~ milliradians for X-
rays)
Field decays to 1/e of its value at top within a depth of l
l ≈ λ/[2π (α- αc )1/2
]
At these incident angles (~ milliradians)
l is independent of λ and ≈ 25 Å to 100 Å, inversely as electron density of
medium
Condition for GID:
Incident X-rays are confined to ~ 100Å below interfacial
plane, whereas they travel in the plane (x and y directions)
with a wavelength close to the free-space wavelength
x
y
z
q
The Langmuir Monolayer has randomly oriented domains in the horizontal
plane hence x and y directions are not resolved
Kxy = (kf
xy
2
+ ki
xy
2
- 2 kf
xyki
xycos2θ)½
= 2π/λ(cos2
αi + cos2
αf - 2 cosαi cosαf cos2θ)½
Kz = 2π/λ(sinαf + sinαi )
For Nearest Neighbour (NN) Tilts
Tilt Angle = τ= tan-1
(Kdz/[Kdxy
2
– (Knxy/2) 2
] ½
)
For Next Nearest Neighbour Tilts
τ= tan-1
(Knz /Knxy)
GID of Langmuir Monolayers is Simpler
In-plane peaks Bragg rods
Langmuir Monolayers in Reciprocal Space
Very Briefly on Synchrotron RadiationVery Briefly on Synchrotron Radiation
Wherever the path of the electrons
bends, the acceleration causes them
to produce electromagnetic radiation
In the lab rest frame, this produces a
horizontal fan of x-rays that is
highly collimated (to ΔΘ≈ 1/γ) in the
vertical direction and extends to
high energies
Synchrotron x-rays are:
1. Highly Collimated hence Very Bright
2. Linearly Polarized in the Horizontal
Plane
3. Energy Tunable
Electrons moving near speed of light
X-ray
Reflectivity
Rotating-Anode
Generator,
Cu kα1 , λ=1.540562Å
•Angle of Incidence used: from 0° - 3.5°
•Scan-step: 2 mdeg for films > 800 Å, 5 mdeg for
films ≤ 800 Å
•3.8 kW of X-ray Power used
Grazing Incidence X-ray
Diffractometer, FR591,
Enraf-Nonius
X-ray Reflectivity: Principles
•In x-ray region, refractive index n < 1, i.e.,
phase velocity of x-rays in material > phase
velocity in vacuum.
total external reflection (specular reflection)
Incident and scattered wave-vectors in same plane normal to surface
Incident angle (α) = scattered angle (β)
δ∼10-6
, ρ → electron density, r0 → classical electron radius ~ 2.8×10-5
Å
•n = (1-δ) =1-(ρr0 λ2
/2π )
•qz = normal momentum transfer = kf - ki= 4π/λ(sinα)
∀αc = critical angle for sample film = (2 δ)½
z
x
At α > αc, x-rays penetrate into sample, are scattered for each change in
ρ, and these scattered x-rays interfere  interference (Kiessig) fringes in
reflectivity profile with periodicity 2π/d, d = thickness of a layer with a
constant ρ, while amplitude of fringes ∝ change in ρ
kt
ki kf
α α
β
n = 1-δ
n=1
∆qz = 2π/d
d
Air
Film
Substrate
Interference (Kiessig) fringes with periodicity 2Interference (Kiessig) fringes with periodicity 2ππ/d, d = thickness of/d, d = thickness of
a layer with a constanta layer with a constant ρρ, while amplitude of fringes, while amplitude of fringes ∝∝ change inchange in ρρ
Mirror
Laser
Diode
Focusing Lens
Piezo Scanner
Sample
Holder
Integrator
Divider /
Multiplier
Differential
amplifier
4-quadrant PSPD
X-Y Translator
X Y
Tip
SampleCantilever
Atomic Force MicroscopyAtomic Force Microscopy
Force
attractive force
distance
(tip-to-sample
)
repulsive force
non-contact
contact
Intermittent-
contact
Multimode Nanoscope IV
(Digital Instruments)
Intermittent-Contact (tapping) mode
Etched Si tip
Phosphorus-doped Si cantilever
Force constant 40N/m
Characteristic frequency 344kHz
Langmuir MonolayersLangmuir Monolayers
+ Metal Ions+ Metal Ions
(found in 1994)(found in 1994)
From GID studies this is phase diagram of
Fatty-acid Langmuir Monolayers
1.4 1.5 1.6 1.7
0.00
0.04
0.09
0.14
0.18
pH ~ 12
15
o
C, π = 30dynes/cm
pH ~ 11.5
pH ~ 11
pH ~ 10.5
NormalizedIntensity
Qxy
(Å
-1
)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
8
10
12
14
16
18
20
22
24
Open Symbols - Ref 7
Solid Symbols - Our Work
π = 30 dynes/cm
Rotator-II
Rotator-I
S
T(
o
C)
pH
Changing the Subphase (Water) pH
System: Heneicosanoic Acid on water, pH changed by NaOH, no
Other Metal Ions
High pH behaves like High Temperature
Datta, A.; Kmetko, J.; Richter, A. G.; Yu, C. J.; Dutta, P. ; Chung, K. S.; Bai, J. M. Langmuir 2000, 16, 1239.
Putting Different Metal Ions in Water:
Cadmium Ions
Organic
Monolayer
Peaks
Superlattice peaks
A superlattice of metal ions(?) is formed under the organic layer
Datta, A.; Kmetko, J.; Yu, C. J.; Richter, A. G.; Chung, K. S.; Bai, J. M.; Dutta, P. J. Phys. Chem. B 2000, 104, 5797.
0.0
0.1
0.3
pH ~ 8.5
pH ~ 9.3
pH ~ 6.2
Qxy
NormalizedIntensity(arb.u.)
0.0
0.2
0.4
1.4 1.5 1.6 1.7
0.0
0.7
1.4
Cadmium Ions: the pH ‘Window’
Superlattice and asymmetrically (chiral)
distorted organic lattice are formed within
a range of pH
Putting Different Metal Ions in Water:
Lead Ions
Superlattice and Large
chiral distortion of
organic lattice
Are there Lead Ions
in the superlattice?
GID of monolayer just above and
below L3 absorption edge of lead
shows no change in either organic
or superlattice peaks!
Lead forms less than
20% (atom%) of the superlattice
Kmetko, J.; Datta, A.; Evmenenko,G.; Durbin, M. K.; Richter, A. G.; Dutta, P. Langmuir 2001, 17, 4697.
Putting Different Metal Ions in Water
Do not form
Superlattices
Form Superlattices but no chiral
distortion of organic lattice
Putting Different Metal Ions in Water: Summary
Kmetko, J.; Datta, A.; Evmenenko, G.; Dutta, P. J. Phys. Chem. B 2001, 105, 10818.
A Closer Look at Pb Ions with EXAFS
Pb with the Head
Pb-OH ‘trimer’
The Lattice
Maxim I. Boyanov, Jan Kmetko, Tomohiro Shibata, Alokmay Datta, Pulak Dutta, and
Bruce A. Bunker, J. Phys. Chem. B 2003, 107, 9780.
Putting Different Metal Ions: Conclusions
Metal ions can do three things to a fatty acid Langmuir
Monolayer. They can:
1. Take the monolayer to a high pressure phase at low
pressure i.e., an Achiral structure. Cu, Ni, Ca, Ba, Zn
2. Take the monolayer to a high pressure phase and create a
superlattice underneath i.e., Achiral + Superlattice. Mg, Mn
3. Take the monolayer to a new chiral phase and create a
superlattice underneath i.e., Chiral + Superlattice. Cd, Pb
•Pinhole defects are observed for ‘normal pH’ LB films and increases from
substrate surface upto top film surface
•Defects (like ridges) are only within the upper bilayer for ‘high pH’ LB films
20×20 μm2
10×10 μm2
‘Normal pH’ and ‘High pH’ Langmuir-Blodgett multilayer films
Surface pressure = 30 mN/m, Temperature ≅ 13o
C
Ion (Cd+2
) concentration ≅ 10-4
M - 10-5
M
SubphasepH≅6.5SubphasepH≅9.0–9.5
Results from x-ray reflectivity analysis
0 2 4 6 8 10 12
10
-8
10
-6
1x10
-4
10
-2
10
0
0 5 10 15 20 25
0
500
1000
1500
Reflectivity
qz
(nm
-1
)
ρ(e/nm
3
)
z (nm)
Normal pH LB films High pH LB films
18.6 19.2 19.8
0
500
1000
1500
0 2 4 6
10
-7
1x10
-5
10
-3
10
-1
10
1
ρ(e/nm
3
)
z (nm)
Normal pH
High pH
Reflectivity
qz
(nm
−1
)
• Reflectivity increases for ‘high pH’
film twice than that of ‘normal
pH’ LB film
• From EDP we get one more cadmium
ion in the headgroup of ‘high pH’ LB
film
• Enhancement in the reflectivity by
incorporating one extra cadmium ion
in the headgroup
Conclusions
Normal pH LB films
High pH LB films
• Manipulating Headgroups in Langmuir-Blodgett Films through Subphase pH Variation
S. Kundu, A. Datta and S. Hazra, Chem. Phys. Lett. 405, 282 (2005)
Bi-molecular LayerBi-molecular Layer
(found in 2004-05)(found in 2004-05)
Monolayer of a Preformed Amphiphilic Salt:
Ferric Stearate
Isotherm for stearic acid
monolayer on water Isotherm for ferric stearate
monolayer on water
Datta, A.; Sanyal, M. K.; Dhanabalan, A.; Major, S. S. J. Phys. Chem. B 1997, 101, 9280.
Isotherm suggests that
ferric stearate
molecules have
configurations of Y and
inverted Y with one-and-
half tails per head
This, rather than this
Ferric Stearate Monolayer Configuration
Bimolecular layer on water: Dramatic reduction in surface tensionBimolecular layer on water: Dramatic reduction in surface tension
µm µm
On
Water
Surface
On
Silicon
Surface
Out-of-plane x-ray scattering
In-planex-rayscattering
Ferric stearate on water
water
Out-of-plane x-ray scattering
Atomic Force Microscopy Images
Electron
Density
Profile
Low coverage High coverage
Bi-molecular layer on water surface (Grazing
Incidence Diffraction)
How does the structure change with surface pressure ?
1.38 1.44 1.50 1.56 1.62 1.68
0.0
0.2
0.4
0.6
0.8
1.0
10 mN/m
q||
(Å
-1
)
0.0
0.2
0.4
0.6
0.8
1.0
15 mN/m
Intensity
0.0
0.2
0.4
0.6
0.8
1.0
1 mN/m
Surface
Pressure
(mN/m)
Lattice
type
Lattice Parameters of In-Plane Primitive Unit cell
a (Å) b (Å) Area/tail (Å2
) Domain size (Å)
1 DH 4.73 8.72 20.60 107 (s) &150 (w)
10 DH 4.72 8.68 20.48 75 (s) & 60 (w)
15 DH 4.73 8.68 20.55 72 (s) & 71 (w)
Only one hydrocarbon tail
length (22Å) is required
to fit the Bragg rod
profile
bi-molecular layer is formed
on water surface from very
low surface pressure
0.00 0.05 0.10 0.15
1x10
-10
1x10
-9
1x10
-8
1x10
-7
0 20 40 60 80
0.0
0.2
0.4
0.6
(a)
AbsoluteIntensity
θsc
(radians)
ρ(eÅ
-3
)
z (Å)
0.15 0.30 0.45 0.60
1x10
-12
2x10
-12
3x10
-12
4x10
-12
5x10
-12
6x10
-12
(b)
Intensity
qz
(Å
-1
)
Bragg rod
Rod at ψ = 0.2º
Clip of trough
Substrate holder
substrate
MILS method
Clip of trough
Substrate
Gold
particles
LB method
Deposition of layers horizontally from very low (1mN/m)
to very high (55mN/m) surface pressure :
0.0 0.3 0.6 0.9
1x10
-27
1x10
-23
1x10
-19
1x10
-15
1x10
-11
1x10
-7
1x10
-3
1x10
1
55 mN/m
1 mN/m
(a)Reflectivity
qz
(Å
-1
)
0 20 40 60 80 100 120
0.0
0.5
1.0
1.5
2.0
2.5
55 mN/m
1 mN/m (b)
ρ(eÅ
-3
)
z (Å)
0 10 20 30 40 50
0.6
0.8
1.0
f1
π (mN/m)
0.2
0.4
0.6
0.8
1.0
(d)
(c)
f2
Different growth behavior of upper and lower monomolecular layers
While the lower layer behaves solid-like the number of molecules in the upper
layer increases continuously with surface pressure
ConclusionsConclusions
PreformedPreformed fatty acid salts behave like a membranefatty acid salts behave like a membrane
on water surfaceon water surface
• They form a bi-molecular layer on water surfaceThey form a bi-molecular layer on water surface
• They reduce surface tension of water fromThey reduce surface tension of water from
72mN/m to 1mN/m72mN/m to 1mN/m
• The growth behaviour of each layer is differentThe growth behaviour of each layer is different
A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot and B. Struth Phys. Rev.
E 71, 041604 (2005). Selected for ESRF Highlights 2005
S. Kundu, A. Datta, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot and B. Struth,
submitted

More Related Content

What's hot

organic-spectroscopic-analysis
organic-spectroscopic-analysisorganic-spectroscopic-analysis
organic-spectroscopic-analysisAlexandra Elena
 
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysAbhi Hirpara
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopyZainab&Sons
 
Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR)Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR)Maham Adnan
 
Introduction to Fourier Transfer Infrared Spectroscopy
Introduction to Fourier Transfer Infrared SpectroscopyIntroduction to Fourier Transfer Infrared Spectroscopy
Introduction to Fourier Transfer Infrared SpectroscopyRahulVerma550005
 
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s a
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s aIr spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s a
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s aDr. UMESH KUMAR SHARMA
 
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013The Air Force Office of Scientific Research
 
Dr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationDr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationJaishree Bardapure
 
Quantum numbers and its roles in nmr
Quantum numbers and its roles in nmrQuantum numbers and its roles in nmr
Quantum numbers and its roles in nmrAtul Adhikari
 
Principles of (N)MR Imaging
Principles of (N)MR Imaging Principles of (N)MR Imaging
Principles of (N)MR Imaging Peder Larson
 

What's hot (20)

Infrared spectroscopy IR
Infrared spectroscopy IR Infrared spectroscopy IR
Infrared spectroscopy IR
 
Ir
IrIr
Ir
 
organic-spectroscopic-analysis
organic-spectroscopic-analysisorganic-spectroscopic-analysis
organic-spectroscopic-analysis
 
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
 
IR spectroscopy
IR spectroscopyIR spectroscopy
IR spectroscopy
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
 
2.ir jntu pharmacy
2.ir jntu pharmacy2.ir jntu pharmacy
2.ir jntu pharmacy
 
Spectroscpoic techniques
Spectroscpoic techniquesSpectroscpoic techniques
Spectroscpoic techniques
 
Nmr theory
Nmr theoryNmr theory
Nmr theory
 
Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR)Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR)
 
Introduction to Fourier Transfer Infrared Spectroscopy
Introduction to Fourier Transfer Infrared SpectroscopyIntroduction to Fourier Transfer Infrared Spectroscopy
Introduction to Fourier Transfer Infrared Spectroscopy
 
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s a
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s aIr spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s a
Ir spectroscopy instrumentation, b y -dr. umesh kumar sharma and arathy s a
 
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
Parra - Ultrashort Pulse (USP) Laser -- Matter Interactions - Spring Review 2013
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
IR Spectroscopy
IR Spectroscopy IR Spectroscopy
IR Spectroscopy
 
Dr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationDr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentation
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass Spectroscopy
 
Quantum numbers and its roles in nmr
Quantum numbers and its roles in nmrQuantum numbers and its roles in nmr
Quantum numbers and its roles in nmr
 
mass spectroscopy
mass spectroscopymass spectroscopy
mass spectroscopy
 
Principles of (N)MR Imaging
Principles of (N)MR Imaging Principles of (N)MR Imaging
Principles of (N)MR Imaging
 

Viewers also liked

Festa Major de Vilafranca
Festa Major de VilafrancaFesta Major de Vilafranca
Festa Major de Vilafrancacarla12342
 
Manual tmc en educacion especial
Manual tmc en educacion especialManual tmc en educacion especial
Manual tmc en educacion especialMeylin Gomez Cortez
 
Congres cultuur-in-beeld
Congres cultuur-in-beeldCongres cultuur-in-beeld
Congres cultuur-in-beeldErfgoed 2.0
 
Stb 60335 2_13
Stb 60335 2_13Stb 60335 2_13
Stb 60335 2_13Noah Khan
 
Certificate
CertificateCertificate
CertificateShanu .
 
Kapita selekta pengembangan kepribadian
Kapita selekta pengembangan kepribadianKapita selekta pengembangan kepribadian
Kapita selekta pengembangan kepribadianYayank Chitato
 
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...FutureEnterprise
 
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACH
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACHPortafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACH
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACHMichael Urgilés
 
Los cinco sentidos
Los cinco sentidosLos cinco sentidos
Los cinco sentidosagbriela
 
Ognysta kvitka poeziyi
Ognysta kvitka poeziyiOgnysta kvitka poeziyi
Ognysta kvitka poeziyiviktoriay
 
Resume of Masud Rana
Resume of Masud RanaResume of Masud Rana
Resume of Masud RanaMasud Rana
 
Better Oral Health in Long Term Care
Better Oral Health in Long Term CareBetter Oral Health in Long Term Care
Better Oral Health in Long Term Caresaskohc
 
Sample mla reports 10.21.13
Sample mla reports 10.21.13Sample mla reports 10.21.13
Sample mla reports 10.21.13Sarah Gordon
 

Viewers also liked (14)

Festa Major de Vilafranca
Festa Major de VilafrancaFesta Major de Vilafranca
Festa Major de Vilafranca
 
Manual tmc en educacion especial
Manual tmc en educacion especialManual tmc en educacion especial
Manual tmc en educacion especial
 
Congres cultuur-in-beeld
Congres cultuur-in-beeldCongres cultuur-in-beeld
Congres cultuur-in-beeld
 
Stb 60335 2_13
Stb 60335 2_13Stb 60335 2_13
Stb 60335 2_13
 
Certificate
CertificateCertificate
Certificate
 
Kapita selekta pengembangan kepribadian
Kapita selekta pengembangan kepribadianKapita selekta pengembangan kepribadian
Kapita selekta pengembangan kepribadian
 
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...
FutureEnterprise: Be Digital & Innovate! - by Fenareti Lampathaki, SEW Athens...
 
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACH
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACHPortafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACH
Portafolio de Epistemología ( III Semestre - Psic. Clinica) - UTMACH
 
Hni crude oil tips free trial
Hni crude oil tips free trialHni crude oil tips free trial
Hni crude oil tips free trial
 
Los cinco sentidos
Los cinco sentidosLos cinco sentidos
Los cinco sentidos
 
Ognysta kvitka poeziyi
Ognysta kvitka poeziyiOgnysta kvitka poeziyi
Ognysta kvitka poeziyi
 
Resume of Masud Rana
Resume of Masud RanaResume of Masud Rana
Resume of Masud Rana
 
Better Oral Health in Long Term Care
Better Oral Health in Long Term CareBetter Oral Health in Long Term Care
Better Oral Health in Long Term Care
 
Sample mla reports 10.21.13
Sample mla reports 10.21.13Sample mla reports 10.21.13
Sample mla reports 10.21.13
 

Similar to SNBoseTalk06

Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronicsminkayj
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic SpintronicsECEatUtah
 
BVO Research Summary
BVO Research SummaryBVO Research Summary
BVO Research SummaryBernie O'Hare
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.pptHoca26
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 
Radiopharmaceuticals
RadiopharmaceuticalsRadiopharmaceuticals
RadiopharmaceuticalsPravinMuli
 
I R spectroscopy
I R spectroscopyI R spectroscopy
I R spectroscopyceutics1315
 
Kinetic growth of binary compounds by reactive sputtering magnetron
Kinetic growth of binary compounds by reactive sputtering magnetronKinetic growth of binary compounds by reactive sputtering magnetron
Kinetic growth of binary compounds by reactive sputtering magnetronJavier García Molleja
 
LASER,FIBER OPTICS & ULTRASONIC……
LASER,FIBER OPTICS  & ULTRASONIC……LASER,FIBER OPTICS  & ULTRASONIC……
LASER,FIBER OPTICS & ULTRASONIC……Smit Shah
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasMehedi Hassan
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi
 

Similar to SNBoseTalk06 (20)

Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
BVO Research Summary
BVO Research SummaryBVO Research Summary
BVO Research Summary
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt
 
INFRARED SPECTROSCOPY.pptx.pdf
INFRARED SPECTROSCOPY.pptx.pdfINFRARED SPECTROSCOPY.pptx.pdf
INFRARED SPECTROSCOPY.pptx.pdf
 
ULTRASONICS
ULTRASONICSULTRASONICS
ULTRASONICS
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
PET Cyclotron
PET Cyclotron PET Cyclotron
PET Cyclotron
 
DesiletSpr2013.ppt
DesiletSpr2013.pptDesiletSpr2013.ppt
DesiletSpr2013.ppt
 
IR Spectroscopy.pdf
IR Spectroscopy.pdfIR Spectroscopy.pdf
IR Spectroscopy.pdf
 
Radiopharmaceuticals
RadiopharmaceuticalsRadiopharmaceuticals
Radiopharmaceuticals
 
I R spectroscopy
I R spectroscopyI R spectroscopy
I R spectroscopy
 
IR spectroscopy
IR spectroscopyIR spectroscopy
IR spectroscopy
 
TUDORTMUND1
TUDORTMUND1TUDORTMUND1
TUDORTMUND1
 
Kinetic growth of binary compounds by reactive sputtering magnetron
Kinetic growth of binary compounds by reactive sputtering magnetronKinetic growth of binary compounds by reactive sputtering magnetron
Kinetic growth of binary compounds by reactive sputtering magnetron
 
LASER,FIBER OPTICS & ULTRASONIC……
LASER,FIBER OPTICS  & ULTRASONIC……LASER,FIBER OPTICS  & ULTRASONIC……
LASER,FIBER OPTICS & ULTRASONIC……
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Ion-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmasIon-acoustic rogue waves in multi-ion plasmas
Ion-acoustic rogue waves in multi-ion plasmas
 
Mri basics
Mri basicsMri basics
Mri basics
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018
 

SNBoseTalk06

  • 1. Amphiphiles: A TaleAmphiphiles: A Tale of Heads and Tailsof Heads and Tails Alokmay Datta Saha Institute of Nuclear Physics
  • 2. Saha Institute of Nuclear Physics, IndiaSaha Institute of Nuclear Physics, India S. Kundu, M. K. Sanyal, S. Hazra Northwestern University, USANorthwestern University, USA P. Dutta J. Kmetko (Cornell University) C.-J. Yu (Pohang Light Source, Korea) A.G. Richter (University of Memphis) Université Paris-Sud, FranceUniversité Paris-Sud, France J. Daillant, D. Luzet, C. Blot Co-workersCo-workers
  • 3. Amphiphiles and Langmuir Monolayers Langmuir Monolayers with Metal Ions The Bi-molecular Layer with Ferric Stearate I shall talk about …I shall talk about …
  • 4. AmphiphilesAmphiphiles (found ~ 2000 B.C.)(found ~ 2000 B.C.)
  • 5. 1. The Whalelephant 2. The Fatty Acid Head Tail Hydrophobic tail Hydrophilic head Simpler Picture Amphiphile – One Half Loves Water, Other Part Does Not Hydrophobic head Hydrophilic tail
  • 6. Langmuir MonolayersLangmuir Monolayers (found in 1910-11)(found in 1910-11)
  • 7. If an amphiphile is dissolved in some liquid which has Surface Tension, Density and Boiling Point much less than Water and a Very Small Amount of this Dilute Solution is Spread on Water Then after the Solvent Spreads Evenly over the Water Surface and Evaporates The Amphiphiles form a Monomolecular Layer at the Air Water Interface with Heads in Water and Tails in Air This is the LANGMUIR MONOLAYER - Perhaps the Most Easily Achievable Two-Dimensional System Head Tail
  • 8. LANGMUIR MONOLAYER PHASES A Langmuir Monolayer can be compressed two-dimensionally by pushing a mechanical barrier across the water surface The compressed monolayer becomes denser and its surface tension (measured generally by Wilhelmy Plate) gradually reduces from that of pure water to that of pure hydrocarbons (oils) This drop in surface tension is called SURFACE PRESSURE and is the measured two-dimensional analogue of pressure π = γwater - γmonolayer When surface pressure is plotted as a function of the area per amphiphile molecule in the monolayer (A), we get a π-A isotherm which is again the two-dimensional analogue of the p-V Isotherm of a three-dimensional system The π-A isotherm shows discontinuities such as abrupt changes in slope (kinks) and straight sections which were thought to be and are now known to be Phase Transitions
  • 9. 20253035404550 0 10 20 30 40 50 S L2 / L2 IsothermforT=10 o C SurfacePressure(mN/m) Area/Molecule Langmuir Monolayer Phases • Pressure-area isotherm From the isotherms the Surface Pressure-Temperature Phase Diagrams are constructed Kaganer, V. M.; Möhwald, H.; Dutta, P. Rev. Mod.Phys. 1999, 71(3), 779
  • 10. How do we know whatHow do we know what is going on?is going on?
  • 11. Diffraction Studies of Langmuir Monolayers Schematic View of Set-up Actual Set-up at NSLS and APS The Different Monolayer Phases have different 2D Lattices These can be studied by Grazing Incidence Diffraction
  • 12. Grazing IncidenceGrazing Incidence DiffractionDiffraction In GID technique, a total external reflection occurs at the interface, α< αc α = incidence angle αc = the critical angle (~ milliradians for X- rays) Field decays to 1/e of its value at top within a depth of l l ≈ λ/[2π (α- αc )1/2 ] At these incident angles (~ milliradians) l is independent of λ and ≈ 25 Å to 100 Å, inversely as electron density of medium Condition for GID: Incident X-rays are confined to ~ 100Å below interfacial plane, whereas they travel in the plane (x and y directions) with a wavelength close to the free-space wavelength x y z q
  • 13. The Langmuir Monolayer has randomly oriented domains in the horizontal plane hence x and y directions are not resolved Kxy = (kf xy 2 + ki xy 2 - 2 kf xyki xycos2θ)½ = 2π/λ(cos2 αi + cos2 αf - 2 cosαi cosαf cos2θ)½ Kz = 2π/λ(sinαf + sinαi ) For Nearest Neighbour (NN) Tilts Tilt Angle = τ= tan-1 (Kdz/[Kdxy 2 – (Knxy/2) 2 ] ½ ) For Next Nearest Neighbour Tilts τ= tan-1 (Knz /Knxy) GID of Langmuir Monolayers is Simpler In-plane peaks Bragg rods
  • 14. Langmuir Monolayers in Reciprocal Space
  • 15. Very Briefly on Synchrotron RadiationVery Briefly on Synchrotron Radiation Wherever the path of the electrons bends, the acceleration causes them to produce electromagnetic radiation In the lab rest frame, this produces a horizontal fan of x-rays that is highly collimated (to ΔΘ≈ 1/γ) in the vertical direction and extends to high energies Synchrotron x-rays are: 1. Highly Collimated hence Very Bright 2. Linearly Polarized in the Horizontal Plane 3. Energy Tunable Electrons moving near speed of light
  • 16. X-ray Reflectivity Rotating-Anode Generator, Cu kα1 , λ=1.540562Å •Angle of Incidence used: from 0° - 3.5° •Scan-step: 2 mdeg for films > 800 Å, 5 mdeg for films ≤ 800 Å •3.8 kW of X-ray Power used Grazing Incidence X-ray Diffractometer, FR591, Enraf-Nonius
  • 17. X-ray Reflectivity: Principles •In x-ray region, refractive index n < 1, i.e., phase velocity of x-rays in material > phase velocity in vacuum. total external reflection (specular reflection) Incident and scattered wave-vectors in same plane normal to surface Incident angle (α) = scattered angle (β) δ∼10-6 , ρ → electron density, r0 → classical electron radius ~ 2.8×10-5 Å •n = (1-δ) =1-(ρr0 λ2 /2π ) •qz = normal momentum transfer = kf - ki= 4π/λ(sinα) ∀αc = critical angle for sample film = (2 δ)½ z x At α > αc, x-rays penetrate into sample, are scattered for each change in ρ, and these scattered x-rays interfere  interference (Kiessig) fringes in reflectivity profile with periodicity 2π/d, d = thickness of a layer with a constant ρ, while amplitude of fringes ∝ change in ρ kt ki kf α α β n = 1-δ n=1
  • 18. ∆qz = 2π/d d Air Film Substrate Interference (Kiessig) fringes with periodicity 2Interference (Kiessig) fringes with periodicity 2ππ/d, d = thickness of/d, d = thickness of a layer with a constanta layer with a constant ρρ, while amplitude of fringes, while amplitude of fringes ∝∝ change inchange in ρρ
  • 19. Mirror Laser Diode Focusing Lens Piezo Scanner Sample Holder Integrator Divider / Multiplier Differential amplifier 4-quadrant PSPD X-Y Translator X Y Tip SampleCantilever Atomic Force MicroscopyAtomic Force Microscopy Force attractive force distance (tip-to-sample ) repulsive force non-contact contact Intermittent- contact Multimode Nanoscope IV (Digital Instruments) Intermittent-Contact (tapping) mode Etched Si tip Phosphorus-doped Si cantilever Force constant 40N/m Characteristic frequency 344kHz
  • 20. Langmuir MonolayersLangmuir Monolayers + Metal Ions+ Metal Ions (found in 1994)(found in 1994)
  • 21. From GID studies this is phase diagram of Fatty-acid Langmuir Monolayers
  • 22. 1.4 1.5 1.6 1.7 0.00 0.04 0.09 0.14 0.18 pH ~ 12 15 o C, π = 30dynes/cm pH ~ 11.5 pH ~ 11 pH ~ 10.5 NormalizedIntensity Qxy (Å -1 ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 8 10 12 14 16 18 20 22 24 Open Symbols - Ref 7 Solid Symbols - Our Work π = 30 dynes/cm Rotator-II Rotator-I S T( o C) pH Changing the Subphase (Water) pH System: Heneicosanoic Acid on water, pH changed by NaOH, no Other Metal Ions High pH behaves like High Temperature Datta, A.; Kmetko, J.; Richter, A. G.; Yu, C. J.; Dutta, P. ; Chung, K. S.; Bai, J. M. Langmuir 2000, 16, 1239.
  • 23. Putting Different Metal Ions in Water: Cadmium Ions Organic Monolayer Peaks Superlattice peaks A superlattice of metal ions(?) is formed under the organic layer Datta, A.; Kmetko, J.; Yu, C. J.; Richter, A. G.; Chung, K. S.; Bai, J. M.; Dutta, P. J. Phys. Chem. B 2000, 104, 5797.
  • 24. 0.0 0.1 0.3 pH ~ 8.5 pH ~ 9.3 pH ~ 6.2 Qxy NormalizedIntensity(arb.u.) 0.0 0.2 0.4 1.4 1.5 1.6 1.7 0.0 0.7 1.4 Cadmium Ions: the pH ‘Window’ Superlattice and asymmetrically (chiral) distorted organic lattice are formed within a range of pH
  • 25. Putting Different Metal Ions in Water: Lead Ions Superlattice and Large chiral distortion of organic lattice
  • 26. Are there Lead Ions in the superlattice? GID of monolayer just above and below L3 absorption edge of lead shows no change in either organic or superlattice peaks! Lead forms less than 20% (atom%) of the superlattice Kmetko, J.; Datta, A.; Evmenenko,G.; Durbin, M. K.; Richter, A. G.; Dutta, P. Langmuir 2001, 17, 4697.
  • 27. Putting Different Metal Ions in Water Do not form Superlattices Form Superlattices but no chiral distortion of organic lattice
  • 28. Putting Different Metal Ions in Water: Summary Kmetko, J.; Datta, A.; Evmenenko, G.; Dutta, P. J. Phys. Chem. B 2001, 105, 10818.
  • 29. A Closer Look at Pb Ions with EXAFS Pb with the Head Pb-OH ‘trimer’ The Lattice Maxim I. Boyanov, Jan Kmetko, Tomohiro Shibata, Alokmay Datta, Pulak Dutta, and Bruce A. Bunker, J. Phys. Chem. B 2003, 107, 9780.
  • 30. Putting Different Metal Ions: Conclusions Metal ions can do three things to a fatty acid Langmuir Monolayer. They can: 1. Take the monolayer to a high pressure phase at low pressure i.e., an Achiral structure. Cu, Ni, Ca, Ba, Zn 2. Take the monolayer to a high pressure phase and create a superlattice underneath i.e., Achiral + Superlattice. Mg, Mn 3. Take the monolayer to a new chiral phase and create a superlattice underneath i.e., Chiral + Superlattice. Cd, Pb
  • 31. •Pinhole defects are observed for ‘normal pH’ LB films and increases from substrate surface upto top film surface •Defects (like ridges) are only within the upper bilayer for ‘high pH’ LB films 20×20 μm2 10×10 μm2 ‘Normal pH’ and ‘High pH’ Langmuir-Blodgett multilayer films Surface pressure = 30 mN/m, Temperature ≅ 13o C Ion (Cd+2 ) concentration ≅ 10-4 M - 10-5 M SubphasepH≅6.5SubphasepH≅9.0–9.5
  • 32. Results from x-ray reflectivity analysis 0 2 4 6 8 10 12 10 -8 10 -6 1x10 -4 10 -2 10 0 0 5 10 15 20 25 0 500 1000 1500 Reflectivity qz (nm -1 ) ρ(e/nm 3 ) z (nm) Normal pH LB films High pH LB films 18.6 19.2 19.8 0 500 1000 1500 0 2 4 6 10 -7 1x10 -5 10 -3 10 -1 10 1 ρ(e/nm 3 ) z (nm) Normal pH High pH Reflectivity qz (nm −1 ) • Reflectivity increases for ‘high pH’ film twice than that of ‘normal pH’ LB film • From EDP we get one more cadmium ion in the headgroup of ‘high pH’ LB film • Enhancement in the reflectivity by incorporating one extra cadmium ion in the headgroup
  • 33. Conclusions Normal pH LB films High pH LB films • Manipulating Headgroups in Langmuir-Blodgett Films through Subphase pH Variation S. Kundu, A. Datta and S. Hazra, Chem. Phys. Lett. 405, 282 (2005)
  • 34. Bi-molecular LayerBi-molecular Layer (found in 2004-05)(found in 2004-05)
  • 35. Monolayer of a Preformed Amphiphilic Salt: Ferric Stearate Isotherm for stearic acid monolayer on water Isotherm for ferric stearate monolayer on water Datta, A.; Sanyal, M. K.; Dhanabalan, A.; Major, S. S. J. Phys. Chem. B 1997, 101, 9280.
  • 36. Isotherm suggests that ferric stearate molecules have configurations of Y and inverted Y with one-and- half tails per head This, rather than this Ferric Stearate Monolayer Configuration
  • 37. Bimolecular layer on water: Dramatic reduction in surface tensionBimolecular layer on water: Dramatic reduction in surface tension µm µm On Water Surface On Silicon Surface Out-of-plane x-ray scattering In-planex-rayscattering Ferric stearate on water water Out-of-plane x-ray scattering Atomic Force Microscopy Images Electron Density Profile Low coverage High coverage
  • 38. Bi-molecular layer on water surface (Grazing Incidence Diffraction) How does the structure change with surface pressure ? 1.38 1.44 1.50 1.56 1.62 1.68 0.0 0.2 0.4 0.6 0.8 1.0 10 mN/m q|| (Å -1 ) 0.0 0.2 0.4 0.6 0.8 1.0 15 mN/m Intensity 0.0 0.2 0.4 0.6 0.8 1.0 1 mN/m Surface Pressure (mN/m) Lattice type Lattice Parameters of In-Plane Primitive Unit cell a (Å) b (Å) Area/tail (Å2 ) Domain size (Å) 1 DH 4.73 8.72 20.60 107 (s) &150 (w) 10 DH 4.72 8.68 20.48 75 (s) & 60 (w) 15 DH 4.73 8.68 20.55 72 (s) & 71 (w)
  • 39. Only one hydrocarbon tail length (22Å) is required to fit the Bragg rod profile bi-molecular layer is formed on water surface from very low surface pressure 0.00 0.05 0.10 0.15 1x10 -10 1x10 -9 1x10 -8 1x10 -7 0 20 40 60 80 0.0 0.2 0.4 0.6 (a) AbsoluteIntensity θsc (radians) ρ(eÅ -3 ) z (Å) 0.15 0.30 0.45 0.60 1x10 -12 2x10 -12 3x10 -12 4x10 -12 5x10 -12 6x10 -12 (b) Intensity qz (Å -1 ) Bragg rod Rod at ψ = 0.2º
  • 40. Clip of trough Substrate holder substrate MILS method Clip of trough Substrate Gold particles LB method Deposition of layers horizontally from very low (1mN/m) to very high (55mN/m) surface pressure :
  • 41. 0.0 0.3 0.6 0.9 1x10 -27 1x10 -23 1x10 -19 1x10 -15 1x10 -11 1x10 -7 1x10 -3 1x10 1 55 mN/m 1 mN/m (a)Reflectivity qz (Å -1 ) 0 20 40 60 80 100 120 0.0 0.5 1.0 1.5 2.0 2.5 55 mN/m 1 mN/m (b) ρ(eÅ -3 ) z (Å) 0 10 20 30 40 50 0.6 0.8 1.0 f1 π (mN/m) 0.2 0.4 0.6 0.8 1.0 (d) (c) f2 Different growth behavior of upper and lower monomolecular layers While the lower layer behaves solid-like the number of molecules in the upper layer increases continuously with surface pressure
  • 42. ConclusionsConclusions PreformedPreformed fatty acid salts behave like a membranefatty acid salts behave like a membrane on water surfaceon water surface • They form a bi-molecular layer on water surfaceThey form a bi-molecular layer on water surface • They reduce surface tension of water fromThey reduce surface tension of water from 72mN/m to 1mN/m72mN/m to 1mN/m • The growth behaviour of each layer is differentThe growth behaviour of each layer is different A. Datta, S. Kundu, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot and B. Struth Phys. Rev. E 71, 041604 (2005). Selected for ESRF Highlights 2005 S. Kundu, A. Datta, M. K. Sanyal, J. Daillant, D. Luzet, C. Blot and B. Struth, submitted