SlideShare a Scribd company logo
1 of 41
Download to read offline
Page 1 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:42 AM
ETANK FULL REPORT - Quote Rekadaya-700 KL
ETank2000 MU 1.9.14 (26 Oct 2010)
TABLE OF CONTENTS PAGE 1
ETANK SETTINGS SUMMARY PAGE 2
SUMMARY OF DESIGN DATA AND REMARKS PAGE 3
SUMMARY OF RESULTS PAGE 5
ROOF DESIGN PAGE 8
SHELL COURSE DESIGN PAGE 13
BOTTOM DESIGN PAGE 22
SEISMIC CALCULATIONS PAGE 27
ANCHOR BOLT DESIGN PAGE 34
CAPACITIES AND WEIGHTS PAGE 40
MAWP & MAWV SUMMARY PAGE 41
Page 2 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
ETANK SETTINGS SUMMARY
To Change These ETank Settings, Go To Tools->Options, Behavior Tab.
----------------------------------------------------------------------
No 650 Appendix F Calcs when Tank P = 0 -> Default : False
-> This Tank : False
Show MAWP / MAWV Calcs : True
Enforce API Minimum thicknesses : True
Enforce API Maximum Roof thickness : True
Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True
Force Non-Annular Btm. to Meet API-650 5.5.1 : False
Set t.actual to t.required Values : False
Maximum 650 App. S or App. M Multiplier is 1 : True
Enforce API Maximum Nozzle Sizes : True
Max. Self Supported Roof thickness : 0.5 in.
Max. Tank Corr. Allowance : 0.5 in.
External pressure calcs subtract C.A. per V.5 : False
Use Gauge Material for min thicknesses : False
Enforce API Minimum Live Load : True
Enforce API Minimum Anchor Chair Design Load
= Bolt Yield Load : True
Page 3 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
SUMMARY OF DESIGN DATA and REMARKS
Job : Quote Rekadaya-700 KL
Date of Calcs. : 4/29/2015 , 11:40 AM
Mfg. or Insp. Date : 4/11/2015
Designer : Widi
Project : Gorontalo Peaker
Tag Number : 01
Plant : 01
Plant Location : Area Tank
Site : Gorontalo
Design Basis : API-650 11th Edition, Addendum 2, Nov 2009
----------------------------------------------------------------------
- TANK NAMEPLATE INFORMATION
----------------------------------------------------------------------
- Operating Ratio: 0.4
- Design Standard:
- API-650 11th Edition, Addendum 2, Nov 2009 -
- (None) -
- Roof : A-36: 0.315in. -
- Shell (6): A-36: 0.315in. -
- Shell (5): A-36: 0.315in. -
- Shell (4): A-36: 0.315in. -
- Shell (3): A-36: 0.315in. -
- Shell (2): A-36: 0.315in. -
- Shell (1): A-36: 0.315in. -
- Bottom : A-36: 0.3937in. -
- Annular Ring : A-36: 0.3937in. -
----------------------------------------------------------------------
Design Internal Pressure = 0 PSI or 0 IN. H2O
Design External Pressure = 0 PSI or 0 IN. H2O
MAWP = 0.3832 PSI or 10.62 IN. H2O
MAWV = -0.2521 PSI or -6.99 IN. H2O
OD of Tank = 31.16 ft
Shell Height = 35.43 ft
S.G. of Contents = 1
Max. Liq. Level = 35.43 ft
Design Temperature = 104 °F
Tank Joint Efficiency = 0.85
Ground Snow Load = 0 lbf/ft^2
Roof Live Load = 20 lbf/ft^2
Design Roof Dead Load = 0 lbf/ft^2
Page 4 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
Basic Wind Velocity = 100 mph
Wind Importance Factor = 1
Using Seismic Method: API-650 11th Ed. - ASCE7 Mapped (Ss & S1)
Seismic Use Group: III
Site Class: D
T_L = 12 sec
Ss = 150 %g
S1 = 50 %g
S0 = 60 %g
Av = 0 %g
Q = 1
Importance Factor = 1.5
DESIGN NOTES
NOTE 1 : Tank is not subject to API-650 Appendix F.7
Page 5 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
SUMMARY OF RESULTS
Shell Material Summary (Bottom is 1)
------------------------------------------------------------------------
Shell Width Material Sd St Weight CA
# (ft) (psi) (psi) (lbf) (in)
------------------------------------------------------------------------
6 5.43 A-36 23,200 24,900 6,825 0.118
5 6 A-36 23,200 24,900 7,541 0.118
4 6 A-36 23,200 24,900 7,541 0.118
3 6 A-36 23,200 24,900 7,541 0.118
2 6 A-36 23,200 24,900 7,541 0.118
1 6 A-36 23,200 24,900 7,541 0.118
------------------------------------------------------------------------
Total Weight 44,530
Shell API 650 Summary (Bottom is 1)
----------------------------------------------------------------------
Shell t.design t.test t.external t.seismic t.required t.actual
# (in.) (in.) (in.) (in.) (in.) (in.)
----------------------------------------------------------------------
6 0.1362 0.017 N.A. 0.1476 0.1875 0.315
5 0.1608 0.0399 N.A. 0.1768 0.1875 0.315
4 0.1855 0.0629 N.A. 0.2034 0.2034 0.315
3 0.2101 0.0859 N.A. 0.2265 0.2265 0.315
2 0.2348 0.1088 N.A. 0.2474 0.2474 0.315
1 0.2594 0.1318 N.A. 0.2682 0.2682 0.315
----------------------------------------------------------------------
Structurally Supported Conical Roof
Plate Material = A-36,
Struct. Material = A-36
t.required = 0.3055 in.
t.actual = 0.315 in.
Roof Joint Efficiency = 0.7
Plate Weight = 9,802 lbf
Rafters:
14 Rafters at Rad. 15.58 ft.: UNP 150 x 75 x6.5
Rafters Weight = 227 lbf
Girders:
Girders Weight = 0 lbf
Columns:
1 Column at Center:
Columns Weight = 0 lbf
Page 6 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
Bottom Type: Flat Bottom: Annular
Bottom Floor Material = A-36
t.required = 0.354 in.
t.actual = 0.3937 in.
Bottom Joint Efficiency = 0.85
Annular Bottom Plate Material : A-36
Minimum Annular Ring Thickness = 0.354 in.
t_Annular_Ring = 0.3937 in.
Minimum Annular Ring Width = 24 in.
W_Annular_Ring = 53 in.
Total Weight of Bottom = 12,511 lbf
ANCHOR BOLTS: (12) 1.75in. UNC Bolts, A-193 Gr B7
TOP END STIFFENER: L80x80x8, A-36, 640. lbf
Page 7 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
SUPPORTED CONICAL ROOF (from Brownell & Young)
Roof Plate Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table «
5-2b)
Structural Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table «
5-2b)
R = 15.58 ft
pt = 0.75 in/ft (Cone Roof Pitch)
Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degrees
Ap_Vert = Vertical Projected Area of Roof
= pt*OD^2/48
= 0.75*31.16^2/48
= 15.171 ft^2
Horizontal Projected Area of Roof (Per API-650 5.2.1.f)
Xw = Moment Arm of UPLIFT wind force on roof
= 0.5*OD
= 0.5*31.16
= 15.58 ft
Ap = Projected Area of roof for wind moment
= PI*R^2
= PI*15.58^2
= 762.579 ft^2
S = Ground Snow Load = 0 lbf/ft^2
Sb = Balanced Design Snow Load = 0 lbf/ft^2
Su = Unbalanced Design Snow Load = 0 lbf/ft^2
Dead_Load = Insulation + Plate_Weight + Added_Dead_Load
= (8)(0/12) + 12.8505 + 0
= 12.8505 lbf/ft^2
Roof Loads (per API-650 Appendix R)
Pe = PV*144 = 0*144 = 0 lbf/ft^2
e.1b = DL + MAX(Sb,Lr) + 0.4*Pe
= 12.8505 + 20 + 0.4*0
= 32.851 lbf/ft^2
e.2b = DL + Pe + 0.4*MAX(Sb,Lr)
= 12.8505 + 0 + 0.4*20
= 20.851 lbf/ft^2
T = Balanced Roof Design Load (per API-650 Appendix R)
= MAX(e.1b,e.2b)
= 32.851 lbf/ft^2
e.1u = DL + MAX(Su,Lr) + 0.4*Pe
= 12.8505 + 20 + 0.4*0
= 32.851 lbf/ft^2
e.2u = DL + Pe + 0.4*MAX(Su,Lr)
= 12.8505 + 0 + 0.4*20
= 20.851 lbf/ft^2
Page 8 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
U = Unbalanced Roof Design Load (per API-650 Appendix R)
= MAX(e.1u,e.2u)
= 32.851 lbf/ft^2
Lr_1 = MAX(T,U) = 32.851 lbf/ft^2
P = Max. Design Load = Lr_1
= 32.851 lbf/ft^2
= 0.2281 PSI
l = Maximum Rafter Spacing (Per API-650 5.10.4.4)
= (t - ca) * SQRT(1.5 * Fy / P)
= (0.315 - 0.118)*SQRT(1.5*36,000/0.2281)
= 95.85 in.
MINIMUM # OF RAFTERS
< FOR OUTER SHELL RING >
l = 84 in. since calculated l > 84 in. (7 ft)
N_min = 2*PI*R/l = 2*PI*(15.58)(12)/84 = 13.98
N_min = 14
Actual # of Rafters = 14
Minimum roof thickness based on actual rafter spacing
l = 83.91 in. (actual rafter spacing)
t-Calc = l/SQRT(1.5*Fy/p) + CA
= 83.91/SQRT(1.5*36,000/0.2281) + 0.118
= 0.2905 in.
NOTE: Governs for roof plate thickness.
RLoad_Max = Maximum Roof Load based on actual rafter spacing
RLoad_Max = 216(Fy)/(l/(t - ca))^2
= 216(36,000)/(83.91/(0.315 - 0.118))^2
= 57.15 lb/ft^2
Let Max_T1 = RLoad_Max
P_ext_1 (Vacuum limited by actual rafter spacing)
= -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144
= -[57.15 - 12.8505 - 0.4 * Max(0,20)]/144
= -0.2521 PSI or -6.99 IN. H2O
Pa_rafter_1 = P_ext_1
= -0.2521 PSI or -6.99 IN H2O.
t.required = MAX(t-Calc, 0.1875 + 0.118)
= MAX(0.2905,0.3055)
= 0.3055 in.
Page 9 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
RAFTER DESIGN
Maximum Rafter Span = 15.58 ft
Average Rafter Spacing on Shell = 6.934 ft
Average Plate Width = (6.934)/2 = 3.467 ft
Mmax = Maximum Bending Moment
Mmax = wl^2/8
where, w = (0.2281)(3.467)*12 + 1.043/12 = 9.58 lbf/in
l = (15.58)(12) = 186.96 in.
Mmax = (9.58)(186.96)^2/8 = 41857. in-lbf
Z req'd = Mmax/23,200 = 41857./23,200 = 1.8 in^3
Actual Z = 5.22 in^3 using UNP 150 x 75 x6.5
W_Max (Max. stress allowed for each rafter in ring 1)
= Z * Sd * 8 / l^2
= 5.22 * 23,200 * 8 / 186.96^2
= 27.7173 lbf/in.
Max_P (Max. Load allowed for each rafter in ring 1)
= (W_Max - W_Rafter/12)/(Average Plate Width*12)
= (27.7173 - 1.043/12)/(3.467*12)
= 0.6641 PSI
Let Max_T1 = Max_P * 144
P_ext_2 (Vacuum limited by Rafter Type)
= -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144
= -[95.6304 - 12.8505 - 0.4 * Max(0,20)]/144
= -0.5193 PSI or -14.39 IN. H2O
Pa2_rafter_1 = P_ext_2
(limited by Rafter Type)
Page 10 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
COLUMN DESIGN
* * * NOTE * * *
NO COLUMN DESIGN CALCS PEFORMED BECAUSE COLUMN TYPE NOT SELECTED.
Roof_Area = 36*PI*OD^2/COS(Theta)
= 36*PI*(31.16)^2/COS()
= 110,026 in^2
ROOF WEIGHT
Weight of Roof Plates
= (density)(t)(PI/4)(12*OD - t)^2/COS(Theta)
= (0.2833)(0.315)(PI/4)(373.92 - 0.315)^2/COS(3.5763)
= 9,802 lbf (New)
= 6,130 lbf (Corroded)
Weight of Roof Plates supported by shell
= 9,802 lbf (New)
= 6,130 lbf (Corroded)
Weight of Rafters = 227 lbf (New)
Weight of Girders = 0 lbf (New)
Weight of Columns = 0 lbf (New)
Total Weight of Roof = 10,029 lbf (New)
= 6,357 lbf (Corroded)
<Actual Participating Area of Roof-to-Shell Juncture>
(From API-650 Figure F-2)
Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course)
= 0.6 * SQRT[186.645 * (0.315 - 0.118)]
= 3.6383 in.
(From API-650 Figure F-2)
Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less)
= 0.3 * SQRT[2,997 * (0.315 - 0.118)]
= MIN(7.2897, 12)
= 7.2897 in.
Top End Stiffener: L80x80x8
Aa = (Cross-sectional Area of Top End Stiffener)
= 1.906 in^2
Using API-650 Fig. F-2, Detail b End Stiffener Detail
Ashell = Contributing Area due to shell plates
= Wc*(t_shell - CA)
= 3.6383 * (0.315 - 0.118)
= 0.717 in^2
Aroof = Contributing Area due to roof plates
= Wh*(t_roof - CA)
= 7.2897 * (0.315 - 0.118)
= 1.436 in^2
Page 11 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
A = Actual Part. Area of Roof-to-Shell Juncture (per API-650)
= Aa + Aroof + Ashell
= 1.906 + 1.436 + 0.717
= 4.059 in^2
< Uplift on Tank > (per API-650 F.1.2)
NOTE: This flat bottom tank is assumed supported by the bottom plate.
If tank not supported by a flat bottom, then uplift calculations
will be N.A., and for reference only.
For flat bottom tank with structural roof,
Net_Uplift = Uplift due to design pressure less
Corroded weight of shell and corroded roof weight.
= P * PI / 4 * D ^ 2 * 144 «
- Corr. shell - [Corr. roof weight + Structural weight]
= 0 * 3.1416 / 4 * 970.9456 * 144 «
- 27,860 - [6,130 + 227 + 0 + 0]
= -34,217 lbf
< Uplift Case per API-650 1.1.1 >
P_Uplift = 0 lbf
W_Roof_Plates (corroded) = 6,130 lbf
W_Roof_Structure = 227 lbf
W_Shell (corroded) = 27,860 lbf
Since P_Uplift <= W_Roof,
Tank Roof does not need to meet App. F requirements.
< API-650 App. F >
Fy = Min(Fy_roof,Fy_shell,Fy_stiff)
= Min(36,000,36,000,36,000)
= 36,000 psi
A_min_a = Min. Participating Area due to full Design Pressure.
(per API-650 F.5.1, and Fig. F-2)
(using API assumption internal P of 1/32 PSI)
= [OD^2(P - 8*t)]/[0.962*36,000*TAN(Theta)]
= [31.16^2(0.0313 - 8*0.315)]/[0.962*36,000*0.0625]
= -0.74 in^2
= 0 in^2 (since can't be negative)
P_F51 = Max. Design Pressure, reversing A_min_a calculation.
= A * [0.962*36,000*TAN(Theta)]/OD^2 + 8*t_h
= 4.059 * [0.962*36,000*0.0625]/31.16^2 + 8*0.197
= 0.3832 PSI or 10.62 IN. H2O
P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7)
= 2.5 PSI or 69.28 IN. H2O
Page 12 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
P_max_internal = MIN(P_F51, P_Std)
= MIN(10.62, 69.28)
= 0.3832 PSI or 10.62 IN. H2O
P_max_external = -0.2521 PSI or -6.99 IN. H2O
Page 13 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:55 AM
SHELL COURSE DESIGN (Bottom Course is #1)
VDP Criteria (per API-650 5.6.4.1)
L = (6*D*(t-ca))^0.5
= (6*31.16*(0.315-0.118))^0.5
= 6.0689
H = Max Liquid Level =35.43 ft
L / H <= 2
Course # 1
Material: A-36; Width = 6 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 35.43 + 2.31*0/1 = 35.43ft
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(35.43 - 1)*1/(23,200*0.85) + 0.118
= 0.2594 in.
hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_1 = (hMax_1 - H) * 0.433 * G
= (48.9515 - 35.43) * 0.433 * 1
= 5.8548 PSI
Pmax_int_shell = Pmax_1
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 35.43 + 2.31*0/1 = 35.43ft
t.test = 2.6*31.16*(35.43 - 1)/(24,900*0.85) = 0.1318 in.
Course # 2
Material: A-36; Width = 6 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
Page 14 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 29.43 + 2.31*0/1 = 29.43ft
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(29.43 - 1)*1/(23,200*0.85) + 0.118
= 0.2348 in.
hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_2 = (hMax_2 - H) * 0.433 * G
= (48.9515 - 29.43) * 0.433 * 1
= 8.4528 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_2)
= Min(5.8548, 8.4528)
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 29.43 + 2.31*0/1 = 29.43ft
t.test = 2.6*31.16*(29.43 - 1)/(24,900*0.85) = 0.1088 in.
Course # 3
Material: A-36; Width = 6 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 23.43 + 2.31*0/1 = 23.43ft
Page 15 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(23.43 - 1)*1/(23,200*0.85) + 0.118
= 0.2101 in.
hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_3 = (hMax_3 - H) * 0.433 * G
= (48.9515 - 23.43) * 0.433 * 1
= 11.0508 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_3)
= Min(5.8548, 11.0508)
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 23.43 + 2.31*0/1 = 23.43ft
t.test = 2.6*31.16*(23.43 - 1)/(24,900*0.85) = 0.0859 in.
Course # 4
Material: A-36; Width = 6 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 17.43 + 2.31*0/1 = 17.43ft
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(17.43 - 1)*1/(23,200*0.85) + 0.118
= 0.1855 in.
hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_4 = (hMax_4 - H) * 0.433 * G
= (48.9515 - 17.43) * 0.433 * 1
= 13.6488 PSI
Page 16 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Pmax_int_shell = Min(Pmax_int_shell, Pmax_4)
= Min(5.8548, 13.6488)
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 17.43 + 2.31*0/1 = 17.43ft
t.test = 2.6*31.16*(17.43 - 1)/(24,900*0.85) = 0.0629 in.
Course # 5
Material: A-36; Width = 6 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 11.43 + 2.31*0/1 = 11.43ft
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(11.43 - 1)*1/(23,200*0.85) + 0.118
= 0.1608 in.
hMax_5 = E*Sd*(t_5 - CA_5)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_5 = (hMax_5 - H) * 0.433 * G
= (48.9515 - 11.43) * 0.433 * 1
= 16.2468 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_5)
= Min(5.8548, 16.2468)
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 11.43 + 2.31*0/1 = 11.43ft
Page 17 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
t.test = 2.6*31.16*(11.43 - 1)/(24,900*0.85) = 0.0399 in.
Course # 6
Material: A-36; Width = 5.43 ft.
Corrosion Allow. = 0.118 in.
Joint Efficiency = 0.85
API-650 ONE FOOT METHOD
Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b)
St = 24,900 PSI (allowable test stress)
DESIGN CONDITION
G = 1 (per API-650)
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 5.43 + 2.31*0/1 = 5.43ft
t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2)
= 2.6*31.16*(5.43 - 1)*1/(23,200*0.85) + 0.118
= 0.1362 in.
hMax_6 = E*Sd*(t_6 - CA_6)/(2.6*OD*G) + 1
= 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1
= 48.9515 ft.
Pmax_6 = (hMax_6 - H) * 0.433 * G
= (48.9515 - 5.43) * 0.433 * 1
= 18.8448 PSI
Pmax_int_shell = Min(Pmax_int_shell, Pmax_6)
= Min(5.8548, 18.8448)
Pmax_int_shell = 5.8548 PSI
HYDROSTATIC TEST CONDITION
< Design Condition G = 1 >
H' = Effective liquid head at design pressure
= H + 2.31*P(psi)/G
= 5.43 + 2.31*0/1 = 5.43ft
t.test = 2.6*31.16*(5.43 - 1)/(24,900*0.85) = 0.017 in.
Wtr = Transposed Width of each Shell Course
= Width*[ t_top / t_course ]^2.5
Transforming Courses (1) to (6)
Page 18 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft
Hts (Height of the Transformed Shell)
= SUM{Wtr} = 35.4037 ft
INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7)
V (Wind Speed) = 100 mph
Ve = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944
Design PV = 0 PSI, OR 0 In. H2O
<TOP END STIFFENER CALCULATIONS>
Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)
= 0.27 in^3,
For Structural Roof and OD <= 35 ft,
Minimum Required Angle is 2 x 2 x 3/16 in.
Actual Z = 0.971 in^3
Using L80x80x8, Wc = 4.6054
<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)
* * * NOTE: Using the thinnest shell course, t_thinnest,
instead of top shell course.
* * * NOTE: Not subtracting corrosion allowance per user setting.
ME = 28,799,999/28,799,999
= 1
Hu = Maximum Height of Unstiffened Shell
= {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve)
= {1*600,000*0.315*SQRT[0.315/31.16]^3} / 0.6944
= 276.6266 ft
Wtr = Transposed Width of each Shell Course
= Width*[ t_top / t_course ]^2.5
Transforming Courses (1) to (6)
Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft
Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft
Hts (Height of the Transformed Shell)
= SUM{Wtr} = 35.4037 ft
L_0 = Hts/# of Stiffeners + 1
= 35.4037/1 = 35.4 ft.
No Intermediate Wind Girders Needed Since Hu >= L_0
Page 19 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
SHELL COURSE #1 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.2594, 0, 0.2682)
= 0.2682 in.
t-650min = 0.236 in. (per API-650 Section 5.6.1.1, NOTE 4)
t.required = MAX(t.design, t.test, t.min650) = 0.2682 in.
t.actual = 0.315 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315
= 7,541 lbf (New)
= 4,718 lbf (Corroded)
SHELL COURSE #2 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.2348, 0, 0.2474)
= 0.2474 in.
t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
t.required = MAX(t.design, t.test, t.min650) = 0.2474 in.
t.actual = 0.315 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315
= 7,541 lbf (New)
= 4,718 lbf (Corroded)
SHELL COURSE #3 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.2101, 0, 0.2265)
= 0.2265 in.
t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
t.required = MAX(t.design, t.test, t.min650) = 0.2265 in.
t.actual = 0.315 in.
Page 20 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315
= 7,541 lbf (New)
= 4,718 lbf (Corroded)
SHELL COURSE #4 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.1855, 0, 0.2034)
= 0.2034 in.
t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
t.required = MAX(t.design, t.test, t.min650) = 0.2034 in.
t.actual = 0.315 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315
= 7,541 lbf (New)
= 4,718 lbf (Corroded)
SHELL COURSE #5 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.1608, 0, 0.1768)
= 0.1768 in.
t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
t.required = MAX(t.design, t.test, t.min650) = 0.1875 in.
t.actual = 0.315 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315
= 7,541 lbf (New)
= 4,718 lbf (Corroded)
SHELL COURSE #6 SUMMARY
-------------------------------------------
t.seismic governs. See E.6.2.4 table in SEISMIC calculations.
t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic)
= MAX(0.1362, 0, 0.1476)
= 0.1476 in.
t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
Page 21 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
t.required = MAX(t.design, t.test, t.min650) = 0.1875 in.
t.actual = 0.315 in.
Weight = Density*PI*[(12*OD) - t]*12*Width*t
= 0.2833*PI*[(12*31.16)-0.315]*12*5.43*0.315
= 6,825 lbf (New)
= 4,270 lbf (Corroded)
Page 22 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
FLAT BOTTOM: ANNULAR PLATE DESIGN
Bottom Plate Material : A-36
Annular Bottom Plate Material : A-36
<Weight of Bottom Plate>
Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2
= PI/4*(373.92 - 2*0.315 - 2*53)^2
= 56,112 in^2
Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area
= PI/4*(377.92)^2 - 56,112
= 56,061 in^2
Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * «
Annular_Area)
= 0.2833 * 0.3937*56,112 + 0.2833 * 0.3937*56,061
= 12,511 lbf (New)
= 8,761 lbf (Corroded)
< API-650 >
Calculation of Hydrostatic Test Stress & Product Design Stress
(per API-650 Section 5.5.1)
t_1 : Bottom (1st) Shell Course thickness.
H'= Max. Liq. Level + P(psi)/(0.433)
= 35.43 + (0)/(0.433) = 35.43 ft
St = Hydrostatic Test Stress in Bottom (1st) Shell Course
= (2.6)(OD)(H' - 1)/t_1
= (2.6)(31.16)(35.43 - 1)/(0.315)
= 8,855 PSI
Sd = Product Design Stress in Bottom (1st) Shell Course
= (2.6)(OD)(H' - 1)(G)/(t_1 - ca_1)
= (2.6)(31.16)(35.43 - 1)(1)/(0.197)
= 14,159 PSI
--------------------------
<Non-Annular Bottom Plates>
t_min = 0.236 + CA = 0.236 + 0.118 = 0.354 in. (per Section 5.4.1)
t-Calc = t_min = 0.354 in.
t-Actual = 0.3937 in.
<Annular Bottom Plates> (per API-650 5.5.3 TABLE 5-1b),
t_Min_Annular_Ring = 0.236 + 0.118
= 0.354 in.
t_Annular_Ring = Actual Annular Ring Thickness
= 0.3937 in.
Page 23 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
W_Annular_Ring = Actual Annular Ring Width
= 53 in.
<Annular Bottom Plates> (per API-650 Section 5.5.2),
W_int = Minimum Annular Ring Width
(from Shell ID to Any Lap-Welded Joint)
(t_Min_Annular_Ring exclusive of corrosion)
= 390*t_Min_Annular_Ring/SQRT(H*G)
= 390(0.236)/SQRT(35.43*1)
= 15.46 in.
W_int = 24 in.
< FLAT BOTTOM: ANNULAR SUMMARY >
Bottom Plate Material : A-36
t.required = 0.354 in.
t.actual = 0.3937 in.
Annular Bottom Plate Material : A-36
Minimum Annular Ring Thickness = 0.354 in.
t_Annular_Ring = 0.3937 in.
Minimum Annular Ring Width = 24 in.
W_Annular_Ring = 53 in.
Page 24 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
NET UPLIFT DUE TO INTERNAL PRESSURE
(See roof report for calculations)
Net_Uplift = -34,217 lbf
Anchorage NOT required for internal pressure.
WIND MOMENT (Per API-650 SECTION 5.11)
vs = Wind Velocity = 100 mph
vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944
Wind_Uplift = Iw * 30 * vf
= 1 * 30 * 0.6944
= 20.8333 lbf/ft^2
API-650 5.2.1.k Uplift Check
P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h)
P_F41 = WCtoPSI(0.962*36,000*4.059*0.0625/31.16^2 + 8*0.197)
= 0.3832 PSI
Limit Wind_Uplift/144+P to 1.6*P_F41
Wind_Uplift/144 + P = 0.1447 PSI
1.6*P_F41 = 0.6131 PSI
Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)
Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)
Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)
= MIN(20.8333,88.2893)
= 20.8333 lbf/ft^2
Ap_Vert = Vertical Projected Area of Roof
= pt*OD^2/48
= 0.75*31.16^2/48
= 15.171 ft^2
Horizontal Projected Area of Roof (Per API-650 5.2.1.f)
Xw = Moment Arm of UPLIFT wind force on roof
= 0.5*OD
= 0.5*31.16
= 15.58 ft
Ap = Projected Area of roof for wind moment
= PI*R^2
= PI*15.58^2
= 762.579 ft^2
M_roof (Moment Due to Wind Force on Roof)
= (Wind_Uplift)(Ap)(Xw)
= (20.8333)(762.579)(15.58) = 247,520 ft-lbf
Xs (Moment Arm of Wind Force on Shell)
= H/2 = (35.43)/2 = 17.715 ft
As (Projected Area of Shell)
= H*(OD + t_ins / 6)
= (35.43)(31.16 + 0/6) = 1,104 ft^2
M_shell (Moment Due to Wind Force on Shell)
= (Iw)(vf)(18)(As)(Xs)
= (1)(0.6944)(18)(1,104)(17.715) = 244,467 ft-lbf
Page 25 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Mw (Wind moment)
= M_roof + M_shell = 247,520 + 244,467
= 491,987 ft-lbf
W = Net weight (PER API-650 5.11.3)
(Force due to corroded weight of shell and
shell-supported roof plates less
40% of F.1.2 Uplift force.)
= W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2)
= 27,860 + 6,130 - 0*(PI/4)(144)(31.16^2)
= 33,990 lbf
RESISTANCE TO OVERTURNING (per API-650 5.11.2)
An unanchored Tank must meet these two criteria:
1) 0.6*Mw + MPi < MDL/1.5
2) Mw + 0.4MPi < (MDL + MF)/2
Mw = Destabilizing Wind Moment = 491,987 ft-lbf
MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «
Pressure.
= P*(PI*OD^2/4)*(144)*(OD/2)
= 0*(3.1416*31.16^2/4)*(144)*(15.58)
= 0 ft-lbf
MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «
Roof weight supported by the Shell.
= (W_shell + W_roof)*OD/2
= (27,860 + 6,130)*15.58
= 529,564 ft-lbf
tb = Annular Bottom Ring thickness less C.A. = 0.2757 in.
Lb = Minimum bottom annular ring width
Lb = greater of 18 in. or 0.365*tb*SQRT(Sy_btm/H_liq)
= 18 in.
wl = Circumferential loading of contents along Shell-To-Bottom Joint.
= 4.67*tb*SQRT(Sy_btm*H_liq)
= 4.67*0.2757*SQRT(36,000*35.43)
= 1,454 lbf/ft
wl = 0.9 * H_liq * OD (lesser value than above)
= 0.9*35.43*31.16
= 993.6 lbf/ft
MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.
= (OD/2)*wl*PI*OD
= (15.58)(993.6)(3.1416)(31.16)
= 1,515,397 ft-lbf
Criteria 1
0.6*(491,987) + 0 < 529,564/1.5
Since 295,192 < 353,043, Tank is stable.
Page 26 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Criteria 2
491,987 + 0.4 * 0 < (529,564 + 1,515,397)/2
Since 491,987 < 1,022,481, Tank is stable.
RESISTANCE TO SLIDING (per API-650 5.11.4)
F_wind = vF * 18 * As
= 0.6944 * 18 * 1,104
= 13,800 lbf
F_friction = Maximum of 40% of Weight of Tank
= 0.4 * (W_Roof_Corroded + W_Shell_Corroded +
W_Btm_Corroded + RoofStruct + W_min_Liquid)
= 0.4 * (6,130 + 27,860 + 8,761 + 227 + 0)
= 17,191 lbf
No anchorage needed to resist sliding since
F_friction > F_wind
<Anchorage Requirement>
Anchorage NOT required since Criteria 1, Criteria 2, and Sliding
ARE acceptable.
Page 27 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2
< Mapped ASCE7 Method >
WEIGHTS
Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.)
= 45,170 lbf
Wf = Weight of Floor (Incl. Annular Ring)
= 12,511 lbf
Wr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul.
= 11,557 lbf
SEISMIC VARIABLES
SUG = Seismic Use Group (Importance factor depends on SUG)
= III
Site Class = D
T_L = Regional Dependent Transition Period for Long Period Ground Motion
(per ASCE 7-05, Fig. 22-15)
= 12 sec.
Ss = Design Spectral Response Param. (5% damped) for Short Periods
(T=0.2 sec)(per ASCE7 Fig. 22-1)
= 1.5 Decimal %g
S1 = Design Spectral Response Param. (5% damped) for 1-Second Periods
(T=1.0 sec)(per ASCE7 Fig. 22-2)
= 0.5 Decimal %g
S0 = Design Spectral Response Param. (5% damped) for 0-Second Periods
(T=0.0 sec)
= 0.6 Decimal %g
Av = Vertical Earthquake Acceleration Coefficient
= 0 Decimal %g
Q = Scaling factor from the MCE to design level spectral accelerations
= 1
Page 28 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
LOOKUP OR OTHER VARIABLES
Fa = Acceleration-based site coefficient (at .2 sec period)(Table E-1)
= 1
Fv = Velocity-based site coefficient (at 1 sec period)(Table E-2)
= 1.5
I = Importance factor defined by Seismic Use Group
= 1.5
Ci = Coefficient for impulsive period of tank system (Fig E-1)
= 6.36
tu = Equivalent uniform thickness of tank shell
= 0.315 in.
Density = Density of tank product. SG*62.4
= 62.4 lbf/ft^3
E = Elastic modulus of tank material (bottom shell course)
= 28,799,999 PSI
Rwi = Force reduction factor for the impulsive mode using allowable
stress design methods (Table E-4)
= 4
Rwc = Force reduction factor for the convective mode using allowable
stress design methods (Table E-4)
= 2
Sds = The design spectral response acceleration param. (5% damped)
at short periods (T = 0.2 sec) based on ASCE7 methods.
= Q*Fa*Ss
= 1*1*1.5
= 1.5 decimal %g
Sd1 = The design spectral response acceleration param. (5% damped)
at 1 second based on ASCE7 methods.
= Q*Fv*S1
= 1*1.5*0.5
= 0.75 decimal %g
E.4.5 STRUCTURAL PERIOD OF VIBRATION
E.4.5.1 Impulsive Natural Period
Ti = (1/27.8)*(Ci*H)/((tu/D)^0.5)*(Density^0.5/E^0.5)
= (1/27.8)*(6.36*35.43/((0.315/31.16)^0.5)*(62.4^0.5/28,799,999^0.5)
= 0.12 sec.
E.4.5.2 Convective (Sloshing) Period
Ks = 0.578/SQRT(TANH(3.68*H/D))
= 0.578/SQRT(TANH(3.68/0.879))
= 0.5781
Tc = Ks*SQRT(D)
= 0.5781*SQRT(31.16)
= 3.23 sec.
E.4.6.1 Spectral Acceleration Coefficients
Ai = Impulsive spectral acceleration parameter
= MAX(Sds*I/Rwi,0.007)
= MAX(1.5*1.5/4,0.007)
= MAX(0.5625,0.007)
= 0.5625 decimal %g
K = Coefficient to adjust spectral acceleration from 5% - 0.5% damping
= 1.5
Ac = Convective spectral acceleration parameter
= K*Sd1/Tc*I/Rwc
= 1.5*0.75/3.23*1.5/2
= 0.2612 decimal %g
Page 29 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
E.6.1.1 EFFECTIVE WEIGHT OF PRODUCT
D/H = Ratio of Tank Diameter to Design Liquid Level
= 0.879
Wp = Total Weight of Tank Contents based on S.G.
= 1,686,366 lbf
Wi = Effective Impulsive Portion of the Liquid Weight
= [1 - 0.218*D/H]*Wp
= [1 - 0.218*0.879]*1,686,366
= 1,363,221 lbf
Wc = Effective Convective (Sloshing) Portion of the Liquid Weight
= 0.23*D/H*TANH(3.67*H/D)*Wp
= 0.23*0.879*TANH(3.67/0.879)*1,686,366
= 340,772 lbf
Weff = Effective Weight Contributing to Seismic Response
= Wi + Wc
= 1,703,993 lbf
Wrs = Roof Load Acting on Shell, including 10% of Live Load
= 11,444 lbf
E.6.1 DESIGN LOADS
Vi = Design base shear due to impulsive component from effective weight
of tank and contents
= Ai*(Ws + Wr + Wf + Wi)
= 0.5625*(45,170 + 11,557 + 12,511 + 1,363,221)
= 805,758 lbf
Vc = Design base shear due to convective component of the effective
sloshing weight
= Ac*Wc
= 0.2612*340,772
= 89,016 lbf
V = Total design base shear
= SQRT(Vi^2 + Vc^2)
= SQRT(805,758^2 + 89,016^2)
= 810,660 lbf
E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCES
Xs = Height from Bottom to the Shell's Center of Gravity
= 17.715 ft
RCG = Height from Top of Shell to Roof Center of Gravity
= 0.243 ft
Xr = Height from Bottom of Shell to Roof Center of Gravity
= h + RCG
= 35.43 + 0.243
= 35.673 ft
E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENT
Xi = Height to Center of Action of the Lateral Seismic force related to
the Impulsive Liquid Force for Ringwall Moment
= (0.5 - 0.094*D/H)*H
= (0.5 - 0.094*0.879)*35.43
= 14.79 ft
Xc = Height to Center of Action of the Lateral Seismic force related to
the Convective Liquid Force for Ringwall Moment
= (1-(COSH(3.67*H/D)-1)/((3.67*H/D)*SINH(3.67*H/D)))*H
= (1-(COSH(4.1752)-1)/((4.1752)*SINH(4.1752)))*35.43
= 27.2 ft
Page 30 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENT
Xis = Height to Center of Action of the Lateral Seismic force related to
the Impulsive Liquid Force for the Slab Moment
= [0.5 + 0.06*D/H]*H
= [0.5 + 0.06*0.879]*35.43
= 19.58 ft
Xcs = Height to Center of Action of the Lateral Seismic force related to
the Convective Liquid Force for the Slab Moment
= (1-(COSH(3.67*H/D)-1.937)/((3.67*H/D)*SINH(3.67*H/D)))*H
= (1-(COSH(4.1752)-1.937)/((4.1752)*SINH(4.1752)))*35.43
= 27.45 ft
E.6.1.4 Dynamic Liquid Hoop Forces
0.75 * D = 23.37
D/H = 0.879
SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT-
ft ft lbf/in lbf/in lbf lbf/in lbf/in
Shell #1 6 34.43 759.16 7.624 3377 20996 13288
Shell #2 6 28.43 759.16 10.309 2805 18093 10385
Shell #3 6 22.43 755.2 18.39 2233 15170 7500
Shell #4 6 16.43 689.72 36.098 1661 11937 4926
Shell #5 6 10.43 524.52 72.703 1089 8216 2840
Shell #6 5.43 4.43 259.6 147.366 518 4145 1114
E.6.1.5 Overturning Moment
Mrw = Ringwall moment—Portion of the total overturning moment that
acts at the base of the tank shell perimeter
Mrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0.5
= ((0.5625*(1,363,221*14.79+45,170*17.715+11,557*35.673))^2
+ (0.2612*340,772*27.2)^2)^0.5
= 12,264,530 lbf-ft
Ms = Slab moment (used for slab and pile cap design)
Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0.5
= ((0.5625*(1,363,221*19.58+45,170*17.715+11,557*35.673))^2
+ (0.2612*340,772*27.45)^2)^0.5
= 15,885,240 lbf-ft
E.6.2 RESISTANCE TO DESIGN LOADS
E.6.2.1.1 Self-Anchored
Fy = Minimum yield strength of bottom annulus
= 36,000 psi
Ge = Effective specific gravity including vertical seismic effects
= S.G.*(1 - 0.4*Av)
= 1*(1 - 0.4*0)
= 1
1.28*H*D*Ge = 1,413 lbf/ft
wa = Force resisting uplift in annular region
= 7.9*ta*(Fy*H*Ge)^0.5 <= 1.28*H*D*Ge
= 7.9*0.2757*(36,000*35.43*1)^0.5
= 2,460 lbf/ft
wa = 1,413 lbf/ft (reduced to 1.28*H*D*Ge because
that is the max allowable per E.6.2.1.1)
wt = Shell and roof weight acting at base of shell
= (Wrs + Ws)/(PI*D)
= (11,444 + 45,170)/(PI*31.16)
= 578.3274 lbf/ft
Page 31 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
wint = Uplift Load due to design pressure acting at base of shell
= 0.4*P*144*(PI*D^2/4)/(PI*D)
= 0.4*0*144*(PI*31.16^2/4)/(PI*31.16)
= 0 lbf/ft
E.6.2.1.1.2 Annular Ring Requirements
L = Required Annular Ring Width
= 12*0.216*ta*(Fy/(H*Ge))^0.5
= 12*0.216*0.2757*(36,000/(35.43*1))^0.5
= 22.7792 in.
L = MIN(0.035*D*12,L)
= MIN(13.0872,22.7792)
= 13.0872 in.
Ls = Actual Annular Plate Width
= 53 in.
E.7.3 Piping Flexibility
E.7.3.1 Estimating tank uplift
Annular Plate: A-36
Fy = 36,000 PSI
yu = Estimated uplift displacement for self-anchored tank
= Fy*L^2/(83300*ta)
= 36,000*1.0906^2/(83300*0.2757)
= 1.8645 in.
E.6.2.1.1.1 Anchorage Ratio
J = Mrw/(D^2*[wt*(1-0.4*Av)+wa-0.4*wint])
= 12,264,530/(31.16^2*[578.3274*(1-0.4*0)+1,413-0.4*0])
= 6.3433
The tank not stable and cannot be self anchored for design load.
E.6.2.2 Maximum Longitudinal Shell-Membrane Compressive Stress
E.6.2.2.1 Shell Compression in Self-Anchored Tanks
ts1 = Thickness of bottom shell course minus C.A.
= 0.197 in.
SigC = Maximum longitudinal shell compression stress
= ((Wt*(1+0.4*Av) + wa)/(0.607-0.1867*J^2.3) - wa)/(12*ts1)
= ((578.3274*(1+0.4*0) + 1,413)/(0.607-0.1867*6.3433^2.3) - «
1,413)/(12*0.197)
= -665 psi
E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression Stress
Fty = Minimum specified yield strength of shell course
= 36,000 psi
G*H*D^2/ts1^2 = 886,408
Fc = Allowable longitudinal shell-membrane compressive stress
= 10^6*ts1/(2.5*D) + 600*(G*H)^0.5
= 10^6*0.197/(2.5*31.16) + 600*(1*35.43)^0.5
= 6,100 psi
Shell Membrane Compressive Stress OK
Page 32 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
E.6.2.4 Hoop Stresses
Shell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK
Membrane
Stress
Shell #1 20996 30926. 27540. 27540. 0.2682 Yes
Shell #2 18093 30926. 27540. 27540. 0.2474 Yes
Shell #3 15170 30926. 27540. 27540. 0.2265 Yes
Shell #4 11937 30926. 27540. 27540. 0.2034 Yes
Shell #5 8216 30926. 27540. 27540. 0.1768 Yes
Shell #6 4145 30926. 27540. 27540. 0.1476 Yes
Shell Membrane Hoop Stress OK? True
Tank Adequate with No Anchors? False
Using 10 ft spacing, Min. # of Anchor Bolts = 10
E.6.2.1.2 Mechanically-Anchored
Number of Anchors = 12
Max Spacing = 10 ft
Actual Spacing = 8.16 ft
Minimum # Anchors = 10
Wab = Design Uplift Load on Anchors per unit circumferential length
= (1.273*Mrw)/D^2 - wt*(1-0.4*Av) + wint
= (1.273*12,264,530)/31.16^2 - 578.3274*(1-0.4*0) + 0
= 15,502 lbf/ft
Pab = Anchor seismic design load
= Wab*PI*D/Na
= 15,502*PI*31.16/12
= 126,460 lbf
Pa = Anchorage chair design load
= 3 * Pab
= 3*126,460
= 379,380 lbf
E.6.2.2.2 Shell Compression in Mechanically-Anchored Tanks
SigC_anchored = Maximum longitudinal shell compression stress
= (Wt*(1+0.4*Av) + 1.273*Mrw/D^2)/(12*ts1)
= (578.3274*(1+0.4*0) + 1.273*12,264,530/31.16^2)/(12*0.197)
= 7,047 psi
Fc = longitudinal shell-membrane compression stress
= 6,100 psi
* * Warning * *Shell Membrane Compressive stress exceeds allowable
Shell Membrane Hoop Stress OK? True
Tank Adequate with Anchors? False
E.7 Detailing Requirements
E.7.1 Anchorage
SUG = III
Sds = 1.5 decimal %g
E.7.1.1 Self Anchored
NOTE: Butt-welded annular plates are required.
Annular plates exceeding 3/8 in. thickness shall be butt-welded
The weld of the shell to annular plate shall be checked for
the design uplift load.
E.7.1.2 Mechanically Anchored
Minimum # anchors OK = True
Page 33 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
E.7.2 Freeboard - Sloshing
TL_sloshing = 12 sec.
I_sloshing = 1
Tc = 3.23
K = 1.5
Sd1 = 0.75
Af = K*Sd1/Tc
= 1.5*0.75/3.23
= 0.3483
Delta_s = Height of sloshing wave above max. liquid level
= 0.5*D*Af
= 0.5*31.16*0.3483
= 5.4265 ft
0.7*Delta_s = 3.7985 ft
Per Table E-7,
A freeboard equal to Delta_s is required unless one of the following
alternatives are provided:
1. Secondary containment is provided to control product spill.
2. The roof and tank shell are designed to contain sloshing liquid.
E.7.6 Sliding Resistance
mu = 0.4 Friction coefficient
V = 810,660 lbf
Vs = Resistance to sliding
= mu*(Ws + Wr + Wf + Wp)*(1 - 0.4*Av)
= 0.4*(45,170+11,557+12,511+1,686,366)*(1-0.4*0)
= 702,242 lbf
E.7.7 Local Shear Transfer
Vmax = 2*V/(PI*D)
= 2*810,660/(PI*31.16)
= 16,562 lbf/ft
Page 34 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
ANCHOR BOLT DESIGN
Bolt Material : A-193 Gr B7
Sy = 105,000 PSI
< Uplift Load Cases, per API-650 Table 5-21b >
D (tank OD) = 31.16 ft
P (design pressure) = 0 INCHES H2O
Pt (test pressure per F.4.4) = P = 0 INCHES H2O
Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below)
t_h (roof plate thickness) = 0.315 in.
Mw (Wind Moment) = 491,987 ft-lbf
Mrw (Seismic Ringwall Moment) = 12,264,530 ft-lbf
W1 (Dead Load of Shell minus C.A. and Any
Dead Load minus C.A. other than Roof
Plate Acting on Shell)
W2 (Dead Load of Shell minus C.A. and Any
Dead Load minus C.A. including Roof
Plate minus C.A. Acting on Shell)
W3 (Dead Load of New Shell and Any
Dead Load other than Roof
Plate Acting on Shell)
For Tank with Structural Supported Roof,
W1 = Corroded Shell + Shell Insulation
= 27,860 + 0
= 27,860 lbf
W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates
Supported by Shell + Roof Dead Load Supported by Shell
= 27,860 + 0
+ 6,130 * [1 + 110,026*0.0000116/(144 * 6,130)]
= 33,990 lbf
W3 = New Shell + Shell Insulation
= 44,530 + 0
= 44,530 lbf
Uplift Case 1: Design Pressure Only
U = [(P - 8*t_h) * D^2 * 4.08] - W1
U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860
= -37,843 lbf
bt = U / N = -3,154 lbf
Sd = 15,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = N.A., since Load per Bolt is zero.
Uplift Case 2: Test Pressure Only
U = [(Pt - 8*t_h) * D^2 * 4.08] - W1
U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860
= -37,843 lbf
bt = U / N = -3,154 lbf
Sd = 20,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = N.A., since Load per Bolt is zero.
Page 35 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Uplift Case 3: Failure Pressure Only
Not applicable since if there is a knuckle on tank roof,
or tank roof is not frangible.
Pf (failure pressure per F.6) = N.A.
Uplift Case 4: Wind Load Only
PWR = Wind_Uplift/5.208
= 20.8333/5.208
= 4.0003 IN. H2O
PWS = vF * 18
= 0.6944 * 18
= 12.5 lbf/ft^2
MWH = PWS*(D+t_ins/6)*H^2/2
= 12.5*(31.16+0/6)*35.43^2/2
= 244,467 ft-lbf
U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2
= 4.0003*31.16^2*4.08+[4*244,467/31.16]-33,990
= 13,239 lbf
bt = U / N = 1,103 lbf
Sd = 0.8 * 105,000 = 84,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = bt/Sd
= 1,103/84,000 = 0.013 in^2
Uplift Case 5: Seismic Load Only
U = [4 * Mrw / D] - W2*(1-0.4*Av)
U = [4 * 12,264,530 / 31.16] - 33,990*(1-0.4*0)
= 1,540,404 lbf
bt = U / N = 128,367 lbf
Sd = 0.8 * 105,000 = 84,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = bt/Sd
= 128,367/84,000 = 1.528 in^2
Uplift Case 6: Design Pressure + Wind Load
U = [(0.4*P + PWR - 8*t_h) * D^2 * 4.08] + [4 * MWH / D] - W1
= [(0.4*0+4.0003-8*0.315)*31.16^2 * 4.08]+[4*244,467 / 31.16] - 27,860
= 9,386 lbf
bt = U / N = 782 lbf
Sd = 20,000 = 20,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = bt/Sd
= 782/20,000 = 0.039 in^2
Uplift Case 7: Design Pressure + Seismic Load
U = [(0.4*P - 8*t_h)*D^2 * 4.08] + [4*Mrw/D] - W1*(1-0.4*Av)
U = [(0.4*0-8*0.315)*31.16^2*4.08]+[4*12,264,530/31.16]-27,860*(1-0.4*0)
= 1,536,551 lbf
bt = U / N = 128,046 lbf
Sd = 0.8 * 105,000 = 84,000 PSI
A_s_r = Bolt Root Area Req'd
A_s_r = bt/Sd
= 128,046/84,000 = 1.524 in^2
Page 36 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:56 AM
Uplift Case 8: Frangibility Pressure
Not applicable since if there is a knuckle on tank roof,
or tank roof is not frangible.
Pf (failure pressure per F.6) = N.A.
< ANCHOR BOLT SUMMARY >
Bolt Root Area Req'd = 1.528 in^2
d = Bolt Diameter = 1.75 in.
n = Threads per inch = 5
A_s = Actual Bolt Root Area
= 0.7854 * (d - 1.3 / n)^2
= 0.7854 * (1.75 - 1.3 / 5)^2
= 1.7437 in^2
Exclusive of Corrosion,
Bolt Diameter Req'd = 1.655 in. (per ANSI B1.1)
Actual Bolt Diameter = 1.750 in.
Bolt Diameter Meets Requirements.
<ANCHORAGE REQUIREMENTS>
Seismic calculations require anchorage,
Minimum # Anchor Bolts = 10
per API-650 E.6.2.2.
Actual # Anchor Bolts = 12
Anchorage Meets Spacing Requirements.
Page 37 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:57 AM
ANCHOR CHAIR DESIGN
(from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII)
Entered Parameters
Chair Material: A-36
Top Plate Type: DISCRETE
Chair Style: VERT. TAPERED
a : Top Plate Width = 8.000 in.
b : Top Plate Length = 6.000 in.
k : Verical Plate Width = 4.850 in.
m : Bottom Plate Thickness = 0.3937 in.
t : Shell Course + Repad Thickness = 1.3050 in.
r : Nominal Radius to Tank Centerline = 187.298 in.
Design Load per Bolt: P = 192.55 KIPS (1.5 * Maximum from Uplift Cases)
d = Bolt Diameter = 1.75 in.
n = Threads per unit length = 5 TPI
A_s = Computed Bolt Root Area
= 0.7854 * (d - 1.3 / n)^2
= 0.7854 * (1.75 - 1.3 / 5)^2
= 1.74 in^2
Bolt Yield Load = A*Sy/1000 (KIPS)
= 1.74*105,000/1000
= 182.7 KIPS
Seismic Design Bolt Load = Pa = 3*Pab = 379.38 KIPS
Anchor Chairs will be designed to withstand
Design Load per Bolt.
Anchor Chair Design Load, P = 192.5505 KIPS
For Anchor Chair material: A-36
Per API-650 Table 5-2b, Sd_Chair = 20 KSI
Since bottom t > 3/8 in.,
h_min = 6 in.
For Discrete Top Plate,
Max. Chair Height Recommended : h <= 3 * a
h_max = 3 * 8 = 24 in.
h = 6 in.
e_min = 0.886 * d + 0.572 = 2.123 in.
e = e_min = 2.123 in.
g_min = d + 1 = 2.75 in.
g = g_min = 2.75 in.
Page 38 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:57 AM
f_min = d/2 + 0.125 = 1 in.
f = f_min = 1 in.
c_min = SQRT[P / Sd_Chair / f * (0.375 * g - 0.22 * d)]
= SQRT[192.5505 / 28.8 / 1 * (0.375 * 2.75 - 0.22 * 1.75)]
= 2.079 in.
c >= c_min = 2.079 in.
j_min = MAX(0.5, [0.04 * (h - c)])
= MAX(0.5, [0.04 * (6.000 - 2.079)])
= 0.5 in.
j = j_min = 0.5 in.
b_min = e_min + d + 1/4
= 2.123 + 1.75 + 1/4
= 4.123 in.
<Stress due to Top Plate Thickness>
S_actual_TopPlate = P / f / c^2 * (0.375 * g - 0.22 * d)
= 192.55/1/2.079^2 * (0.375 * 2.75 - 0.22 * 1.75)
= 28.79 KSI
<Repad>
ClearX = Minimum Clearance of Repad from Anchor Chair
= MAX(2, 6*Repad_t, 6*t_Shell_1)
= MAX(2, 6*0.99, 6*0.315)
= 5.94 in.
Minimum Height = h + ClearX
= 11.94 in.
Minimum Width = a + 2*ClearX
= 19.88 in.
<Shell Stress due to Chair Height> (For Discrete Top Plate)
S_actual_ChairHeight = P * e / t^2 * F3
where F3 = F1 + F2,
now F1 = (1.32 * z) / (F6 + F7)
where F6 = (1.43 * a * h^2) / (r * t)
and F7 = (4 * a * h^2)^(1/3)
and z = 1 / (F4 * F5 + 1)
where F4 = (0.177 * a * m) / SQRT(r * t)
and F5 = (m / t)^2
yields F5 = (0.3937 / 1.305)^2
= 0.091
yields F4 = (0.177 * 8. * 0.3937) / SQRT(187.2975 * 1.305)
= 0.0357
yields z = 1 / (0.0357 * 0.091 + 1)
= 0.9968
yields F7 = (4 * 8. * 6.^2)^(1/3)
= 10.483
yields F6 = (1.43 * 8. * 6.^2) / (187.2975 * 1.305)
= 1.6849
yields F1 = (1.32 * z) / (1.6849 + 10.483)
= 0.1081
Page 39 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:57 AM
now F2 = 0.031 / SQRT(r * t)
yields F2 = 0.031 / SQRT(187.2975 * 1.305)
= 0.002
yields F3 = 0.1081 + 0.002
= 0.1101
yields S_actual_ChairHeight = 192.5505 * 2.123 / 1.305^2 * 0.1101
= 26.4312 KSI
Maximum Recommended Stress is 25 KSI for the Shell
(per API-650 E.6.2.1.2)
Sd_ChairHeight = 25 KSI
< ANCHOR CHAIR SUMMARY >
S_actual_TopPlate Meets Design Calculations
(within 105% of Sd_Chair)
S_actual_TopPlate/Sd_Chair
= 28.79/30.856 = 93.3%
S_actual_ChairHeight/Sd_ChairHeight
= 26.4312/25 = 105.7%
* * Warning * * S_actual_ChairHeight Exceeds 105% of Sd_ChairHeight
Use Anchor Chair Repad ( t = 1.000).
Page 40 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:57 AM
CAPACITIES and WEIGHTS
Maximum Capacity (to upper TL) : 201,431 gal
Design Capacity (to Max Liquid Level) : 201,429 gal
Minimum Capacity (to Min Liquid Level) : 0 gal
NetWorking Capacity (Design - Min.) : 201,429 gal
New Condition Corroded
-----------------------------------------------------------
Shell 44,530 lbf 27,860 lbf
Roof
Plates 9,802 lbf 6,130 lbf
Rafters 227 lbf 227 lbf
Girders 0 lbf 0 lbf
Columns 0 lbf 0 lbf
Bottom 12,511 lbf 8,761 lbf
Stiffeners 640 lbf 640 lbf
Nozzle Wgt 0 lbf 0 lbf
Misc Roof Wgt 0 lbf 0 lbf
Misc Shell Wgt 0 lbf 0 lbf
Insulation 0 lbf 0 lbf
-----------------------------------------------------------
Total 67,710 lbf 43,618 lbf
Weight of Tank, Empty : 67,710 lbf
Weight of Tank, Full of Product (SG=1): 1,748,732 lbf
Weight of Tank, Full of Water : 1,748,732 lbf
Net Working Weight, Full of Product : 1,748,716 lbf
Net Working Weight, Full of Water : 1,748,716 lbf
Foundation Area Req'd : 763 ft^2
Foundation Loading, Empty : 88.74 lbf/ft^2
Foundation Loading, Full of Product (SG=1) : 2,292 lbf/ft^2
Foundation Loading, Full of Water : 2,292 lbf/ft^2
SURFACE AREAS
Roof 764 ft^2
Shell 3,468 ft^2
Bottom 763 ft^2
Wind Moment 491,987 ft-lbf
Seismic Moment 15,885,241 ft-lbf
MISCELLANEOUS ATTACHED ROOF ITEMS
MISCELLANEOUS ATTACHED SHELL ITEMS
Page 41 of 41
PT Hydro Raya - Quote Rekadaya-700 KL
TANK REPORT: Printed - 4/29/2015 11:40:57 AM
MAWP & MAWV SUMMARY FOR Quote Rekadaya-700 KL
MAXIMUM CALCULATED INTERNAL PRESSURE
MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 App. F.1.3 & F.7)
MAWP = Maximum Calculated Internal Pressure (due to shell)
= 2.5 PSI or 69.28 IN. H2O
MAWP = Maximum Calculated Internal Pressure (due to roof)
= 0.3832 PSI or 10.62 IN. H2O
TANK MAWP = 0.3832 PSI or 10.62 IN. H2O
MAXIMUM CALCULATED EXTERNAL PRESSURE
MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V.1)
MAWV = Maximum Calculated External Pressure (due to shell)
= -0.3617 PSI or -10.03 IN. H2O
MAWV = Maximum Calculated External Pressure (due to roof)
= -0.2521 PSI or -6.99 IN. H2O
MAWV = N.A. (not calculated due to columns)
TANK MAWV = -0.2521 PSI or -6.99 IN. H2O

More Related Content

What's hot

Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesKee H. Lee, P.Eng.
 
ACI 318 - 02 (Ingles)
ACI 318 - 02 (Ingles)ACI 318 - 02 (Ingles)
ACI 318 - 02 (Ingles)TheJamez
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecapazhar ahmad
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
Instructor solution manual for chapter 10 indeterminate structures "structur...
Instructor solution manual for chapter 10  indeterminate structures "structur...Instructor solution manual for chapter 10  indeterminate structures "structur...
Instructor solution manual for chapter 10 indeterminate structures "structur...Omar Daher
 
Design by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vesselDesign by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vesselAnalyzeForSafety
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...Hossam Shafiq II
 
Konsep sambungan struktur baja
Konsep sambungan struktur bajaKonsep sambungan struktur baja
Konsep sambungan struktur bajaNunu Nurul
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edThomas Britto
 
Presentation Wind and Eurocode UK
Presentation Wind and Eurocode UKPresentation Wind and Eurocode UK
Presentation Wind and Eurocode UKAbdurahman Ahmed
 
Singly R.C. beam
Singly R.C. beam  Singly R.C. beam
Singly R.C. beam Yash Patel
 
Pipeline Design Report
Pipeline Design ReportPipeline Design Report
Pipeline Design ReportRAPHAEL AGORUA
 
Bs 6399 loading_for_buildings_part_2_win
Bs 6399 loading_for_buildings_part_2_winBs 6399 loading_for_buildings_part_2_win
Bs 6399 loading_for_buildings_part_2_winUzerKhan6
 

What's hot (20)

Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating Machines
 
ACI 318 - 02 (Ingles)
ACI 318 - 02 (Ingles)ACI 318 - 02 (Ingles)
ACI 318 - 02 (Ingles)
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Column design: as per bs code
Column design: as per bs codeColumn design: as per bs code
Column design: as per bs code
 
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Metode kerja
Metode kerjaMetode kerja
Metode kerja
 
Instructor solution manual for chapter 10 indeterminate structures "structur...
Instructor solution manual for chapter 10  indeterminate structures "structur...Instructor solution manual for chapter 10  indeterminate structures "structur...
Instructor solution manual for chapter 10 indeterminate structures "structur...
 
Design by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vesselDesign by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vessel
 
255788330 asi-steel-connections
255788330 asi-steel-connections255788330 asi-steel-connections
255788330 asi-steel-connections
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
 
Konsep sambungan struktur baja
Konsep sambungan struktur bajaKonsep sambungan struktur baja
Konsep sambungan struktur baja
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_ed
 
Presentation Wind and Eurocode UK
Presentation Wind and Eurocode UKPresentation Wind and Eurocode UK
Presentation Wind and Eurocode UK
 
Singly R.C. beam
Singly R.C. beam  Singly R.C. beam
Singly R.C. beam
 
Pipeline Design Report
Pipeline Design ReportPipeline Design Report
Pipeline Design Report
 
Bs 6399 loading_for_buildings_part_2_win
Bs 6399 loading_for_buildings_part_2_winBs 6399 loading_for_buildings_part_2_win
Bs 6399 loading_for_buildings_part_2_win
 
105567761 tabel-baja-gunung-garuda
105567761 tabel-baja-gunung-garuda105567761 tabel-baja-gunung-garuda
105567761 tabel-baja-gunung-garuda
 
Presentation on SECVIII
Presentation on SECVIIIPresentation on SECVIII
Presentation on SECVIII
 
PIPERACK
PIPERACKPIPERACK
PIPERACK
 

Similar to Tank 700 kl

IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...IRJET Journal
 
KLIMA Software - Some DEMO Results Outputs in ENGLISH Language
KLIMA Software - Some DEMO Results Outputs in ENGLISH LanguageKLIMA Software - Some DEMO Results Outputs in ENGLISH Language
KLIMA Software - Some DEMO Results Outputs in ENGLISH LanguageKLIMA Software
 
Handbook for ftth osp v1.0
Handbook for ftth osp v1.0Handbook for ftth osp v1.0
Handbook for ftth osp v1.0Chikal II
 
Design And Analysis Of Stirling Engine For Underwater Application
Design And Analysis Of Stirling Engine For Underwater ApplicationDesign And Analysis Of Stirling Engine For Underwater Application
Design And Analysis Of Stirling Engine For Underwater ApplicationIRJET Journal
 
Design and analysis of worm pair used in self locking system with development...
Design and analysis of worm pair used in self locking system with development...Design and analysis of worm pair used in self locking system with development...
Design and analysis of worm pair used in self locking system with development...eSAT Publishing House
 
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...IRJET Journal
 
Lot 04 - AL SAAD Brackish water and reverse osmosis plant
Lot 04 - AL SAAD Brackish water and reverse osmosis plantLot 04 - AL SAAD Brackish water and reverse osmosis plant
Lot 04 - AL SAAD Brackish water and reverse osmosis plantMohammed Abdelkawy
 
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdf
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdfKubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdf
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdfujdjksmdmdm
 
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...ujdjksmdmdm
 
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...jdjskdkdmmd
 
Steam turbine china
Steam turbine chinaSteam turbine china
Steam turbine chinaAndri Yanto
 

Similar to Tank 700 kl (12)

IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
 
KLIMA Software - Some DEMO Results Outputs in ENGLISH Language
KLIMA Software - Some DEMO Results Outputs in ENGLISH LanguageKLIMA Software - Some DEMO Results Outputs in ENGLISH Language
KLIMA Software - Some DEMO Results Outputs in ENGLISH Language
 
Base ring analysis
Base ring analysisBase ring analysis
Base ring analysis
 
Handbook for ftth osp v1.0
Handbook for ftth osp v1.0Handbook for ftth osp v1.0
Handbook for ftth osp v1.0
 
Design And Analysis Of Stirling Engine For Underwater Application
Design And Analysis Of Stirling Engine For Underwater ApplicationDesign And Analysis Of Stirling Engine For Underwater Application
Design And Analysis Of Stirling Engine For Underwater Application
 
Design and analysis of worm pair used in self locking system with development...
Design and analysis of worm pair used in self locking system with development...Design and analysis of worm pair used in self locking system with development...
Design and analysis of worm pair used in self locking system with development...
 
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
COMPARATIVE STUDY ON ANALYSIS AND DESIGN OF TRUSS USING MANUAL CALCULATIONS A...
 
Lot 04 - AL SAAD Brackish water and reverse osmosis plant
Lot 04 - AL SAAD Brackish water and reverse osmosis plantLot 04 - AL SAAD Brackish water and reverse osmosis plant
Lot 04 - AL SAAD Brackish water and reverse osmosis plant
 
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdf
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdfKubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdf
Kubota KX042-4 Excavator Parts Catalogue Manual (Publishing ID BKIDA5123).pdf
 
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...
Kubota KX016-4 (SN 50001-69999) Excavator Parts Catalogue Manual (Publishing ...
 
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...
JCB 3CX 20 BACKOHE LOADER Parts Catalogue Manual (Serial Number 00400000-0043...
 
Steam turbine china
Steam turbine chinaSteam turbine china
Steam turbine china
 

Tank 700 kl

  • 1. Page 1 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:42 AM ETANK FULL REPORT - Quote Rekadaya-700 KL ETank2000 MU 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 8 SHELL COURSE DESIGN PAGE 13 BOTTOM DESIGN PAGE 22 SEISMIC CALCULATIONS PAGE 27 ANCHOR BOLT DESIGN PAGE 34 CAPACITIES AND WEIGHTS PAGE 40 MAWP & MAWV SUMMARY PAGE 41
  • 2. Page 2 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True
  • 3. Page 3 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM SUMMARY OF DESIGN DATA and REMARKS Job : Quote Rekadaya-700 KL Date of Calcs. : 4/29/2015 , 11:40 AM Mfg. or Insp. Date : 4/11/2015 Designer : Widi Project : Gorontalo Peaker Tag Number : 01 Plant : 01 Plant Location : Area Tank Site : Gorontalo Design Basis : API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- - TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- - Operating Ratio: 0.4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - (None) - - Roof : A-36: 0.315in. - - Shell (6): A-36: 0.315in. - - Shell (5): A-36: 0.315in. - - Shell (4): A-36: 0.315in. - - Shell (3): A-36: 0.315in. - - Shell (2): A-36: 0.315in. - - Shell (1): A-36: 0.315in. - - Bottom : A-36: 0.3937in. - - Annular Ring : A-36: 0.3937in. - ---------------------------------------------------------------------- Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O MAWP = 0.3832 PSI or 10.62 IN. H2O MAWV = -0.2521 PSI or -6.99 IN. H2O OD of Tank = 31.16 ft Shell Height = 35.43 ft S.G. of Contents = 1 Max. Liq. Level = 35.43 ft Design Temperature = 104 °F Tank Joint Efficiency = 0.85 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 0 lbf/ft^2
  • 4. Page 4 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM Basic Wind Velocity = 100 mph Wind Importance Factor = 1 Using Seismic Method: API-650 11th Ed. - ASCE7 Mapped (Ss & S1) Seismic Use Group: III Site Class: D T_L = 12 sec Ss = 150 %g S1 = 50 %g S0 = 60 %g Av = 0 %g Q = 1 Importance Factor = 1.5 DESIGN NOTES NOTE 1 : Tank is not subject to API-650 Appendix F.7
  • 5. Page 5 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM SUMMARY OF RESULTS Shell Material Summary (Bottom is 1) ------------------------------------------------------------------------ Shell Width Material Sd St Weight CA # (ft) (psi) (psi) (lbf) (in) ------------------------------------------------------------------------ 6 5.43 A-36 23,200 24,900 6,825 0.118 5 6 A-36 23,200 24,900 7,541 0.118 4 6 A-36 23,200 24,900 7,541 0.118 3 6 A-36 23,200 24,900 7,541 0.118 2 6 A-36 23,200 24,900 7,541 0.118 1 6 A-36 23,200 24,900 7,541 0.118 ------------------------------------------------------------------------ Total Weight 44,530 Shell API 650 Summary (Bottom is 1) ---------------------------------------------------------------------- Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ---------------------------------------------------------------------- 6 0.1362 0.017 N.A. 0.1476 0.1875 0.315 5 0.1608 0.0399 N.A. 0.1768 0.1875 0.315 4 0.1855 0.0629 N.A. 0.2034 0.2034 0.315 3 0.2101 0.0859 N.A. 0.2265 0.2265 0.315 2 0.2348 0.1088 N.A. 0.2474 0.2474 0.315 1 0.2594 0.1318 N.A. 0.2682 0.2682 0.315 ---------------------------------------------------------------------- Structurally Supported Conical Roof Plate Material = A-36, Struct. Material = A-36 t.required = 0.3055 in. t.actual = 0.315 in. Roof Joint Efficiency = 0.7 Plate Weight = 9,802 lbf Rafters: 14 Rafters at Rad. 15.58 ft.: UNP 150 x 75 x6.5 Rafters Weight = 227 lbf Girders: Girders Weight = 0 lbf Columns: 1 Column at Center: Columns Weight = 0 lbf
  • 6. Page 6 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM Bottom Type: Flat Bottom: Annular Bottom Floor Material = A-36 t.required = 0.354 in. t.actual = 0.3937 in. Bottom Joint Efficiency = 0.85 Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0.354 in. t_Annular_Ring = 0.3937 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 53 in. Total Weight of Bottom = 12,511 lbf ANCHOR BOLTS: (12) 1.75in. UNC Bolts, A-193 Gr B7 TOP END STIFFENER: L80x80x8, A-36, 640. lbf
  • 7. Page 7 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM SUPPORTED CONICAL ROOF (from Brownell & Young) Roof Plate Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table « 5-2b) Structural Material: A-36, Sd = 23,200 PSI, Fy = 36,000 PSI (API-650 Table « 5-2b) R = 15.58 ft pt = 0.75 in/ft (Cone Roof Pitch) Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degrees Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*31.16^2/48 = 15.171 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31.16 = 15.58 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15.58^2 = 762.579 ft^2 S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2 Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (8)(0/12) + 12.8505 + 0 = 12.8505 lbf/ft^2 Roof Loads (per API-650 Appendix R) Pe = PV*144 = 0*144 = 0 lbf/ft^2 e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 12.8505 + 20 + 0.4*0 = 32.851 lbf/ft^2 e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 12.8505 + 0 + 0.4*20 = 20.851 lbf/ft^2 T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 32.851 lbf/ft^2 e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 12.8505 + 20 + 0.4*0 = 32.851 lbf/ft^2 e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 12.8505 + 0 + 0.4*20 = 20.851 lbf/ft^2
  • 8. Page 8 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 32.851 lbf/ft^2 Lr_1 = MAX(T,U) = 32.851 lbf/ft^2 P = Max. Design Load = Lr_1 = 32.851 lbf/ft^2 = 0.2281 PSI l = Maximum Rafter Spacing (Per API-650 5.10.4.4) = (t - ca) * SQRT(1.5 * Fy / P) = (0.315 - 0.118)*SQRT(1.5*36,000/0.2281) = 95.85 in. MINIMUM # OF RAFTERS < FOR OUTER SHELL RING > l = 84 in. since calculated l > 84 in. (7 ft) N_min = 2*PI*R/l = 2*PI*(15.58)(12)/84 = 13.98 N_min = 14 Actual # of Rafters = 14 Minimum roof thickness based on actual rafter spacing l = 83.91 in. (actual rafter spacing) t-Calc = l/SQRT(1.5*Fy/p) + CA = 83.91/SQRT(1.5*36,000/0.2281) + 0.118 = 0.2905 in. NOTE: Governs for roof plate thickness. RLoad_Max = Maximum Roof Load based on actual rafter spacing RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(36,000)/(83.91/(0.315 - 0.118))^2 = 57.15 lb/ft^2 Let Max_T1 = RLoad_Max P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[57.15 - 12.8505 - 0.4 * Max(0,20)]/144 = -0.2521 PSI or -6.99 IN. H2O Pa_rafter_1 = P_ext_1 = -0.2521 PSI or -6.99 IN H2O. t.required = MAX(t-Calc, 0.1875 + 0.118) = MAX(0.2905,0.3055) = 0.3055 in.
  • 9. Page 9 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM RAFTER DESIGN Maximum Rafter Span = 15.58 ft Average Rafter Spacing on Shell = 6.934 ft Average Plate Width = (6.934)/2 = 3.467 ft Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0.2281)(3.467)*12 + 1.043/12 = 9.58 lbf/in l = (15.58)(12) = 186.96 in. Mmax = (9.58)(186.96)^2/8 = 41857. in-lbf Z req'd = Mmax/23,200 = 41857./23,200 = 1.8 in^3 Actual Z = 5.22 in^3 using UNP 150 x 75 x6.5 W_Max (Max. stress allowed for each rafter in ring 1) = Z * Sd * 8 / l^2 = 5.22 * 23,200 * 8 / 186.96^2 = 27.7173 lbf/in. Max_P (Max. Load allowed for each rafter in ring 1) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (27.7173 - 1.043/12)/(3.467*12) = 0.6641 PSI Let Max_T1 = Max_P * 144 P_ext_2 (Vacuum limited by Rafter Type) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[95.6304 - 12.8505 - 0.4 * Max(0,20)]/144 = -0.5193 PSI or -14.39 IN. H2O Pa2_rafter_1 = P_ext_2 (limited by Rafter Type)
  • 10. Page 10 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM COLUMN DESIGN * * * NOTE * * * NO COLUMN DESIGN CALCS PEFORMED BECAUSE COLUMN TYPE NOT SELECTED. Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(31.16)^2/COS() = 110,026 in^2 ROOF WEIGHT Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS(Theta) = (0.2833)(0.315)(PI/4)(373.92 - 0.315)^2/COS(3.5763) = 9,802 lbf (New) = 6,130 lbf (Corroded) Weight of Roof Plates supported by shell = 9,802 lbf (New) = 6,130 lbf (Corroded) Weight of Rafters = 227 lbf (New) Weight of Girders = 0 lbf (New) Weight of Columns = 0 lbf (New) Total Weight of Roof = 10,029 lbf (New) = 6,357 lbf (Corroded) <Actual Participating Area of Roof-to-Shell Juncture> (From API-650 Figure F-2) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0.6 * SQRT[186.645 * (0.315 - 0.118)] = 3.6383 in. (From API-650 Figure F-2) Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0.3 * SQRT[2,997 * (0.315 - 0.118)] = MIN(7.2897, 12) = 7.2897 in. Top End Stiffener: L80x80x8 Aa = (Cross-sectional Area of Top End Stiffener) = 1.906 in^2 Using API-650 Fig. F-2, Detail b End Stiffener Detail Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 3.6383 * (0.315 - 0.118) = 0.717 in^2 Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 7.2897 * (0.315 - 0.118) = 1.436 in^2
  • 11. Page 11 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 1.906 + 1.436 + 0.717 = 4.059 in^2 < Uplift on Tank > (per API-650 F.1.2) NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only. For flat bottom tank with structural roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and corroded roof weight. = P * PI / 4 * D ^ 2 * 144 « - Corr. shell - [Corr. roof weight + Structural weight] = 0 * 3.1416 / 4 * 970.9456 * 144 « - 27,860 - [6,130 + 227 + 0 + 0] = -34,217 lbf < Uplift Case per API-650 1.1.1 > P_Uplift = 0 lbf W_Roof_Plates (corroded) = 6,130 lbf W_Roof_Structure = 227 lbf W_Shell (corroded) = 27,860 lbf Since P_Uplift <= W_Roof, Tank Roof does not need to meet App. F requirements. < API-650 App. F > Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(36,000,36,000,36,000) = 36,000 psi A_min_a = Min. Participating Area due to full Design Pressure. (per API-650 F.5.1, and Fig. F-2) (using API assumption internal P of 1/32 PSI) = [OD^2(P - 8*t)]/[0.962*36,000*TAN(Theta)] = [31.16^2(0.0313 - 8*0.315)]/[0.962*36,000*0.0625] = -0.74 in^2 = 0 in^2 (since can't be negative) P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0.962*36,000*TAN(Theta)]/OD^2 + 8*t_h = 4.059 * [0.962*36,000*0.0625]/31.16^2 + 8*0.197 = 0.3832 PSI or 10.62 IN. H2O P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2.5 PSI or 69.28 IN. H2O
  • 12. Page 12 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM P_max_internal = MIN(P_F51, P_Std) = MIN(10.62, 69.28) = 0.3832 PSI or 10.62 IN. H2O P_max_external = -0.2521 PSI or -6.99 IN. H2O
  • 13. Page 13 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:55 AM SHELL COURSE DESIGN (Bottom Course is #1) VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0.5 = (6*31.16*(0.315-0.118))^0.5 = 6.0689 H = Max Liquid Level =35.43 ft L / H <= 2 Course # 1 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 35.43 + 2.31*0/1 = 35.43ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(35.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2594 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_1 = (hMax_1 - H) * 0.433 * G = (48.9515 - 35.43) * 0.433 * 1 = 5.8548 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 35.43 + 2.31*0/1 = 35.43ft t.test = 2.6*31.16*(35.43 - 1)/(24,900*0.85) = 0.1318 in. Course # 2 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85
  • 14. Page 14 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 29.43 + 2.31*0/1 = 29.43ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(29.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2348 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_2 = (hMax_2 - H) * 0.433 * G = (48.9515 - 29.43) * 0.433 * 1 = 8.4528 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(5.8548, 8.4528) Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 29.43 + 2.31*0/1 = 29.43ft t.test = 2.6*31.16*(29.43 - 1)/(24,900*0.85) = 0.1088 in. Course # 3 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 23.43 + 2.31*0/1 = 23.43ft
  • 15. Page 15 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(23.43 - 1)*1/(23,200*0.85) + 0.118 = 0.2101 in. hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_3 = (hMax_3 - H) * 0.433 * G = (48.9515 - 23.43) * 0.433 * 1 = 11.0508 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(5.8548, 11.0508) Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 23.43 + 2.31*0/1 = 23.43ft t.test = 2.6*31.16*(23.43 - 1)/(24,900*0.85) = 0.0859 in. Course # 4 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 17.43 + 2.31*0/1 = 17.43ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(17.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1855 in. hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_4 = (hMax_4 - H) * 0.433 * G = (48.9515 - 17.43) * 0.433 * 1 = 13.6488 PSI
  • 16. Page 16 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(5.8548, 13.6488) Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 17.43 + 2.31*0/1 = 17.43ft t.test = 2.6*31.16*(17.43 - 1)/(24,900*0.85) = 0.0629 in. Course # 5 Material: A-36; Width = 6 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 11.43 + 2.31*0/1 = 11.43ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(11.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1608 in. hMax_5 = E*Sd*(t_5 - CA_5)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_5 = (hMax_5 - H) * 0.433 * G = (48.9515 - 11.43) * 0.433 * 1 = 16.2468 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(5.8548, 16.2468) Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 11.43 + 2.31*0/1 = 11.43ft
  • 17. Page 17 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM t.test = 2.6*31.16*(11.43 - 1)/(24,900*0.85) = 0.0399 in. Course # 6 Material: A-36; Width = 5.43 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 0.85 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 5.43 + 2.31*0/1 = 5.43ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*31.16*(5.43 - 1)*1/(23,200*0.85) + 0.118 = 0.1362 in. hMax_6 = E*Sd*(t_6 - CA_6)/(2.6*OD*G) + 1 = 0.85*23,200*(0.315 - 0.118) / (2.6 * 31.16 * 1) + 1 = 48.9515 ft. Pmax_6 = (hMax_6 - H) * 0.433 * G = (48.9515 - 5.43) * 0.433 * 1 = 18.8448 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(5.8548, 18.8448) Pmax_int_shell = 5.8548 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 5.43 + 2.31*0/1 = 5.43ft t.test = 2.6*31.16*(5.43 - 1)/(24,900*0.85) = 0.017 in. Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5 Transforming Courses (1) to (6)
  • 18. Page 18 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 35.4037 ft INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 100 mph Ve = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944 Design PV = 0 PSI, OR 0 In. H2O <TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0.27 in^3, For Structural Roof and OD <= 35 ft, Minimum Required Angle is 2 x 2 x 3/16 in. Actual Z = 0.971 in^3 Using L80x80x8, Wc = 4.6054 <INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7) * * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course. * * * NOTE: Not subtracting corrosion allowance per user setting. ME = 28,799,999/28,799,999 = 1 Hu = Maximum Height of Unstiffened Shell = {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600,000*0.315*SQRT[0.315/31.16]^3} / 0.6944 = 276.6266 ft Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5 Transforming Courses (1) to (6) Wtr(1) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(2) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(3) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(4) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(5) = 6*[ 0.315/0.315 ]^2.5 = 6 ft Wtr(6) = 5.4038*[ 0.315/0.315 ]^2.5 = 5.4037 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 35.4037 ft L_0 = Hts/# of Stiffeners + 1 = 35.4037/1 = 35.4 ft. No Intermediate Wind Girders Needed Since Hu >= L_0
  • 19. Page 19 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM SHELL COURSE #1 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2594, 0, 0.2682) = 0.2682 in. t-650min = 0.236 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.2682 in. t.actual = 0.315 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded) SHELL COURSE #2 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2348, 0, 0.2474) = 0.2474 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.2474 in. t.actual = 0.315 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded) SHELL COURSE #3 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.2101, 0, 0.2265) = 0.2265 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.2265 in. t.actual = 0.315 in.
  • 20. Page 20 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded) SHELL COURSE #4 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1855, 0, 0.2034) = 0.2034 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.2034 in. t.actual = 0.315 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded) SHELL COURSE #5 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1608, 0, 0.1768) = 0.1768 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*6*0.315 = 7,541 lbf (New) = 4,718 lbf (Corroded) SHELL COURSE #6 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1362, 0, 0.1476) = 0.1476 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)
  • 21. Page 21 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*31.16)-0.315]*12*5.43*0.315 = 6,825 lbf (New) = 4,270 lbf (Corroded)
  • 22. Page 22 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM FLAT BOTTOM: ANNULAR PLATE DESIGN Bottom Plate Material : A-36 Annular Bottom Plate Material : A-36 <Weight of Bottom Plate> Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2 = PI/4*(373.92 - 2*0.315 - 2*53)^2 = 56,112 in^2 Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area = PI/4*(377.92)^2 - 56,112 = 56,061 in^2 Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * « Annular_Area) = 0.2833 * 0.3937*56,112 + 0.2833 * 0.3937*56,061 = 12,511 lbf (New) = 8,761 lbf (Corroded) < API-650 > Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1) t_1 : Bottom (1st) Shell Course thickness. H'= Max. Liq. Level + P(psi)/(0.433) = 35.43 + (0)/(0.433) = 35.43 ft St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)/t_1 = (2.6)(31.16)(35.43 - 1)/(0.315) = 8,855 PSI Sd = Product Design Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2.6)(31.16)(35.43 - 1)(1)/(0.197) = 14,159 PSI -------------------------- <Non-Annular Bottom Plates> t_min = 0.236 + CA = 0.236 + 0.118 = 0.354 in. (per Section 5.4.1) t-Calc = t_min = 0.354 in. t-Actual = 0.3937 in. <Annular Bottom Plates> (per API-650 5.5.3 TABLE 5-1b), t_Min_Annular_Ring = 0.236 + 0.118 = 0.354 in. t_Annular_Ring = Actual Annular Ring Thickness = 0.3937 in.
  • 23. Page 23 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM W_Annular_Ring = Actual Annular Ring Width = 53 in. <Annular Bottom Plates> (per API-650 Section 5.5.2), W_int = Minimum Annular Ring Width (from Shell ID to Any Lap-Welded Joint) (t_Min_Annular_Ring exclusive of corrosion) = 390*t_Min_Annular_Ring/SQRT(H*G) = 390(0.236)/SQRT(35.43*1) = 15.46 in. W_int = 24 in. < FLAT BOTTOM: ANNULAR SUMMARY > Bottom Plate Material : A-36 t.required = 0.354 in. t.actual = 0.3937 in. Annular Bottom Plate Material : A-36 Minimum Annular Ring Thickness = 0.354 in. t_Annular_Ring = 0.3937 in. Minimum Annular Ring Width = 24 in. W_Annular_Ring = 53 in.
  • 24. Page 24 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -34,217 lbf Anchorage NOT required for internal pressure. WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 100 mph vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0.6944 Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0.6944 = 20.8333 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0.962*36,000*4.059*0.0625/31.16^2 + 8*0.197) = 0.3832 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0.1447 PSI 1.6*P_F41 = 0.6131 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(20.8333,88.2893) = 20.8333 lbf/ft^2 Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0.75*31.16^2/48 = 15.171 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31.16 = 15.58 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15.58^2 = 762.579 ft^2 M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (20.8333)(762.579)(15.58) = 247,520 ft-lbf Xs (Moment Arm of Wind Force on Shell) = H/2 = (35.43)/2 = 17.715 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (35.43)(31.16 + 0/6) = 1,104 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0.6944)(18)(1,104)(17.715) = 244,467 ft-lbf
  • 25. Page 25 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Mw (Wind moment) = M_roof + M_shell = 247,520 + 244,467 = 491,987 ft-lbf W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.) = W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2) = 27,860 + 6,130 - 0*(PI/4)(144)(31.16^2) = 33,990 lbf RESISTANCE TO OVERTURNING (per API-650 5.11.2) An unanchored Tank must meet these two criteria: 1) 0.6*Mw + MPi < MDL/1.5 2) Mw + 0.4MPi < (MDL + MF)/2 Mw = Destabilizing Wind Moment = 491,987 ft-lbf MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design « Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3.1416*31.16^2/4)*(144)*(15.58) = 0 ft-lbf MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and « Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (27,860 + 6,130)*15.58 = 529,564 ft-lbf tb = Annular Bottom Ring thickness less C.A. = 0.2757 in. Lb = Minimum bottom annular ring width Lb = greater of 18 in. or 0.365*tb*SQRT(Sy_btm/H_liq) = 18 in. wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4.67*tb*SQRT(Sy_btm*H_liq) = 4.67*0.2757*SQRT(36,000*35.43) = 1,454 lbf/ft wl = 0.9 * H_liq * OD (lesser value than above) = 0.9*35.43*31.16 = 993.6 lbf/ft MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (15.58)(993.6)(3.1416)(31.16) = 1,515,397 ft-lbf Criteria 1 0.6*(491,987) + 0 < 529,564/1.5 Since 295,192 < 353,043, Tank is stable.
  • 26. Page 26 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Criteria 2 491,987 + 0.4 * 0 < (529,564 + 1,515,397)/2 Since 491,987 < 1,022,481, Tank is stable. RESISTANCE TO SLIDING (per API-650 5.11.4) F_wind = vF * 18 * As = 0.6944 * 18 * 1,104 = 13,800 lbf F_friction = Maximum of 40% of Weight of Tank = 0.4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + RoofStruct + W_min_Liquid) = 0.4 * (6,130 + 27,860 + 8,761 + 227 + 0) = 17,191 lbf No anchorage needed to resist sliding since F_friction > F_wind <Anchorage Requirement> Anchorage NOT required since Criteria 1, Criteria 2, and Sliding ARE acceptable.
  • 27. Page 27 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2 < Mapped ASCE7 Method > WEIGHTS Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.) = 45,170 lbf Wf = Weight of Floor (Incl. Annular Ring) = 12,511 lbf Wr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul. = 11,557 lbf SEISMIC VARIABLES SUG = Seismic Use Group (Importance factor depends on SUG) = III Site Class = D T_L = Regional Dependent Transition Period for Long Period Ground Motion (per ASCE 7-05, Fig. 22-15) = 12 sec. Ss = Design Spectral Response Param. (5% damped) for Short Periods (T=0.2 sec)(per ASCE7 Fig. 22-1) = 1.5 Decimal %g S1 = Design Spectral Response Param. (5% damped) for 1-Second Periods (T=1.0 sec)(per ASCE7 Fig. 22-2) = 0.5 Decimal %g S0 = Design Spectral Response Param. (5% damped) for 0-Second Periods (T=0.0 sec) = 0.6 Decimal %g Av = Vertical Earthquake Acceleration Coefficient = 0 Decimal %g Q = Scaling factor from the MCE to design level spectral accelerations = 1
  • 28. Page 28 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM LOOKUP OR OTHER VARIABLES Fa = Acceleration-based site coefficient (at .2 sec period)(Table E-1) = 1 Fv = Velocity-based site coefficient (at 1 sec period)(Table E-2) = 1.5 I = Importance factor defined by Seismic Use Group = 1.5 Ci = Coefficient for impulsive period of tank system (Fig E-1) = 6.36 tu = Equivalent uniform thickness of tank shell = 0.315 in. Density = Density of tank product. SG*62.4 = 62.4 lbf/ft^3 E = Elastic modulus of tank material (bottom shell course) = 28,799,999 PSI Rwi = Force reduction factor for the impulsive mode using allowable stress design methods (Table E-4) = 4 Rwc = Force reduction factor for the convective mode using allowable stress design methods (Table E-4) = 2 Sds = The design spectral response acceleration param. (5% damped) at short periods (T = 0.2 sec) based on ASCE7 methods. = Q*Fa*Ss = 1*1*1.5 = 1.5 decimal %g Sd1 = The design spectral response acceleration param. (5% damped) at 1 second based on ASCE7 methods. = Q*Fv*S1 = 1*1.5*0.5 = 0.75 decimal %g E.4.5 STRUCTURAL PERIOD OF VIBRATION E.4.5.1 Impulsive Natural Period Ti = (1/27.8)*(Ci*H)/((tu/D)^0.5)*(Density^0.5/E^0.5) = (1/27.8)*(6.36*35.43/((0.315/31.16)^0.5)*(62.4^0.5/28,799,999^0.5) = 0.12 sec. E.4.5.2 Convective (Sloshing) Period Ks = 0.578/SQRT(TANH(3.68*H/D)) = 0.578/SQRT(TANH(3.68/0.879)) = 0.5781 Tc = Ks*SQRT(D) = 0.5781*SQRT(31.16) = 3.23 sec. E.4.6.1 Spectral Acceleration Coefficients Ai = Impulsive spectral acceleration parameter = MAX(Sds*I/Rwi,0.007) = MAX(1.5*1.5/4,0.007) = MAX(0.5625,0.007) = 0.5625 decimal %g K = Coefficient to adjust spectral acceleration from 5% - 0.5% damping = 1.5 Ac = Convective spectral acceleration parameter = K*Sd1/Tc*I/Rwc = 1.5*0.75/3.23*1.5/2 = 0.2612 decimal %g
  • 29. Page 29 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM E.6.1.1 EFFECTIVE WEIGHT OF PRODUCT D/H = Ratio of Tank Diameter to Design Liquid Level = 0.879 Wp = Total Weight of Tank Contents based on S.G. = 1,686,366 lbf Wi = Effective Impulsive Portion of the Liquid Weight = [1 - 0.218*D/H]*Wp = [1 - 0.218*0.879]*1,686,366 = 1,363,221 lbf Wc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0.23*D/H*TANH(3.67*H/D)*Wp = 0.23*0.879*TANH(3.67/0.879)*1,686,366 = 340,772 lbf Weff = Effective Weight Contributing to Seismic Response = Wi + Wc = 1,703,993 lbf Wrs = Roof Load Acting on Shell, including 10% of Live Load = 11,444 lbf E.6.1 DESIGN LOADS Vi = Design base shear due to impulsive component from effective weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0.5625*(45,170 + 11,557 + 12,511 + 1,363,221) = 805,758 lbf Vc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0.2612*340,772 = 89,016 lbf V = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(805,758^2 + 89,016^2) = 810,660 lbf E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCES Xs = Height from Bottom to the Shell's Center of Gravity = 17.715 ft RCG = Height from Top of Shell to Roof Center of Gravity = 0.243 ft Xr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 35.43 + 0.243 = 35.673 ft E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENT Xi = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for Ringwall Moment = (0.5 - 0.094*D/H)*H = (0.5 - 0.094*0.879)*35.43 = 14.79 ft Xc = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for Ringwall Moment = (1-(COSH(3.67*H/D)-1)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(4.1752)-1)/((4.1752)*SINH(4.1752)))*35.43 = 27.2 ft
  • 30. Page 30 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENT Xis = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for the Slab Moment = [0.5 + 0.06*D/H]*H = [0.5 + 0.06*0.879]*35.43 = 19.58 ft Xcs = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for the Slab Moment = (1-(COSH(3.67*H/D)-1.937)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(4.1752)-1.937)/((4.1752)*SINH(4.1752)))*35.43 = 27.45 ft E.6.1.4 Dynamic Liquid Hoop Forces 0.75 * D = 23.37 D/H = 0.879 SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT- ft ft lbf/in lbf/in lbf lbf/in lbf/in Shell #1 6 34.43 759.16 7.624 3377 20996 13288 Shell #2 6 28.43 759.16 10.309 2805 18093 10385 Shell #3 6 22.43 755.2 18.39 2233 15170 7500 Shell #4 6 16.43 689.72 36.098 1661 11937 4926 Shell #5 6 10.43 524.52 72.703 1089 8216 2840 Shell #6 5.43 4.43 259.6 147.366 518 4145 1114 E.6.1.5 Overturning Moment Mrw = Ringwall moment—Portion of the total overturning moment that acts at the base of the tank shell perimeter Mrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0.5 = ((0.5625*(1,363,221*14.79+45,170*17.715+11,557*35.673))^2 + (0.2612*340,772*27.2)^2)^0.5 = 12,264,530 lbf-ft Ms = Slab moment (used for slab and pile cap design) Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0.5 = ((0.5625*(1,363,221*19.58+45,170*17.715+11,557*35.673))^2 + (0.2612*340,772*27.45)^2)^0.5 = 15,885,240 lbf-ft E.6.2 RESISTANCE TO DESIGN LOADS E.6.2.1.1 Self-Anchored Fy = Minimum yield strength of bottom annulus = 36,000 psi Ge = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0.4*Av) = 1*(1 - 0.4*0) = 1 1.28*H*D*Ge = 1,413 lbf/ft wa = Force resisting uplift in annular region = 7.9*ta*(Fy*H*Ge)^0.5 <= 1.28*H*D*Ge = 7.9*0.2757*(36,000*35.43*1)^0.5 = 2,460 lbf/ft wa = 1,413 lbf/ft (reduced to 1.28*H*D*Ge because that is the max allowable per E.6.2.1.1) wt = Shell and roof weight acting at base of shell = (Wrs + Ws)/(PI*D) = (11,444 + 45,170)/(PI*31.16) = 578.3274 lbf/ft
  • 31. Page 31 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM wint = Uplift Load due to design pressure acting at base of shell = 0.4*P*144*(PI*D^2/4)/(PI*D) = 0.4*0*144*(PI*31.16^2/4)/(PI*31.16) = 0 lbf/ft E.6.2.1.1.2 Annular Ring Requirements L = Required Annular Ring Width = 12*0.216*ta*(Fy/(H*Ge))^0.5 = 12*0.216*0.2757*(36,000/(35.43*1))^0.5 = 22.7792 in. L = MIN(0.035*D*12,L) = MIN(13.0872,22.7792) = 13.0872 in. Ls = Actual Annular Plate Width = 53 in. E.7.3 Piping Flexibility E.7.3.1 Estimating tank uplift Annular Plate: A-36 Fy = 36,000 PSI yu = Estimated uplift displacement for self-anchored tank = Fy*L^2/(83300*ta) = 36,000*1.0906^2/(83300*0.2757) = 1.8645 in. E.6.2.1.1.1 Anchorage Ratio J = Mrw/(D^2*[wt*(1-0.4*Av)+wa-0.4*wint]) = 12,264,530/(31.16^2*[578.3274*(1-0.4*0)+1,413-0.4*0]) = 6.3433 The tank not stable and cannot be self anchored for design load. E.6.2.2 Maximum Longitudinal Shell-Membrane Compressive Stress E.6.2.2.1 Shell Compression in Self-Anchored Tanks ts1 = Thickness of bottom shell course minus C.A. = 0.197 in. SigC = Maximum longitudinal shell compression stress = ((Wt*(1+0.4*Av) + wa)/(0.607-0.1867*J^2.3) - wa)/(12*ts1) = ((578.3274*(1+0.4*0) + 1,413)/(0.607-0.1867*6.3433^2.3) - « 1,413)/(12*0.197) = -665 psi E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression Stress Fty = Minimum specified yield strength of shell course = 36,000 psi G*H*D^2/ts1^2 = 886,408 Fc = Allowable longitudinal shell-membrane compressive stress = 10^6*ts1/(2.5*D) + 600*(G*H)^0.5 = 10^6*0.197/(2.5*31.16) + 600*(1*35.43)^0.5 = 6,100 psi Shell Membrane Compressive Stress OK
  • 32. Page 32 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM E.6.2.4 Hoop Stresses Shell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK Membrane Stress Shell #1 20996 30926. 27540. 27540. 0.2682 Yes Shell #2 18093 30926. 27540. 27540. 0.2474 Yes Shell #3 15170 30926. 27540. 27540. 0.2265 Yes Shell #4 11937 30926. 27540. 27540. 0.2034 Yes Shell #5 8216 30926. 27540. 27540. 0.1768 Yes Shell #6 4145 30926. 27540. 27540. 0.1476 Yes Shell Membrane Hoop Stress OK? True Tank Adequate with No Anchors? False Using 10 ft spacing, Min. # of Anchor Bolts = 10 E.6.2.1.2 Mechanically-Anchored Number of Anchors = 12 Max Spacing = 10 ft Actual Spacing = 8.16 ft Minimum # Anchors = 10 Wab = Design Uplift Load on Anchors per unit circumferential length = (1.273*Mrw)/D^2 - wt*(1-0.4*Av) + wint = (1.273*12,264,530)/31.16^2 - 578.3274*(1-0.4*0) + 0 = 15,502 lbf/ft Pab = Anchor seismic design load = Wab*PI*D/Na = 15,502*PI*31.16/12 = 126,460 lbf Pa = Anchorage chair design load = 3 * Pab = 3*126,460 = 379,380 lbf E.6.2.2.2 Shell Compression in Mechanically-Anchored Tanks SigC_anchored = Maximum longitudinal shell compression stress = (Wt*(1+0.4*Av) + 1.273*Mrw/D^2)/(12*ts1) = (578.3274*(1+0.4*0) + 1.273*12,264,530/31.16^2)/(12*0.197) = 7,047 psi Fc = longitudinal shell-membrane compression stress = 6,100 psi * * Warning * *Shell Membrane Compressive stress exceeds allowable Shell Membrane Hoop Stress OK? True Tank Adequate with Anchors? False E.7 Detailing Requirements E.7.1 Anchorage SUG = III Sds = 1.5 decimal %g E.7.1.1 Self Anchored NOTE: Butt-welded annular plates are required. Annular plates exceeding 3/8 in. thickness shall be butt-welded The weld of the shell to annular plate shall be checked for the design uplift load. E.7.1.2 Mechanically Anchored Minimum # anchors OK = True
  • 33. Page 33 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM E.7.2 Freeboard - Sloshing TL_sloshing = 12 sec. I_sloshing = 1 Tc = 3.23 K = 1.5 Sd1 = 0.75 Af = K*Sd1/Tc = 1.5*0.75/3.23 = 0.3483 Delta_s = Height of sloshing wave above max. liquid level = 0.5*D*Af = 0.5*31.16*0.3483 = 5.4265 ft 0.7*Delta_s = 3.7985 ft Per Table E-7, A freeboard equal to Delta_s is required unless one of the following alternatives are provided: 1. Secondary containment is provided to control product spill. 2. The roof and tank shell are designed to contain sloshing liquid. E.7.6 Sliding Resistance mu = 0.4 Friction coefficient V = 810,660 lbf Vs = Resistance to sliding = mu*(Ws + Wr + Wf + Wp)*(1 - 0.4*Av) = 0.4*(45,170+11,557+12,511+1,686,366)*(1-0.4*0) = 702,242 lbf E.7.7 Local Shear Transfer Vmax = 2*V/(PI*D) = 2*810,660/(PI*31.16) = 16,562 lbf/ft
  • 34. Page 34 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM ANCHOR BOLT DESIGN Bolt Material : A-193 Gr B7 Sy = 105,000 PSI < Uplift Load Cases, per API-650 Table 5-21b > D (tank OD) = 31.16 ft P (design pressure) = 0 INCHES H2O Pt (test pressure per F.4.4) = P = 0 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0.315 in. Mw (Wind Moment) = 491,987 ft-lbf Mrw (Seismic Ringwall Moment) = 12,264,530 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell) W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell) W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell) For Tank with Structural Supported Roof, W1 = Corroded Shell + Shell Insulation = 27,860 + 0 = 27,860 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates Supported by Shell + Roof Dead Load Supported by Shell = 27,860 + 0 + 6,130 * [1 + 110,026*0.0000116/(144 * 6,130)] = 33,990 lbf W3 = New Shell + Shell Insulation = 44,530 + 0 = 44,530 lbf Uplift Case 1: Design Pressure Only U = [(P - 8*t_h) * D^2 * 4.08] - W1 U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860 = -37,843 lbf bt = U / N = -3,154 lbf Sd = 15,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 2: Test Pressure Only U = [(Pt - 8*t_h) * D^2 * 4.08] - W1 U = [(0 - 8*0.315) * 31.16^2 * 4.08] - 27,860 = -37,843 lbf bt = U / N = -3,154 lbf Sd = 20,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.
  • 35. Page 35 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5.208 = 20.8333/5.208 = 4.0003 IN. H2O PWS = vF * 18 = 0.6944 * 18 = 12.5 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 12.5*(31.16+0/6)*35.43^2/2 = 244,467 ft-lbf U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2 = 4.0003*31.16^2*4.08+[4*244,467/31.16]-33,990 = 13,239 lbf bt = U / N = 1,103 lbf Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 1,103/84,000 = 0.013 in^2 Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0.4*Av) U = [4 * 12,264,530 / 31.16] - 33,990*(1-0.4*0) = 1,540,404 lbf bt = U / N = 128,367 lbf Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 128,367/84,000 = 1.528 in^2 Uplift Case 6: Design Pressure + Wind Load U = [(0.4*P + PWR - 8*t_h) * D^2 * 4.08] + [4 * MWH / D] - W1 = [(0.4*0+4.0003-8*0.315)*31.16^2 * 4.08]+[4*244,467 / 31.16] - 27,860 = 9,386 lbf bt = U / N = 782 lbf Sd = 20,000 = 20,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 782/20,000 = 0.039 in^2 Uplift Case 7: Design Pressure + Seismic Load U = [(0.4*P - 8*t_h)*D^2 * 4.08] + [4*Mrw/D] - W1*(1-0.4*Av) U = [(0.4*0-8*0.315)*31.16^2*4.08]+[4*12,264,530/31.16]-27,860*(1-0.4*0) = 1,536,551 lbf bt = U / N = 128,046 lbf Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 128,046/84,000 = 1.524 in^2
  • 36. Page 36 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:56 AM Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. < ANCHOR BOLT SUMMARY > Bolt Root Area Req'd = 1.528 in^2 d = Bolt Diameter = 1.75 in. n = Threads per inch = 5 A_s = Actual Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.75 - 1.3 / 5)^2 = 1.7437 in^2 Exclusive of Corrosion, Bolt Diameter Req'd = 1.655 in. (per ANSI B1.1) Actual Bolt Diameter = 1.750 in. Bolt Diameter Meets Requirements. <ANCHORAGE REQUIREMENTS> Seismic calculations require anchorage, Minimum # Anchor Bolts = 10 per API-650 E.6.2.2. Actual # Anchor Bolts = 12 Anchorage Meets Spacing Requirements.
  • 37. Page 37 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:57 AM ANCHOR CHAIR DESIGN (from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII) Entered Parameters Chair Material: A-36 Top Plate Type: DISCRETE Chair Style: VERT. TAPERED a : Top Plate Width = 8.000 in. b : Top Plate Length = 6.000 in. k : Verical Plate Width = 4.850 in. m : Bottom Plate Thickness = 0.3937 in. t : Shell Course + Repad Thickness = 1.3050 in. r : Nominal Radius to Tank Centerline = 187.298 in. Design Load per Bolt: P = 192.55 KIPS (1.5 * Maximum from Uplift Cases) d = Bolt Diameter = 1.75 in. n = Threads per unit length = 5 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.75 - 1.3 / 5)^2 = 1.74 in^2 Bolt Yield Load = A*Sy/1000 (KIPS) = 1.74*105,000/1000 = 182.7 KIPS Seismic Design Bolt Load = Pa = 3*Pab = 379.38 KIPS Anchor Chairs will be designed to withstand Design Load per Bolt. Anchor Chair Design Load, P = 192.5505 KIPS For Anchor Chair material: A-36 Per API-650 Table 5-2b, Sd_Chair = 20 KSI Since bottom t > 3/8 in., h_min = 6 in. For Discrete Top Plate, Max. Chair Height Recommended : h <= 3 * a h_max = 3 * 8 = 24 in. h = 6 in. e_min = 0.886 * d + 0.572 = 2.123 in. e = e_min = 2.123 in. g_min = d + 1 = 2.75 in. g = g_min = 2.75 in.
  • 38. Page 38 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:57 AM f_min = d/2 + 0.125 = 1 in. f = f_min = 1 in. c_min = SQRT[P / Sd_Chair / f * (0.375 * g - 0.22 * d)] = SQRT[192.5505 / 28.8 / 1 * (0.375 * 2.75 - 0.22 * 1.75)] = 2.079 in. c >= c_min = 2.079 in. j_min = MAX(0.5, [0.04 * (h - c)]) = MAX(0.5, [0.04 * (6.000 - 2.079)]) = 0.5 in. j = j_min = 0.5 in. b_min = e_min + d + 1/4 = 2.123 + 1.75 + 1/4 = 4.123 in. <Stress due to Top Plate Thickness> S_actual_TopPlate = P / f / c^2 * (0.375 * g - 0.22 * d) = 192.55/1/2.079^2 * (0.375 * 2.75 - 0.22 * 1.75) = 28.79 KSI <Repad> ClearX = Minimum Clearance of Repad from Anchor Chair = MAX(2, 6*Repad_t, 6*t_Shell_1) = MAX(2, 6*0.99, 6*0.315) = 5.94 in. Minimum Height = h + ClearX = 11.94 in. Minimum Width = a + 2*ClearX = 19.88 in. <Shell Stress due to Chair Height> (For Discrete Top Plate) S_actual_ChairHeight = P * e / t^2 * F3 where F3 = F1 + F2, now F1 = (1.32 * z) / (F6 + F7) where F6 = (1.43 * a * h^2) / (r * t) and F7 = (4 * a * h^2)^(1/3) and z = 1 / (F4 * F5 + 1) where F4 = (0.177 * a * m) / SQRT(r * t) and F5 = (m / t)^2 yields F5 = (0.3937 / 1.305)^2 = 0.091 yields F4 = (0.177 * 8. * 0.3937) / SQRT(187.2975 * 1.305) = 0.0357 yields z = 1 / (0.0357 * 0.091 + 1) = 0.9968 yields F7 = (4 * 8. * 6.^2)^(1/3) = 10.483 yields F6 = (1.43 * 8. * 6.^2) / (187.2975 * 1.305) = 1.6849 yields F1 = (1.32 * z) / (1.6849 + 10.483) = 0.1081
  • 39. Page 39 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:57 AM now F2 = 0.031 / SQRT(r * t) yields F2 = 0.031 / SQRT(187.2975 * 1.305) = 0.002 yields F3 = 0.1081 + 0.002 = 0.1101 yields S_actual_ChairHeight = 192.5505 * 2.123 / 1.305^2 * 0.1101 = 26.4312 KSI Maximum Recommended Stress is 25 KSI for the Shell (per API-650 E.6.2.1.2) Sd_ChairHeight = 25 KSI < ANCHOR CHAIR SUMMARY > S_actual_TopPlate Meets Design Calculations (within 105% of Sd_Chair) S_actual_TopPlate/Sd_Chair = 28.79/30.856 = 93.3% S_actual_ChairHeight/Sd_ChairHeight = 26.4312/25 = 105.7% * * Warning * * S_actual_ChairHeight Exceeds 105% of Sd_ChairHeight Use Anchor Chair Repad ( t = 1.000).
  • 40. Page 40 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:57 AM CAPACITIES and WEIGHTS Maximum Capacity (to upper TL) : 201,431 gal Design Capacity (to Max Liquid Level) : 201,429 gal Minimum Capacity (to Min Liquid Level) : 0 gal NetWorking Capacity (Design - Min.) : 201,429 gal New Condition Corroded ----------------------------------------------------------- Shell 44,530 lbf 27,860 lbf Roof Plates 9,802 lbf 6,130 lbf Rafters 227 lbf 227 lbf Girders 0 lbf 0 lbf Columns 0 lbf 0 lbf Bottom 12,511 lbf 8,761 lbf Stiffeners 640 lbf 640 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf ----------------------------------------------------------- Total 67,710 lbf 43,618 lbf Weight of Tank, Empty : 67,710 lbf Weight of Tank, Full of Product (SG=1): 1,748,732 lbf Weight of Tank, Full of Water : 1,748,732 lbf Net Working Weight, Full of Product : 1,748,716 lbf Net Working Weight, Full of Water : 1,748,716 lbf Foundation Area Req'd : 763 ft^2 Foundation Loading, Empty : 88.74 lbf/ft^2 Foundation Loading, Full of Product (SG=1) : 2,292 lbf/ft^2 Foundation Loading, Full of Water : 2,292 lbf/ft^2 SURFACE AREAS Roof 764 ft^2 Shell 3,468 ft^2 Bottom 763 ft^2 Wind Moment 491,987 ft-lbf Seismic Moment 15,885,241 ft-lbf MISCELLANEOUS ATTACHED ROOF ITEMS MISCELLANEOUS ATTACHED SHELL ITEMS
  • 41. Page 41 of 41 PT Hydro Raya - Quote Rekadaya-700 KL TANK REPORT: Printed - 4/29/2015 11:40:57 AM MAWP & MAWV SUMMARY FOR Quote Rekadaya-700 KL MAXIMUM CALCULATED INTERNAL PRESSURE MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 App. F.1.3 & F.7) MAWP = Maximum Calculated Internal Pressure (due to shell) = 2.5 PSI or 69.28 IN. H2O MAWP = Maximum Calculated Internal Pressure (due to roof) = 0.3832 PSI or 10.62 IN. H2O TANK MAWP = 0.3832 PSI or 10.62 IN. H2O MAXIMUM CALCULATED EXTERNAL PRESSURE MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V.1) MAWV = Maximum Calculated External Pressure (due to shell) = -0.3617 PSI or -10.03 IN. H2O MAWV = Maximum Calculated External Pressure (due to roof) = -0.2521 PSI or -6.99 IN. H2O MAWV = N.A. (not calculated due to columns) TANK MAWV = -0.2521 PSI or -6.99 IN. H2O