SlideShare a Scribd company logo
1 of 66
ENGINEERING
MATHEMATICS II
MA-2001
Dr. Umber Sheikh
Course Outlines
Week Activity
1 Basic Concepts and Ideas, Differential Equations and their
Classifications
2 Formation of Differential Equations, Initial and Boundary
Conditions, Geometrical Meaning of yโ€™=f(x,y), Separable
Differential Equations
3 Homogeneous Equations, Differential Equations reducible
to Homogeneous Form, Exact Equations, Integrating
Factors
4 Linear Equations, Bernoulli Equations, Orthogonal
Trajectories of Curves, Homogeneous Linear Equations of
Second Order, Differential Operators
5 Euler-Cauchy Equation, Nonhomogeneous Linear
Equations, Reduction of Order, Existance and Uniqueness
Theory,Wronskian
6 Variation of Parameters
7 Higher Order Differential Equations, Higher Order
Nonhomogeneous Equations, Introduction to Vectors,
Matrices, Eigenvalues
8 Homogeneous Systems with Constant Coefficients, Phase
Plane, Critical Points, Criteria for Critical Points
9 Stability, Nonhomogeneous Linear Systems, Power Series
Method,Theory of Power Series Method, Legendre
Equations
10 Legendre Polynomials, Frobenius Method,
11 Laplace Transforms, Properties of Laplace Transforms,
Table of Some Laplace Transforms, Inverse Transform,
Linearity, Shifting
12 Transforms of Derivative and Integral, Differential
Equations Solution of InitialValue Problems
Basic Concepts
Equation: Equations describe the relations between the
dependent and independent variables. An equal sign "=" is
required in every equation.
Differential Equations: Equations that involve dependent
variables and their derivatives with respect to the independent
variables are called differential equations.
Example: The following are differential equations involving the
unknown function y.
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 2 = 0,
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2 +
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘’๐‘ฅ,
๐œ•2๐‘ฆ
๐œ•๐‘ฅ2
=
๐œ•๐‘ฆ
๐œ•๐‘ก
.
Some Other Examples:
Newtonโ€™s Second Law of Motion
Maxwell Equations
Kirchhoffโ€™s Laws
Heat Equation
Wave Equation
Ordinary Differential Equation: Differential equations that
involve only one independent variable are called ordinary
differential equations.
Partial Differential Equation: Differential equations that
involve two or more independent variables are called partial
differential equations.
Examples: Equations 1 and 2 are examples of ordinary
differential equations, since the unknown function y depends
solely on the variable
x. Equation 3 is a partial differential equation, since y depends
on both the independent variables t and x.
Order: The order of a differential equation is the highest
derivative that appears in the differential equation.
Degree: The degree of a differential equation is the power of
the highest derivative term.
Linear Equations: A differential equation is called linear if
there are no multiplications among dependent variables and
their derivatives. In other words, all coefficients are functions
of independent variables.
Non-linear: Differential equations that do not satisfy the
definition of linear are non-linear.
Equation Indepen-dent
Variable
Depen-dent
Variable
Order Degree
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)2+2 = 0
๐‘ฅ ๐‘ฆ 1 2
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
+
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘’๐‘ฅ
๐‘ฅ ๐‘ฆ 2 1
๐‘ง(๐‘–๐‘ฃ) + ๐‘ง" = โˆ’y ๐‘ฆ ๐‘ง 4 1
๐‘ฆโ€ฒ
+ ๐‘Ž๐‘ฆ = ๐‘๐‘ก ๐‘ก ๐‘ฆ 1 1
๐‘“" + ๐‘“โ€ฒ + ๐‘”(๐‘ก)๐‘“ = โ„Ž(๐‘ก) ๐‘ก ๐‘“ 2 1
Linear Homogeneous: A differential equation is homogeneous if
every single term contains the dependent variables or their
derivatives.
๐‘Ž๐‘› ๐‘ก ๐‘ฆ(๐‘›)
๐‘ก + ๐‘Ž๐‘›โˆ’1 ๐‘ก ๐‘ฆ(๐‘›โˆ’1)
๐‘ก + โ‹ฏ + ๐‘Ž1 ๐‘ก ๐‘ฆโ€ฒ ๐‘ก + ๐‘Ž0 ๐‘ก ๐‘ฆ(๐‘ก)
= 0.
Linear Non-homogeneous: Differential equations which do not
satisfy the definition of homogeneous are considered to be non-
homogeneous.
๐‘Ž๐‘› ๐‘ก ๐‘ฆ(๐‘›) ๐‘ก + ๐‘Ž๐‘›โˆ’1 ๐‘ก ๐‘ฆ(๐‘›โˆ’1) ๐‘ก + โ‹ฏ + ๐‘Ž1 ๐‘ก ๐‘ฆโ€ฒ ๐‘ก + ๐‘Ž0 ๐‘ก ๐‘ฆ(๐‘ก)
= ๐‘”(๐‘ก).
Solutions
General Solution: Solutions obtained from integrating the
differential equations are called general solutions. The general
solution of a order ordinary differential equation contains
arbitrary constants resulting from integrating times.
Particular Solution: Particular solutions are the solutions
obtained by assigning specific values to the arbitrary constants
in the general solutions.
Singular Solutions: Solutions that can not be expressed by the
general solutions are called singular solutions.
Explicit Solution: Any solution that is given in the form y = y
(independent variable).
Examples: ๐ด ๐‘Ÿ = ๐œ‹๐‘Ÿ2
+ ๐‘, ๐‘ฆ ๐‘ก = ๐‘’โˆ’๐‘ก
+ ๐‘ etc.
Implicit Solution: Any solution that isnโ€™t in explicit form.
Examples:๐‘ฆ2
๐‘ฅ2
= ๐‘, sin ๐‘ฅ๐‘ฆ = ๐‘, ๐‘ฅ๐‘’๐‘ฆ
= ๐‘ etc.
Conditions
Initial Condition: Constrains that are specified at the initial
point, generally time point, are called initial conditions.
Problems with specified initial conditions are called initial
value problems.
Examples: yโ€™+y=0 y(0)=1,
zโ€™=1, z(1)=-1.
Boundary Condition: Constrains that are specified at the
boundary points, generally space points, are called boundary
conditions. Problems with specified boundary conditions are
called boundary value problems.
Examples: zโ€+zโ€™+z=1, z(0)=2, z(2)=-1,
fโ€+f=0, f(0)=0, f(๏ฐ/2)=1.
Worksheet 1
Equation Independent
Variable
Dependent
Variable
Order Degree Homo-genity
(
๐‘‘๐‘ฆ
๐‘‘๐‘ง
)3+2y = 0
๐‘‘2๐‘ฆ
๐‘‘๐‘ฅ2
+
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘’๐‘ฅ
๐‘ง(๐‘–๐‘ฃ)
+ ๐‘ง" = 2
๐‘โ€ฒ
+ ๐‘Ž๐‘ = ๐‘๐‘ก
๐‘“" + ๐‘“ + ๐‘”(๐‘ก) = โ„Ž(๐‘ก)
Worksheet 2
Equation Solution to Check
๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ = 0 ๐‘ฆ(๐‘ฅ) = ๐‘1sin 2๐‘ฅ + ๐‘2cos2๐‘ฅ
(๐‘ฆโ€ฒ)4
+ ๐‘ฆ2
= โˆ’1 ๐‘ฆ = ๐‘ฅ2
โˆ’ 1
๐‘ฆโ€ฒ = ๐‘Ž๐‘ฆ, ๐‘ฆ(0) = 1 ๐‘ฆ(๐‘ก) = ๐‘’๐‘Ž๐‘ก
๐‘ฆโ€ฒ + ๐‘ฆ = 10 ๐‘ฆ ๐‘ก = 10 โˆ’ ๐‘๐‘’ โˆ’ ๐‘ก
๐‘ค๐‘ก + 3๐‘ค๐‘ฅ = 0 ๐‘ค(๐‘ฅ, ๐‘ก) = 1/(1 + (๐‘ฅ โˆ’ 3๐‘ก)2)
๐‘ฅโ€™โ€™ + 4x = 0 ๐‘ฅ = cos(2๐‘ก) + sin(2๐‘ก) + ๐‘
Check whether the given expression a solution of the corresponding equation?
First Order Differential Equations
Standard Form:
Standard form for a first-order differential equation in the
unknown function y(x) is
yโ€™=f(x,y).
Interpretation:
The form shows the slope of the tangent at each point of the
xy-plane. Thus the standard form of the first order differential
equation give the slope field. Solving the equation gives the
original curve family having the slope field expressed by the
differential equation.
Separable Equations
Form of Equation: ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘” ๐‘ฆ ๐‘‘๐‘ฆ.
Method of Solution: Integrate both sides will give the solution
of such type of equations.
Examples
Exercise: Solve
๐‘‘๐‘
๐‘‘๐‘ก
=
1 โˆ’ ๐‘2
๐‘ก
.
Example 1: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฆ
๐‘ฅ
Example 2: Solve
๐’…๐’›
๐’…๐’•
=
๐Ÿ
๐’›๐’†๐’•
Solution:
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฆ
๐‘ฅ
๐‘‘๐‘ฆ
๐‘ฆ
=
๐‘‘๐‘ฅ
๐‘ฅ
๐‘‘๐‘ฆ
๐‘ฆ
=
๐‘‘๐‘ฅ
๐‘ฅ
ln ๐‘ฆ = ln ๐‘ฅ + ๐‘
Solution:
๐‘‘๐‘ง
๐‘‘๐‘ก
=
1
๐‘ง๐‘’๐‘ก
๐‘ง๐‘‘๐‘ง =
๐‘‘๐‘ก
๐‘’๐‘ก
๐‘ง๐‘‘๐‘ง =
๐‘‘๐‘ก
๐‘’๐‘ก
๐‘ง2
2
= โˆ’๐‘’โˆ’๐‘ก
+ ๐‘
Homogeneous Equations
(of degree zero)
Form of Equation:
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘“ ๐‘ฅ, ๐‘ฆ
๐‘“ ๐‘ฅ, ๐‘ฆ is a function homogeneous of degree zero, i.e.,
๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ก0๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘“ ๐‘ฅ, ๐‘ฆ .
A function homogeneous of degree n can be defined as
๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ก๐‘›๐‘“ ๐‘ฅ, ๐‘ฆ .
Method of Solution: Substituting ๐‘ฆ = ๐‘ฃ๐‘ฅ,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฃ + ๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
,
reduces the equation in form separable in variables v and x.
Integrate both sides and then substituting the value of v will
give the solution.
Examples
Example 1: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐’š โˆ’ ๐’™
๐’š + ๐’™
Example 2: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฆ
๐‘ฅ
Solution:
๐‘“(๐‘ฅ, ๐‘ฆ) =
๐‘ฆ โˆ’ ๐‘ฅ
๐‘ฆ + ๐‘ฅ
๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ =
๐‘ฆ โˆ’ ๐‘ฅ
๐‘ฆ + ๐‘ฅ
= ๐‘“(๐‘ฅ, ๐‘ฆ)
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฆ โˆ’ ๐‘ฅ
๐‘ฆ + ๐‘ฅ
=
๐‘ฆ
๐‘ฅ
โˆ’ 1
๐‘ฆ
๐‘ฅ
+ 1
Put ๐‘ฆ = ๐‘ฃ๐‘ฅ,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฃ + ๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
.
๐‘ฃ + ๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
=
๐‘ฃ โˆ’ 1
๐‘ฃ + 1
๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
=
โˆ’1 โˆ’ ๐‘ฃ2
๐‘ฃ + 1
(๐‘ฃ + 1)๐‘‘๐‘ฃ
1 + ๐‘ฃ2
= โˆ’
๐‘‘๐‘ฅ
๐‘ฅ
๐‘ก๐‘Ž๐‘›โˆ’1
๐‘ฃ +
1
2
ln 1 + ๐‘ฃ2
= โˆ’ ln ๐‘ฅ + ๐‘
๐‘ก๐‘Ž๐‘›โˆ’1
(
๐‘ฆ
๐‘ฅ
) +
1
2
ln 1 + (
๐‘ฆ
๐‘ฅ
)2
= โˆ’ ln ๐‘ฅ + ๐‘
Solution:
๐‘“ ๐‘ฅ, ๐‘ฆ =
๐‘ฆ
๐‘ฅ
๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ =
๐‘ก๐‘ฆ
๐‘ก๐‘ฅ
=
๐‘ฆ
๐‘ฅ
= ๐‘“ ๐‘ฅ, ๐‘ฆ
Put ๐‘ฆ = ๐‘ฃ๐‘ฅ,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฃ + ๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
.
๐‘ฃ + ๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
= ๐‘ฃ,
๐‘ฅ
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
= 0,
๐‘‘๐‘ฃ
๐‘‘๐‘ฅ
= 0
Integrating we get
๐‘ฃ = ๐‘
or
๐‘ฆ
๐‘ฅ
= ๐‘ , ๐‘ฆ = ๐‘๐‘ฅ.
Exercise: Solve
๐’…๐’š
๐’…๐’™
=
๐’™
๐’š
First Order Linear Equations
Form of Equation:
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘ ๐‘ฅ ๐‘ฆ = ๐‘ž ๐‘ฅ .
Method of Solution: The integrating factor is I.F.=๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
.
Multiplying the equation with this factor gives
๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ ๐‘ฅ ๐‘ฆ = ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ž ๐‘ฅ
๐‘‘(๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
)
๐‘‘๐‘ฅ
= ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ž ๐‘ฅ
๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
= ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ž ๐‘ฅ ๐‘‘๐‘ฅ
Solving this gives the solution y.
Examples
Exercise: Solve
๐‘‘๐‘
๐‘‘๐‘ก
+ ๐‘๐‘ก = 3.
Example 1: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 3๐‘ฆ = ๐‘ฅ
Example 2: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘ฆ
๐‘ฅ
Solution: Here ๐‘ ๐‘ฅ = 3, ๐‘ž ๐‘ฅ = ๐‘ฅ.
Substituting values in
๐‘ฆ๐‘’ 3๐‘‘๐‘ฅ
= ๐‘ฅ๐‘’ 3๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฆ๐‘’3๐‘ฅ
= ๐‘ฅ๐‘’3๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฆ๐‘’3๐‘ฅ
=
๐‘ฅ๐‘’3๐‘ฅ
3
+
๐‘’3๐‘ฅ
9
+ ๐‘
Solution:
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
โˆ’
๐‘ฆ
๐‘ฅ
= 0
๐‘ ๐‘ฅ = โˆ’
1
๐‘ฅ
, ๐‘ž ๐‘ฅ = 0.
Substituting values in
๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
= ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ž ๐‘ฅ ๐‘‘๐‘ฅ
๐‘ฆ๐‘’ โˆ’
1
๐‘ฅ๐‘‘๐‘ฅ
= 0 ๐‘‘๐‘ฅ
๐‘ฆ๐‘’โˆ’ln |๐‘ฅ| = ๐‘
๐‘ฆ
๐‘ฅ
= ๐‘
Bernoulli Equations
Form of Equation:
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘ ๐‘ฅ ๐‘ฆ = ๐‘ž ๐‘ฅ ๐‘ฆ๐‘›
, ๐‘› โˆˆ โ„.
Method of Solution: The substitution ๐‘ง = ๐‘ฆ1โˆ’๐‘› transform the
Bernoulliโ€™s equation into a linear equation in z. This linear
equation, after solving and back substituting the value of z
gives the solution of the Bernoulliโ€™s equation.
Examples
Example 1: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 3๐‘ฆ = ๐‘ฅ๐‘ฆ2
Exercise: Solve
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ2
Solution: Put ๐‘ง = ๐‘ฆ1โˆ’2
=
1
๐‘ฆ
โŸน ๐‘ฆ =
1
๐‘ง
,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= โˆ’
1
๐‘ง2
๐‘‘๐‘ง
๐‘‘๐‘ฅ
๐‘‘๐‘ง
๐‘‘๐‘ฅ
โˆ’ 3๐‘ง = โˆ’๐‘ฅ
๐‘ ๐‘ฅ = โˆ’3 ๐‘ž ๐‘ฅ = โˆ’๐‘ฅ.
Substituting values in
๐‘ง๐‘’โˆ’ 3๐‘‘๐‘ฅ
= โˆ’๐‘ฅ๐‘’โˆ’ 3๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘’โˆ’3๐‘ฅ
๐‘ฆ
= โˆ’ ๐‘ฅ๐‘’โˆ’3๐‘ฅ ๐‘‘๐‘ฅ
๐‘ฆ๐‘’3๐‘ฅ = 1/(
๐‘ฅ๐‘’3๐‘ฅ
3
+
๐‘’3๐‘ฅ
9
) + ๐‘
Solution: Put ๐‘ง = ๐‘ฆ1โˆ’2
=
1
๐‘ฆ
โŸน ๐‘ฆ =
1
๐‘ง
,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= โˆ’
1
๐‘ง2
๐‘‘๐‘ง
๐‘‘๐‘ฅ
๐‘‘๐‘ง
๐‘‘๐‘ฅ
โˆ’ ๐‘ฅ๐‘ง = โˆ’๐‘ฅ
๐‘ ๐‘ฅ = โˆ’๐‘ฅ, ๐‘ž ๐‘ฅ = โˆ’๐‘ฅ.
Substituting values in
๐‘ง๐‘’โˆ’ ๐‘ฅ๐‘‘๐‘ฅ
= โˆ’๐‘ฅ๐‘’โˆ’ ๐‘ฅ๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฆ๐‘’
โˆ’๐‘ฅ2
2 = โˆ’๐‘ฅ๐‘’
โˆ’๐‘ฅ2
2 ๐‘‘๐‘ฅ
๐‘ฆ๐‘’
โˆ’๐‘ฅ2
2 = ๐‘’
โˆ’๐‘ฅ2
2 +c
A differential equation
๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0.
is exact if there exists a function ๐‘”(๐‘ฅ, ๐‘ฆ) such that
๐‘‘๐‘” ๐‘ฅ, ๐‘ฆ = ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ.
Test for exactness: If ๐‘€(๐‘ฅ, ๐‘ฆ) and ๐‘(๐‘ฅ, ๐‘ฆ) are continuous functions and
have continuous first partial derivatives on some rectangle of the ๐‘ฅ๐‘ฆ-
plane, then
๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0
is exact if and only if
๐œ•๐‘€(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฆ
=
๐œ•๐‘(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฅ
.
How to obtain an exact equation from a function?
๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘,
๐œ•๐‘“(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฅ
๐‘‘๐‘ฅ +
๐œ•๐‘“(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฆ
๐‘‘๐‘ฆ = 0,
๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0.
Exact Equations
Method of Solution
To solve an exact equation, first solve the equations
๐œ•๐‘“(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฅ
= ๐‘€ ๐‘ฅ, ๐‘ฆ ,
๐œ•๐‘“(๐‘ฅ, ๐‘ฆ)
๐œ•๐‘ฆ
= ๐‘(๐‘ฅ, ๐‘ฆ)
for ๐‘“(๐‘ฅ, ๐‘ฆ). The solution to the exact equation is then given implicitly
by
๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘,
where ๐‘ represents an arbitrary constant.
Examples
Example 1: Make an exact ODE using ๐‘ข ๐‘ฅ, ๐‘ฆ = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3
Sol: If ๐‘ข(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3 = ๐‘, then
๐‘‘๐‘ข = (1 + 2๐‘ฅ๐‘ฆ3)๐‘‘๐‘ฅ + 3๐‘ฅ2๐‘ฆ2๐‘‘๐‘ฆ = 0
๐‘ฆโ€ฒ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’(1 + 2๐‘ฅ๐‘ฆ3)/3๐‘ฅ2๐‘ฆ2
Example 2:
Solve cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฆ = 0.
Sol: Here M = cos ๐‘ฅ + ๐‘ฆ , ๐‘ = 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ
Since
๐œ•๐‘€
๐œ•๐‘ฆ
= โˆ’ sin ๐‘ฅ + ๐‘ฆ ,
๐œ•๐‘
๐œ•๐‘ฅ
= โˆ’ sin ๐‘ฅ + ๐‘ฆ , therefore
equation is exact.
๐‘ข ๐‘ฅ, ๐‘ฆ = cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘˜ ๐‘ฆ = sin ๐‘ฅ + ๐‘ฆ + ๐‘˜ ๐‘ฆ
๐œ•๐‘ข
๐œ•๐‘ฆ
= cos(๐‘ฅ + ๐‘ฆ) +
๐‘‘๐‘˜(๐‘ฆ)
๐‘‘๐‘ฆ
= 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ
๐‘‘๐‘˜(๐‘ฆ)
๐‘‘๐‘ฆ
= 3๐‘ฆ2
+ 2๐‘ฆ โ‡’ ๐‘˜ ๐‘ฆ = ๐‘ฆ3
+ ๐‘ฆ2
+c
๐‘ข ๐‘ฅ, ๐‘ฆ = cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘˜ ๐‘ฆ = sin ๐‘ฅ + ๐‘ฆ + ๐‘ฆ3 + ๐‘ฆ2+c
Integrating Factors
If an equation is inexact (not exact), it is possible to transform
Such equation into an exact differential equation by a judicious
multiplication.
A function ๐ผ(๐‘ฅ, ๐‘ฆ) is an integrating factor for an inexact equation if the
equation
๐ผ ๐‘ฅ, ๐‘ฆ ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0
is an exact equation.
The famous formulas to obtain an integrating factor are as follows:
If
1
๐‘(๐‘ฅ,๐‘ฆ)
๐œ•๐‘€(๐‘ฅ,๐‘ฆ)
๐œ•๐‘ฆ
โˆ’
๐œ•๐‘(๐‘ฅ,๐‘ฆ)
๐œ•๐‘ฅ
โ‰ก ๐‘” ๐‘ฅ , then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ = ๐‘’ ๐‘”(๐‘ฅ)๐‘‘๐‘ฅ
.
If
1
๐‘€(๐‘ฅ,๐‘ฆ)
๐œ•๐‘€(๐‘ฅ,๐‘ฆ)
๐œ•๐‘ฆ
โˆ’
๐œ•๐‘(๐‘ฅ,๐‘ฆ)
๐œ•๐‘ฅ
โ‰ก ๐‘“ ๐‘ฆ , then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ = ๐‘’โˆ’ ๐‘“(๐‘ฆ)๐‘‘๐‘ฆ
.
If M = yf xy , N = xg(xy), then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ =
1
๐‘ฅ๐‘€โˆ’๐‘ฆ๐‘
.
Examples and Exercises
Make an exact differential equation from the functions
๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘ฅ2
๐‘ฆ + 6๐‘ฆ โˆ’ ๐‘ฆ3
.
๐‘ข ๐‘ฅ, ๐‘ฆ = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3.
Check for the exactness and solve
๐‘ฆ2 โˆ’ 2๐‘ฅ ๐‘‘๐‘ฅ + 2๐‘ฅ + 1 ๐‘‘๐‘ฆ = 0,
3๐‘ฅ2๐‘ฆ โˆ’ 1 ๐‘‘๐‘ฅ + ๐‘ฅ3 + 6๐‘ฆ โˆ’ ๐‘ฆ2 ๐‘‘๐‘ฆ = 0, ๐‘ฆ 0 = 3,
2๐‘ฅ๐‘ฆ โˆ’ 9๐‘ฅ2 + 2๐‘ฆ + ๐‘ฅ2 + 1
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 0,
2๐‘ฅ๐‘ฆ โˆ’ 9๐‘ฅ2
+ 2๐‘ฆ + ๐‘ฅ2
+ 1
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 0, ๐‘ฆ 0 = โˆ’3,
1 + ๐‘ก2
๐‘ฆโ€ฒ
+ 4๐‘ก๐‘ฆ = 1 + ๐‘ก2 โˆ’2
, y 0 = 1.
OrthogonalTrajectories
Given a one-parameter family of curves ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0.
A curve that intersects each member of the family at right angles
(orthogonally) is called an orthogonal trajectory of the family.
The one-parameter families ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0 and ๐บ(๐‘ฅ, ๐‘ฆ, ๐‘˜) = 0 are
orthogonal trajectories if each member of one family is an orthogonal
trajectory of the other family.
A procedure for finding a family of orthogonal trajectories ๐บ(๐‘ฅ, ๐‘ฆ, ๐‘˜) = 0
for a given family of curves ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0 is as follows:
Step 1. Determine the differential equation for the given family ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) =
0.
Step 2. Replace ๐‘ฆ0 in that equation by โˆ’1/๐‘ฆ0; the resulting equation is the
differential equation for the family of orthogonal trajectories.
Step 3. Find the general solution of the new differential equation. This is
the family of orthogonal trajectories.
Example
Find family of curves orthogonal to one parameter family of
quadratic parabolas ๐‘ฆ = ๐‘๐‘ฅ^2.
Solution:
๐‘ฆ = ๐‘๐‘ฅ2
๐น ๐‘ฅ, ๐‘ฆ, ๐‘ = ๐‘ฆ โˆ’ ๐‘๐‘ฅ2 = 0
๐‘ฆ
๐‘ฅ2 = ๐‘ โ‡’
๐‘ฅ2
๐‘ฆโ€ฒ
โˆ’ 2๐‘ฅ๐‘ฆ
๐‘ฅ4 = 0 โ‡’ ๐‘ฆโ€ฒ
๐‘œ๐‘™๐‘‘ =
2๐‘ฆ
๐‘ฅ
.
Now the slope of the family of new curves is
๐‘ฆโ€ฒ
๐‘›๐‘’๐‘ค
=
โˆ’1
๐‘ฆโ€ฒ
๐‘œ๐‘™๐‘‘
=
โˆ’1
2๐‘ฆ
๐‘ฅ
=
โˆ’๐‘ฅ
2๐‘ฆ
.
2๐‘ฆ๐‘ฆโ€ฒ = โˆ’๐‘ฅ
2 ๐‘ฆ๐‘ฆโ€ฒ๐‘‘๐‘ฆ = โˆ’ ๐‘ฅ๐‘‘๐‘ฅ
๐‘ฆ2
= โˆ’
๐‘ฅ2
2
+ ๐‘
is required family of curves.
Exercises
1. Find the family of orthogonal trajectories of:
๐‘ฆ = ๐ถ๐‘ฅ2
+ 2
Answer: ๐‘ฅ2
+ 2๐‘ฆ2
โˆ’ 8๐‘ฆ = ๐ถ
2. Find the orthogonal trajectories of the family of parabolas with
vertical axis and vertex at the point (โˆ’1, 3).
Answer: (๐‘ฅ + 1)2+2(๐‘ฆ โˆ’ 3)2 = ๐ถ
Linear Second Order DEs
The most general linear second order differential equation
is in the form.
๐‘ ๐‘ก ๐‘ฆโ€ฒโ€ฒ + ๐‘ž ๐‘ก ๐‘ฆโ€ฒ + ๐‘Ÿ ๐‘ก ๐‘ฆ = ๐‘” ๐‘ก .
The constant coefficient linear second order differential
equation is
๐‘Ž๐‘ฆโ€ฒโ€ฒ
+ ๐‘๐‘ฆโ€ฒ
+ ๐‘๐‘ฆ = ๐‘”(๐‘ก)
where a, b, c are all constants.
Initially we will make our life easier by looking at differential
equations with ๐‘” ๐‘ก = 0. When ๐‘” ๐‘ก = 0 we call the
differential equation homogeneous and when ๐‘” ๐‘ก โ‰  0 we
call the differential equation nonhomogeneous.
Solving Second Order, Linear,
Homogeneous ODE with Constant
Coefficients
Consider the solution of the type ๐‘ฆ ๐‘ก = ๐‘’๐‘Ÿ๐‘ก
. Substituting in
๐‘Ž๐‘ฆโ€ฒโ€ฒ
+ ๐‘๐‘ฆโ€ฒ
+ ๐‘๐‘ฆ = 0
We have
๐‘Ž ๐‘Ÿ2๐‘’๐‘Ÿ๐‘ก + ๐‘ ๐‘Ÿ๐‘’๐‘Ÿ๐‘ก + ๐‘๐‘’๐‘Ÿ๐‘ก = 0
๐‘Ž๐‘Ÿ2
+ ๐‘๐‘Ÿ + ๐‘ = 0
As ๐‘’๐‘Ÿ๐‘ก โ‰  0.
This equation is typically called the characteristic equation
This will be a quadratic equation and so we should expect two
roots, r1 and r2. Once we have these two roots we have two
solutions to the differential equation.
๐‘ฆ1 ๐‘ก = ๐‘’๐‘Ÿ1๐‘ก and ๐‘ฆ2 ๐‘ก = ๐‘’๐‘Ÿ2๐‘ก.
The roots will have three possible forms. These are
Real, distinct roots, ๐‘Ÿ1 โ‰  ๐‘Ÿ2 .
Complex root, ๐‘Ÿ1 = ๐œ† + ๐‘–๐œ‡, ๐‘Ÿ2 = ๐œ† โˆ’ ๐‘–๐œ‡ .
Double roots, ๐‘Ÿ1 = ๐‘Ÿ2 = ๐‘Ÿ.
Real Roots
Example: Find two solutions to ๐‘ฆโ€ฒโ€ฒ โˆ’ 9๐‘ฆ = 0.
Solution:The characteristic equation is
๐‘Ÿ2
โˆ’ 9 = 0 โ‡’ ๐‘Ÿ = ยฑ3.
The two roots are 3 and -3.Therefore, two solutions are
๐‘ฆ1 ๐‘ก = ๐‘’3๐‘ก
and ๐‘ฆ2 ๐‘ก = ๐‘’โˆ’3๐‘ก
.
The general solution is ๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’3๐‘ก + ๐‘2๐‘’โˆ’3๐‘ก
Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆโ€ฒ + 24๐‘ฆ =
0, ๐‘ฆ 0 = 0, ๐‘ฆโ€ฒ 0 = โˆ’7.
Solution:The characteristic equation is ๐‘Ÿ2 + 11๐‘Ÿ + 24 =
0 โ‡’ ๐‘Ÿ + 8 ๐‘Ÿ + 3 = 0 โ‡’ ๐‘Ÿ = โˆ’8, โˆ’3.
The general solution and its derivative is
๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’โˆ’3๐‘ก + ๐‘2๐‘’โˆ’8๐‘ก
๐‘ฆโ€ฒ๐‘ ๐‘ก = โˆ’3๐‘1๐‘’โˆ’3๐‘ก โˆ’ 8๐‘2๐‘’โˆ’8๐‘ก
Putting the initial conditions, we have the following system
of equations
0 = ๐‘ฆ๐‘ 0 = ๐‘1 + ๐‘2
โˆ’7 = ๐‘ฆโ€ฒ๐‘ 0 = โˆ’3๐‘1 โˆ’ 8๐‘2
Solving we get ๐‘1 =
โˆ’7
5
and ๐‘2 =
7
5
.Thus the solution is
๐‘ฆ๐‘ ๐‘ก =
โˆ’7
5
๐‘’โˆ’3๐‘ก +
7
5
๐‘’โˆ’8๐‘ก
Complex Roots
Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ
โˆ’ 4๐‘ฆโ€ฒ
+ 9๐‘ฆ = 0, ๐‘ฆ 0 =
0, ๐‘ฆโ€ฒ
0 = โˆ’8.
Solution:The characteristic equation is ๐‘Ÿ2
โˆ’ 4๐‘Ÿ + 9 = 0 โ‡’ ๐‘Ÿ1,2 =
2 ยฑ 5๐‘–.
The general solution and its derivative is
๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’2๐‘ก
cos 5๐‘ก + ๐‘2๐‘’2๐‘ก
sin 5๐‘ก
Putting the initial conditions, we have the following system of
equations
0 = ๐‘ฆ๐‘ 0 = ๐‘1
so
๐‘ฆ๐‘ ๐‘ก = ๐‘2๐‘’2๐‘ก
sin 5๐‘ก
๐‘ฆโ€ฒ๐‘ ๐‘ก = 2๐‘2๐‘’2๐‘ก
sin 5๐‘ก + 5๐‘2๐‘’2๐‘ก
cos 5๐‘ก
๐‘ฆโ€ฒ๐‘ 0 = 5๐‘2 โ‡’ โˆ’8 = 5๐‘2 โ‡’ ๐‘2 =
โˆ’8
5
Thus the solution is ๐‘ฆ ๐‘ก =
โˆ’8
5
๐‘’2๐‘ก sin 5๐‘ก
Repeated Roots
Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ
โˆ’ 4๐‘ฆโ€ฒ
+ 4๐‘ฆ = 0, ๐‘ฆ 0 =
12, ๐‘ฆโ€ฒ
0 = โˆ’3.
Solution:The characteristic equation is ๐‘Ÿ2
โˆ’ 4๐‘Ÿ + 4 = 0 โ‡’
๐‘Ÿ โˆ’ 2 2 = 0 โ‡’ ๐‘Ÿ = 2,2.
The general solution and its derivative is
๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’2๐‘ก + ๐‘2๐‘ก๐‘’2๐‘ก
๐‘ฆโ€ฒ๐‘ ๐‘ก = 2๐‘1๐‘’2๐‘ก + ๐‘2๐‘’2๐‘ก + 2๐‘2๐‘ก๐‘’2๐‘ก
Putting the initial conditions, we have the following system of
equations
12 = ๐‘ฆ๐‘ 0 = ๐‘1
โˆ’3 = ๐‘ฆโ€ฒ
๐‘
0 = 2๐‘1 + ๐‘2
Solving we get ๐‘1 = 12 and ๐‘2 = โˆ’27.Thus the solution is ๐‘ฆ ๐‘ก =
12๐‘’2๐‘ก
โˆ’ 27๐‘ก๐‘’2๐‘ก
Exercises: Solve the following IVPs
๐‘ฆโ€ฒโ€ฒ + 3๐‘ฆโ€ฒ โˆ’ 10๐‘ฆ = 0, ๐‘ฆ 0 = 4, ๐‘ฆโ€ฒ 0 = โˆ’2
3๐‘ฆโ€ฒโ€ฒ
โˆ’ 2๐‘ฆโ€ฒ
โˆ’ 8๐‘ฆ = 0, ๐‘ฆ 0 = โˆ’6, ๐‘ฆโ€ฒ
0 = โˆ’18
4๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆโ€ฒ = 0, ๐‘ฆ โˆ’2 = 0, ๐‘ฆโ€ฒ โˆ’2 = 7
๐‘ฆโ€ฒโ€ฒ โˆ’ 6๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 0
๐‘ฆโ€ฒโ€ฒ
โˆ’ 8๐‘ฆโ€ฒ
+ 17๐‘ฆ = 0, ๐‘ฆ 0 = โˆ’4, ๐‘ฆโ€ฒ
0 = โˆ’1
4๐‘ฆโ€ฒโ€ฒ
โˆ’ 24๐‘ฆโ€ฒ
+ 37๐‘ฆ = 0, ๐‘ฆ ๐œ‹ = 1, ๐‘ฆโ€ฒ
๐œ‹ = 0
๐‘ฆโ€ฒโ€ฒ + 16๐‘ฆ = 0, ๐‘ฆ
๐œ‹
2
= โˆ’10, ๐‘ฆโ€ฒ
๐œ‹
2
= 3
16๐‘ฆโ€ฒโ€ฒ
โˆ’ 40๐‘ฆโ€ฒ
+ 25๐‘ฆ = 0, ๐‘ฆ 0 = 3, ๐‘ฆโ€ฒ
0 = โˆ’
9
4
๐‘ฆโ€ฒโ€ฒ + 14๐‘ฆโ€ฒ + 49๐‘ฆ = 0, ๐‘ฆ โˆ’4 = โˆ’1, ๐‘ฆโ€ฒ โˆ’4 = 5
Reduction of Order
Let ๐‘ฆ(๐‘ฅ) = ๐‘ฆ1(๐‘ฅ) be the known solution of second order DE
๐‘Ž2 (๐‘ฅ)๐‘ฆโ€ (๐‘ฅ) + ๐‘Ž1 (๐‘ฅ)๐‘ฆโ€™ (๐‘ฅ) + ๐‘Ž0 (๐‘ฅ)๐‘ฆ(๐‘ฅ) = 0.
Assume ๐‘ฆ2 = ๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) is the other solution.Then
๐‘Ž2 (๐‘ฅ)๐‘ฆ2โ€(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ2โ€™(๐‘ฅ) + ๐‘Ž0(๐‘ฅ)๐‘ฆ2(๐‘ฅ) = 0
๐‘Ž2 (๐‘ฅ){๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ)}โ€ + ๐‘Ž1 (๐‘ฅ){๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ)}โ€™ + ๐‘Ž0(๐‘ฅ)๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0
๐‘Ž2 (๐‘ฅ){๐‘ขโ€™โ€™(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + 2๐‘ขโ€™(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘ข(๐‘ฅ)๐‘ฆโ€1(๐‘ฅ)} + ๐‘Ž1(๐‘ฅ) {๐‘ขโ€™(๐‘ฅ)๐‘ฆ1(๐‘ฅ)
+ ๐‘ข(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ)} + ๐‘Ž0(๐‘ฅ)๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0
๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + ๐‘ขโ€™(๐‘ฅ){2๐‘Ž2(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)} + ๐‘ข(๐‘ฅ){๐‘Ž2(๐‘ฅ)๐‘ฆโ€1(๐‘ฅ)
+ ๐‘Ž1(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž0 (๐‘ฅ)๐‘ฆ1(๐‘ฅ)} = 0
Since ๐‘Ž2 (๐‘ฅ)๐‘ฆโ€1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž0(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0,
therefore
๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + ๐‘ขโ€™(๐‘ฅ){2๐‘Ž2 (๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)} = 0
๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = โˆ’๐‘ขโ€™(๐‘ฅ){2๐‘Ž2 (๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)}
๐‘ขโ€™โ€™(๐‘ฅ) = โˆ’ 2๐‘ฆโ€™1(๐‘ฅ) โˆ’ ๐‘Ž1 (๐‘ฅ)
๐‘ขโ€™(๐‘ฅ) ๐‘ฆ1(๐‘ฅ) ๐‘Ž2(๐‘ฅ)
or ๐‘ข(๐‘ฅ) = ๐‘1 ๐‘’
โˆ’
๐‘Ž1(๐‘ฅ)
๐‘Ž2(๐‘ฅ)
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ .
Examples and Exercises
Solve
๐‘ฆ"(๐‘ฅ) โˆ’ ๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘’๐‘ฅ
,
๐‘ฅ2๐‘ฆ"(๐‘ฅ) โˆ’ 3๐‘ฅ๐‘ฆโ€ฒ(๐‘ฅ) + 4๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘ฅ2,
๐‘ฆ"(๐‘ฅ) + 36๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘’6๐‘–๐‘ฅ,
๐‘ฆ"(๐‘ฅ) + 36๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘ ๐‘–๐‘›6๐‘ฅ,
๐‘ฆ"(๐‘ฅ) โˆ’ ๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘๐‘œ๐‘ ๐‘ฅ.
Solutions of Linear Homogeneous
Equations; theWronskian
Theorem . (Existence and UniquenessTheorem)
Consider the initial value problem
๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = ๐‘”(๐‘ก), ๐‘ฆ(๐‘ก0) = ๐‘ฆ0, ๐‘ฆโ€ฒ(๐‘ก0) = ๐‘ฆโ€ฒ0
If ๐‘(๐‘ก), ๐‘ž(๐‘ก) and ๐‘”(๐‘ก) are continuous and bounded on an open
interval ๐ผ containing ๐‘ก0, then there exists exactly one solution
๐‘ฆ(๐‘ก) of this equation, valid on ๐ผ.
Wronskian: Given two functions ๐‘“(๐‘ก), ๐‘”(๐‘ก), the Wronskian is
defined as
๐‘Š(๐‘“, ๐‘”)(๐‘ก) = ๐‘“๐‘”โ€ฒ โˆ’ ๐‘“โ€ฒ๐‘”
Remark: One way to remember this definition could be using the
determinant,
๐‘Š(๐‘“, ๐‘”)(๐‘ก) =
๐‘“ ๐‘”
๐‘“โ€ฒ ๐‘”โ€ฒ
Main property of the Wronskian:
โ€ข If ๐‘Š(๐‘“, ๐‘”) โ‰ก 0, then ๐‘“ anf ๐‘” are linearly dependent.
โ€ข Otherwise, they are linearly independent.
Example: Check if the given pair of functions are linearly
dependent or not.
(a) ๐‘“(๐‘ก) = ๐‘’๐‘ก, ๐‘”(๐‘ก) = ๐‘’โˆ’๐‘ก
(b) ๐‘“(๐‘ก) = sin๐œ”๐‘ก, ๐‘”(๐‘ก) = cos๐œ”๐‘ก
(c) ๐‘“(๐‘ก) = ๐‘ก + 1, ๐‘”(๐‘ก) = 4๐‘ก + 4
(d) ๐‘“(๐‘ก) = 2๐‘ก, ๐‘”(๐‘ก) = |๐‘ก|
Suppose๐‘ฆ_1 (t),๐‘ฆ_2 (t) are two solutions of
๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = 0
Then
(I)We have either W(๐‘ฆ_1,๐‘ฆ_2)โ‰ก0 orW(๐‘ฆ_1,๐‘ฆ_2) never zero;
(II) IfW(๐‘ฆ_1,๐‘ฆ_2)โ‰ 0, then y =๐‘_1 ๐‘ฆ_1+๐‘_2 ๐‘ฆ_2is the general
solution.They are also called to form a fundamental set of
solutions. As a consequence, for any Ics ๐‘ฆ(๐‘ก_0) = ๐‘ฆ_0, ๐‘ฆโ€ฒ(๐‘ก_0)=ใ€–
๐‘ฆโ€ฒใ€—_0, there is a unique set of (๐‘_1,๐‘_2) that give a unique
solution.
Theorem (Abelโ€™sTheorem):Let y1, y2 be two (linearly independent)
solutions to ๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = 0 on an open interval I.Then, the
Wronskian ๐‘Š(๐‘ฆ1, ๐‘ฆ2) on I is given by
๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก),
for some constant ๐ถ depending on ๐‘ฆ1, ๐‘ฆ2, but independent on ๐‘ก in ๐ผ.
Example: Given
๐‘ก2๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ก(๐‘ก + 2)๐‘ฆโ€ฒ + (๐‘ก + 2)๐‘ฆ = 0.
Find ๐‘Š(๐‘ฆ1, ๐‘ฆ2) without solving the equation.
Answer.We first find the ๐‘(๐‘ก)
p(t) = โˆ’(t + 2)t
which is
which is valid for ๐‘ก โ‰  0. By Abelโ€™sTheorem, we have
๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก)=๐ถ ยท exp ๐‘ก ๐‘ก + 2 ๐‘‘๐‘ก =
C. ๐‘’๐‘ก+2 ln ๐‘ก = ๐‘ก2๐ถ๐‘’๐‘ก
Example: If y1, y2 are two solutions of
tyโ€ฒโ€ฒ + 2yโ€ฒ + tety = 0,
andW(y1, y2)(1) = 2, findW(y1, y2)(5).
Example 5. IfW(f, g) = 3e4t, and f = e2t, find g.
Example: For the equation
2๐‘ก2๐‘ฆโ€ฒโ€ฒ + 3๐‘ก๐‘ฆโ€ฒ โˆ’ ๐‘ฆ = 0, ๐‘ก > 0
given one solution ๐‘ฆ1 =
1
๐‘ก
, find a second linearly independent solution.
Solution: Use Abelโ€™sTheorem and Wronskian. By Abelโ€™s
Theorem, and choose C = 1, we have
๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก)=๐ถ ยท exp โˆ’
3๐‘ก
2๐‘ก2 ๐‘‘๐‘ก = ๐‘กโˆ’3/2.
By definition of theWronskian,
๐‘Š ๐‘ฆ1, ๐‘ฆ2 = ๐‘ฆ1๐‘ฆ2
โ€ฒ โˆ’ ๐‘ฆ1
โ€ฒ๐‘ฆ2 =
๐‘ฆ2
โ€ฒ
๐‘ก
+
๐‘ฆ2
๐‘ก2
= ๐‘กโˆ’3/2
Solve this for ๐‘ฆ2 (taking c=0): ๐‘ฆ2 =
2
3
๐‘ก
Example: Consider the equation
๐‘ก2
๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ก(๐‘ก + 2)๐‘ฆโ€ฒ + (๐‘ก + 2)๐‘ฆ = 0, ๐‘ก > 0
Given ๐‘ฆ1 = ๐‘ก, find the general solution.
Example: Given the equation ๐‘ก2
๐‘ฆโ€ฒโ€ฒ
โˆ’ (๐‘ก โˆ’
3
16
) ๐‘ฆ = 0, ๐‘ก > 0
and ๐‘ฆ1 = ๐‘ก1/4
๐‘’2 ๐‘ก
, find ๐‘ฆ2.
Linear Differential Equations
An nth-order linear differential equation has the form
(4.1)
where g(x) and the coefficients bj(x) ( j = 0,1,2,..., n) depend
solely on the variable x. In other words, they do
not depend on y or any derivative of y.
If g(x) = 0, then above Equation is homogeneous; if not, 4.1 is
nonhomogeneous.
A linear differential equation has constant coefficients if all
the coefficients bj(x) in above equation are constants; if one or more
of these coefficients
is not constant, the above equation has variable coefficients.
Theorem 4.1. Consider the initial-value problem given by the
linear differential
equation 4.1 and the n initial conditions
y(x0)=c0, yโ€™(x0)=c1, yโ€™โ€™(x0)=c2,โ€ฆ, y(n-1)(x0)=cn-1
The general solution to the linear differential equation ๐ฟ(๐‘ฆ) =
๐‘“(๐‘ฅ), ๐‘ฆ = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ where ๐‘ฆ๐‘ denotes one solution to the
differential equation and ๐‘ฆโ„Ž is the general solution to the
associated homogeneous equation, ๐ฟ(๐‘ฆ) = 0 . Methods for
obtaining ๐‘ฆโ„Ž when the differential equation has constant
coefficients are given in previous lectures. In this lecture, we give
methods for obtaining a particular solution ๐‘ฆ๐‘ once ๐‘ฆโ„Ž is known.
Second Order Non-homgeneous
Linear Differential Equations
Method of UndeterminedCoefficients
This method is applicable only if ๐‘“(๐‘ฅ) and all of its derivatives can be
written in terms of the same finite set of linearly independent functions,
which we denote by {๐‘ฆ1(๐‘ฅ), ๐‘ฆ2(๐‘ฅ), โ€ฆ , ๐‘ฆ๐‘›(๐‘ฅ)}. The method is initiated by
assuming a particular solution of the form
๐‘ฆ๐‘(๐‘ฅ) = ๐ด1๐‘ฆ1(๐‘ฅ) + ๐ด2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐ด๐‘›๐‘ฆ๐‘›(๐‘ฅ),
where ๐ด1, ๐ด2, โ€ฆ , ๐ด๐‘› denote arbitrary multiplicative constants. These
arbitrary constants are then evaluated by substituting the proposed
solution into the given differential equation and equating the
coefficients of like
terms.
๐’‡(๐’™) = ๐’‘๐’(๐’™), an nth-degree polynomial in ๐’™.
Assume a solution of the form
๐‘ฆ๐‘ = ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ +
๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0)
where ๐ด๐‘— (๐‘— = 0,1,2, โ€ฆ , ๐‘›) is a constant to be determined.
๐’‡(๐’™) = ๐’Œ๐’†๐’‚๐’™ where ๐’Œ and ๐’‚ are known constants.
Assume a solution of the form
๐‘ฆ๐‘ = ๐ด๐‘’๐‘Ž๐‘ฅ
where ๐ด is a constant to be determined.
๐’‡(๐’™) = ๐’Œ๐Ÿ๐’”๐’Š๐’๐’ƒ๐’™ + ๐’Œ๐Ÿ๐’„๐’๐’”๐’ƒ๐’™ where ๐’Œ๐Ÿ, ๐’Œ๐Ÿ, and ๐’ƒ are known
constants.
Assume a solution of the form
๐‘ฆ๐‘ = ๐ด sin ๐‘๐‘ฅ + ๐ต cos ๐‘๐‘ฅ,
where ๐ด and ๐ต are constants to be determined.
Generalizations
If ๐‘“(๐‘ฅ) is the product of terms considered in all the cases given above,
take ๐‘ฆ๐‘ to be the product of the corresponding assumed solutions and
algebraically
combine arbitrary constants where possible. In particular, if ๐‘“(๐‘ฅ) =
๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ) is the product of a polynomial with an exponential, assume
๐‘ฆ๐‘ = ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ +
๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0)
where Aj is as in 1st case. If, instead, ๐‘“(๐‘ฅ) = ๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ)๐‘ ๐‘–๐‘›๐‘๐‘ฅ is the
product of a polynomial, exponential, and sine term, or if ๐‘“(๐‘ฅ) =
๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ)๐‘๐‘œ๐‘ ๐‘๐‘ฅ is the product of a polynomial, exponential, and cosine
term, then assume
๐‘ฆ๐‘
= ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ +
๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0)๐‘ ๐‘–๐‘›๐‘๐‘ฅ + ๐‘’๐‘Ž๐‘ฅ(๐ต๐‘›๐‘ฅ๐‘›
+ ๐ต๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ +
๐ต2๐‘ฅ2 + ๐ต1๐‘ฅ + ๐ต0)๐‘๐‘œ๐‘ ๐‘๐‘ฅ
where ๐ด๐‘— and๐ต๐‘— (๐‘— = 0,1,2, โ€ฆ , ๐‘›) are constants which still must be
determined.
If ๐‘“(๐‘ฅ) is the sum (or difference) of terms already considered, then we
take ๐‘ฆ๐‘ to be the sum (or difference) of the corresponding assumed
solutions and algebraically combine arbitrary constants where possible.
Modifications
If any term of the assumed solution, disregarding multiplicative
constants, is also a term of
(the homogeneous solution), then the assumed solution must be
modified by multiplying it by ๐‘ฅ๐‘š, where ๐‘š is the smallest positive
integer such that the product of ๐‘ฅ๐‘š with the assumed solution has no
terms in common with ๐‘ฆโ„Ž.
Limitations of the Method
In general, if ๐‘“(๐‘ฅ) is not one of the types of functions considered
above, or if the differential equation does not have constant
coefficients, then the method of variations of parameters is preferred.
Variation of parameters is another method for finding a particular solution of
the nth-order linear differential equation ๐‘ณ(๐‘ฆ) = ๐œ‘(๐‘ฅ), once the solution of the
associated homogeneous equation ๐‘ณ(๐‘ฆ) = 0 is known. If ๐‘ฆ1 ๐‘ฅ , ๐‘ฆ2 ๐‘ฅ , โ€ฆ , ๐‘ฆ๐‘› ๐‘ฅ
are ๐‘› linearly independent solutions of ๐‘ณ(๐‘ฆ) = 0, then the general solution of
๐‘ณ(๐‘ฆ) = 0 is
๐‘ฆโ„Ž = ๐‘1๐‘ฆ1(๐‘ฅ) + ๐‘2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐‘๐‘›๐‘ฆ๐‘›(๐‘ฅ)
Methodology:
A particular solution of ๐‘ณ(๐‘ฆ) = ๐‘“(๐‘ฅ) has the form
๐‘ฆ๐‘ = ๐‘ฃ1๐‘ฆ1(๐‘ฅ) + ๐‘ฃ2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐‘ฃ๐‘›๐‘ฆ๐‘›(๐‘ฅ)
where ๐‘ฆ๐‘– = ๐‘ฆ๐‘– ๐‘ฅ (๐‘– = 1,2, โ€ฆ , ๐‘›) is given in above Equation and ๐‘ฃ๐‘– (๐‘– =
1,2, โ€ฆ ๐‘›) is an unknown function of ๐‘ฅ which still must be determined.
Variation of Parameters
To find ๐‘ฃ๐‘–, first solve the following linear equations simultaneously for ๐‘ฃโ€ฒ๐‘–:
๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 + โ‹ฏ + ๐‘ฃโ€ฒ
๐‘›๐‘ฆ๐‘› = 0
๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 + โ‹ฏ + ๐‘ฃโ€ฒ
๐‘›๐‘ฆโ€ฒ๐‘› = 0
โ‹ฎ
๐‘ฃโ€ฒ1๐‘ฆ1
(๐‘›โˆ’2)
+ ๐‘ฃโ€ฒ2๐‘ฆ2
(๐‘›โˆ’2)
+ โ‹ฏ + ๐‘ฃโ€ฒ
๐‘›๐‘ฆ๐‘›
(๐‘›โˆ’2)
= 0
๐‘ฃโ€ฒ1๐‘ฆ1
(๐‘›โˆ’1)
+ ๐‘ฃโ€ฒ2๐‘ฆ2
(๐‘›โˆ’1)
+ โ‹ฏ + ๐‘ฃโ€ฒ
๐‘›๐‘ฆ๐‘›
๐‘›โˆ’1
= ๐œ‘ ๐‘ฅ .
Then integrate each to obtain ๐‘ฃ๐‘–, disregarding all constants of integration.
This is permissible because we are seeking only one particular solution.
Example 6.1: For the special case ๐‘› = 3, Equations reduce to
๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 + ๐‘ฃโ€ฒ
3๐‘ฆ3 = 0
๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 + ๐‘ฃโ€ฒ
3๐‘ฆโ€ฒ3 = 0
๐‘ฃโ€ฒ1๐‘ฆ1โ€ฒโ€ฒ + ๐‘ฃโ€ฒ2๐‘ฆ2โ€ฒโ€ฒ + ๐‘ฃโ€ฒ
3๐‘ฆ3โ€ฒโ€ฒ = ๐œ‘ ๐‘ฅ .
For the case ๐‘› = 2, Equations become
๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 = 0
๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 = ๐œ‘ ๐‘ฅ .
and for the case ๐‘› = 1, we obtain the single equation
๐‘ฃโ€ฒ1๐‘ฆ1 = ๐œ‘ ๐‘ฅ .
Since ๐‘ฆ1 ๐‘ฅ , ๐‘ฆ2 ๐‘ฅ , โ€ฆ , ๐‘ฆ๐‘› ๐‘ฅ are ๐‘› linearly independent solutions of the same
equation L(y)=0, theirWronskian is not zero.This means that the system 6.9
has a nonzero determinant and can be solved uniquely for ๐‘ฃโ€ฒ๐‘–.
Scope of the Method
The method of variation of parameters can be applied to all linear differential
equations. It is therefore more powerful than the method of undetermined
coefficients, which is restricted to linear differential equations with constant
coefficients and particular forms of ๐œ‘ ๐‘ฅ .
Nonetheless, in those cases where both methods are applicable, the method
of undetermined coefficients is usually the more efficient and, hence,
preferable.
As a practical matter, the integration of may be impossible to perform. In
such an event other methods (in particular, numerical techniques) must be
employed.
Initial-Value Problems
Initial-value problems are solved by applying the initial conditions
to the general solution of the differential equation. It must be
emphasized that the initial conditions are applied only to the
general solution and not to the homogeneous solution ๐‘ฆโ„Ž that
possesses all the arbitrary constants that must be evaluated.The
one exception is when the general solution is the homogeneous
solution; that is, when the differential equation under consideration
is itself homogeneous.
Example: Solve ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 4๐‘ฅ2.
Solution: ๐‘ฆโ„Ž = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ. Here ๐œ‘ ๐‘ฅ = 4๐‘ฅ2, a second degree polynomial.We
assume that
๐‘ฆ๐‘ = ๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0
Thus ๐‘ฆโ€ฒ๐‘ = 2๐ด2๐‘ฅ + ๐ด1 and ๐‘ฆโ€ฒโ€ฒ๐‘ = 2๐ด2. Substituting these results into the
differential equation, we have
2๐ด2 โˆ’ (2๐ด2๐‘ฅ + ๐ด1) โˆ’ 2(๐ด2๐‘ฅ2
+ ๐ด1๐‘ฅ + ๐ด0) = 4๐‘ฅ2
.
Equating the coefficients of like powers of ๐‘ฅ, we obtain
โˆ’2๐ด2 = 4, โˆ’2๐ด2 โˆ’ 2๐ด1 = 0,2๐ด2 โˆ’ ๐ด1 โˆ’ 2๐ด0 = 0
Solving this system, we find that ๐ด2 = โˆ’2, ๐ด1 = 2, ๐ด0 = โˆ’3.
Hence ๐‘ฆ๐‘ = โˆ’2๐‘ฅ2
+ 2๐‘ฅ โˆ’ 3 and the general solution is
๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ โˆ’ 2๐‘ฅ2 + 2๐‘ฅ โˆ’ 3
Example: Solve ๐‘ฆโ€ฒโ€ฒ
โˆ’ ๐‘ฆโ€ฒ
โˆ’ 2๐‘ฆ = sin(2๐‘ฅ) .
Solution:Again ๐‘ฆโ„Ž = ๐‘1๐‘’2๐‘ฅ
+ ๐‘2๐‘’โˆ’๐‘ฅ
.
Assume that ๐‘ฆ๐‘ = ๐ด sin 2๐‘ฅ + ๐ต cos 2๐‘ฅ .
Thus, ๐‘ฆโ€ฒ
๐‘ = 2๐ด cos 2๐‘ฅ โˆ’ 2๐ต sin 2๐‘ฅ and ๐‘ฆโ€ฒโ€ฒ
๐‘ = โˆ’4๐ด sin 2๐‘ฅ โˆ’
4๐ต cos 2๐‘ฅ Substituting these results into the differential equation, we
have (โˆ’6๐ด + 2๐ต) sin 2๐‘ฅ + (โˆ’2๐ด โˆ’ 6๐ต) cos 2๐‘ฅ = sin(2๐‘ฅ)
Equating coefficients of like terms, we obtain
โˆ’6๐ด + 2๐ต = 1, โˆ’2๐ด โˆ’ 6๐ต = 0
Solving this system, we find that ๐ด = โˆ’3/20 and ๐ต = 1/20.Then
๐‘ฆ๐‘ = โˆ’
3
20
sin 2๐‘ฅ +
1
20
cos 2๐‘ฅ .
and the general solution is
๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ โˆ’
3
20
sin 2๐‘ฅ +
1
20
cos 2๐‘ฅ .
Example: Solve ๐‘ฆโ€ฒโ€ฒโ€ฒ
+ ๐‘ฆโ€ฒ
= sec ๐‘ฅ .
This is a third-order equation with ๐‘ฆโ„Ž = ๐‘1 + ๐‘2 cos ๐‘ฅ + ๐‘3 sin ๐‘ฅ .
It follows that
๐‘ฆ๐‘ = ๐‘ฃ1 + ๐‘ฃ2 cos ๐‘ฅ + ๐‘ฃ3 sin ๐‘ฅ .
So the set of Equations becomes
๐‘ฃโ€ฒ1 + ๐‘ฃโ€ฒ2 cos ๐‘ฅ + ๐‘ฃโ€ฒ
3 sin ๐‘ฅ = 0
๐‘ฃโ€ฒ2 sin ๐‘ฅ + ๐‘ฃโ€ฒ
3 cos ๐‘ฅ = 0
โˆ’๐‘ฃโ€ฒ
2 cos ๐‘ฅ โˆ’ ๐‘ฃโ€ฒ
3 sin ๐‘ฅ = sec ๐‘ฅ .
Solving this set of equations simultaneously, we obtain
๐‘ฃโ€ฒ1 = sec ๐‘ฅ , ๐‘ฃโ€ฒ2 = โˆ’1, ๐‘ฃโ€ฒ
3 = โˆ’ tan ๐‘ฅ .
Thus ๐‘ฃ1 = ln sec ๐‘ฅ + tan ๐‘ฅ , ๐‘ฃ2 = โˆ’๐‘ฅ, ๐‘ฃ3 = ln cos ๐‘ฅ ,
Gives ๐‘ฆ๐‘ = ln sec ๐‘ฅ + tan ๐‘ฅ โˆ’ ๐‘ฅ cos ๐‘ฅ + ln cos ๐‘ฅ sin ๐‘ฅ .
The general solution is therefore
๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘
= ๐‘1 + ๐‘2 cos ๐‘ฅ + ๐‘3 sin ๐‘ฅ + ln sec ๐‘ฅ + tan ๐‘ฅ โˆ’ ๐‘ฅ cos ๐‘ฅ + ln cos ๐‘ฅ sin ๐‘ฅ .
LaplaceTransform
Let ๐‘“(๐‘ฅ) be defined for 0 โ‰ค ๐‘ฅ < โˆž and let ๐‘  denote an arbitrary real variable.
The Laplace transform of ๐‘“(๐‘ฅ), designated by either โ„’{๐‘“(๐‘ฅ)} or ๐น(๐‘ ),is
โ„’ ๐‘“ ๐‘ฅ = ๐น ๐‘  =
0
โˆž
๐‘’โˆ’๐‘ ๐‘ฅ
๐‘“(๐‘ฅ)๐‘‘๐‘ฅ
for all values of ๐‘  for which the improper integral converges. Convergence
occurs when the limit
lim
๐‘…โ†’โˆž 0
๐‘…
๐‘’โˆ’๐‘ ๐‘ฅ
๐‘“(๐‘ฅ)๐‘‘๐‘ฅ
exists. If this limit does not exist, the improper integral diverges and ๐‘“(๐‘ฅ) has no
Laplace transform. When evaluating the integral, the variable ๐‘  is treated as a
constant because the integration is with respect to ๐‘ฅ.
The Laplace transforms for a number of elementary functions can be found in
Annexure of the Book.
โ˜บ (Linearity). If โ„’ ๐‘“ ๐‘ฅ = ๐น ๐‘  and โ„’ ๐‘” ๐‘ฅ = ๐บ ๐‘  , then
for any two constants ๐‘1 and ๐‘2
โ„’ ๐‘1๐‘“ ๐‘ฅ + ๐‘2๐‘” ๐‘ฅ = ๐‘1โ„’ ๐‘“ ๐‘ฅ + ๐‘2โ„’ ๐‘” ๐‘ฅ = ๐‘1๐น(๐‘ ) + ๐‘2๐บ(๐‘ )
โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then for any constant ๐‘Ž, โ„’ ๐‘’๐‘Ž๐‘ฅ๐‘“ ๐‘ฅ = ๐น(๐‘  โˆ’ ๐‘Ž)
โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then for any positive integer ๐‘›, โ„’ ๐‘ฅ๐‘›
๐‘“ ๐‘ฅ = โˆ’1 ๐‘› ๐‘‘๐‘›
๐‘‘๐‘ ๐‘› [๐น ๐‘  ]
โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ) and if lim
๐‘ฅโ†’0
๐‘ฅ>0
๐‘“(๐‘ฅ)
๐‘ฅ
exists, then โ„’
1
๐‘ฅ
๐‘“(๐‘ฅ) = ๐‘ 
โˆž
๐น(๐‘ก) ๐‘‘๐‘ก
โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then โ„’ 0
๐‘ฅ
๐‘“(๐‘ก) ๐‘‘๐‘ก =
1
๐‘ 
๐น(๐‘ )
โ˜บ If ๐‘“(๐‘ฅ) is periodic with period ๐‘ค, that is, ๐‘“ ๐‘ฅ + ๐‘ค = ๐‘“(๐‘ฅ), then
โ„’ ๐‘“ ๐‘ฅ = 0
๐‘ค
๐‘’โˆ’๐‘ ๐‘ฅ
๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ
1 โˆ’ ๐‘’โˆ’๐‘ค๐‘ 
Properties of LaplaceTransforms
Inverse LaplaceTransform
An inverse Laplace transform of ๐น(๐‘ ) designated by โ„’โˆ’1{๐น(๐‘ )}, is another
function ๐‘“(๐‘ฅ) having the property that โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ).
Methodology
The simplest technique for identifying inverse Laplace transforms is to
recognize them, either from memory or from a table.
If ๐น(๐‘ ) is not in a recognizable form, then occasionally it can be transformed
into such a form by algebraic manipulation.
Manipulating Denominators
-The method of completing the square deals with quadratic polynomials
-The method of partial fractions
Manipulating Numerators
A factor ๐‘  โˆ’ ๐‘Ž in the numerator may be written in terms of the factor ๐‘  โˆ’ ๐‘,
where both ๐‘Ž and ๐‘ are constants, through the identity ๐‘  โˆ’ ๐‘Ž = ๐‘  โˆ’ ๐‘ +
(๐‘ โˆ’ ๐‘Ž).
โ™ฅ (Linearity). If the inverse Laplace transforms of two functions ๐น(๐‘ ) and
๐บ(๐‘ ) exist, then for any constants ๐‘1 and๐‘2,
โ„’โˆ’1 ๐‘1๐น ๐‘  + ๐‘2๐บ ๐‘  = ๐‘1โ„’โˆ’1{๐น ๐‘  } + ๐‘2โ„’โˆ’1{๐บ ๐‘  }
Convolution
The convolution of two functions ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is
๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ =
0
๐‘ฅ
๐‘“(๐‘ก)๐‘”(๐‘ฅ โˆ’ ๐‘ก)๐‘‘๐‘ก
Theorem ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = ๐‘”(๐‘ฅ) โˆ— ๐‘“(๐‘ฅ).
Theorem. (Convolution Theorem). If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ) and โ„’ ๐‘” ๐‘ฅ =
๐บ(๐‘ ), then
โ„’ ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = โ„’ ๐‘“ ๐‘ฅ โ„’ ๐‘” ๐‘ฅ = ๐น(๐‘ )๐บ(๐‘ )
The inverse Laplace transform of a product is computed using a
convolution.
โ„’โˆ’1 ๐น(๐‘ )๐บ(๐‘ ) = ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = ๐‘” ๐‘ฅ โˆ— ๐‘“(๐‘ฅ)
If one of the two convolutions in above Equation is simpler to calculate,
then that convolution is chosen when determining the inverse Laplace
transform of a product.

More Related Content

Similar to odes1.pptx

Diffy Q Paper
Diffy Q PaperDiffy Q Paper
Diffy Q Paper
Adan Magana
ย 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
RokiFernandez1
ย 

Similar to odes1.pptx (20)

On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
ย 
E04 06 3943
E04 06 3943E04 06 3943
E04 06 3943
ย 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
ย 
LINEAR DIFFERENTIAL EQUATIONSLINEAR DIFFERENTIAL EQUATIONS .pptx
LINEAR DIFFERENTIAL  EQUATIONSLINEAR DIFFERENTIAL  EQUATIONS  .pptxLINEAR DIFFERENTIAL  EQUATIONSLINEAR DIFFERENTIAL  EQUATIONS  .pptx
LINEAR DIFFERENTIAL EQUATIONSLINEAR DIFFERENTIAL EQUATIONS .pptx
ย 
Integrales definidas y ecuaciones diferenciales
Integrales definidas y ecuaciones diferencialesIntegrales definidas y ecuaciones diferenciales
Integrales definidas y ecuaciones diferenciales
ย 
Diffy Q Paper
Diffy Q PaperDiffy Q Paper
Diffy Q Paper
ย 
Ecuaciones lineales de orden superior
Ecuaciones lineales de orden superiorEcuaciones lineales de orden superior
Ecuaciones lineales de orden superior
ย 
Ch05 2
Ch05 2Ch05 2
Ch05 2
ย 
Linear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuriaLinear equations Class 10 by aryan kathuria
Linear equations Class 10 by aryan kathuria
ย 
Document (28).docx
Document (28).docxDocument (28).docx
Document (28).docx
ย 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
ย 
Solving Systems by Graphing and Substitution
Solving Systems by Graphing and SubstitutionSolving Systems by Graphing and Substitution
Solving Systems by Graphing and Substitution
ย 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
ย 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
ย 
doc
docdoc
doc
ย 
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
ย 
Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..Ecuaciones lineal y homogena..
Ecuaciones lineal y homogena..
ย 
MT102 ะ›ะตะบั† 11
MT102 ะ›ะตะบั† 11MT102 ะ›ะตะบั† 11
MT102 ะ›ะตะบั† 11
ย 
MT102 ะ›ะตะบั† 10
MT102 ะ›ะตะบั† 10MT102 ะ›ะตะบั† 10
MT102 ะ›ะตะบั† 10
ย 

Recently uploaded

Study Consultants in Lahore || ๐Ÿ“ž03094429236
Study Consultants in Lahore || ๐Ÿ“ž03094429236Study Consultants in Lahore || ๐Ÿ“ž03094429236
Study Consultants in Lahore || ๐Ÿ“ž03094429236
Sherazi Tours
ย 
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
Apsara Of India
ย 
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
Apsara Of India
ย 
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Call Girls In Delhi Whatsup 9873940964 Enjoy Unlimited Pleasure
ย 
BERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptxBERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptx
seri bangash
ย 
Visa Consultant in Lahore || ๐Ÿ“ž03094429236
Visa Consultant in Lahore || ๐Ÿ“ž03094429236Visa Consultant in Lahore || ๐Ÿ“ž03094429236
Visa Consultant in Lahore || ๐Ÿ“ž03094429236
Sherazi Tours
ย 

Recently uploaded (20)

Study Consultants in Lahore || ๐Ÿ“ž03094429236
Study Consultants in Lahore || ๐Ÿ“ž03094429236Study Consultants in Lahore || ๐Ÿ“ž03094429236
Study Consultants in Lahore || ๐Ÿ“ž03094429236
ย 
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
08448380779 Call Girls In Bhikaji Cama Palace Women Seeking Men
ย 
"Embark on the Ultimate Adventure: Top 10 Must-Visit Destinations for Thrill-...
"Embark on the Ultimate Adventure: Top 10 Must-Visit Destinations for Thrill-..."Embark on the Ultimate Adventure: Top 10 Must-Visit Destinations for Thrill-...
"Embark on the Ultimate Adventure: Top 10 Must-Visit Destinations for Thrill-...
ย 
Hire ๐Ÿ’• 8617697112 Chamba Call Girls Service Call Girls Agency
Hire ๐Ÿ’• 8617697112 Chamba Call Girls Service Call Girls AgencyHire ๐Ÿ’• 8617697112 Chamba Call Girls Service Call Girls Agency
Hire ๐Ÿ’• 8617697112 Chamba Call Girls Service Call Girls Agency
ย 
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
๐Ÿ’•๐Ÿ“ฒ09602870969๐Ÿ’“Girl Escort Services Udaipur Call Girls in Chittorgarh Haldighati
ย 
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
Night 7k Call Girls Noida Sector 93 Escorts Call Me: 8448380779
ย 
High Profile ๐Ÿ” 8250077686 ๐Ÿ“ž Call Girls Service in Siri Fort๐Ÿ‘
High Profile ๐Ÿ” 8250077686 ๐Ÿ“ž Call Girls Service in Siri Fort๐Ÿ‘High Profile ๐Ÿ” 8250077686 ๐Ÿ“ž Call Girls Service in Siri Fort๐Ÿ‘
High Profile ๐Ÿ” 8250077686 ๐Ÿ“ž Call Girls Service in Siri Fort๐Ÿ‘
ย 
โคPersonal Contact Number Varanasi Call Girls 8617697112๐Ÿ’ฆโœ….
โคPersonal Contact Number Varanasi Call Girls 8617697112๐Ÿ’ฆโœ….โคPersonal Contact Number Varanasi Call Girls 8617697112๐Ÿ’ฆโœ….
โคPersonal Contact Number Varanasi Call Girls 8617697112๐Ÿ’ฆโœ….
ย 
Discover Mathura And Vrindavan A Spritual Journey.pdf
Discover Mathura And Vrindavan A Spritual Journey.pdfDiscover Mathura And Vrindavan A Spritual Journey.pdf
Discover Mathura And Vrindavan A Spritual Journey.pdf
ย 
08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking Men08448380779 Call Girls In Shahdara Women Seeking Men
08448380779 Call Girls In Shahdara Women Seeking Men
ย 
08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking Men08448380779 Call Girls In Chirag Enclave Women Seeking Men
08448380779 Call Girls In Chirag Enclave Women Seeking Men
ย 
ITALY - Visa Options for expats and digital nomads
ITALY - Visa Options for expats and digital nomadsITALY - Visa Options for expats and digital nomads
ITALY - Visa Options for expats and digital nomads
ย 
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
๐Ÿ”ฅHOT๐Ÿ”ฅ๐Ÿ“ฒ9602870969๐Ÿ”ฅProstitute Service in Udaipur Call Girls in City Palace Lake...
ย 
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 18 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
ย 
Kanpur Call Girls Service โ˜Ž ๏ธ82500โ€“77686 โ˜Ž๏ธ Enjoy 24/7 Escortย Service
Kanpur Call Girls Service โ˜Ž ๏ธ82500โ€“77686 โ˜Ž๏ธ Enjoy 24/7 Escortย ServiceKanpur Call Girls Service โ˜Ž ๏ธ82500โ€“77686 โ˜Ž๏ธ Enjoy 24/7 Escortย Service
Kanpur Call Girls Service โ˜Ž ๏ธ82500โ€“77686 โ˜Ž๏ธ Enjoy 24/7 Escortย Service
ย 
Night 7k to 12k Daman Call Girls ๐Ÿ‘‰๐Ÿ‘‰ 8617697112โญโญ 100% Genuine Escort Service ...
Night 7k to 12k Daman Call Girls ๐Ÿ‘‰๐Ÿ‘‰ 8617697112โญโญ 100% Genuine Escort Service ...Night 7k to 12k Daman Call Girls ๐Ÿ‘‰๐Ÿ‘‰ 8617697112โญโญ 100% Genuine Escort Service ...
Night 7k to 12k Daman Call Girls ๐Ÿ‘‰๐Ÿ‘‰ 8617697112โญโญ 100% Genuine Escort Service ...
ย 
Book Cheap Flight Tickets - TraveljunctionUK
Book  Cheap Flight Tickets - TraveljunctionUKBook  Cheap Flight Tickets - TraveljunctionUK
Book Cheap Flight Tickets - TraveljunctionUK
ย 
BERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptxBERMUDA Triangle the mystery of life.pptx
BERMUDA Triangle the mystery of life.pptx
ย 
Visa Consultant in Lahore || ๐Ÿ“ž03094429236
Visa Consultant in Lahore || ๐Ÿ“ž03094429236Visa Consultant in Lahore || ๐Ÿ“ž03094429236
Visa Consultant in Lahore || ๐Ÿ“ž03094429236
ย 
Genesis 1:6 || Meditate the Scripture daily verse by verse
Genesis 1:6  ||  Meditate the Scripture daily verse by verseGenesis 1:6  ||  Meditate the Scripture daily verse by verse
Genesis 1:6 || Meditate the Scripture daily verse by verse
ย 

odes1.pptx

  • 2. Course Outlines Week Activity 1 Basic Concepts and Ideas, Differential Equations and their Classifications 2 Formation of Differential Equations, Initial and Boundary Conditions, Geometrical Meaning of yโ€™=f(x,y), Separable Differential Equations 3 Homogeneous Equations, Differential Equations reducible to Homogeneous Form, Exact Equations, Integrating Factors 4 Linear Equations, Bernoulli Equations, Orthogonal Trajectories of Curves, Homogeneous Linear Equations of Second Order, Differential Operators 5 Euler-Cauchy Equation, Nonhomogeneous Linear Equations, Reduction of Order, Existance and Uniqueness Theory,Wronskian 6 Variation of Parameters
  • 3. 7 Higher Order Differential Equations, Higher Order Nonhomogeneous Equations, Introduction to Vectors, Matrices, Eigenvalues 8 Homogeneous Systems with Constant Coefficients, Phase Plane, Critical Points, Criteria for Critical Points 9 Stability, Nonhomogeneous Linear Systems, Power Series Method,Theory of Power Series Method, Legendre Equations 10 Legendre Polynomials, Frobenius Method, 11 Laplace Transforms, Properties of Laplace Transforms, Table of Some Laplace Transforms, Inverse Transform, Linearity, Shifting 12 Transforms of Derivative and Integral, Differential Equations Solution of InitialValue Problems
  • 4. Basic Concepts Equation: Equations describe the relations between the dependent and independent variables. An equal sign "=" is required in every equation. Differential Equations: Equations that involve dependent variables and their derivatives with respect to the independent variables are called differential equations. Example: The following are differential equations involving the unknown function y. ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 2 = 0, ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 + ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘’๐‘ฅ, ๐œ•2๐‘ฆ ๐œ•๐‘ฅ2 = ๐œ•๐‘ฆ ๐œ•๐‘ก .
  • 5. Some Other Examples: Newtonโ€™s Second Law of Motion Maxwell Equations Kirchhoffโ€™s Laws Heat Equation Wave Equation Ordinary Differential Equation: Differential equations that involve only one independent variable are called ordinary differential equations. Partial Differential Equation: Differential equations that involve two or more independent variables are called partial differential equations. Examples: Equations 1 and 2 are examples of ordinary differential equations, since the unknown function y depends solely on the variable x. Equation 3 is a partial differential equation, since y depends on both the independent variables t and x.
  • 6. Order: The order of a differential equation is the highest derivative that appears in the differential equation. Degree: The degree of a differential equation is the power of the highest derivative term. Linear Equations: A differential equation is called linear if there are no multiplications among dependent variables and their derivatives. In other words, all coefficients are functions of independent variables. Non-linear: Differential equations that do not satisfy the definition of linear are non-linear.
  • 7. Equation Indepen-dent Variable Depen-dent Variable Order Degree ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ )2+2 = 0 ๐‘ฅ ๐‘ฆ 1 2 ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 + ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘’๐‘ฅ ๐‘ฅ ๐‘ฆ 2 1 ๐‘ง(๐‘–๐‘ฃ) + ๐‘ง" = โˆ’y ๐‘ฆ ๐‘ง 4 1 ๐‘ฆโ€ฒ + ๐‘Ž๐‘ฆ = ๐‘๐‘ก ๐‘ก ๐‘ฆ 1 1 ๐‘“" + ๐‘“โ€ฒ + ๐‘”(๐‘ก)๐‘“ = โ„Ž(๐‘ก) ๐‘ก ๐‘“ 2 1
  • 8. Linear Homogeneous: A differential equation is homogeneous if every single term contains the dependent variables or their derivatives. ๐‘Ž๐‘› ๐‘ก ๐‘ฆ(๐‘›) ๐‘ก + ๐‘Ž๐‘›โˆ’1 ๐‘ก ๐‘ฆ(๐‘›โˆ’1) ๐‘ก + โ‹ฏ + ๐‘Ž1 ๐‘ก ๐‘ฆโ€ฒ ๐‘ก + ๐‘Ž0 ๐‘ก ๐‘ฆ(๐‘ก) = 0. Linear Non-homogeneous: Differential equations which do not satisfy the definition of homogeneous are considered to be non- homogeneous. ๐‘Ž๐‘› ๐‘ก ๐‘ฆ(๐‘›) ๐‘ก + ๐‘Ž๐‘›โˆ’1 ๐‘ก ๐‘ฆ(๐‘›โˆ’1) ๐‘ก + โ‹ฏ + ๐‘Ž1 ๐‘ก ๐‘ฆโ€ฒ ๐‘ก + ๐‘Ž0 ๐‘ก ๐‘ฆ(๐‘ก) = ๐‘”(๐‘ก).
  • 9. Solutions General Solution: Solutions obtained from integrating the differential equations are called general solutions. The general solution of a order ordinary differential equation contains arbitrary constants resulting from integrating times. Particular Solution: Particular solutions are the solutions obtained by assigning specific values to the arbitrary constants in the general solutions. Singular Solutions: Solutions that can not be expressed by the general solutions are called singular solutions.
  • 10. Explicit Solution: Any solution that is given in the form y = y (independent variable). Examples: ๐ด ๐‘Ÿ = ๐œ‹๐‘Ÿ2 + ๐‘, ๐‘ฆ ๐‘ก = ๐‘’โˆ’๐‘ก + ๐‘ etc. Implicit Solution: Any solution that isnโ€™t in explicit form. Examples:๐‘ฆ2 ๐‘ฅ2 = ๐‘, sin ๐‘ฅ๐‘ฆ = ๐‘, ๐‘ฅ๐‘’๐‘ฆ = ๐‘ etc.
  • 11. Conditions Initial Condition: Constrains that are specified at the initial point, generally time point, are called initial conditions. Problems with specified initial conditions are called initial value problems. Examples: yโ€™+y=0 y(0)=1, zโ€™=1, z(1)=-1. Boundary Condition: Constrains that are specified at the boundary points, generally space points, are called boundary conditions. Problems with specified boundary conditions are called boundary value problems. Examples: zโ€+zโ€™+z=1, z(0)=2, z(2)=-1, fโ€+f=0, f(0)=0, f(๏ฐ/2)=1.
  • 12. Worksheet 1 Equation Independent Variable Dependent Variable Order Degree Homo-genity ( ๐‘‘๐‘ฆ ๐‘‘๐‘ง )3+2y = 0 ๐‘‘2๐‘ฆ ๐‘‘๐‘ฅ2 + ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘’๐‘ฅ ๐‘ง(๐‘–๐‘ฃ) + ๐‘ง" = 2 ๐‘โ€ฒ + ๐‘Ž๐‘ = ๐‘๐‘ก ๐‘“" + ๐‘“ + ๐‘”(๐‘ก) = โ„Ž(๐‘ก)
  • 13. Worksheet 2 Equation Solution to Check ๐‘ฆโ€ฒโ€ฒ + 4๐‘ฆ = 0 ๐‘ฆ(๐‘ฅ) = ๐‘1sin 2๐‘ฅ + ๐‘2cos2๐‘ฅ (๐‘ฆโ€ฒ)4 + ๐‘ฆ2 = โˆ’1 ๐‘ฆ = ๐‘ฅ2 โˆ’ 1 ๐‘ฆโ€ฒ = ๐‘Ž๐‘ฆ, ๐‘ฆ(0) = 1 ๐‘ฆ(๐‘ก) = ๐‘’๐‘Ž๐‘ก ๐‘ฆโ€ฒ + ๐‘ฆ = 10 ๐‘ฆ ๐‘ก = 10 โˆ’ ๐‘๐‘’ โˆ’ ๐‘ก ๐‘ค๐‘ก + 3๐‘ค๐‘ฅ = 0 ๐‘ค(๐‘ฅ, ๐‘ก) = 1/(1 + (๐‘ฅ โˆ’ 3๐‘ก)2) ๐‘ฅโ€™โ€™ + 4x = 0 ๐‘ฅ = cos(2๐‘ก) + sin(2๐‘ก) + ๐‘ Check whether the given expression a solution of the corresponding equation?
  • 14. First Order Differential Equations Standard Form: Standard form for a first-order differential equation in the unknown function y(x) is yโ€™=f(x,y). Interpretation: The form shows the slope of the tangent at each point of the xy-plane. Thus the standard form of the first order differential equation give the slope field. Solving the equation gives the original curve family having the slope field expressed by the differential equation.
  • 15. Separable Equations Form of Equation: ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘” ๐‘ฆ ๐‘‘๐‘ฆ. Method of Solution: Integrate both sides will give the solution of such type of equations.
  • 16. Examples Exercise: Solve ๐‘‘๐‘ ๐‘‘๐‘ก = 1 โˆ’ ๐‘2 ๐‘ก . Example 1: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฆ ๐‘ฅ Example 2: Solve ๐’…๐’› ๐’…๐’• = ๐Ÿ ๐’›๐’†๐’• Solution: ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฆ ๐‘ฅ ๐‘‘๐‘ฆ ๐‘ฆ = ๐‘‘๐‘ฅ ๐‘ฅ ๐‘‘๐‘ฆ ๐‘ฆ = ๐‘‘๐‘ฅ ๐‘ฅ ln ๐‘ฆ = ln ๐‘ฅ + ๐‘ Solution: ๐‘‘๐‘ง ๐‘‘๐‘ก = 1 ๐‘ง๐‘’๐‘ก ๐‘ง๐‘‘๐‘ง = ๐‘‘๐‘ก ๐‘’๐‘ก ๐‘ง๐‘‘๐‘ง = ๐‘‘๐‘ก ๐‘’๐‘ก ๐‘ง2 2 = โˆ’๐‘’โˆ’๐‘ก + ๐‘
  • 17. Homogeneous Equations (of degree zero) Form of Equation: ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘“ ๐‘ฅ, ๐‘ฆ ๐‘“ ๐‘ฅ, ๐‘ฆ is a function homogeneous of degree zero, i.e., ๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ก0๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘“ ๐‘ฅ, ๐‘ฆ . A function homogeneous of degree n can be defined as ๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ก๐‘›๐‘“ ๐‘ฅ, ๐‘ฆ . Method of Solution: Substituting ๐‘ฆ = ๐‘ฃ๐‘ฅ, ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฃ + ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ , reduces the equation in form separable in variables v and x. Integrate both sides and then substituting the value of v will give the solution.
  • 18. Examples Example 1: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐’š โˆ’ ๐’™ ๐’š + ๐’™ Example 2: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฆ ๐‘ฅ Solution: ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฆ โˆ’ ๐‘ฅ ๐‘ฆ + ๐‘ฅ ๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ฆ โˆ’ ๐‘ฅ ๐‘ฆ + ๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฆ โˆ’ ๐‘ฅ ๐‘ฆ + ๐‘ฅ = ๐‘ฆ ๐‘ฅ โˆ’ 1 ๐‘ฆ ๐‘ฅ + 1 Put ๐‘ฆ = ๐‘ฃ๐‘ฅ, ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฃ + ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ . ๐‘ฃ + ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ = ๐‘ฃ โˆ’ 1 ๐‘ฃ + 1 ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ = โˆ’1 โˆ’ ๐‘ฃ2 ๐‘ฃ + 1 (๐‘ฃ + 1)๐‘‘๐‘ฃ 1 + ๐‘ฃ2 = โˆ’ ๐‘‘๐‘ฅ ๐‘ฅ ๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฃ + 1 2 ln 1 + ๐‘ฃ2 = โˆ’ ln ๐‘ฅ + ๐‘ ๐‘ก๐‘Ž๐‘›โˆ’1 ( ๐‘ฆ ๐‘ฅ ) + 1 2 ln 1 + ( ๐‘ฆ ๐‘ฅ )2 = โˆ’ ln ๐‘ฅ + ๐‘ Solution: ๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘ฆ ๐‘ฅ ๐‘“ ๐‘ก๐‘ฅ, ๐‘ก๐‘ฆ = ๐‘ก๐‘ฆ ๐‘ก๐‘ฅ = ๐‘ฆ ๐‘ฅ = ๐‘“ ๐‘ฅ, ๐‘ฆ Put ๐‘ฆ = ๐‘ฃ๐‘ฅ, ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฃ + ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ . ๐‘ฃ + ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ = ๐‘ฃ, ๐‘ฅ ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ = 0, ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ = 0 Integrating we get ๐‘ฃ = ๐‘ or ๐‘ฆ ๐‘ฅ = ๐‘ , ๐‘ฆ = ๐‘๐‘ฅ. Exercise: Solve ๐’…๐’š ๐’…๐’™ = ๐’™ ๐’š
  • 19. First Order Linear Equations Form of Equation: ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ ๐‘ฆ = ๐‘ž ๐‘ฅ . Method of Solution: The integrating factor is I.F.=๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ . Multiplying the equation with this factor gives ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ ๐‘ฅ ๐‘ฆ = ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ž ๐‘ฅ ๐‘‘(๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ) ๐‘‘๐‘ฅ = ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ž ๐‘ฅ ๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ž ๐‘ฅ ๐‘‘๐‘ฅ Solving this gives the solution y.
  • 20. Examples Exercise: Solve ๐‘‘๐‘ ๐‘‘๐‘ก + ๐‘๐‘ก = 3. Example 1: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 3๐‘ฆ = ๐‘ฅ Example 2: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘ฆ ๐‘ฅ Solution: Here ๐‘ ๐‘ฅ = 3, ๐‘ž ๐‘ฅ = ๐‘ฅ. Substituting values in ๐‘ฆ๐‘’ 3๐‘‘๐‘ฅ = ๐‘ฅ๐‘’ 3๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’3๐‘ฅ = ๐‘ฅ๐‘’3๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’3๐‘ฅ = ๐‘ฅ๐‘’3๐‘ฅ 3 + ๐‘’3๐‘ฅ 9 + ๐‘ Solution: ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ โˆ’ ๐‘ฆ ๐‘ฅ = 0 ๐‘ ๐‘ฅ = โˆ’ 1 ๐‘ฅ , ๐‘ž ๐‘ฅ = 0. Substituting values in ๐‘ฆ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘’ ๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ž ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ โˆ’ 1 ๐‘ฅ๐‘‘๐‘ฅ = 0 ๐‘‘๐‘ฅ ๐‘ฆ๐‘’โˆ’ln |๐‘ฅ| = ๐‘ ๐‘ฆ ๐‘ฅ = ๐‘
  • 21. Bernoulli Equations Form of Equation: ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ ๐‘ฆ = ๐‘ž ๐‘ฅ ๐‘ฆ๐‘› , ๐‘› โˆˆ โ„. Method of Solution: The substitution ๐‘ง = ๐‘ฆ1โˆ’๐‘› transform the Bernoulliโ€™s equation into a linear equation in z. This linear equation, after solving and back substituting the value of z gives the solution of the Bernoulliโ€™s equation.
  • 22. Examples Example 1: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 3๐‘ฆ = ๐‘ฅ๐‘ฆ2 Exercise: Solve ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ2 Solution: Put ๐‘ง = ๐‘ฆ1โˆ’2 = 1 ๐‘ฆ โŸน ๐‘ฆ = 1 ๐‘ง , ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = โˆ’ 1 ๐‘ง2 ๐‘‘๐‘ง ๐‘‘๐‘ฅ ๐‘‘๐‘ง ๐‘‘๐‘ฅ โˆ’ 3๐‘ง = โˆ’๐‘ฅ ๐‘ ๐‘ฅ = โˆ’3 ๐‘ž ๐‘ฅ = โˆ’๐‘ฅ. Substituting values in ๐‘ง๐‘’โˆ’ 3๐‘‘๐‘ฅ = โˆ’๐‘ฅ๐‘’โˆ’ 3๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘’โˆ’3๐‘ฅ ๐‘ฆ = โˆ’ ๐‘ฅ๐‘’โˆ’3๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’3๐‘ฅ = 1/( ๐‘ฅ๐‘’3๐‘ฅ 3 + ๐‘’3๐‘ฅ 9 ) + ๐‘ Solution: Put ๐‘ง = ๐‘ฆ1โˆ’2 = 1 ๐‘ฆ โŸน ๐‘ฆ = 1 ๐‘ง , ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = โˆ’ 1 ๐‘ง2 ๐‘‘๐‘ง ๐‘‘๐‘ฅ ๐‘‘๐‘ง ๐‘‘๐‘ฅ โˆ’ ๐‘ฅ๐‘ง = โˆ’๐‘ฅ ๐‘ ๐‘ฅ = โˆ’๐‘ฅ, ๐‘ž ๐‘ฅ = โˆ’๐‘ฅ. Substituting values in ๐‘ง๐‘’โˆ’ ๐‘ฅ๐‘‘๐‘ฅ = โˆ’๐‘ฅ๐‘’โˆ’ ๐‘ฅ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ2 2 = โˆ’๐‘ฅ๐‘’ โˆ’๐‘ฅ2 2 ๐‘‘๐‘ฅ ๐‘ฆ๐‘’ โˆ’๐‘ฅ2 2 = ๐‘’ โˆ’๐‘ฅ2 2 +c
  • 23. A differential equation ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0. is exact if there exists a function ๐‘”(๐‘ฅ, ๐‘ฆ) such that ๐‘‘๐‘” ๐‘ฅ, ๐‘ฆ = ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ. Test for exactness: If ๐‘€(๐‘ฅ, ๐‘ฆ) and ๐‘(๐‘ฅ, ๐‘ฆ) are continuous functions and have continuous first partial derivatives on some rectangle of the ๐‘ฅ๐‘ฆ- plane, then ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0 is exact if and only if ๐œ•๐‘€(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฆ = ๐œ•๐‘(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฅ . How to obtain an exact equation from a function? ๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘, ๐œ•๐‘“(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฅ ๐‘‘๐‘ฅ + ๐œ•๐‘“(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฆ ๐‘‘๐‘ฆ = 0, ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0. Exact Equations
  • 24. Method of Solution To solve an exact equation, first solve the equations ๐œ•๐‘“(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฅ = ๐‘€ ๐‘ฅ, ๐‘ฆ , ๐œ•๐‘“(๐‘ฅ, ๐‘ฆ) ๐œ•๐‘ฆ = ๐‘(๐‘ฅ, ๐‘ฆ) for ๐‘“(๐‘ฅ, ๐‘ฆ). The solution to the exact equation is then given implicitly by ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘, where ๐‘ represents an arbitrary constant.
  • 25. Examples Example 1: Make an exact ODE using ๐‘ข ๐‘ฅ, ๐‘ฆ = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3 Sol: If ๐‘ข(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3 = ๐‘, then ๐‘‘๐‘ข = (1 + 2๐‘ฅ๐‘ฆ3)๐‘‘๐‘ฅ + 3๐‘ฅ2๐‘ฆ2๐‘‘๐‘ฆ = 0 ๐‘ฆโ€ฒ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’(1 + 2๐‘ฅ๐‘ฆ3)/3๐‘ฅ2๐‘ฆ2
  • 26. Example 2: Solve cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฆ = 0. Sol: Here M = cos ๐‘ฅ + ๐‘ฆ , ๐‘ = 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ Since ๐œ•๐‘€ ๐œ•๐‘ฆ = โˆ’ sin ๐‘ฅ + ๐‘ฆ , ๐œ•๐‘ ๐œ•๐‘ฅ = โˆ’ sin ๐‘ฅ + ๐‘ฆ , therefore equation is exact. ๐‘ข ๐‘ฅ, ๐‘ฆ = cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘˜ ๐‘ฆ = sin ๐‘ฅ + ๐‘ฆ + ๐‘˜ ๐‘ฆ ๐œ•๐‘ข ๐œ•๐‘ฆ = cos(๐‘ฅ + ๐‘ฆ) + ๐‘‘๐‘˜(๐‘ฆ) ๐‘‘๐‘ฆ = 3๐‘ฆ2 + 2๐‘ฆ + cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘˜(๐‘ฆ) ๐‘‘๐‘ฆ = 3๐‘ฆ2 + 2๐‘ฆ โ‡’ ๐‘˜ ๐‘ฆ = ๐‘ฆ3 + ๐‘ฆ2 +c ๐‘ข ๐‘ฅ, ๐‘ฆ = cos ๐‘ฅ + ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘˜ ๐‘ฆ = sin ๐‘ฅ + ๐‘ฆ + ๐‘ฆ3 + ๐‘ฆ2+c
  • 27. Integrating Factors If an equation is inexact (not exact), it is possible to transform Such equation into an exact differential equation by a judicious multiplication. A function ๐ผ(๐‘ฅ, ๐‘ฆ) is an integrating factor for an inexact equation if the equation ๐ผ ๐‘ฅ, ๐‘ฆ ๐‘€ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฅ + ๐‘ ๐‘ฅ, ๐‘ฆ ๐‘‘๐‘ฆ = 0 is an exact equation. The famous formulas to obtain an integrating factor are as follows: If 1 ๐‘(๐‘ฅ,๐‘ฆ) ๐œ•๐‘€(๐‘ฅ,๐‘ฆ) ๐œ•๐‘ฆ โˆ’ ๐œ•๐‘(๐‘ฅ,๐‘ฆ) ๐œ•๐‘ฅ โ‰ก ๐‘” ๐‘ฅ , then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ = ๐‘’ ๐‘”(๐‘ฅ)๐‘‘๐‘ฅ . If 1 ๐‘€(๐‘ฅ,๐‘ฆ) ๐œ•๐‘€(๐‘ฅ,๐‘ฆ) ๐œ•๐‘ฆ โˆ’ ๐œ•๐‘(๐‘ฅ,๐‘ฆ) ๐œ•๐‘ฅ โ‰ก ๐‘“ ๐‘ฆ , then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ = ๐‘’โˆ’ ๐‘“(๐‘ฆ)๐‘‘๐‘ฆ . If M = yf xy , N = xg(xy), then ๐ผ. ๐น. = ๐ผ ๐‘ฅ, ๐‘ฆ = 1 ๐‘ฅ๐‘€โˆ’๐‘ฆ๐‘ .
  • 28.
  • 29. Examples and Exercises Make an exact differential equation from the functions ๐‘“ ๐‘ฅ, ๐‘ฆ = ๐‘ฅ2 ๐‘ฆ + 6๐‘ฆ โˆ’ ๐‘ฆ3 . ๐‘ข ๐‘ฅ, ๐‘ฆ = ๐‘ฅ + ๐‘ฅ2๐‘ฆ3. Check for the exactness and solve ๐‘ฆ2 โˆ’ 2๐‘ฅ ๐‘‘๐‘ฅ + 2๐‘ฅ + 1 ๐‘‘๐‘ฆ = 0, 3๐‘ฅ2๐‘ฆ โˆ’ 1 ๐‘‘๐‘ฅ + ๐‘ฅ3 + 6๐‘ฆ โˆ’ ๐‘ฆ2 ๐‘‘๐‘ฆ = 0, ๐‘ฆ 0 = 3, 2๐‘ฅ๐‘ฆ โˆ’ 9๐‘ฅ2 + 2๐‘ฆ + ๐‘ฅ2 + 1 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 0, 2๐‘ฅ๐‘ฆ โˆ’ 9๐‘ฅ2 + 2๐‘ฆ + ๐‘ฅ2 + 1 ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 0, ๐‘ฆ 0 = โˆ’3, 1 + ๐‘ก2 ๐‘ฆโ€ฒ + 4๐‘ก๐‘ฆ = 1 + ๐‘ก2 โˆ’2 , y 0 = 1.
  • 30. OrthogonalTrajectories Given a one-parameter family of curves ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0. A curve that intersects each member of the family at right angles (orthogonally) is called an orthogonal trajectory of the family. The one-parameter families ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0 and ๐บ(๐‘ฅ, ๐‘ฆ, ๐‘˜) = 0 are orthogonal trajectories if each member of one family is an orthogonal trajectory of the other family. A procedure for finding a family of orthogonal trajectories ๐บ(๐‘ฅ, ๐‘ฆ, ๐‘˜) = 0 for a given family of curves ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0 is as follows: Step 1. Determine the differential equation for the given family ๐น(๐‘ฅ, ๐‘ฆ, ๐‘) = 0. Step 2. Replace ๐‘ฆ0 in that equation by โˆ’1/๐‘ฆ0; the resulting equation is the differential equation for the family of orthogonal trajectories. Step 3. Find the general solution of the new differential equation. This is the family of orthogonal trajectories.
  • 31. Example Find family of curves orthogonal to one parameter family of quadratic parabolas ๐‘ฆ = ๐‘๐‘ฅ^2. Solution: ๐‘ฆ = ๐‘๐‘ฅ2 ๐น ๐‘ฅ, ๐‘ฆ, ๐‘ = ๐‘ฆ โˆ’ ๐‘๐‘ฅ2 = 0 ๐‘ฆ ๐‘ฅ2 = ๐‘ โ‡’ ๐‘ฅ2 ๐‘ฆโ€ฒ โˆ’ 2๐‘ฅ๐‘ฆ ๐‘ฅ4 = 0 โ‡’ ๐‘ฆโ€ฒ ๐‘œ๐‘™๐‘‘ = 2๐‘ฆ ๐‘ฅ . Now the slope of the family of new curves is ๐‘ฆโ€ฒ ๐‘›๐‘’๐‘ค = โˆ’1 ๐‘ฆโ€ฒ ๐‘œ๐‘™๐‘‘ = โˆ’1 2๐‘ฆ ๐‘ฅ = โˆ’๐‘ฅ 2๐‘ฆ . 2๐‘ฆ๐‘ฆโ€ฒ = โˆ’๐‘ฅ 2 ๐‘ฆ๐‘ฆโ€ฒ๐‘‘๐‘ฆ = โˆ’ ๐‘ฅ๐‘‘๐‘ฅ ๐‘ฆ2 = โˆ’ ๐‘ฅ2 2 + ๐‘ is required family of curves.
  • 32. Exercises 1. Find the family of orthogonal trajectories of: ๐‘ฆ = ๐ถ๐‘ฅ2 + 2 Answer: ๐‘ฅ2 + 2๐‘ฆ2 โˆ’ 8๐‘ฆ = ๐ถ 2. Find the orthogonal trajectories of the family of parabolas with vertical axis and vertex at the point (โˆ’1, 3). Answer: (๐‘ฅ + 1)2+2(๐‘ฆ โˆ’ 3)2 = ๐ถ
  • 33. Linear Second Order DEs The most general linear second order differential equation is in the form. ๐‘ ๐‘ก ๐‘ฆโ€ฒโ€ฒ + ๐‘ž ๐‘ก ๐‘ฆโ€ฒ + ๐‘Ÿ ๐‘ก ๐‘ฆ = ๐‘” ๐‘ก . The constant coefficient linear second order differential equation is ๐‘Ž๐‘ฆโ€ฒโ€ฒ + ๐‘๐‘ฆโ€ฒ + ๐‘๐‘ฆ = ๐‘”(๐‘ก) where a, b, c are all constants. Initially we will make our life easier by looking at differential equations with ๐‘” ๐‘ก = 0. When ๐‘” ๐‘ก = 0 we call the differential equation homogeneous and when ๐‘” ๐‘ก โ‰  0 we call the differential equation nonhomogeneous.
  • 34. Solving Second Order, Linear, Homogeneous ODE with Constant Coefficients Consider the solution of the type ๐‘ฆ ๐‘ก = ๐‘’๐‘Ÿ๐‘ก . Substituting in ๐‘Ž๐‘ฆโ€ฒโ€ฒ + ๐‘๐‘ฆโ€ฒ + ๐‘๐‘ฆ = 0 We have ๐‘Ž ๐‘Ÿ2๐‘’๐‘Ÿ๐‘ก + ๐‘ ๐‘Ÿ๐‘’๐‘Ÿ๐‘ก + ๐‘๐‘’๐‘Ÿ๐‘ก = 0 ๐‘Ž๐‘Ÿ2 + ๐‘๐‘Ÿ + ๐‘ = 0 As ๐‘’๐‘Ÿ๐‘ก โ‰  0. This equation is typically called the characteristic equation This will be a quadratic equation and so we should expect two roots, r1 and r2. Once we have these two roots we have two solutions to the differential equation. ๐‘ฆ1 ๐‘ก = ๐‘’๐‘Ÿ1๐‘ก and ๐‘ฆ2 ๐‘ก = ๐‘’๐‘Ÿ2๐‘ก.
  • 35. The roots will have three possible forms. These are Real, distinct roots, ๐‘Ÿ1 โ‰  ๐‘Ÿ2 . Complex root, ๐‘Ÿ1 = ๐œ† + ๐‘–๐œ‡, ๐‘Ÿ2 = ๐œ† โˆ’ ๐‘–๐œ‡ . Double roots, ๐‘Ÿ1 = ๐‘Ÿ2 = ๐‘Ÿ. Real Roots Example: Find two solutions to ๐‘ฆโ€ฒโ€ฒ โˆ’ 9๐‘ฆ = 0. Solution:The characteristic equation is ๐‘Ÿ2 โˆ’ 9 = 0 โ‡’ ๐‘Ÿ = ยฑ3. The two roots are 3 and -3.Therefore, two solutions are ๐‘ฆ1 ๐‘ก = ๐‘’3๐‘ก and ๐‘ฆ2 ๐‘ก = ๐‘’โˆ’3๐‘ก . The general solution is ๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’3๐‘ก + ๐‘2๐‘’โˆ’3๐‘ก
  • 36. Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ + 11๐‘ฆโ€ฒ + 24๐‘ฆ = 0, ๐‘ฆ 0 = 0, ๐‘ฆโ€ฒ 0 = โˆ’7. Solution:The characteristic equation is ๐‘Ÿ2 + 11๐‘Ÿ + 24 = 0 โ‡’ ๐‘Ÿ + 8 ๐‘Ÿ + 3 = 0 โ‡’ ๐‘Ÿ = โˆ’8, โˆ’3. The general solution and its derivative is ๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’โˆ’3๐‘ก + ๐‘2๐‘’โˆ’8๐‘ก ๐‘ฆโ€ฒ๐‘ ๐‘ก = โˆ’3๐‘1๐‘’โˆ’3๐‘ก โˆ’ 8๐‘2๐‘’โˆ’8๐‘ก Putting the initial conditions, we have the following system of equations 0 = ๐‘ฆ๐‘ 0 = ๐‘1 + ๐‘2 โˆ’7 = ๐‘ฆโ€ฒ๐‘ 0 = โˆ’3๐‘1 โˆ’ 8๐‘2 Solving we get ๐‘1 = โˆ’7 5 and ๐‘2 = 7 5 .Thus the solution is ๐‘ฆ๐‘ ๐‘ก = โˆ’7 5 ๐‘’โˆ’3๐‘ก + 7 5 ๐‘’โˆ’8๐‘ก
  • 37. Complex Roots Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆโ€ฒ + 9๐‘ฆ = 0, ๐‘ฆ 0 = 0, ๐‘ฆโ€ฒ 0 = โˆ’8. Solution:The characteristic equation is ๐‘Ÿ2 โˆ’ 4๐‘Ÿ + 9 = 0 โ‡’ ๐‘Ÿ1,2 = 2 ยฑ 5๐‘–. The general solution and its derivative is ๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’2๐‘ก cos 5๐‘ก + ๐‘2๐‘’2๐‘ก sin 5๐‘ก Putting the initial conditions, we have the following system of equations 0 = ๐‘ฆ๐‘ 0 = ๐‘1 so ๐‘ฆ๐‘ ๐‘ก = ๐‘2๐‘’2๐‘ก sin 5๐‘ก ๐‘ฆโ€ฒ๐‘ ๐‘ก = 2๐‘2๐‘’2๐‘ก sin 5๐‘ก + 5๐‘2๐‘’2๐‘ก cos 5๐‘ก ๐‘ฆโ€ฒ๐‘ 0 = 5๐‘2 โ‡’ โˆ’8 = 5๐‘2 โ‡’ ๐‘2 = โˆ’8 5 Thus the solution is ๐‘ฆ ๐‘ก = โˆ’8 5 ๐‘’2๐‘ก sin 5๐‘ก
  • 38. Repeated Roots Example: Solve the following IVP ๐‘ฆโ€ฒโ€ฒ โˆ’ 4๐‘ฆโ€ฒ + 4๐‘ฆ = 0, ๐‘ฆ 0 = 12, ๐‘ฆโ€ฒ 0 = โˆ’3. Solution:The characteristic equation is ๐‘Ÿ2 โˆ’ 4๐‘Ÿ + 4 = 0 โ‡’ ๐‘Ÿ โˆ’ 2 2 = 0 โ‡’ ๐‘Ÿ = 2,2. The general solution and its derivative is ๐‘ฆ๐‘ ๐‘ก = ๐‘1๐‘’2๐‘ก + ๐‘2๐‘ก๐‘’2๐‘ก ๐‘ฆโ€ฒ๐‘ ๐‘ก = 2๐‘1๐‘’2๐‘ก + ๐‘2๐‘’2๐‘ก + 2๐‘2๐‘ก๐‘’2๐‘ก Putting the initial conditions, we have the following system of equations 12 = ๐‘ฆ๐‘ 0 = ๐‘1 โˆ’3 = ๐‘ฆโ€ฒ ๐‘ 0 = 2๐‘1 + ๐‘2 Solving we get ๐‘1 = 12 and ๐‘2 = โˆ’27.Thus the solution is ๐‘ฆ ๐‘ก = 12๐‘’2๐‘ก โˆ’ 27๐‘ก๐‘’2๐‘ก
  • 39. Exercises: Solve the following IVPs ๐‘ฆโ€ฒโ€ฒ + 3๐‘ฆโ€ฒ โˆ’ 10๐‘ฆ = 0, ๐‘ฆ 0 = 4, ๐‘ฆโ€ฒ 0 = โˆ’2 3๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆโ€ฒ โˆ’ 8๐‘ฆ = 0, ๐‘ฆ 0 = โˆ’6, ๐‘ฆโ€ฒ 0 = โˆ’18 4๐‘ฆโ€ฒโ€ฒ โˆ’ 5๐‘ฆโ€ฒ = 0, ๐‘ฆ โˆ’2 = 0, ๐‘ฆโ€ฒ โˆ’2 = 7 ๐‘ฆโ€ฒโ€ฒ โˆ’ 6๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 0 ๐‘ฆโ€ฒโ€ฒ โˆ’ 8๐‘ฆโ€ฒ + 17๐‘ฆ = 0, ๐‘ฆ 0 = โˆ’4, ๐‘ฆโ€ฒ 0 = โˆ’1 4๐‘ฆโ€ฒโ€ฒ โˆ’ 24๐‘ฆโ€ฒ + 37๐‘ฆ = 0, ๐‘ฆ ๐œ‹ = 1, ๐‘ฆโ€ฒ ๐œ‹ = 0 ๐‘ฆโ€ฒโ€ฒ + 16๐‘ฆ = 0, ๐‘ฆ ๐œ‹ 2 = โˆ’10, ๐‘ฆโ€ฒ ๐œ‹ 2 = 3 16๐‘ฆโ€ฒโ€ฒ โˆ’ 40๐‘ฆโ€ฒ + 25๐‘ฆ = 0, ๐‘ฆ 0 = 3, ๐‘ฆโ€ฒ 0 = โˆ’ 9 4 ๐‘ฆโ€ฒโ€ฒ + 14๐‘ฆโ€ฒ + 49๐‘ฆ = 0, ๐‘ฆ โˆ’4 = โˆ’1, ๐‘ฆโ€ฒ โˆ’4 = 5
  • 40. Reduction of Order Let ๐‘ฆ(๐‘ฅ) = ๐‘ฆ1(๐‘ฅ) be the known solution of second order DE ๐‘Ž2 (๐‘ฅ)๐‘ฆโ€ (๐‘ฅ) + ๐‘Ž1 (๐‘ฅ)๐‘ฆโ€™ (๐‘ฅ) + ๐‘Ž0 (๐‘ฅ)๐‘ฆ(๐‘ฅ) = 0. Assume ๐‘ฆ2 = ๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) is the other solution.Then ๐‘Ž2 (๐‘ฅ)๐‘ฆ2โ€(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ2โ€™(๐‘ฅ) + ๐‘Ž0(๐‘ฅ)๐‘ฆ2(๐‘ฅ) = 0 ๐‘Ž2 (๐‘ฅ){๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ)}โ€ + ๐‘Ž1 (๐‘ฅ){๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ)}โ€™ + ๐‘Ž0(๐‘ฅ)๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0 ๐‘Ž2 (๐‘ฅ){๐‘ขโ€™โ€™(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + 2๐‘ขโ€™(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘ข(๐‘ฅ)๐‘ฆโ€1(๐‘ฅ)} + ๐‘Ž1(๐‘ฅ) {๐‘ขโ€™(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + ๐‘ข(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ)} + ๐‘Ž0(๐‘ฅ)๐‘ข(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0 ๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + ๐‘ขโ€™(๐‘ฅ){2๐‘Ž2(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)} + ๐‘ข(๐‘ฅ){๐‘Ž2(๐‘ฅ)๐‘ฆโ€1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž0 (๐‘ฅ)๐‘ฆ1(๐‘ฅ)} = 0 Since ๐‘Ž2 (๐‘ฅ)๐‘ฆโ€1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž0(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = 0, therefore ๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) + ๐‘ขโ€™(๐‘ฅ){2๐‘Ž2 (๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)} = 0 ๐‘ขโ€™โ€™(๐‘ฅ)๐‘Ž2(๐‘ฅ)๐‘ฆ1(๐‘ฅ) = โˆ’๐‘ขโ€™(๐‘ฅ){2๐‘Ž2 (๐‘ฅ)๐‘ฆโ€™1(๐‘ฅ) + ๐‘Ž1(๐‘ฅ)๐‘ฆ1(๐‘ฅ)} ๐‘ขโ€™โ€™(๐‘ฅ) = โˆ’ 2๐‘ฆโ€™1(๐‘ฅ) โˆ’ ๐‘Ž1 (๐‘ฅ) ๐‘ขโ€™(๐‘ฅ) ๐‘ฆ1(๐‘ฅ) ๐‘Ž2(๐‘ฅ) or ๐‘ข(๐‘ฅ) = ๐‘1 ๐‘’ โˆ’ ๐‘Ž1(๐‘ฅ) ๐‘Ž2(๐‘ฅ) ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ .
  • 41. Examples and Exercises Solve ๐‘ฆ"(๐‘ฅ) โˆ’ ๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘’๐‘ฅ , ๐‘ฅ2๐‘ฆ"(๐‘ฅ) โˆ’ 3๐‘ฅ๐‘ฆโ€ฒ(๐‘ฅ) + 4๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘ฅ2, ๐‘ฆ"(๐‘ฅ) + 36๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘’6๐‘–๐‘ฅ, ๐‘ฆ"(๐‘ฅ) + 36๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘ ๐‘–๐‘›6๐‘ฅ, ๐‘ฆ"(๐‘ฅ) โˆ’ ๐‘ฆ(๐‘ฅ) = 0, ๐‘ฆ1(๐‘ฅ) = ๐‘๐‘œ๐‘ ๐‘ฅ.
  • 42. Solutions of Linear Homogeneous Equations; theWronskian Theorem . (Existence and UniquenessTheorem) Consider the initial value problem ๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = ๐‘”(๐‘ก), ๐‘ฆ(๐‘ก0) = ๐‘ฆ0, ๐‘ฆโ€ฒ(๐‘ก0) = ๐‘ฆโ€ฒ0 If ๐‘(๐‘ก), ๐‘ž(๐‘ก) and ๐‘”(๐‘ก) are continuous and bounded on an open interval ๐ผ containing ๐‘ก0, then there exists exactly one solution ๐‘ฆ(๐‘ก) of this equation, valid on ๐ผ.
  • 43. Wronskian: Given two functions ๐‘“(๐‘ก), ๐‘”(๐‘ก), the Wronskian is defined as ๐‘Š(๐‘“, ๐‘”)(๐‘ก) = ๐‘“๐‘”โ€ฒ โˆ’ ๐‘“โ€ฒ๐‘” Remark: One way to remember this definition could be using the determinant, ๐‘Š(๐‘“, ๐‘”)(๐‘ก) = ๐‘“ ๐‘” ๐‘“โ€ฒ ๐‘”โ€ฒ Main property of the Wronskian: โ€ข If ๐‘Š(๐‘“, ๐‘”) โ‰ก 0, then ๐‘“ anf ๐‘” are linearly dependent. โ€ข Otherwise, they are linearly independent.
  • 44. Example: Check if the given pair of functions are linearly dependent or not. (a) ๐‘“(๐‘ก) = ๐‘’๐‘ก, ๐‘”(๐‘ก) = ๐‘’โˆ’๐‘ก (b) ๐‘“(๐‘ก) = sin๐œ”๐‘ก, ๐‘”(๐‘ก) = cos๐œ”๐‘ก (c) ๐‘“(๐‘ก) = ๐‘ก + 1, ๐‘”(๐‘ก) = 4๐‘ก + 4 (d) ๐‘“(๐‘ก) = 2๐‘ก, ๐‘”(๐‘ก) = |๐‘ก| Suppose๐‘ฆ_1 (t),๐‘ฆ_2 (t) are two solutions of ๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = 0 Then (I)We have either W(๐‘ฆ_1,๐‘ฆ_2)โ‰ก0 orW(๐‘ฆ_1,๐‘ฆ_2) never zero; (II) IfW(๐‘ฆ_1,๐‘ฆ_2)โ‰ 0, then y =๐‘_1 ๐‘ฆ_1+๐‘_2 ๐‘ฆ_2is the general solution.They are also called to form a fundamental set of solutions. As a consequence, for any Ics ๐‘ฆ(๐‘ก_0) = ๐‘ฆ_0, ๐‘ฆโ€ฒ(๐‘ก_0)=ใ€– ๐‘ฆโ€ฒใ€—_0, there is a unique set of (๐‘_1,๐‘_2) that give a unique solution.
  • 45. Theorem (Abelโ€™sTheorem):Let y1, y2 be two (linearly independent) solutions to ๐‘ฆโ€ฒโ€ฒ + ๐‘(๐‘ก)๐‘ฆโ€ฒ + ๐‘ž(๐‘ก)๐‘ฆ = 0 on an open interval I.Then, the Wronskian ๐‘Š(๐‘ฆ1, ๐‘ฆ2) on I is given by ๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก), for some constant ๐ถ depending on ๐‘ฆ1, ๐‘ฆ2, but independent on ๐‘ก in ๐ผ.
  • 46. Example: Given ๐‘ก2๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ก(๐‘ก + 2)๐‘ฆโ€ฒ + (๐‘ก + 2)๐‘ฆ = 0. Find ๐‘Š(๐‘ฆ1, ๐‘ฆ2) without solving the equation. Answer.We first find the ๐‘(๐‘ก) p(t) = โˆ’(t + 2)t which is which is valid for ๐‘ก โ‰  0. By Abelโ€™sTheorem, we have ๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก)=๐ถ ยท exp ๐‘ก ๐‘ก + 2 ๐‘‘๐‘ก = C. ๐‘’๐‘ก+2 ln ๐‘ก = ๐‘ก2๐ถ๐‘’๐‘ก Example: If y1, y2 are two solutions of tyโ€ฒโ€ฒ + 2yโ€ฒ + tety = 0, andW(y1, y2)(1) = 2, findW(y1, y2)(5). Example 5. IfW(f, g) = 3e4t, and f = e2t, find g.
  • 47. Example: For the equation 2๐‘ก2๐‘ฆโ€ฒโ€ฒ + 3๐‘ก๐‘ฆโ€ฒ โˆ’ ๐‘ฆ = 0, ๐‘ก > 0 given one solution ๐‘ฆ1 = 1 ๐‘ก , find a second linearly independent solution. Solution: Use Abelโ€™sTheorem and Wronskian. By Abelโ€™s Theorem, and choose C = 1, we have ๐‘Š(๐‘ฆ1, ๐‘ฆ2)(๐‘ก) = ๐ถ ยท exp( โˆ’๐‘(๐‘ก) ๐‘‘๐‘ก)=๐ถ ยท exp โˆ’ 3๐‘ก 2๐‘ก2 ๐‘‘๐‘ก = ๐‘กโˆ’3/2. By definition of theWronskian, ๐‘Š ๐‘ฆ1, ๐‘ฆ2 = ๐‘ฆ1๐‘ฆ2 โ€ฒ โˆ’ ๐‘ฆ1 โ€ฒ๐‘ฆ2 = ๐‘ฆ2 โ€ฒ ๐‘ก + ๐‘ฆ2 ๐‘ก2 = ๐‘กโˆ’3/2 Solve this for ๐‘ฆ2 (taking c=0): ๐‘ฆ2 = 2 3 ๐‘ก Example: Consider the equation ๐‘ก2 ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ก(๐‘ก + 2)๐‘ฆโ€ฒ + (๐‘ก + 2)๐‘ฆ = 0, ๐‘ก > 0 Given ๐‘ฆ1 = ๐‘ก, find the general solution. Example: Given the equation ๐‘ก2 ๐‘ฆโ€ฒโ€ฒ โˆ’ (๐‘ก โˆ’ 3 16 ) ๐‘ฆ = 0, ๐‘ก > 0 and ๐‘ฆ1 = ๐‘ก1/4 ๐‘’2 ๐‘ก , find ๐‘ฆ2.
  • 48. Linear Differential Equations An nth-order linear differential equation has the form (4.1) where g(x) and the coefficients bj(x) ( j = 0,1,2,..., n) depend solely on the variable x. In other words, they do not depend on y or any derivative of y. If g(x) = 0, then above Equation is homogeneous; if not, 4.1 is nonhomogeneous. A linear differential equation has constant coefficients if all the coefficients bj(x) in above equation are constants; if one or more of these coefficients is not constant, the above equation has variable coefficients.
  • 49. Theorem 4.1. Consider the initial-value problem given by the linear differential equation 4.1 and the n initial conditions y(x0)=c0, yโ€™(x0)=c1, yโ€™โ€™(x0)=c2,โ€ฆ, y(n-1)(x0)=cn-1
  • 50. The general solution to the linear differential equation ๐ฟ(๐‘ฆ) = ๐‘“(๐‘ฅ), ๐‘ฆ = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ where ๐‘ฆ๐‘ denotes one solution to the differential equation and ๐‘ฆโ„Ž is the general solution to the associated homogeneous equation, ๐ฟ(๐‘ฆ) = 0 . Methods for obtaining ๐‘ฆโ„Ž when the differential equation has constant coefficients are given in previous lectures. In this lecture, we give methods for obtaining a particular solution ๐‘ฆ๐‘ once ๐‘ฆโ„Ž is known. Second Order Non-homgeneous Linear Differential Equations
  • 51. Method of UndeterminedCoefficients This method is applicable only if ๐‘“(๐‘ฅ) and all of its derivatives can be written in terms of the same finite set of linearly independent functions, which we denote by {๐‘ฆ1(๐‘ฅ), ๐‘ฆ2(๐‘ฅ), โ€ฆ , ๐‘ฆ๐‘›(๐‘ฅ)}. The method is initiated by assuming a particular solution of the form ๐‘ฆ๐‘(๐‘ฅ) = ๐ด1๐‘ฆ1(๐‘ฅ) + ๐ด2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐ด๐‘›๐‘ฆ๐‘›(๐‘ฅ), where ๐ด1, ๐ด2, โ€ฆ , ๐ด๐‘› denote arbitrary multiplicative constants. These arbitrary constants are then evaluated by substituting the proposed solution into the given differential equation and equating the coefficients of like terms.
  • 52. ๐’‡(๐’™) = ๐’‘๐’(๐’™), an nth-degree polynomial in ๐’™. Assume a solution of the form ๐‘ฆ๐‘ = ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ + ๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0) where ๐ด๐‘— (๐‘— = 0,1,2, โ€ฆ , ๐‘›) is a constant to be determined. ๐’‡(๐’™) = ๐’Œ๐’†๐’‚๐’™ where ๐’Œ and ๐’‚ are known constants. Assume a solution of the form ๐‘ฆ๐‘ = ๐ด๐‘’๐‘Ž๐‘ฅ where ๐ด is a constant to be determined. ๐’‡(๐’™) = ๐’Œ๐Ÿ๐’”๐’Š๐’๐’ƒ๐’™ + ๐’Œ๐Ÿ๐’„๐’๐’”๐’ƒ๐’™ where ๐’Œ๐Ÿ, ๐’Œ๐Ÿ, and ๐’ƒ are known constants. Assume a solution of the form ๐‘ฆ๐‘ = ๐ด sin ๐‘๐‘ฅ + ๐ต cos ๐‘๐‘ฅ, where ๐ด and ๐ต are constants to be determined.
  • 53. Generalizations If ๐‘“(๐‘ฅ) is the product of terms considered in all the cases given above, take ๐‘ฆ๐‘ to be the product of the corresponding assumed solutions and algebraically combine arbitrary constants where possible. In particular, if ๐‘“(๐‘ฅ) = ๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ) is the product of a polynomial with an exponential, assume ๐‘ฆ๐‘ = ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ + ๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0) where Aj is as in 1st case. If, instead, ๐‘“(๐‘ฅ) = ๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ)๐‘ ๐‘–๐‘›๐‘๐‘ฅ is the product of a polynomial, exponential, and sine term, or if ๐‘“(๐‘ฅ) = ๐‘’๐‘Ž๐‘ฅ๐‘๐‘›(๐‘ฅ)๐‘๐‘œ๐‘ ๐‘๐‘ฅ is the product of a polynomial, exponential, and cosine term, then assume ๐‘ฆ๐‘ = ๐‘’๐‘Ž๐‘ฅ(๐ด๐‘›๐‘ฅ๐‘› + ๐ด๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ + ๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0)๐‘ ๐‘–๐‘›๐‘๐‘ฅ + ๐‘’๐‘Ž๐‘ฅ(๐ต๐‘›๐‘ฅ๐‘› + ๐ต๐‘› โˆ’ 1๐‘ฅ๐‘› โˆ’ 1 + โ‹ฏ + ๐ต2๐‘ฅ2 + ๐ต1๐‘ฅ + ๐ต0)๐‘๐‘œ๐‘ ๐‘๐‘ฅ where ๐ด๐‘— and๐ต๐‘— (๐‘— = 0,1,2, โ€ฆ , ๐‘›) are constants which still must be determined. If ๐‘“(๐‘ฅ) is the sum (or difference) of terms already considered, then we take ๐‘ฆ๐‘ to be the sum (or difference) of the corresponding assumed solutions and algebraically combine arbitrary constants where possible.
  • 54. Modifications If any term of the assumed solution, disregarding multiplicative constants, is also a term of (the homogeneous solution), then the assumed solution must be modified by multiplying it by ๐‘ฅ๐‘š, where ๐‘š is the smallest positive integer such that the product of ๐‘ฅ๐‘š with the assumed solution has no terms in common with ๐‘ฆโ„Ž. Limitations of the Method In general, if ๐‘“(๐‘ฅ) is not one of the types of functions considered above, or if the differential equation does not have constant coefficients, then the method of variations of parameters is preferred.
  • 55. Variation of parameters is another method for finding a particular solution of the nth-order linear differential equation ๐‘ณ(๐‘ฆ) = ๐œ‘(๐‘ฅ), once the solution of the associated homogeneous equation ๐‘ณ(๐‘ฆ) = 0 is known. If ๐‘ฆ1 ๐‘ฅ , ๐‘ฆ2 ๐‘ฅ , โ€ฆ , ๐‘ฆ๐‘› ๐‘ฅ are ๐‘› linearly independent solutions of ๐‘ณ(๐‘ฆ) = 0, then the general solution of ๐‘ณ(๐‘ฆ) = 0 is ๐‘ฆโ„Ž = ๐‘1๐‘ฆ1(๐‘ฅ) + ๐‘2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐‘๐‘›๐‘ฆ๐‘›(๐‘ฅ) Methodology: A particular solution of ๐‘ณ(๐‘ฆ) = ๐‘“(๐‘ฅ) has the form ๐‘ฆ๐‘ = ๐‘ฃ1๐‘ฆ1(๐‘ฅ) + ๐‘ฃ2๐‘ฆ2(๐‘ฅ) + โ‹ฏ + ๐‘ฃ๐‘›๐‘ฆ๐‘›(๐‘ฅ) where ๐‘ฆ๐‘– = ๐‘ฆ๐‘– ๐‘ฅ (๐‘– = 1,2, โ€ฆ , ๐‘›) is given in above Equation and ๐‘ฃ๐‘– (๐‘– = 1,2, โ€ฆ ๐‘›) is an unknown function of ๐‘ฅ which still must be determined. Variation of Parameters
  • 56. To find ๐‘ฃ๐‘–, first solve the following linear equations simultaneously for ๐‘ฃโ€ฒ๐‘–: ๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 + โ‹ฏ + ๐‘ฃโ€ฒ ๐‘›๐‘ฆ๐‘› = 0 ๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 + โ‹ฏ + ๐‘ฃโ€ฒ ๐‘›๐‘ฆโ€ฒ๐‘› = 0 โ‹ฎ ๐‘ฃโ€ฒ1๐‘ฆ1 (๐‘›โˆ’2) + ๐‘ฃโ€ฒ2๐‘ฆ2 (๐‘›โˆ’2) + โ‹ฏ + ๐‘ฃโ€ฒ ๐‘›๐‘ฆ๐‘› (๐‘›โˆ’2) = 0 ๐‘ฃโ€ฒ1๐‘ฆ1 (๐‘›โˆ’1) + ๐‘ฃโ€ฒ2๐‘ฆ2 (๐‘›โˆ’1) + โ‹ฏ + ๐‘ฃโ€ฒ ๐‘›๐‘ฆ๐‘› ๐‘›โˆ’1 = ๐œ‘ ๐‘ฅ . Then integrate each to obtain ๐‘ฃ๐‘–, disregarding all constants of integration. This is permissible because we are seeking only one particular solution. Example 6.1: For the special case ๐‘› = 3, Equations reduce to ๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 + ๐‘ฃโ€ฒ 3๐‘ฆ3 = 0 ๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 + ๐‘ฃโ€ฒ 3๐‘ฆโ€ฒ3 = 0 ๐‘ฃโ€ฒ1๐‘ฆ1โ€ฒโ€ฒ + ๐‘ฃโ€ฒ2๐‘ฆ2โ€ฒโ€ฒ + ๐‘ฃโ€ฒ 3๐‘ฆ3โ€ฒโ€ฒ = ๐œ‘ ๐‘ฅ . For the case ๐‘› = 2, Equations become ๐‘ฃโ€ฒ1๐‘ฆ1 + ๐‘ฃโ€ฒ2๐‘ฆ2 = 0 ๐‘ฃโ€ฒ1๐‘ฆโ€ฒ1 + ๐‘ฃโ€ฒ2๐‘ฆโ€ฒ2 = ๐œ‘ ๐‘ฅ . and for the case ๐‘› = 1, we obtain the single equation ๐‘ฃโ€ฒ1๐‘ฆ1 = ๐œ‘ ๐‘ฅ .
  • 57. Since ๐‘ฆ1 ๐‘ฅ , ๐‘ฆ2 ๐‘ฅ , โ€ฆ , ๐‘ฆ๐‘› ๐‘ฅ are ๐‘› linearly independent solutions of the same equation L(y)=0, theirWronskian is not zero.This means that the system 6.9 has a nonzero determinant and can be solved uniquely for ๐‘ฃโ€ฒ๐‘–. Scope of the Method The method of variation of parameters can be applied to all linear differential equations. It is therefore more powerful than the method of undetermined coefficients, which is restricted to linear differential equations with constant coefficients and particular forms of ๐œ‘ ๐‘ฅ . Nonetheless, in those cases where both methods are applicable, the method of undetermined coefficients is usually the more efficient and, hence, preferable. As a practical matter, the integration of may be impossible to perform. In such an event other methods (in particular, numerical techniques) must be employed.
  • 58. Initial-Value Problems Initial-value problems are solved by applying the initial conditions to the general solution of the differential equation. It must be emphasized that the initial conditions are applied only to the general solution and not to the homogeneous solution ๐‘ฆโ„Ž that possesses all the arbitrary constants that must be evaluated.The one exception is when the general solution is the homogeneous solution; that is, when the differential equation under consideration is itself homogeneous.
  • 59. Example: Solve ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 4๐‘ฅ2. Solution: ๐‘ฆโ„Ž = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ. Here ๐œ‘ ๐‘ฅ = 4๐‘ฅ2, a second degree polynomial.We assume that ๐‘ฆ๐‘ = ๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0 Thus ๐‘ฆโ€ฒ๐‘ = 2๐ด2๐‘ฅ + ๐ด1 and ๐‘ฆโ€ฒโ€ฒ๐‘ = 2๐ด2. Substituting these results into the differential equation, we have 2๐ด2 โˆ’ (2๐ด2๐‘ฅ + ๐ด1) โˆ’ 2(๐ด2๐‘ฅ2 + ๐ด1๐‘ฅ + ๐ด0) = 4๐‘ฅ2 . Equating the coefficients of like powers of ๐‘ฅ, we obtain โˆ’2๐ด2 = 4, โˆ’2๐ด2 โˆ’ 2๐ด1 = 0,2๐ด2 โˆ’ ๐ด1 โˆ’ 2๐ด0 = 0 Solving this system, we find that ๐ด2 = โˆ’2, ๐ด1 = 2, ๐ด0 = โˆ’3. Hence ๐‘ฆ๐‘ = โˆ’2๐‘ฅ2 + 2๐‘ฅ โˆ’ 3 and the general solution is ๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ โˆ’ 2๐‘ฅ2 + 2๐‘ฅ โˆ’ 3
  • 60. Example: Solve ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = sin(2๐‘ฅ) . Solution:Again ๐‘ฆโ„Ž = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ . Assume that ๐‘ฆ๐‘ = ๐ด sin 2๐‘ฅ + ๐ต cos 2๐‘ฅ . Thus, ๐‘ฆโ€ฒ ๐‘ = 2๐ด cos 2๐‘ฅ โˆ’ 2๐ต sin 2๐‘ฅ and ๐‘ฆโ€ฒโ€ฒ ๐‘ = โˆ’4๐ด sin 2๐‘ฅ โˆ’ 4๐ต cos 2๐‘ฅ Substituting these results into the differential equation, we have (โˆ’6๐ด + 2๐ต) sin 2๐‘ฅ + (โˆ’2๐ด โˆ’ 6๐ต) cos 2๐‘ฅ = sin(2๐‘ฅ) Equating coefficients of like terms, we obtain โˆ’6๐ด + 2๐ต = 1, โˆ’2๐ด โˆ’ 6๐ต = 0 Solving this system, we find that ๐ด = โˆ’3/20 and ๐ต = 1/20.Then ๐‘ฆ๐‘ = โˆ’ 3 20 sin 2๐‘ฅ + 1 20 cos 2๐‘ฅ . and the general solution is ๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ = ๐‘1๐‘’2๐‘ฅ + ๐‘2๐‘’โˆ’๐‘ฅ โˆ’ 3 20 sin 2๐‘ฅ + 1 20 cos 2๐‘ฅ .
  • 61. Example: Solve ๐‘ฆโ€ฒโ€ฒโ€ฒ + ๐‘ฆโ€ฒ = sec ๐‘ฅ . This is a third-order equation with ๐‘ฆโ„Ž = ๐‘1 + ๐‘2 cos ๐‘ฅ + ๐‘3 sin ๐‘ฅ . It follows that ๐‘ฆ๐‘ = ๐‘ฃ1 + ๐‘ฃ2 cos ๐‘ฅ + ๐‘ฃ3 sin ๐‘ฅ . So the set of Equations becomes ๐‘ฃโ€ฒ1 + ๐‘ฃโ€ฒ2 cos ๐‘ฅ + ๐‘ฃโ€ฒ 3 sin ๐‘ฅ = 0 ๐‘ฃโ€ฒ2 sin ๐‘ฅ + ๐‘ฃโ€ฒ 3 cos ๐‘ฅ = 0 โˆ’๐‘ฃโ€ฒ 2 cos ๐‘ฅ โˆ’ ๐‘ฃโ€ฒ 3 sin ๐‘ฅ = sec ๐‘ฅ . Solving this set of equations simultaneously, we obtain ๐‘ฃโ€ฒ1 = sec ๐‘ฅ , ๐‘ฃโ€ฒ2 = โˆ’1, ๐‘ฃโ€ฒ 3 = โˆ’ tan ๐‘ฅ . Thus ๐‘ฃ1 = ln sec ๐‘ฅ + tan ๐‘ฅ , ๐‘ฃ2 = โˆ’๐‘ฅ, ๐‘ฃ3 = ln cos ๐‘ฅ , Gives ๐‘ฆ๐‘ = ln sec ๐‘ฅ + tan ๐‘ฅ โˆ’ ๐‘ฅ cos ๐‘ฅ + ln cos ๐‘ฅ sin ๐‘ฅ . The general solution is therefore ๐‘ฆ๐‘” = ๐‘ฆโ„Ž + ๐‘ฆ๐‘ = ๐‘1 + ๐‘2 cos ๐‘ฅ + ๐‘3 sin ๐‘ฅ + ln sec ๐‘ฅ + tan ๐‘ฅ โˆ’ ๐‘ฅ cos ๐‘ฅ + ln cos ๐‘ฅ sin ๐‘ฅ .
  • 62. LaplaceTransform Let ๐‘“(๐‘ฅ) be defined for 0 โ‰ค ๐‘ฅ < โˆž and let ๐‘  denote an arbitrary real variable. The Laplace transform of ๐‘“(๐‘ฅ), designated by either โ„’{๐‘“(๐‘ฅ)} or ๐น(๐‘ ),is โ„’ ๐‘“ ๐‘ฅ = ๐น ๐‘  = 0 โˆž ๐‘’โˆ’๐‘ ๐‘ฅ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ for all values of ๐‘  for which the improper integral converges. Convergence occurs when the limit lim ๐‘…โ†’โˆž 0 ๐‘… ๐‘’โˆ’๐‘ ๐‘ฅ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ exists. If this limit does not exist, the improper integral diverges and ๐‘“(๐‘ฅ) has no Laplace transform. When evaluating the integral, the variable ๐‘  is treated as a constant because the integration is with respect to ๐‘ฅ. The Laplace transforms for a number of elementary functions can be found in Annexure of the Book.
  • 63. โ˜บ (Linearity). If โ„’ ๐‘“ ๐‘ฅ = ๐น ๐‘  and โ„’ ๐‘” ๐‘ฅ = ๐บ ๐‘  , then for any two constants ๐‘1 and ๐‘2 โ„’ ๐‘1๐‘“ ๐‘ฅ + ๐‘2๐‘” ๐‘ฅ = ๐‘1โ„’ ๐‘“ ๐‘ฅ + ๐‘2โ„’ ๐‘” ๐‘ฅ = ๐‘1๐น(๐‘ ) + ๐‘2๐บ(๐‘ ) โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then for any constant ๐‘Ž, โ„’ ๐‘’๐‘Ž๐‘ฅ๐‘“ ๐‘ฅ = ๐น(๐‘  โˆ’ ๐‘Ž) โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then for any positive integer ๐‘›, โ„’ ๐‘ฅ๐‘› ๐‘“ ๐‘ฅ = โˆ’1 ๐‘› ๐‘‘๐‘› ๐‘‘๐‘ ๐‘› [๐น ๐‘  ] โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ) and if lim ๐‘ฅโ†’0 ๐‘ฅ>0 ๐‘“(๐‘ฅ) ๐‘ฅ exists, then โ„’ 1 ๐‘ฅ ๐‘“(๐‘ฅ) = ๐‘  โˆž ๐น(๐‘ก) ๐‘‘๐‘ก โ˜บ If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ), then โ„’ 0 ๐‘ฅ ๐‘“(๐‘ก) ๐‘‘๐‘ก = 1 ๐‘  ๐น(๐‘ ) โ˜บ If ๐‘“(๐‘ฅ) is periodic with period ๐‘ค, that is, ๐‘“ ๐‘ฅ + ๐‘ค = ๐‘“(๐‘ฅ), then โ„’ ๐‘“ ๐‘ฅ = 0 ๐‘ค ๐‘’โˆ’๐‘ ๐‘ฅ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ 1 โˆ’ ๐‘’โˆ’๐‘ค๐‘  Properties of LaplaceTransforms
  • 64. Inverse LaplaceTransform An inverse Laplace transform of ๐น(๐‘ ) designated by โ„’โˆ’1{๐น(๐‘ )}, is another function ๐‘“(๐‘ฅ) having the property that โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ). Methodology The simplest technique for identifying inverse Laplace transforms is to recognize them, either from memory or from a table. If ๐น(๐‘ ) is not in a recognizable form, then occasionally it can be transformed into such a form by algebraic manipulation.
  • 65. Manipulating Denominators -The method of completing the square deals with quadratic polynomials -The method of partial fractions Manipulating Numerators A factor ๐‘  โˆ’ ๐‘Ž in the numerator may be written in terms of the factor ๐‘  โˆ’ ๐‘, where both ๐‘Ž and ๐‘ are constants, through the identity ๐‘  โˆ’ ๐‘Ž = ๐‘  โˆ’ ๐‘ + (๐‘ โˆ’ ๐‘Ž). โ™ฅ (Linearity). If the inverse Laplace transforms of two functions ๐น(๐‘ ) and ๐บ(๐‘ ) exist, then for any constants ๐‘1 and๐‘2, โ„’โˆ’1 ๐‘1๐น ๐‘  + ๐‘2๐บ ๐‘  = ๐‘1โ„’โˆ’1{๐น ๐‘  } + ๐‘2โ„’โˆ’1{๐บ ๐‘  }
  • 66. Convolution The convolution of two functions ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = 0 ๐‘ฅ ๐‘“(๐‘ก)๐‘”(๐‘ฅ โˆ’ ๐‘ก)๐‘‘๐‘ก Theorem ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = ๐‘”(๐‘ฅ) โˆ— ๐‘“(๐‘ฅ). Theorem. (Convolution Theorem). If โ„’ ๐‘“ ๐‘ฅ = ๐น(๐‘ ) and โ„’ ๐‘” ๐‘ฅ = ๐บ(๐‘ ), then โ„’ ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = โ„’ ๐‘“ ๐‘ฅ โ„’ ๐‘” ๐‘ฅ = ๐น(๐‘ )๐บ(๐‘ ) The inverse Laplace transform of a product is computed using a convolution. โ„’โˆ’1 ๐น(๐‘ )๐บ(๐‘ ) = ๐‘“ ๐‘ฅ โˆ— ๐‘” ๐‘ฅ = ๐‘” ๐‘ฅ โˆ— ๐‘“(๐‘ฅ) If one of the two convolutions in above Equation is simpler to calculate, then that convolution is chosen when determining the inverse Laplace transform of a product.