SlideShare a Scribd company logo
1 of 15
Download to read offline
Stability Analysis of Liquid Film in
an Electric Field
Yixuan Jia
Nov. 30th 2016
Problem Definition
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
Governing equations:
a) Electric potential
r2
' = 0
r2
¯' = 0
'(x) = ¯'(x) for x 2 S
'(x) ! 'e(x) = E0 · x as | x |! 1
@tq + n ·
⇥
[ E]
⇤
+ rs · (qu) = 0
BCs:
q(x) = n ·
⇥
[✏E]
⇤
= n · (¯✏¯E ✏E), E = r'
⇥
[ E]
⇤
= ¯ ¯E E, rs ⌘ (I nn) · r
where
r · u = 0 , µr2
u + rpH
= 0
r · ¯u = 0 , ¯µr2
¯u + r¯pH
= 0
b) Stokes flow
u = ¯u for x 2 S
u ! 0 as | x |! 1
⇥
[fE
]
⇤
+
⇥
[fH
]
⇤
= (rs · n)n for x 2 S
BCs:
⇥
[fE
]
⇤
= n ·
⇥
[✏(EE
1
2
E2
I)]
⇤
⇥
[fH
]
⇤
= n ·
⇥
[ pH
I + µ(ru + ruT
)]
⇤
where
Non-dimensionalization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
a) Characteristic scale:
• length: h
• time: ⌧MW = ¯✏+2✏
¯+2
• pressure: ✏E2
0
• velocity: h
⌧MW
• electric potential: E0h
b) Dimensionless numbers:
• Material properties
Q =
¯✏
✏
, R =
¯
, =
¯µ
µ
• Electric capillary number CaE, Mason number Ma:
CaE =
h✏E2
0
, Ma =
2µ
✏⌧MW E2
0
• Electric Reynolds number ReE
ReE =
1
Ma
2(1 + 2R)
R(Q + 2)
Non-dimensionalization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
• Surface charge density BCs
@t
⇥
n · (Q¯E E)
⇤
+
2
MaReE
n · (
1
R
¯E E)
+ rs ·
⇥
n · (Q¯E E)u
⇤
= 0
• Dynamic BCs
n ·
⇥
Q(¯E¯E
1
2
¯E2
I) (EE
1
2
E2
I)
⇤
+ n ·
⇥
¯pH
I
+
Ma
2
(r¯u + r¯uT
) + pH
I
Ma
2
(ru + ruT
)
⇤
=
1
CaE
(rs · n)n
c) Dimensionless governing equations:
• Electric potential
r2
' = 0
r2
¯' = 0
• Stokes flow
r · u = 0
r2
u +
2
Ma
rpH
= 0
r · ¯u = 0
r2
¯u +
2
Ma
r¯pH
= 0
Base Flow
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
1. Velocity
¯U = U = 0
2. Hydrodynamic pressure
¯PH
+ PH
=
1
2
(QR2
1)
3. Electric potential
=
8
><
>:
z + (1 R) z > 1
Rz 1 < z < 1
z (1 R) z < 1
Electric field
E = (0 0 1), ¯E = (0 0 R)
Surface charge density
Q1 = 1 RQ, Q2 = 1 + RQ
n1 = (0 0 1)
n2 = (0 0 1)
Perturbation Linearization
h
h
✏, , µ
✏, , µ
¯✏, ¯, ¯µ
S1, q1
S2, q2
fluid #1
fluid #1
', E, u, pH
fluid
#2
', E, u, pH
¯', ¯E, ¯u, ¯pH
E0 = E0 · ˆz
• Hydrodynamic pressure
pH
= PH
+ p0H
, ¯pH
= ¯PH
+ ¯p0H
• Electric potential
' = + '0
(x), ¯' = ¯ + ¯'0
(x)
• Electric field
E = (
@'
@x
@'
@y
1
@'
@z
), ¯E = (
@ ¯'
@x
@ ¯'
@y
R
@ ¯'
@z
)
Define the perturbation ⇣1 atz = 1 and ⇣2 at z = 1.
• Surface normal vector
n1 = (
@⇣1
@x
@⇣1
@y
1)
n2 = (
@⇣2
@x
@⇣2
@y
1)
• Velocity
u = (v0
x v0
y v0
z)
¯u = (¯v0
x ¯v0
y ¯v0
z)
n1
n2
⇣2
⇣1
Perturbation Linearization
• Surface charge density BCs
@t( Q
@ ¯'0
@z
+
@'0
@z
) +
2
MaReE
(
1
R
@ ¯'0
@z
+
@'0
@z
)+
(QR 1)(
@v0
x
@x
+
@v0
y
@y
) = 0, at z = ±1
• Dynamic BCs
z = 1
(
QR@ ¯'0
@x + @'0
@x + Ma
2 (
@¯v0
z
@x +
@¯v0
x
@z ) Ma
2 (
@v0
z
@x +
@v0
x
@z ) + (QR2
1)@⇣1
@x = 0
QR@ ¯'0
@z + @'0
@z ¯p0H
+ p0H
+ Ma
@¯v0
z
@z Ma
@v0
z
@z + 1
CaE
(@2
⇣1
@x2 + @2
⇣1
@y2 ) = 0
z = 1
(
QR@ ¯'0
@x + @'0
@x + Ma
2 (
@¯v0
z
@x +
@¯v0
x
@z ) Ma
2 (
@v0
z
@x +
@v0
x
@z ) + (QR2
1)@⇣2
@x = 0
QR@ ¯'0
@z + @'0
@z ¯p0H
+ p0H
+ Ma
@¯v0
z
@z Ma
@v0
z
@z
1
CaE
(@2
⇣2
@x2 + @2
⇣2
@y2 ) = 0
• Kinematic BCs
@⇣1
@t
v0
z = 0, at z = 1,
@⇣2
@t
v0
z = 0, at z = 1
• No jump condition at the interfaces – electric potential
¯'0
'0
+ (1 R)⇣1 = 0, at z = 1, ¯'0
'0
(1 R)⇣2 = 0, at z = 1
• No jump condition at the interfaces – velocity
¯u0
= u0
, at z = ±1
Normal Mode Analysis
'0
= ˆ'(z)eikx+st
, ¯'0
= ˆ¯'(z)eikx+st
u0
=
⇥
ˆvx(z) ˆvy(z) ˆvz(z)
⇤
eikx+st
, ¯u0
=
⇥
ˆ¯vx(z) ˆ¯vy(z) ˆ¯vz(z)
⇤
eikx+st
p0H
= ˆpH
(z)eikx+st
, ¯p0H
= ˆ¯pH
(z)eikx+st
⇣1 = ˆ⇣1eikx+st
, ⇣2 = ˆ⇣2eikx+st
Electric potential profile
ˆ' =
8
><
>:
A1e kz
z > 1
A2e kz
+ B2ekz
1 < z < 1
B3ekz
z < 1
Velocity profile
ˆvz =
8
><
>:
(C1 + D1z)e kz
z > 1
(C2 + D2z)e kz
+ (E2 + F2z)ekz
1 < z < 1
(E3 + F3z)ekz
z < 1
Hydraulic pressure profile
ˆpH
=
8
><
>:
MaD1e kz
z > 1
MaD2e kz
+ MaF2ekz
1 < z < 1
MaF3ekz
z < 1
k2
ˆ' +
d2
ˆ'
dz2
= 0
d4
ˆvz
dz4
2k2 d2
ˆvz
dz2
+ k4
ˆvz = 0
Results — Growth Rate
k
0 1 2 3 4 5 6
sr
0
500
1000
1500
2000
2500
3000
3500
4000
Biggest growth rate sr
(k)
system 1a
system 1b
system 1c
system 2
Results — Streamlines
x
-25 -20 -15 -10 -5 0 5 10 15 20 25
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 1a and k = 0.3
Results — Streamlines
x
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 1a and k = 3
Results — Streamlines
x
-25 -20 -15 -10 -5 0 5 10 15 20 25
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 2 and k = 0.3
Results — Streamlines
x
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
z
-6
-4
-2
0
2
4
6
Streamlines z = [-5,5], System 2 and k = 3
Results — Hydraulic Pressure Contour
Thanks!

More Related Content

What's hot

Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdGYi-Hua Lai
 
Precessing magnetic impurity on sc
Precessing magnetic impurity on scPrecessing magnetic impurity on sc
Precessing magnetic impurity on scYi-Hua Lai
 
LES from first principles
LES from first principlesLES from first principles
LES from first principlesMichael Munroe
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid elementMohamed Yaser
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Automatic Calibration 3 D
Automatic Calibration 3 DAutomatic Calibration 3 D
Automatic Calibration 3 Drajsodhi
 
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...AlbertoBlancoGarca1
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEMS VIA SLIDING MODE CONTROL
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC  LIU SYSTEMS VIA SLIDING MODE CONTROLHYBRID SYNCHRONIZATION OF HYPERCHAOTIC  LIU SYSTEMS VIA SLIDING MODE CONTROL
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEMS VIA SLIDING MODE CONTROLijccmsjournal
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 

What's hot (18)

Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdG
 
Precessing magnetic impurity on sc
Precessing magnetic impurity on scPrecessing magnetic impurity on sc
Precessing magnetic impurity on sc
 
LES from first principles
LES from first principlesLES from first principles
LES from first principles
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid element
 
2 estimators
2 estimators2 estimators
2 estimators
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Ch03 9
Ch03 9Ch03 9
Ch03 9
 
Automatic Calibration 3 D
Automatic Calibration 3 DAutomatic Calibration 3 D
Automatic Calibration 3 D
 
Ladder operator
Ladder operatorLadder operator
Ladder operator
 
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...
Estudio del efecto de la inversion temportal sobre el campo magnetico - Alber...
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
Waveguides
WaveguidesWaveguides
Waveguides
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEMS VIA SLIDING MODE CONTROL
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC  LIU SYSTEMS VIA SLIDING MODE CONTROLHYBRID SYNCHRONIZATION OF HYPERCHAOTIC  LIU SYSTEMS VIA SLIDING MODE CONTROL
HYBRID SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEMS VIA SLIDING MODE CONTROL
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 

Viewers also liked

Learn How to Solve Math Problem
Learn How to Solve Math ProblemLearn How to Solve Math Problem
Learn How to Solve Math ProblemRose Smith
 
Ebook du học Phần Lan
Ebook du học Phần LanEbook du học Phần Lan
Ebook du học Phần LanDu học INEC
 
TYPES AND INFORMATION STONES
TYPES AND INFORMATION STONESTYPES AND INFORMATION STONES
TYPES AND INFORMATION STONESprashant chelani
 
essay2_teachingforlearning6
essay2_teachingforlearning6essay2_teachingforlearning6
essay2_teachingforlearning6VO Huyen
 
DieFledermaus.10212316.PRINT
DieFledermaus.10212316.PRINTDieFledermaus.10212316.PRINT
DieFledermaus.10212316.PRINTZac Barger
 
Bản tin số 2 - Dự án DRM
Bản tin số 2 - Dự án DRMBản tin số 2 - Dự án DRM
Bản tin số 2 - Dự án DRMThành Nguyễn
 
Curriculum Vitae
Curriculum VitaeCurriculum Vitae
Curriculum VitaePREET KUMAR
 
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...Quang Huy Vo
 

Viewers also liked (10)

Learn How to Solve Math Problem
Learn How to Solve Math ProblemLearn How to Solve Math Problem
Learn How to Solve Math Problem
 
11
1111
11
 
Ebook du học Phần Lan
Ebook du học Phần LanEbook du học Phần Lan
Ebook du học Phần Lan
 
TYPES AND INFORMATION STONES
TYPES AND INFORMATION STONESTYPES AND INFORMATION STONES
TYPES AND INFORMATION STONES
 
Listo
ListoListo
Listo
 
essay2_teachingforlearning6
essay2_teachingforlearning6essay2_teachingforlearning6
essay2_teachingforlearning6
 
DieFledermaus.10212316.PRINT
DieFledermaus.10212316.PRINTDieFledermaus.10212316.PRINT
DieFledermaus.10212316.PRINT
 
Bản tin số 2 - Dự án DRM
Bản tin số 2 - Dự án DRMBản tin số 2 - Dự án DRM
Bản tin số 2 - Dự án DRM
 
Curriculum Vitae
Curriculum VitaeCurriculum Vitae
Curriculum Vitae
 
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...
Young marketers elite 4 assignment 1.2 quang huy, lan chi, minh trang, quỳnh...
 

Similar to Stability Analysis of Liquid Films in Electric Fields

Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionLisa Erkens
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAlex (Oleksiy) Varfolomiyev
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC BlocksHoopeer Hoopeer
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Abhishek Das
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Qiang LI
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational forceeshwar360
 
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjkdyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjkBDffrnt
 
QTPIE and water (Part 2)
QTPIE and water (Part 2)QTPIE and water (Part 2)
QTPIE and water (Part 2)Jiahao Chen
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte VäxjöRichard Gill
 

Similar to Stability Analysis of Liquid Films in Electric Fields (20)

Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansion
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC Blocks
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Pimc 20131206
Pimc 20131206Pimc 20131206
Pimc 20131206
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational force
 
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjkdyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
dyal TikZ.pdfhklkkjhjklmmlkjhgfdsqsdfghjk
 
QTPIE and water (Part 2)
QTPIE and water (Part 2)QTPIE and water (Part 2)
QTPIE and water (Part 2)
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Hw6sols
Hw6solsHw6sols
Hw6sols
 
Hw6sols
Hw6solsHw6sols
Hw6sols
 
Geurdes Monte Växjö
Geurdes Monte VäxjöGeurdes Monte Växjö
Geurdes Monte Växjö
 
Markov chain
Markov chainMarkov chain
Markov chain
 

Stability Analysis of Liquid Films in Electric Fields

  • 1. Stability Analysis of Liquid Film in an Electric Field Yixuan Jia Nov. 30th 2016
  • 2. Problem Definition h h ✏, , µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz Governing equations: a) Electric potential r2 ' = 0 r2 ¯' = 0 '(x) = ¯'(x) for x 2 S '(x) ! 'e(x) = E0 · x as | x |! 1 @tq + n · ⇥ [ E] ⇤ + rs · (qu) = 0 BCs: q(x) = n · ⇥ [✏E] ⇤ = n · (¯✏¯E ✏E), E = r' ⇥ [ E] ⇤ = ¯ ¯E E, rs ⌘ (I nn) · r where r · u = 0 , µr2 u + rpH = 0 r · ¯u = 0 , ¯µr2 ¯u + r¯pH = 0 b) Stokes flow u = ¯u for x 2 S u ! 0 as | x |! 1 ⇥ [fE ] ⇤ + ⇥ [fH ] ⇤ = (rs · n)n for x 2 S BCs: ⇥ [fE ] ⇤ = n · ⇥ [✏(EE 1 2 E2 I)] ⇤ ⇥ [fH ] ⇤ = n · ⇥ [ pH I + µ(ru + ruT )] ⇤ where
  • 3. Non-dimensionalization h h ✏, , µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz a) Characteristic scale: • length: h • time: ⌧MW = ¯✏+2✏ ¯+2 • pressure: ✏E2 0 • velocity: h ⌧MW • electric potential: E0h b) Dimensionless numbers: • Material properties Q = ¯✏ ✏ , R = ¯ , = ¯µ µ • Electric capillary number CaE, Mason number Ma: CaE = h✏E2 0 , Ma = 2µ ✏⌧MW E2 0 • Electric Reynolds number ReE ReE = 1 Ma 2(1 + 2R) R(Q + 2)
  • 4. Non-dimensionalization h h ✏, , µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz • Surface charge density BCs @t ⇥ n · (Q¯E E) ⇤ + 2 MaReE n · ( 1 R ¯E E) + rs · ⇥ n · (Q¯E E)u ⇤ = 0 • Dynamic BCs n · ⇥ Q(¯E¯E 1 2 ¯E2 I) (EE 1 2 E2 I) ⇤ + n · ⇥ ¯pH I + Ma 2 (r¯u + r¯uT ) + pH I Ma 2 (ru + ruT ) ⇤ = 1 CaE (rs · n)n c) Dimensionless governing equations: • Electric potential r2 ' = 0 r2 ¯' = 0 • Stokes flow r · u = 0 r2 u + 2 Ma rpH = 0 r · ¯u = 0 r2 ¯u + 2 Ma r¯pH = 0
  • 5. Base Flow h h ✏, , µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz 1. Velocity ¯U = U = 0 2. Hydrodynamic pressure ¯PH + PH = 1 2 (QR2 1) 3. Electric potential = 8 >< >: z + (1 R) z > 1 Rz 1 < z < 1 z (1 R) z < 1 Electric field E = (0 0 1), ¯E = (0 0 R) Surface charge density Q1 = 1 RQ, Q2 = 1 + RQ n1 = (0 0 1) n2 = (0 0 1)
  • 6. Perturbation Linearization h h ✏, , µ ✏, , µ ¯✏, ¯, ¯µ S1, q1 S2, q2 fluid #1 fluid #1 ', E, u, pH fluid #2 ', E, u, pH ¯', ¯E, ¯u, ¯pH E0 = E0 · ˆz • Hydrodynamic pressure pH = PH + p0H , ¯pH = ¯PH + ¯p0H • Electric potential ' = + '0 (x), ¯' = ¯ + ¯'0 (x) • Electric field E = ( @' @x @' @y 1 @' @z ), ¯E = ( @ ¯' @x @ ¯' @y R @ ¯' @z ) Define the perturbation ⇣1 atz = 1 and ⇣2 at z = 1. • Surface normal vector n1 = ( @⇣1 @x @⇣1 @y 1) n2 = ( @⇣2 @x @⇣2 @y 1) • Velocity u = (v0 x v0 y v0 z) ¯u = (¯v0 x ¯v0 y ¯v0 z) n1 n2 ⇣2 ⇣1
  • 7. Perturbation Linearization • Surface charge density BCs @t( Q @ ¯'0 @z + @'0 @z ) + 2 MaReE ( 1 R @ ¯'0 @z + @'0 @z )+ (QR 1)( @v0 x @x + @v0 y @y ) = 0, at z = ±1 • Dynamic BCs z = 1 ( QR@ ¯'0 @x + @'0 @x + Ma 2 ( @¯v0 z @x + @¯v0 x @z ) Ma 2 ( @v0 z @x + @v0 x @z ) + (QR2 1)@⇣1 @x = 0 QR@ ¯'0 @z + @'0 @z ¯p0H + p0H + Ma @¯v0 z @z Ma @v0 z @z + 1 CaE (@2 ⇣1 @x2 + @2 ⇣1 @y2 ) = 0 z = 1 ( QR@ ¯'0 @x + @'0 @x + Ma 2 ( @¯v0 z @x + @¯v0 x @z ) Ma 2 ( @v0 z @x + @v0 x @z ) + (QR2 1)@⇣2 @x = 0 QR@ ¯'0 @z + @'0 @z ¯p0H + p0H + Ma @¯v0 z @z Ma @v0 z @z 1 CaE (@2 ⇣2 @x2 + @2 ⇣2 @y2 ) = 0 • Kinematic BCs @⇣1 @t v0 z = 0, at z = 1, @⇣2 @t v0 z = 0, at z = 1 • No jump condition at the interfaces – electric potential ¯'0 '0 + (1 R)⇣1 = 0, at z = 1, ¯'0 '0 (1 R)⇣2 = 0, at z = 1 • No jump condition at the interfaces – velocity ¯u0 = u0 , at z = ±1
  • 8. Normal Mode Analysis '0 = ˆ'(z)eikx+st , ¯'0 = ˆ¯'(z)eikx+st u0 = ⇥ ˆvx(z) ˆvy(z) ˆvz(z) ⇤ eikx+st , ¯u0 = ⇥ ˆ¯vx(z) ˆ¯vy(z) ˆ¯vz(z) ⇤ eikx+st p0H = ˆpH (z)eikx+st , ¯p0H = ˆ¯pH (z)eikx+st ⇣1 = ˆ⇣1eikx+st , ⇣2 = ˆ⇣2eikx+st Electric potential profile ˆ' = 8 >< >: A1e kz z > 1 A2e kz + B2ekz 1 < z < 1 B3ekz z < 1 Velocity profile ˆvz = 8 >< >: (C1 + D1z)e kz z > 1 (C2 + D2z)e kz + (E2 + F2z)ekz 1 < z < 1 (E3 + F3z)ekz z < 1 Hydraulic pressure profile ˆpH = 8 >< >: MaD1e kz z > 1 MaD2e kz + MaF2ekz 1 < z < 1 MaF3ekz z < 1 k2 ˆ' + d2 ˆ' dz2 = 0 d4 ˆvz dz4 2k2 d2 ˆvz dz2 + k4 ˆvz = 0
  • 9. Results — Growth Rate k 0 1 2 3 4 5 6 sr 0 500 1000 1500 2000 2500 3000 3500 4000 Biggest growth rate sr (k) system 1a system 1b system 1c system 2
  • 10. Results — Streamlines x -25 -20 -15 -10 -5 0 5 10 15 20 25 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 1a and k = 0.3
  • 11. Results — Streamlines x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 1a and k = 3
  • 12. Results — Streamlines x -25 -20 -15 -10 -5 0 5 10 15 20 25 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 2 and k = 0.3
  • 13. Results — Streamlines x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 z -6 -4 -2 0 2 4 6 Streamlines z = [-5,5], System 2 and k = 3
  • 14. Results — Hydraulic Pressure Contour