SlideShare a Scribd company logo
1 of 9
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 4, October 2020, pp. 2748~2756
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i5.14899 ๏ฒ 2748
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Brain-computer interface of focus and motor imagery
using wavelet and recurrent neural networks
Esmeralda C. Djamal, Rifqi D. Putra
Department of Informatics, Universitas Jenderal Achmad Yani, Indonesia
Article Info ABSTRACT
Article history:
Received Jun 19, 2019
Revised Apr 8, 2020
Accepted May 1, 2020
Brain-computer interface is a technology that allows operating a device
without involving muscles and sound, but directly from the brain through
the processed electrical signals. The technology works by capturing electrical
or magnetic signals from the brain, which are then processed to obtain
information contained therein. Usually, BCI uses information from
electroencephalogram (EEG) signals based on various variables reviewed.
This study proposed BCI to move external devices such as a drone simulator
based on EEG signal information. From the EEG signal was extracted to get
motor imagery (MI) and focus variable using wavelet. Then, they were
classified by recurrent neural networks (RNN). In overcoming the problem of
vanishing memory from RNN, was used long short-term memory (LSTM).
The results showed that BCI used wavelet, and RNN can drive external devices
of non-training data with an accuracy of 79.6%. The experiment gave
AdaDelta model is better than the Adam model in terms of accuracy and value
losses. Whereas in computational learning time, Adam's model is faster than
AdaDelta's model.
Keywords:
Brain-computer interface
EEG signal
Focus
Motor imagery
Recurrent neural networks
Wavelet
This is an open access article under the CC BY-SA license.
Corresponding Author:
Esmeralda C. Djamal,
Department of Informatics,
Universitas Jenderal Achmad Yani,
Terusan Jenderal Sudirman Cimahi St., Indonesia.
Email: esmeralda.contessa@lecture.unjani.ac.id
1. INTRODUCTION
Humans in every day always carry out activities that involve the movement of limbs. The brain
instructs the resulting action through motor nerves. Every human activity requires a focus on carrying out
activities for particular purposes. Nevertheless, the focus can be influenced by several factors such as
stimulation of sound or vision that can affect the activities being carried out. In meanwhile, the command to
move a limb occurs over a state of mind called motor imagery (MI). However, moving the object can be carried
out without involve gestures, muscles, sounds, and other motor functions. These commands are obtained from
the brain through intermediate devices to translate brain commands, known as the brain-computer interface
(BCI). This system can help people with physical disabilities in moving external devices. Currently, BCI has
been widely used to drive games [1, 2], robots [3], to help post-stroke patients [4] and neuromuscular
disabilities [5].
BCI consists of three parts, particularly command input, intermediate device, and command control.
BCI usually uses standard tools such as electroencephalogram (EEG) signals to translate brain commands [6].
The EEG signal is bioelectric in the brain that is captured on the surface of the scalp. EEG signal has a low
amplitude, non-stationary, and complicated patterns. The signal consists of frequency components such as
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal)
2749
Alpha waves (8-13 Hz), Beta waves (14-30 Hz), Theta waves (4-7 Hz), Delta waves (0.5-3 Hz), and Gamma
waves (> 30 Hz). EEG signal identified mental task variables as appropriate actions on a computer [7].
Therefore, the representation of EEG signals into the frequency domain is very considerate for
getting conditions particular thoughts. Some previous studies in extracting EEG signals using wavelet
transform [8-11] in BCI. Wavelets can filter signals from precise frequency components. So that method is
proper for non-stationary signals such as EEG. However, with a short time segmentation, it is possible to use
other methods such as fast Fourier transform (FFT) for extracting non-stationary signals [12]. FFT has
advantages in terms of computational speed, although wavelet is usually more accurate. Wavelet extraction
can increase accuracy by 3.6% and accelerate detection time by 0.003 seconds. The last study obtained 93.6%
accuracy of training data, and 90% of non-training data [13].
Some variables that affected EEG signals are determinants of classification in previous studies,
such as emotions [14], disorder [15] and focus [16]. Meanwhile, usually, the EEG signal variable translated
in BCI is focus [16], attention level [17], relax [1], emotion [18, 19], hand grasping imagination [20] and hybrid
of motor imagery and speech imagery [21]. Usually, the studies used one characteristic variable in
the classification process. Previous studies used BCI to move characters in arcade games based on focus
feedback [22], controls for computer applications, or action on imagined conditions of the mind [6] and
wheelchair robotic [23].
In pattern recognition, after extraction features, then into the classification system. In BCI application,
the previous research used some methods such as learning vector quantization (LVQ) [1], recurrent neural
networks (RNN) [24], and convolutional neural networks (CNN) [25]. There was using CNN to BCI game
control [26]. Meanwhile, time series cases often use RNN, which facilitates the connection of sequential data
with past time [19]. In previous studies using RNN to recognize emotions from EEG signals with an accuracy
rate of 87% [14]. This research proposed the BCI model to drive the drone simulator from the focus state and
motor imagery. Models developed using wavelet and recurrent neural networks (RNNs). The drone simulator
is designed to be driven by an imagery motor into four, particularly "forward", "right", "left", and "silent".
Besides, the simulator action added focus factor (two classes: focus or not focus), which is described as
the rotation speed. So that eight classes are obtained.
2. RESEARCH METHOD
This research proposed BCI to drive the drone simulator through EEG signals using wavelet and RNN,
as shown in Figure 1. The system used variable MI and Focus that were processed by simultaneous. So that
are eight classes of both variables. The model used data set with emotiv epoch EEG recording as shown in
Figure 2.
EEG Signals
Praprocessing
Segmentation
Wavelet Extraction
Recurrent Neural
Networks Identification
1st
LSTM Layer
(Relu)
Dropout
Layer
2nd
LSTM Layer
(Sigmoid)
Dense Layer
(Sigmoid)
Weight
Recurrent Neural
Networks Training
EEG Signal
Praprocessing
Segmentation
Wavelet Extraction
Concentration Thingking Forward
Training Data 6400 set
LSTM Layer
1 (Relu)
Dropout Layer
LSTM Layer
2 (Sigmoid)
Dense Layer
(Sigmoid)
Output
Input
Data Training
EEG Signal
256 data points
each segment
every channel
256 data points
each segment
every channel
Concentration Thingking Turn Right
Concentration Thingking Turn Left
Not Concentration Thingking Forward
Not ConcentratIon Thinking Idle
Not Concentration Thingking Turn Right
Not Concentration Thingking Turn Left
Concentration Thingking Idle
Figure 1. BCI based on focus and MI variable of EEG signal
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756
2750
Imagine Moving Go Forward Imagine Moving Turn Left Imagine Moving Turn Right Imagine Motionless
Instruction Instruction Instruction Instruction
0 10 30 40 60 70 90 100 120
Seconds
Visua
l
Instruction
One Category (30 Seconds)
Instruction Segmen 1 Segmen 2 Segmen 3 Segmen 4 Segmen 5 Segmen 6 Segmen 7 Segmen 8 Segmen 9 Segmen 10
0 10 12 14 16 18 20 22 24 26 28 30
Seconds
Figure 2. Recording scenario
2.2. Wavelet extraction
The wavelet transform can extract the needed signal components, hence reducing the number of data
without losing important information. Besides, this method is suitable for non-stationary signals. The output
of the wavelet transform into a time-domain allows its application as a pre-model [6]. Wavelet transformation
has two main processes, specifically decomposition, that extract a signal into a specific frequency and
reconstruction that recombine extracted signals into their original form [27]. Wavelet works in a convolution
signal with mother wavelet. Various forms of wavelets used for EEG signal extraction from previous studies,
such as Daubechies Haar and Symmlet. The researchers did not specifically mention the basic shape of
the wavelet that gives good accuracy. But in general, the asymmetric Daubechies [7], combine of Daubechies
and Symlet [28] and Symmlet [29]. Both forms are compatible with EEG signal characteristics. One type of
wavelet transform is wavelet packet decomposition (WPD). Wavelet packets are linear combinations of
wavelet functions [9]. A wavelet function has three indices, j: index scale (integer), k: translation coefficient,
n: oscillation parameter and t is time as (1).
๐‘Š๐‘—,๐‘˜
๐‘›
= 2 ๐‘—/2
๐‘Š ๐‘›(2 ๐‘—
๐‘ก โˆ’ ๐‘˜) (1)
The wavelet packet functions are a scaling function )(t๏ช and the mother wavelet function )(t๏น .
Wavelet packet functions with higher filter are:
๐‘Š0,0
2๐‘›
= โˆš2 โˆ‘ โ„Ž(๐‘˜)๐‘Š1,๐‘˜
2๐‘›
(2๐‘ก โˆ’ ๐‘˜)๐‘˜ (2)
๐‘Š0,0
2๐‘›+1
= โˆš2 โˆ‘ ๐‘”(๐‘˜)๐‘Š1,๐‘˜
2๐‘›
(2๐‘ก โˆ’ ๐‘˜)๐‘˜ (3)
The factor h(k) and g(k) indicate quadrature mirror extraction [30]. The value (h(k) and g(k) related
to the scaling function and the mother wavelet function. The inner product signal f(t) with wavelet packet
functions in a range of t show (4):
๐‘Š๐‘—,๐‘˜
๐‘›
= ๐‘“(๐‘ก)*๐‘Š๐‘—,๐‘˜
๐‘›
= โˆ‘ ๐‘“(๐‘ก)๐‘Š๐‘—,๐‘˜
๐‘›
(2๐‘ก โˆ’ ๐‘˜)๐‘ก (4)
For original signal S, the left-side is obtained in low pass filter h(k) as an approximation coefficient
and the right side as high pass filter g(k) or detail. In (6) showed the scale, translation, and oscillation values.
In (4), the signal can be decomposed into a scale factor j in a particular frequency, either high or low. In this
study, using the standard form Daubechies 4, which consists of four low-pass filter coefficients [29]. Wavelets
decompose signals into specific frequency ranges, such as delta, alpha, beta, theta, and gamma waves, such as
Figure 3.
2.3. Recurrent neural networks
RNN is one method used in Deep Learning for sequential data [31], by looping to store information
from the past [32]. This configuration is shown in Figure 4. RNN is activated with a function such as sigmoid
as Figure 5. RNN has the problems of short memory, so it needs control to forget some parts throughout
the gate. Some of the methods are gated recurrent unit (GRU), backpropagation through time (BPTT), and long
short-term memory (LSTM). This research used the LSTM gate to overcome short-term memory problems or
often called vanishing gradient [14], which has a increase in capability from a single layer [33].
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal)
2751
1-64 Hz
1-32 Hz 33-64 Hz
1-16 Hz
1-8 Hz 9-16 Hz
17-32 Hz
17-24 Hz 25-32 Hz
9-12 Hz 13-16 Hz1-4 Hz 5-8 Hz
13-14 Hz 15-16 Hz5-6 Hz 7-8 Hz
25-28 Hz 29-32 Hz
29-30 Hz 31-32 Hz
Beta
Alfa / Mu
Teta A D
AAA
AA
AAAA
AD
ADD
ADDD
AAD
AAAD
ADA
ADDA
ADDDDAAADA AAADD ADDDA
AADA
AADD
AADDA AADDD
Gamma
33-48 Hz
DD
DA 49-64 Hz
33-40 Hz
DAD41-48 HzDAA
Figure 3. Wavelet multilevel
Figure 4. Recurrent neural network architecture Figure 5. LSTM cell architecture
The LSTM network consists of modules with repetitive processing, as in Figure 4. Memory in LSTM
is called cells that take input from the previous state (ht-1) and current input (xt). The collection of cells decides
what will be stored in memory and what will be removed from memory. LSTM combines the previous state,
current memory, and input. LSTM has three gates, particularly the forget gate, to determine which eliminating
information from the cell using the sigmoid layer [34]. In (5) with the activation function used is the release
shown in (8).
๐‘“๐‘ก = ๐œŽ(๐‘Š๐‘“. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘“) (5)
๐‘…๐‘’๐ฟ๐‘ˆ(๐‘ฅ) = max(0, ๐‘ฅ) (6)
The second gate is the input gate (i), which of the sigmoid layer (ฯƒ) will be updated, and tanh of
the layer will be formulated as a vector of the updated value. It can be seen at (7) and (8) where xt is input for
each current step time. At this layer, a vector of updated values will be produced [35].
๐‘–๐‘ก = ๐œŽ(๐‘Š๐‘“. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘–) (7)
๐ถฬƒ๐‘ก = tanh(๐‘Š๐‘. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘) (8)
Then the cells of (7), (8) will be updated using (9).
๐ถ๐‘ก = ๐‘“๐‘ก โˆ— ๐ถ๐‘กโˆ’1 + ๐‘–๐‘ก โˆ— ๐ถฬƒ๐‘ก (9)
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756
2752
Finally, the output gate will be calculated based on cell updates, and the sigmoid layer looks like (10) and (11).
๐‘œ๐‘ก = ๐œŽ(๐‘Š๐‘œ. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘ ๐‘œ) (10)
โ„Ž ๐‘ก = ๐‘œ๐‘ก โˆ— tanh(๐ถ๐‘ก) (11)
where ๐œŽ is the sigmoid activation function, and tanh as the tanh activation function used for the results of
multiplying the weight of each gate, namely Wf, Wt, Wc, Wo with input values and added bias including bf, bi,
bc, bo. Gate used is gate input it, forget ft,, and output ot. Each passing gate will be searched for hidden state
candidates ๐ถฬƒ๐‘ก obtained from the gate calculation with the current hidden state ๐ถ๐‘ก furthermore, the previously
hidden state Ct-1 to produce the latest hidden state, which is used as the output of the hidden layer.
In the identification layer, there is an effort to minimize the difference between the target output and
the output of computational results. Objective functions are often referred to as cost functions or loss functions
so-called "loss". One of the loss functions that can be used is cross-entropy, as in (12). Where loss is a distance,
S is the result of the activation function, and L is the target of each class label. A loss function is used to
measure convergence in the learning process.
( ) ( )๏ƒฅโˆ’=
i
ii SLLSLoss log, (12)
In machine learning such RNN, it is essential to set input features. This research used MI and focus
variable, so alpha, mu, beta, and gamma (32-40Hz) waves relate that. Based on Figure 3, we got the waves of
four channels, as shown in Table 1. The BCI works every two seconds. While the RNN configuration is as
shown in Table 2. In the first model, the number of neurons of the model is faced with the same amount as
the input vector with a two-dimensional shape that applies the return sequence to the second LSTM model.
The LSTM model has a one-dimensional vector, which results in the dense layer, which has eight neurons,
according to the number of classes produced.
Table 1. RNN features of BCI
No Component Number of points Description All channel
1 Alpha, Beta, Gamma (9-40 Hz) 128 Four-channel 512
2 Mu (9-14Hz) 24 FC5 and FC6 only 48
Total 560
Table 2. Architecture model recurrent neural networks
Model Neuron Output shape
LSTM 560 1,560
Dropout 0.2 1,560
Dense 8 8
3. RESULTS AND ANALYSIS
The experiment was carried out by comparing the effect of using wavelet as the extraction of alpha,
mu, beta, and gamma waves. Experiments were also carried out on the model in terms of providing the highest
accuracy and considering the computational time of learning. Identification involves eight classes, namely
"Forward", "Right", "Left", and "Silent" each in focus and not. In using BCI, performance depends on
translating variables from the EEG signal being reviewed. Identification performance is very dependent on
the use of extraction methods. Therefore, testing begins with wavelet performance.
3.1. Wavelet extraction
Wavelet extraction uses Daubechies 4 at 9-40Hz, which has been normalized as in Figure 6. Wavelet
extraction is shown in blue compared to the original signal using orange. The EEG signal after going through
wavelet extraction is more stable because it is adjusted to the waves which are in the frequency range. Then
eliminate unused waves and signal noise. The results of each channel are stored sequentially into input vectors.
3.2. Compared between optimization model
This study used three-weight correction models that are adaptive moment estimation (Adam), adaptive
learning estimation (AdaDelta), and stochastic gradient descent (SGD). We experience optimizer models and
optimal learning parameters that higher accuracy and shortest time computing. Adam has a fast convergence
property, but it is only unstable due to very rapid error reduction. Besides the optimizer model, we compared
using wavelet and without wavelet, as in Figure 7 of Accuracy and Figure 8 of losses value. There are three
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal)
2753
models. Adam and AdaDelta are convergent of 100 epoch learning, except for the SGD model. So that
100 epochs are optimal enough, except with SGD with 500 epoch addition. Each color in Figure 7 and
Figure 8 indicates the testing of training data with wavelet (blue), training data without wavelet (green),
non-training/validation data with wavelet (orange), and validation data without wavelet (red). From the three
models shown in Figure 7 that using wavelet can increase accuracy and reduce computing time. The exact
values of the three models are shown in Table 3. Likewise, the value of Losses from using wavelets for
the three models generally decreases. This result told that wavelet could improve accuracy by reducing
the non-stationary properties of EEG signals.
Figure 6. Wavelet extraction
(a) (b)
(c)
Figure 7. Accuracy of the optimizer model; (a) Adam, (b) AdaDelta (c) SGD
The accuracy of the three models is relatively the same, mainly between 76-80% for validation data
while 100% for training data. Even so, the highest AdaDelta model is 79.81%. The exciting thing is that
the Adam model quickly corrects weights, which causes accuracy to increase rapidly and losses to decrease
at the beginning of the iteration. However, conditions of small fluctuations continue at the end of the epoch.
While the AdaDelta model tends to be stable at the end of the epoch, it achieves longer than the Adam model.
But it is understood that the weight correction method of the Adam model tends to jump like a ball that rolls
easily. Besides, the SGD model had almost no ripples of instability during the training. But the disadvantages
require longer iterations. Even in the 500th epoch, the accuracy is still increasing.
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756
2754
(a) (b)
(c)
Figure 8. Losses of the optimizer model: (a) Adam, (b) AdaDelta (c) SGD
Table 3. Comparison of loss and accuracy using Adam, AdaDelta, and SGD model
Model epochs
Wavelet Without Wavelet
Train Data Validation Data Train Data Validation Data
Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss
Adam 100 98,5 0,0422 78,84 1,0767 100,0 0,0003 76.92 1,4218
AdaDelta 100 100,0 0,0005 79,81 1,3561 100,0 0,0002 74,04 1,3240
SGD 100 17.7 2.0512 17.31 2.0158 32.05 1.9622 22.12 2.0304
SGD 500 100,0 0.0349 77,82 0.9281 100,0 0.0052 77.88 1.1612
From various experiments, showed that RNN and wavelet could be used to support BCI using MI and
Focus variables with an accuracy of almost 80% non-training data. The future experiment needs to look out
the configuration of the input features and channel usage of the EEG signal. So that can improve accuracy.
This research gave the duration of computational learning using Adam, AdaDelta, and SGD optimization with
several configurations. A comparison of the length of time from the three optimizations can be seen in Table 4
with several configurations in 100 epochs.
Table 4. Computing time of 100 epochs
Model Methods Learning time (second)
Adam With Wavelet 516
Without Wavelet 540
AdaDelta With Wavelet 606
Without Wavelet 642
SGD With Wavelet 370
Without Wavelet 380
4. CONCLUSION
This research showed that brain-computer interface could use motor imagery and focus variable of
EEG signal to move drone simulator. Nevertheless, the emphasis is real-time action with other computing time
applications that can be used. Proposed methods using RNN and wavelet could support BCI with MI and focus
variables with an accuracy of almost 80% non-training data. The research gave that the use of wavelet as
a pre-process can improve accuracy, lead to stability, and reduce the training data computation time. This result
is consistent with the hypothesis referring to previous research that wavelet is suitable for non-stationary signals
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal)
2755
such as EEG signals. In using RNN, it is necessary to pay attention to the optimization model for the correction
of weights and the number of epochs used. Adam's model reaches asymptotically faster, but still fluctuates
at the end of the epoch, so it requires the right number of iterations. The SGD model is quieter in performance
but requires far more epochs. While the AdaDelta model adopts both models, it provides stable and high
accuracy. The next thing to look out for is the configuration of the input features and channel usage of
the EEG signal.
ACKNOWLEDGEMENTS
The research was funded by "PTUPTโ€“Penelitian Terapan Unggulan Perguruan Tinggi" from
the Ministry of Research Technology and Higher Education, Republik Indonesia.
REFERENCES
[1] E. C. Djamal, M. Y. Abdullah, and F. Renaldi, โ€œBrain Computer Interface Game Controlling Using Fast Fourier
Transform and Learning Vector Quantization,โ€ Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, no. 2-5, pp. 71-74, 2017.
[2] M. Van Vliet, A. Robben, N. Chumerin, et al., โ€œDesigning a brain-computer interface controlled video-game using
consumer grade EEG hardware,โ€ 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics
for Better and Safer Living, BRC 2012, 2012.
[3] S. Ramesh, M. G. Krishna, and M. Nakirekanti, โ€œBrain Computer Interface System for Mind Controlled Robot using
Bluetooth,โ€ International Journal of Computer Application, vol. 104, no. 15, pp. 20-23, 2014.
[4] B. Vรกrkuti, et al., โ€œResting State Changes in Functional Connectivity Correlate With Movement Recovery for BCI
and Robot-Assisted Upper-Extremity Training After Stroke,โ€ Neurorehabilitation and Neural Repair, vol. 27, no. 1,
pp. 53-62, 2013.
[5] D. J. McFarland and J. R. Wolpaw, โ€œEEG-Based Brain-Computer Interfaces,โ€ Current Opinion in Biomedical
Engineering, vol. 4, no. Dec, pp. 194-200, 2017.
[6] E. C. Djamal and Suprijanto, โ€œRecognition of Electroencephalogram Signal Pattern against Sound Stimulation using
Spectral of Wavelet,โ€ Tencon 2011, pp. 767-771, 2011.
[7] M. H. Alomari, A. Abubaker, A. Turani, et al., โ€œEEG Mouse: A Machine Learning-Based Brain Computer Interface,โ€
(IJACSA) International Journal of Advanced Computer Science and Applications, vol. 5, no. 4, pp. 193-198, 2014.
[8] S. Chaudhary, S. Taran, V. Bajaj, and S. Siuly, โ€œA flexible analytic wavelet transform based approach for
motor-imagery tasks classification in BCI applications,โ€ Computer Methods and Programs in Biomedicine, vol. 15,
no. 45, 2020.
[9] H. Gรถksu, โ€œBCI oriented EEG analysis using log energy entropy of wavelet packets,โ€ Biomedical Signal Processing
and Control, vol. 44, pp. 101-109, 2018.
[10] T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, โ€œEEG signal classification for BCI applications by wavelets
and interval type-2 fuzzy logic systems,โ€ Expert System With Applications, vol. 42, no. 9, pp. 4370-4380, 2015.
[11] A. Khalaf, E. Sejdic, and M. Akcakaya, โ€œCommon spatial pattern and wavelet decomposition for motor imagery
EEG- fTCD brain-computer interface,โ€ Journal of Neuroscience Methods, vol. 320, no. April, pp. 98-106, 2019.
[12] F. Ansari, D. R. Edla, S. Dodia, and V. Kuppili, โ€œBrain-Computer Interface for Wheelchair Control Operations:
An Approach based on Fast Fourier Transform and On-Line Sequential Extreme Learning Machine,โ€ Clinical
Epidemiology and Global Health, vol. 7, no. 3, pp. 274-278, 2018.
[13] S. H. Fairclough, โ€œBCI and physiological computing for computer games: Differences, similarities & intuitive
control,โ€ Proceedings of CHIโ€™08, no. 1, pp. 1-6, 2008.
[14] S. Alhagry, A. A. Fahmy, and R. A. El-Khoribi, โ€œEmotion Recognition based on EEG using LSTM Recurrent Neural
Network,โ€ International Journal of Advanced Computer Science and Applications, vol. 8, no. 10, pp. 356-358, 2017.
[15] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, et al., โ€œBrain Computer Interfaces for communication and control,โ€
Frontiers in Neuroscience, vol. 4, no. 113, pp. 767-791, 2002.
[16] T. J. Choi, J. O. Kim, S. M. Jin, and G. Yoon, โ€œDetermination of the Concentrated State Using Multiple EEG
Channels,โ€ International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 8,
no. 8, pp. 1359-1362, 2014.
[17] K. G. Smitha, S. Shenjie, K. P. Thomas, and A. P. Vinod, โ€œTwo player EEG-based neurofeedback ball game for
attention enhancement,โ€ in International Conference on Systems, Man and Cybernetics, 2014, pp. 3150-3155.
[18] D. Iacoviello, A. Petracca, M. Spezialetti, and G. Placidi, โ€œA real-time classification algorithm for EEG-based BCI driven
by self-induced emotions,โ€ Computer Methods and Programs in Biomedicine, vol. 122, no. 3, pp. 293-303, 2015.
[19] E. C. Djamal, H. Fadhilah, A. Najmurrokhman, A. Wulandari, and F. Renaldi, โ€œEmotion brain-computer interface
using wavelet and recurrent neural networks,โ€ International Journal of Advances in Intelligent Informatics, vol. 6,
no. 1, pp. 1-12, 2020.
[20] E. C. Djamal, Suprijanto, and S. J. Setiadi, โ€œClassification of EEG-Based Hand Grasping Imagination Using
Autoregressive and Neural Networks,โ€ Jurnal Teknologi, vol. 78, no. 6-6, pp. 105-110, 2016.
[21] L. Wang, X. Liu, Z. Liang, Z. Yang, and X. Hu, โ€œAnalysis and classification of hybrid BCI based on motor imagery
and speech imagery,โ€ Measurement, vol. 147, p. 106842, 2019.
[22] A. Finke, A. Lenhardt, and H. Ritter, โ€œThe MindGame: A P300-based brain-computer interface game,โ€ Neural
Networks, vol. 22, no. 9, pp. 1329-1333, 2009.
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756
2756
[23] T. I. Voznenko, E. V Chepin, I. Voznenko, et al,, โ€œThe Control System Based Based on Extended BCI for a Robotic
Wheelchair,โ€ in Procedia Computer Science, 2018, vol. 123, pp. 522-527.
[24] T. Hosman, et al., โ€œBCI decoder performance comparison of an LSTM recurrent neural network and a Kalman filter
in retrospective simulation,โ€ 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER),
pp. 1066-1071, 2019.
[25] J. Liu, Y. Cheng, and W. Zhang, โ€œDeep learning EEG response representation for brain computer interface,โ€ Chinese
Control Conference, pp. 3518-3523, 2015.
[26] S. Umar, M. Alsulaiman, and G. Muhammad, โ€œDeep Learning for EEG motor imagery classification based on multi-
layer CNNs feature fusion,โ€ Future Generation Computer Systems, vol. 101, pp. 542-554, 2019.
[27] E. A. Mohamed, M. Z. B. Yusoff, N. K. Selman, and A. S. Malik, โ€œEnhancing EEG Signals in Brain Computer
Interface Using Wavelet Transform,โ€ in International Journal of Information and Electronics Engineering, vol. 4,
no. 3, pp. 234-238, 2014.
[28] C. Rodrigues, P. P. Rebouรงas, E. Peixoto, A. K. N, V. Hugo, and C. De Albuquerque, โ€œClassification of EEG signals
to detect alcoholism using machine learning techniques,โ€ Pattern Recognition Letters, vol. 125, pp. 140-149, 2019.
[29] E. C. Djamal and P. Lodaya, โ€œEEG Based Emotion Monitoring Using Wavelet and Learning Vector Quantization,โ€
2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2017),
pp. 19-21, 2017.
[30] A. N. Akansu and R. A. Haddad, โ€œMultiresolution signal decomposition,โ€ Academic Press, Second., no. 1, T. R.
Hsing, Ed. Academic Press, pp. 22-25, 2001.
[31] Y. Shen, H. Lu, and J. Jia, โ€œClassification of Motor Imagery EEG Signals with Deep Learning Models,โ€ Lecture
Notes in Computer Science book series, vol. 10559, pp. 181-190, 2017.
[32] J.-S. Wang, Y.-T. Yang, C.-Y. Hsu, and Y. Hsu, โ€œA Recurrent Neural Sleep-Stage Classifier Using Energy Features
of EEG Signals,โ€ Neurocomputing, vol. 104, pp. 105-114, 2013.
[33] A. Mazumder, A. Rakshit, and D. N. Tibarewala, โ€œA Back-Propagation Through Time Based Recurrent Neural
Network Approach for Classification of Cognitive EEG States,โ€ 2015 IEEE International Conference on Engineering
and Technology, no. March, pp. 1-5, 2015.
[34] J. Zhou, M. Meng, Y. Gao, Y. Ma, and Q. Zhang, โ€œClassification of Motor Imagery EEG Using Wavelet Envelope
Analysis and LSTM Networks,โ€ 2018 Chinese Control And Decision Conference (CCDC), pp. 5600-5605, 2018.
[35] Y. Li, J. Huang, H. Zhou, and N. Zhong, โ€œHuman Emotion Recognition with Electroencephalographic
Multidimensional Features by Hybrid Deep Neural Networks,โ€ Applied Sciences, vol. 7, no. 10, p. 1060, 2017.
BIOGRAPHIES OF AUTHORS
Esmeralda Contessa Djamal received a Bachelor's degree in Engineering Physics from
Institut Teknologi Bandung in 1994, a Master's degree in Instrument and Control from
Institut Teknologi Bandung in 1998. Since Ph.D. dissertation until now, research on EEG
classification and finished doctoral program from Institut Teknologi Bandung in 2005.
She is a lecturer of Informatics Department, Universitas Jenderal Achmad Yani.
Rifqi Dania Putra received his bachelor's degree in Informatics department from
Universitas Jenderal Achmad Yani in 2019. E-mail: daniaputra24@gmail.com

More Related Content

What's hot

Final thesis presentation on bci
Final thesis presentation on bciFinal thesis presentation on bci
Final thesis presentation on bciRedwan Islam
ย 
Iaetsd recognition of emg based hand gestures
Iaetsd recognition of emg based hand gesturesIaetsd recognition of emg based hand gestures
Iaetsd recognition of emg based hand gesturesIaetsd Iaetsd
ย 
Brainwave Feature Extraction, Classification & Prediction
Brainwave Feature Extraction, Classification & PredictionBrainwave Feature Extraction, Classification & Prediction
Brainwave Feature Extraction, Classification & PredictionOlivia Moran
ย 
E44082429
E44082429E44082429
E44082429IJERA Editor
ย 
Implementation and Evaluation of Signal Processing Techniques for EEG based B...
Implementation and Evaluation of Signal Processing Techniques for EEG based B...Implementation and Evaluation of Signal Processing Techniques for EEG based B...
Implementation and Evaluation of Signal Processing Techniques for EEG based B...Damian Quinn
ย 
rob 537 final paper(fourth modify)
rob 537 final paper(fourth modify)rob 537 final paper(fourth modify)
rob 537 final paper(fourth modify)Huanchi Cao
ย 
Efficient And Improved Video Steganography using DCT and Neural Network
Efficient And Improved Video Steganography using DCT and Neural NetworkEfficient And Improved Video Steganography using DCT and Neural Network
Efficient And Improved Video Steganography using DCT and Neural NetworkIJSRD
ย 
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA Merger
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA MergerPerformance Comparison of Known ICA Algorithms to a Wavelet-ICA Merger
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA MergerCSCJournals
ย 
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMClassification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMIJTET Journal
ย 
Neural networks of artificial intelligence
Neural networks of artificial  intelligenceNeural networks of artificial  intelligence
Neural networks of artificial intelligencealldesign
ย 
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Editor IJCATR
ย 
Fuzzy Logic Final Report
Fuzzy Logic Final ReportFuzzy Logic Final Report
Fuzzy Logic Final ReportShikhar Agarwal
ย 
Artificial Neural Network for hand Gesture recognition
Artificial Neural Network for hand Gesture recognitionArtificial Neural Network for hand Gesture recognition
Artificial Neural Network for hand Gesture recognitionVigneshwer Dhinakaran
ย 
Neural Networks
Neural Networks Neural Networks
Neural Networks Eric Su
ย 
Digital Implementation of Artificial Neural Network for Function Approximatio...
Digital Implementation of Artificial Neural Network for Function Approximatio...Digital Implementation of Artificial Neural Network for Function Approximatio...
Digital Implementation of Artificial Neural Network for Function Approximatio...IOSR Journals
ย 
Artificial Neural Network and its Applications
Artificial Neural Network and its ApplicationsArtificial Neural Network and its Applications
Artificial Neural Network and its Applicationsshritosh kumar
ย 
Neural networks...
Neural networks...Neural networks...
Neural networks...Molly Chugh
ย 
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...sipij
ย 

What's hot (20)

Final thesis presentation on bci
Final thesis presentation on bciFinal thesis presentation on bci
Final thesis presentation on bci
ย 
Iaetsd recognition of emg based hand gestures
Iaetsd recognition of emg based hand gesturesIaetsd recognition of emg based hand gestures
Iaetsd recognition of emg based hand gestures
ย 
Brainwave Feature Extraction, Classification & Prediction
Brainwave Feature Extraction, Classification & PredictionBrainwave Feature Extraction, Classification & Prediction
Brainwave Feature Extraction, Classification & Prediction
ย 
E44082429
E44082429E44082429
E44082429
ย 
Implementation and Evaluation of Signal Processing Techniques for EEG based B...
Implementation and Evaluation of Signal Processing Techniques for EEG based B...Implementation and Evaluation of Signal Processing Techniques for EEG based B...
Implementation and Evaluation of Signal Processing Techniques for EEG based B...
ย 
rob 537 final paper(fourth modify)
rob 537 final paper(fourth modify)rob 537 final paper(fourth modify)
rob 537 final paper(fourth modify)
ย 
Efficient And Improved Video Steganography using DCT and Neural Network
Efficient And Improved Video Steganography using DCT and Neural NetworkEfficient And Improved Video Steganography using DCT and Neural Network
Efficient And Improved Video Steganography using DCT and Neural Network
ย 
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA Merger
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA MergerPerformance Comparison of Known ICA Algorithms to a Wavelet-ICA Merger
Performance Comparison of Known ICA Algorithms to a Wavelet-ICA Merger
ย 
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMClassification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
ย 
Neural networks of artificial intelligence
Neural networks of artificial  intelligenceNeural networks of artificial  intelligence
Neural networks of artificial intelligence
ย 
Wearable BioSignal Interface
Wearable BioSignal InterfaceWearable BioSignal Interface
Wearable BioSignal Interface
ย 
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
ย 
Fuzzy Logic Final Report
Fuzzy Logic Final ReportFuzzy Logic Final Report
Fuzzy Logic Final Report
ย 
Artificial Neural Network for hand Gesture recognition
Artificial Neural Network for hand Gesture recognitionArtificial Neural Network for hand Gesture recognition
Artificial Neural Network for hand Gesture recognition
ย 
Neural Networks
Neural Networks Neural Networks
Neural Networks
ย 
Digital Implementation of Artificial Neural Network for Function Approximatio...
Digital Implementation of Artificial Neural Network for Function Approximatio...Digital Implementation of Artificial Neural Network for Function Approximatio...
Digital Implementation of Artificial Neural Network for Function Approximatio...
ย 
Rpaper
RpaperRpaper
Rpaper
ย 
Artificial Neural Network and its Applications
Artificial Neural Network and its ApplicationsArtificial Neural Network and its Applications
Artificial Neural Network and its Applications
ย 
Neural networks...
Neural networks...Neural networks...
Neural networks...
ย 
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...
SUITABLE MOTHER WAVELET SELECTION FOR EEG SIGNALS ANALYSIS: FREQUENCY BANDS D...
ย 

Similar to Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks

Multi-channel of electroencephalogram signal in multivariable brain-computer ...
Multi-channel of electroencephalogram signal in multivariable brain-computer ...Multi-channel of electroencephalogram signal in multivariable brain-computer ...
Multi-channel of electroencephalogram signal in multivariable brain-computer ...IAESIJAI
ย 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
ย 
Brain computer interface based smart keyboard using neurosky mindwave headset
Brain computer interface based smart keyboard using neurosky mindwave headsetBrain computer interface based smart keyboard using neurosky mindwave headset
Brain computer interface based smart keyboard using neurosky mindwave headsetTELKOMNIKA JOURNAL
ย 
Motor Imagery based Brain Computer Interface for Windows Operating System
Motor Imagery based Brain Computer Interface for Windows Operating SystemMotor Imagery based Brain Computer Interface for Windows Operating System
Motor Imagery based Brain Computer Interface for Windows Operating SystemIRJET Journal
ย 
Transfer learning for epilepsy detection using spectrogram images
Transfer learning for epilepsy detection using spectrogram imagesTransfer learning for epilepsy detection using spectrogram images
Transfer learning for epilepsy detection using spectrogram imagesIAESIJAI
ย 
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORK
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORKEEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORK
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORKIJCI JOURNAL
ย 
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interface
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interfaceEEG Mouse:A Machine Learning-Based Brain Computer Interface_interface
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interfaceWilly Marroquin (WillyDevNET)
ย 
Brainwave Controlled Wheelchair (BCW)
Brainwave Controlled Wheelchair (BCW)Brainwave Controlled Wheelchair (BCW)
Brainwave Controlled Wheelchair (BCW)vivatechijri
ย 
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015Mustafa AL-Timemmie
ย 
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...IJCSES Journal
ย 
Modelling and Analysis of Brainwaves for Real World Interaction
Modelling and Analysis of Brainwaves for Real World InteractionModelling and Analysis of Brainwaves for Real World Interaction
Modelling and Analysis of Brainwaves for Real World InteractionPavan Kumar
ย 
A Review on Motor Imagery Signal Classification for BCI
A Review on Motor Imagery Signal Classification for BCIA Review on Motor Imagery Signal Classification for BCI
A Review on Motor Imagery Signal Classification for BCICSCJournals
ย 
Lj2519711975
Lj2519711975Lj2519711975
Lj2519711975IJERA Editor
ย 
Lj2519711975
Lj2519711975Lj2519711975
Lj2519711975IJERA Editor
ย 
A machine learning algorithm for classification of mental tasks.pdf
A machine learning algorithm for classification of mental tasks.pdfA machine learning algorithm for classification of mental tasks.pdf
A machine learning algorithm for classification of mental tasks.pdfPravinKshirsagar11
ย 
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg WaveformWavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg Waveformshan pri
ย 
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel Chair
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel ChairModelling and Analysis of EEG Signals Based on Real Time Control for Wheel Chair
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel ChairIJTET Journal
ย 
Technology Development for Unblessed people using BCI: A Survey
Technology Development for Unblessed people using BCI: A SurveyTechnology Development for Unblessed people using BCI: A Survey
Technology Development for Unblessed people using BCI: A SurveyMandeep Kaur
ย 
Ijetcas14 393
Ijetcas14 393Ijetcas14 393
Ijetcas14 393Iasir Journals
ย 

Similar to Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks (20)

Multi-channel of electroencephalogram signal in multivariable brain-computer ...
Multi-channel of electroencephalogram signal in multivariable brain-computer ...Multi-channel of electroencephalogram signal in multivariable brain-computer ...
Multi-channel of electroencephalogram signal in multivariable brain-computer ...
ย 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
ย 
Brain computer interface based smart keyboard using neurosky mindwave headset
Brain computer interface based smart keyboard using neurosky mindwave headsetBrain computer interface based smart keyboard using neurosky mindwave headset
Brain computer interface based smart keyboard using neurosky mindwave headset
ย 
Motor Imagery based Brain Computer Interface for Windows Operating System
Motor Imagery based Brain Computer Interface for Windows Operating SystemMotor Imagery based Brain Computer Interface for Windows Operating System
Motor Imagery based Brain Computer Interface for Windows Operating System
ย 
Transfer learning for epilepsy detection using spectrogram images
Transfer learning for epilepsy detection using spectrogram imagesTransfer learning for epilepsy detection using spectrogram images
Transfer learning for epilepsy detection using spectrogram images
ย 
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORK
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORKEEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORK
EEG SIGNAL IDENTIFICATION USING SINGLE-LAYER NEURAL NETWORK
ย 
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interface
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interfaceEEG Mouse:A Machine Learning-Based Brain Computer Interface_interface
EEG Mouse:A Machine Learning-Based Brain Computer Interface_interface
ย 
Brainwave Controlled Wheelchair (BCW)
Brainwave Controlled Wheelchair (BCW)Brainwave Controlled Wheelchair (BCW)
Brainwave Controlled Wheelchair (BCW)
ย 
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015
Neural signal processing by mustafa rasheed & zeena saadon & walaa kahtan 2015
ย 
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...
Overview of Machine Learning and Deep Learning Methods in Brain Computer Inte...
ย 
Modelling and Analysis of Brainwaves for Real World Interaction
Modelling and Analysis of Brainwaves for Real World InteractionModelling and Analysis of Brainwaves for Real World Interaction
Modelling and Analysis of Brainwaves for Real World Interaction
ย 
A Review on Motor Imagery Signal Classification for BCI
A Review on Motor Imagery Signal Classification for BCIA Review on Motor Imagery Signal Classification for BCI
A Review on Motor Imagery Signal Classification for BCI
ย 
Lj2519711975
Lj2519711975Lj2519711975
Lj2519711975
ย 
Lj2519711975
Lj2519711975Lj2519711975
Lj2519711975
ย 
A machine learning algorithm for classification of mental tasks.pdf
A machine learning algorithm for classification of mental tasks.pdfA machine learning algorithm for classification of mental tasks.pdf
A machine learning algorithm for classification of mental tasks.pdf
ย 
Int conf 03
Int conf 03Int conf 03
Int conf 03
ย 
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg WaveformWavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
ย 
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel Chair
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel ChairModelling and Analysis of EEG Signals Based on Real Time Control for Wheel Chair
Modelling and Analysis of EEG Signals Based on Real Time Control for Wheel Chair
ย 
Technology Development for Unblessed people using BCI: A Survey
Technology Development for Unblessed people using BCI: A SurveyTechnology Development for Unblessed people using BCI: A Survey
Technology Development for Unblessed people using BCI: A Survey
ย 
Ijetcas14 393
Ijetcas14 393Ijetcas14 393
Ijetcas14 393
ย 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
ย 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
ย 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
ย 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
ย 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
ย 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
ย 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
ย 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
ย 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
ย 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
ย 
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...TELKOMNIKA JOURNAL
ย 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
ย 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
ย 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
ย 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
ย 
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...TELKOMNIKA JOURNAL
ย 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
ย 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
ย 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
ย 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
ย 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
ย 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
ย 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
ย 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
ย 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
ย 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
ย 
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
ย 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
ย 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
ย 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
ย 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
ย 
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ย 

Recently uploaded

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
ย 
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
ย 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
ย 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
ย 
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerAnamika Sarkar
ย 
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort service
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort serviceGurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort service
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort servicejennyeacort
ย 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
ย 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
ย 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
ย 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
ย 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
ย 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
ย 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
ย 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
ย 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
ย 

Recently uploaded (20)

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
ย 
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
๐Ÿ”9953056974๐Ÿ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
ย 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
ย 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
ย 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
ย 
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ๏ปฟTube Exchanger
ย 
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort service
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort serviceGurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort service
Gurgaon โœก๏ธ9711147426โœจCall In girls Gurgaon Sector 51 escort service
ย 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
ย 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
ย 
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRโ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
ย 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
ย 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
ย 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
ย 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
ย 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
ย 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
ย 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
ย 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
ย 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
ย 

Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 4, October 2020, pp. 2748~2756 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i5.14899 ๏ฒ 2748 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks Esmeralda C. Djamal, Rifqi D. Putra Department of Informatics, Universitas Jenderal Achmad Yani, Indonesia Article Info ABSTRACT Article history: Received Jun 19, 2019 Revised Apr 8, 2020 Accepted May 1, 2020 Brain-computer interface is a technology that allows operating a device without involving muscles and sound, but directly from the brain through the processed electrical signals. The technology works by capturing electrical or magnetic signals from the brain, which are then processed to obtain information contained therein. Usually, BCI uses information from electroencephalogram (EEG) signals based on various variables reviewed. This study proposed BCI to move external devices such as a drone simulator based on EEG signal information. From the EEG signal was extracted to get motor imagery (MI) and focus variable using wavelet. Then, they were classified by recurrent neural networks (RNN). In overcoming the problem of vanishing memory from RNN, was used long short-term memory (LSTM). The results showed that BCI used wavelet, and RNN can drive external devices of non-training data with an accuracy of 79.6%. The experiment gave AdaDelta model is better than the Adam model in terms of accuracy and value losses. Whereas in computational learning time, Adam's model is faster than AdaDelta's model. Keywords: Brain-computer interface EEG signal Focus Motor imagery Recurrent neural networks Wavelet This is an open access article under the CC BY-SA license. Corresponding Author: Esmeralda C. Djamal, Department of Informatics, Universitas Jenderal Achmad Yani, Terusan Jenderal Sudirman Cimahi St., Indonesia. Email: esmeralda.contessa@lecture.unjani.ac.id 1. INTRODUCTION Humans in every day always carry out activities that involve the movement of limbs. The brain instructs the resulting action through motor nerves. Every human activity requires a focus on carrying out activities for particular purposes. Nevertheless, the focus can be influenced by several factors such as stimulation of sound or vision that can affect the activities being carried out. In meanwhile, the command to move a limb occurs over a state of mind called motor imagery (MI). However, moving the object can be carried out without involve gestures, muscles, sounds, and other motor functions. These commands are obtained from the brain through intermediate devices to translate brain commands, known as the brain-computer interface (BCI). This system can help people with physical disabilities in moving external devices. Currently, BCI has been widely used to drive games [1, 2], robots [3], to help post-stroke patients [4] and neuromuscular disabilities [5]. BCI consists of three parts, particularly command input, intermediate device, and command control. BCI usually uses standard tools such as electroencephalogram (EEG) signals to translate brain commands [6]. The EEG signal is bioelectric in the brain that is captured on the surface of the scalp. EEG signal has a low amplitude, non-stationary, and complicated patterns. The signal consists of frequency components such as
  • 2. TELKOMNIKA Telecommun Comput El Control ๏ฒ Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal) 2749 Alpha waves (8-13 Hz), Beta waves (14-30 Hz), Theta waves (4-7 Hz), Delta waves (0.5-3 Hz), and Gamma waves (> 30 Hz). EEG signal identified mental task variables as appropriate actions on a computer [7]. Therefore, the representation of EEG signals into the frequency domain is very considerate for getting conditions particular thoughts. Some previous studies in extracting EEG signals using wavelet transform [8-11] in BCI. Wavelets can filter signals from precise frequency components. So that method is proper for non-stationary signals such as EEG. However, with a short time segmentation, it is possible to use other methods such as fast Fourier transform (FFT) for extracting non-stationary signals [12]. FFT has advantages in terms of computational speed, although wavelet is usually more accurate. Wavelet extraction can increase accuracy by 3.6% and accelerate detection time by 0.003 seconds. The last study obtained 93.6% accuracy of training data, and 90% of non-training data [13]. Some variables that affected EEG signals are determinants of classification in previous studies, such as emotions [14], disorder [15] and focus [16]. Meanwhile, usually, the EEG signal variable translated in BCI is focus [16], attention level [17], relax [1], emotion [18, 19], hand grasping imagination [20] and hybrid of motor imagery and speech imagery [21]. Usually, the studies used one characteristic variable in the classification process. Previous studies used BCI to move characters in arcade games based on focus feedback [22], controls for computer applications, or action on imagined conditions of the mind [6] and wheelchair robotic [23]. In pattern recognition, after extraction features, then into the classification system. In BCI application, the previous research used some methods such as learning vector quantization (LVQ) [1], recurrent neural networks (RNN) [24], and convolutional neural networks (CNN) [25]. There was using CNN to BCI game control [26]. Meanwhile, time series cases often use RNN, which facilitates the connection of sequential data with past time [19]. In previous studies using RNN to recognize emotions from EEG signals with an accuracy rate of 87% [14]. This research proposed the BCI model to drive the drone simulator from the focus state and motor imagery. Models developed using wavelet and recurrent neural networks (RNNs). The drone simulator is designed to be driven by an imagery motor into four, particularly "forward", "right", "left", and "silent". Besides, the simulator action added focus factor (two classes: focus or not focus), which is described as the rotation speed. So that eight classes are obtained. 2. RESEARCH METHOD This research proposed BCI to drive the drone simulator through EEG signals using wavelet and RNN, as shown in Figure 1. The system used variable MI and Focus that were processed by simultaneous. So that are eight classes of both variables. The model used data set with emotiv epoch EEG recording as shown in Figure 2. EEG Signals Praprocessing Segmentation Wavelet Extraction Recurrent Neural Networks Identification 1st LSTM Layer (Relu) Dropout Layer 2nd LSTM Layer (Sigmoid) Dense Layer (Sigmoid) Weight Recurrent Neural Networks Training EEG Signal Praprocessing Segmentation Wavelet Extraction Concentration Thingking Forward Training Data 6400 set LSTM Layer 1 (Relu) Dropout Layer LSTM Layer 2 (Sigmoid) Dense Layer (Sigmoid) Output Input Data Training EEG Signal 256 data points each segment every channel 256 data points each segment every channel Concentration Thingking Turn Right Concentration Thingking Turn Left Not Concentration Thingking Forward Not ConcentratIon Thinking Idle Not Concentration Thingking Turn Right Not Concentration Thingking Turn Left Concentration Thingking Idle Figure 1. BCI based on focus and MI variable of EEG signal
  • 3. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756 2750 Imagine Moving Go Forward Imagine Moving Turn Left Imagine Moving Turn Right Imagine Motionless Instruction Instruction Instruction Instruction 0 10 30 40 60 70 90 100 120 Seconds Visua l Instruction One Category (30 Seconds) Instruction Segmen 1 Segmen 2 Segmen 3 Segmen 4 Segmen 5 Segmen 6 Segmen 7 Segmen 8 Segmen 9 Segmen 10 0 10 12 14 16 18 20 22 24 26 28 30 Seconds Figure 2. Recording scenario 2.2. Wavelet extraction The wavelet transform can extract the needed signal components, hence reducing the number of data without losing important information. Besides, this method is suitable for non-stationary signals. The output of the wavelet transform into a time-domain allows its application as a pre-model [6]. Wavelet transformation has two main processes, specifically decomposition, that extract a signal into a specific frequency and reconstruction that recombine extracted signals into their original form [27]. Wavelet works in a convolution signal with mother wavelet. Various forms of wavelets used for EEG signal extraction from previous studies, such as Daubechies Haar and Symmlet. The researchers did not specifically mention the basic shape of the wavelet that gives good accuracy. But in general, the asymmetric Daubechies [7], combine of Daubechies and Symlet [28] and Symmlet [29]. Both forms are compatible with EEG signal characteristics. One type of wavelet transform is wavelet packet decomposition (WPD). Wavelet packets are linear combinations of wavelet functions [9]. A wavelet function has three indices, j: index scale (integer), k: translation coefficient, n: oscillation parameter and t is time as (1). ๐‘Š๐‘—,๐‘˜ ๐‘› = 2 ๐‘—/2 ๐‘Š ๐‘›(2 ๐‘— ๐‘ก โˆ’ ๐‘˜) (1) The wavelet packet functions are a scaling function )(t๏ช and the mother wavelet function )(t๏น . Wavelet packet functions with higher filter are: ๐‘Š0,0 2๐‘› = โˆš2 โˆ‘ โ„Ž(๐‘˜)๐‘Š1,๐‘˜ 2๐‘› (2๐‘ก โˆ’ ๐‘˜)๐‘˜ (2) ๐‘Š0,0 2๐‘›+1 = โˆš2 โˆ‘ ๐‘”(๐‘˜)๐‘Š1,๐‘˜ 2๐‘› (2๐‘ก โˆ’ ๐‘˜)๐‘˜ (3) The factor h(k) and g(k) indicate quadrature mirror extraction [30]. The value (h(k) and g(k) related to the scaling function and the mother wavelet function. The inner product signal f(t) with wavelet packet functions in a range of t show (4): ๐‘Š๐‘—,๐‘˜ ๐‘› = ๐‘“(๐‘ก)*๐‘Š๐‘—,๐‘˜ ๐‘› = โˆ‘ ๐‘“(๐‘ก)๐‘Š๐‘—,๐‘˜ ๐‘› (2๐‘ก โˆ’ ๐‘˜)๐‘ก (4) For original signal S, the left-side is obtained in low pass filter h(k) as an approximation coefficient and the right side as high pass filter g(k) or detail. In (6) showed the scale, translation, and oscillation values. In (4), the signal can be decomposed into a scale factor j in a particular frequency, either high or low. In this study, using the standard form Daubechies 4, which consists of four low-pass filter coefficients [29]. Wavelets decompose signals into specific frequency ranges, such as delta, alpha, beta, theta, and gamma waves, such as Figure 3. 2.3. Recurrent neural networks RNN is one method used in Deep Learning for sequential data [31], by looping to store information from the past [32]. This configuration is shown in Figure 4. RNN is activated with a function such as sigmoid as Figure 5. RNN has the problems of short memory, so it needs control to forget some parts throughout the gate. Some of the methods are gated recurrent unit (GRU), backpropagation through time (BPTT), and long short-term memory (LSTM). This research used the LSTM gate to overcome short-term memory problems or often called vanishing gradient [14], which has a increase in capability from a single layer [33].
  • 4. TELKOMNIKA Telecommun Comput El Control ๏ฒ Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal) 2751 1-64 Hz 1-32 Hz 33-64 Hz 1-16 Hz 1-8 Hz 9-16 Hz 17-32 Hz 17-24 Hz 25-32 Hz 9-12 Hz 13-16 Hz1-4 Hz 5-8 Hz 13-14 Hz 15-16 Hz5-6 Hz 7-8 Hz 25-28 Hz 29-32 Hz 29-30 Hz 31-32 Hz Beta Alfa / Mu Teta A D AAA AA AAAA AD ADD ADDD AAD AAAD ADA ADDA ADDDDAAADA AAADD ADDDA AADA AADD AADDA AADDD Gamma 33-48 Hz DD DA 49-64 Hz 33-40 Hz DAD41-48 HzDAA Figure 3. Wavelet multilevel Figure 4. Recurrent neural network architecture Figure 5. LSTM cell architecture The LSTM network consists of modules with repetitive processing, as in Figure 4. Memory in LSTM is called cells that take input from the previous state (ht-1) and current input (xt). The collection of cells decides what will be stored in memory and what will be removed from memory. LSTM combines the previous state, current memory, and input. LSTM has three gates, particularly the forget gate, to determine which eliminating information from the cell using the sigmoid layer [34]. In (5) with the activation function used is the release shown in (8). ๐‘“๐‘ก = ๐œŽ(๐‘Š๐‘“. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘“) (5) ๐‘…๐‘’๐ฟ๐‘ˆ(๐‘ฅ) = max(0, ๐‘ฅ) (6) The second gate is the input gate (i), which of the sigmoid layer (ฯƒ) will be updated, and tanh of the layer will be formulated as a vector of the updated value. It can be seen at (7) and (8) where xt is input for each current step time. At this layer, a vector of updated values will be produced [35]. ๐‘–๐‘ก = ๐œŽ(๐‘Š๐‘“. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘–) (7) ๐ถฬƒ๐‘ก = tanh(๐‘Š๐‘. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘๐‘) (8) Then the cells of (7), (8) will be updated using (9). ๐ถ๐‘ก = ๐‘“๐‘ก โˆ— ๐ถ๐‘กโˆ’1 + ๐‘–๐‘ก โˆ— ๐ถฬƒ๐‘ก (9)
  • 5. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756 2752 Finally, the output gate will be calculated based on cell updates, and the sigmoid layer looks like (10) and (11). ๐‘œ๐‘ก = ๐œŽ(๐‘Š๐‘œ. [โ„Ž ๐‘กโˆ’1, ๐‘ฅ๐‘ก] + ๐‘ ๐‘œ) (10) โ„Ž ๐‘ก = ๐‘œ๐‘ก โˆ— tanh(๐ถ๐‘ก) (11) where ๐œŽ is the sigmoid activation function, and tanh as the tanh activation function used for the results of multiplying the weight of each gate, namely Wf, Wt, Wc, Wo with input values and added bias including bf, bi, bc, bo. Gate used is gate input it, forget ft,, and output ot. Each passing gate will be searched for hidden state candidates ๐ถฬƒ๐‘ก obtained from the gate calculation with the current hidden state ๐ถ๐‘ก furthermore, the previously hidden state Ct-1 to produce the latest hidden state, which is used as the output of the hidden layer. In the identification layer, there is an effort to minimize the difference between the target output and the output of computational results. Objective functions are often referred to as cost functions or loss functions so-called "loss". One of the loss functions that can be used is cross-entropy, as in (12). Where loss is a distance, S is the result of the activation function, and L is the target of each class label. A loss function is used to measure convergence in the learning process. ( ) ( )๏ƒฅโˆ’= i ii SLLSLoss log, (12) In machine learning such RNN, it is essential to set input features. This research used MI and focus variable, so alpha, mu, beta, and gamma (32-40Hz) waves relate that. Based on Figure 3, we got the waves of four channels, as shown in Table 1. The BCI works every two seconds. While the RNN configuration is as shown in Table 2. In the first model, the number of neurons of the model is faced with the same amount as the input vector with a two-dimensional shape that applies the return sequence to the second LSTM model. The LSTM model has a one-dimensional vector, which results in the dense layer, which has eight neurons, according to the number of classes produced. Table 1. RNN features of BCI No Component Number of points Description All channel 1 Alpha, Beta, Gamma (9-40 Hz) 128 Four-channel 512 2 Mu (9-14Hz) 24 FC5 and FC6 only 48 Total 560 Table 2. Architecture model recurrent neural networks Model Neuron Output shape LSTM 560 1,560 Dropout 0.2 1,560 Dense 8 8 3. RESULTS AND ANALYSIS The experiment was carried out by comparing the effect of using wavelet as the extraction of alpha, mu, beta, and gamma waves. Experiments were also carried out on the model in terms of providing the highest accuracy and considering the computational time of learning. Identification involves eight classes, namely "Forward", "Right", "Left", and "Silent" each in focus and not. In using BCI, performance depends on translating variables from the EEG signal being reviewed. Identification performance is very dependent on the use of extraction methods. Therefore, testing begins with wavelet performance. 3.1. Wavelet extraction Wavelet extraction uses Daubechies 4 at 9-40Hz, which has been normalized as in Figure 6. Wavelet extraction is shown in blue compared to the original signal using orange. The EEG signal after going through wavelet extraction is more stable because it is adjusted to the waves which are in the frequency range. Then eliminate unused waves and signal noise. The results of each channel are stored sequentially into input vectors. 3.2. Compared between optimization model This study used three-weight correction models that are adaptive moment estimation (Adam), adaptive learning estimation (AdaDelta), and stochastic gradient descent (SGD). We experience optimizer models and optimal learning parameters that higher accuracy and shortest time computing. Adam has a fast convergence property, but it is only unstable due to very rapid error reduction. Besides the optimizer model, we compared using wavelet and without wavelet, as in Figure 7 of Accuracy and Figure 8 of losses value. There are three
  • 6. TELKOMNIKA Telecommun Comput El Control ๏ฒ Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal) 2753 models. Adam and AdaDelta are convergent of 100 epoch learning, except for the SGD model. So that 100 epochs are optimal enough, except with SGD with 500 epoch addition. Each color in Figure 7 and Figure 8 indicates the testing of training data with wavelet (blue), training data without wavelet (green), non-training/validation data with wavelet (orange), and validation data without wavelet (red). From the three models shown in Figure 7 that using wavelet can increase accuracy and reduce computing time. The exact values of the three models are shown in Table 3. Likewise, the value of Losses from using wavelets for the three models generally decreases. This result told that wavelet could improve accuracy by reducing the non-stationary properties of EEG signals. Figure 6. Wavelet extraction (a) (b) (c) Figure 7. Accuracy of the optimizer model; (a) Adam, (b) AdaDelta (c) SGD The accuracy of the three models is relatively the same, mainly between 76-80% for validation data while 100% for training data. Even so, the highest AdaDelta model is 79.81%. The exciting thing is that the Adam model quickly corrects weights, which causes accuracy to increase rapidly and losses to decrease at the beginning of the iteration. However, conditions of small fluctuations continue at the end of the epoch. While the AdaDelta model tends to be stable at the end of the epoch, it achieves longer than the Adam model. But it is understood that the weight correction method of the Adam model tends to jump like a ball that rolls easily. Besides, the SGD model had almost no ripples of instability during the training. But the disadvantages require longer iterations. Even in the 500th epoch, the accuracy is still increasing.
  • 7. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756 2754 (a) (b) (c) Figure 8. Losses of the optimizer model: (a) Adam, (b) AdaDelta (c) SGD Table 3. Comparison of loss and accuracy using Adam, AdaDelta, and SGD model Model epochs Wavelet Without Wavelet Train Data Validation Data Train Data Validation Data Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Adam 100 98,5 0,0422 78,84 1,0767 100,0 0,0003 76.92 1,4218 AdaDelta 100 100,0 0,0005 79,81 1,3561 100,0 0,0002 74,04 1,3240 SGD 100 17.7 2.0512 17.31 2.0158 32.05 1.9622 22.12 2.0304 SGD 500 100,0 0.0349 77,82 0.9281 100,0 0.0052 77.88 1.1612 From various experiments, showed that RNN and wavelet could be used to support BCI using MI and Focus variables with an accuracy of almost 80% non-training data. The future experiment needs to look out the configuration of the input features and channel usage of the EEG signal. So that can improve accuracy. This research gave the duration of computational learning using Adam, AdaDelta, and SGD optimization with several configurations. A comparison of the length of time from the three optimizations can be seen in Table 4 with several configurations in 100 epochs. Table 4. Computing time of 100 epochs Model Methods Learning time (second) Adam With Wavelet 516 Without Wavelet 540 AdaDelta With Wavelet 606 Without Wavelet 642 SGD With Wavelet 370 Without Wavelet 380 4. CONCLUSION This research showed that brain-computer interface could use motor imagery and focus variable of EEG signal to move drone simulator. Nevertheless, the emphasis is real-time action with other computing time applications that can be used. Proposed methods using RNN and wavelet could support BCI with MI and focus variables with an accuracy of almost 80% non-training data. The research gave that the use of wavelet as a pre-process can improve accuracy, lead to stability, and reduce the training data computation time. This result is consistent with the hypothesis referring to previous research that wavelet is suitable for non-stationary signals
  • 8. TELKOMNIKA Telecommun Comput El Control ๏ฒ Brain-computer interface of focus and motor imagery using wavelet andโ€ฆ (Esmeralda C. Djamal) 2755 such as EEG signals. In using RNN, it is necessary to pay attention to the optimization model for the correction of weights and the number of epochs used. Adam's model reaches asymptotically faster, but still fluctuates at the end of the epoch, so it requires the right number of iterations. The SGD model is quieter in performance but requires far more epochs. While the AdaDelta model adopts both models, it provides stable and high accuracy. The next thing to look out for is the configuration of the input features and channel usage of the EEG signal. ACKNOWLEDGEMENTS The research was funded by "PTUPTโ€“Penelitian Terapan Unggulan Perguruan Tinggi" from the Ministry of Research Technology and Higher Education, Republik Indonesia. REFERENCES [1] E. C. Djamal, M. Y. Abdullah, and F. Renaldi, โ€œBrain Computer Interface Game Controlling Using Fast Fourier Transform and Learning Vector Quantization,โ€ Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, no. 2-5, pp. 71-74, 2017. [2] M. Van Vliet, A. Robben, N. Chumerin, et al., โ€œDesigning a brain-computer interface controlled video-game using consumer grade EEG hardware,โ€ 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living, BRC 2012, 2012. [3] S. Ramesh, M. G. Krishna, and M. Nakirekanti, โ€œBrain Computer Interface System for Mind Controlled Robot using Bluetooth,โ€ International Journal of Computer Application, vol. 104, no. 15, pp. 20-23, 2014. [4] B. Vรกrkuti, et al., โ€œResting State Changes in Functional Connectivity Correlate With Movement Recovery for BCI and Robot-Assisted Upper-Extremity Training After Stroke,โ€ Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 53-62, 2013. [5] D. J. McFarland and J. R. Wolpaw, โ€œEEG-Based Brain-Computer Interfaces,โ€ Current Opinion in Biomedical Engineering, vol. 4, no. Dec, pp. 194-200, 2017. [6] E. C. Djamal and Suprijanto, โ€œRecognition of Electroencephalogram Signal Pattern against Sound Stimulation using Spectral of Wavelet,โ€ Tencon 2011, pp. 767-771, 2011. [7] M. H. Alomari, A. Abubaker, A. Turani, et al., โ€œEEG Mouse: A Machine Learning-Based Brain Computer Interface,โ€ (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 5, no. 4, pp. 193-198, 2014. [8] S. Chaudhary, S. Taran, V. Bajaj, and S. Siuly, โ€œA flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications,โ€ Computer Methods and Programs in Biomedicine, vol. 15, no. 45, 2020. [9] H. Gรถksu, โ€œBCI oriented EEG analysis using log energy entropy of wavelet packets,โ€ Biomedical Signal Processing and Control, vol. 44, pp. 101-109, 2018. [10] T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, โ€œEEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems,โ€ Expert System With Applications, vol. 42, no. 9, pp. 4370-4380, 2015. [11] A. Khalaf, E. Sejdic, and M. Akcakaya, โ€œCommon spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface,โ€ Journal of Neuroscience Methods, vol. 320, no. April, pp. 98-106, 2019. [12] F. Ansari, D. R. Edla, S. Dodia, and V. Kuppili, โ€œBrain-Computer Interface for Wheelchair Control Operations: An Approach based on Fast Fourier Transform and On-Line Sequential Extreme Learning Machine,โ€ Clinical Epidemiology and Global Health, vol. 7, no. 3, pp. 274-278, 2018. [13] S. H. Fairclough, โ€œBCI and physiological computing for computer games: Differences, similarities & intuitive control,โ€ Proceedings of CHIโ€™08, no. 1, pp. 1-6, 2008. [14] S. Alhagry, A. A. Fahmy, and R. A. El-Khoribi, โ€œEmotion Recognition based on EEG using LSTM Recurrent Neural Network,โ€ International Journal of Advanced Computer Science and Applications, vol. 8, no. 10, pp. 356-358, 2017. [15] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, et al., โ€œBrain Computer Interfaces for communication and control,โ€ Frontiers in Neuroscience, vol. 4, no. 113, pp. 767-791, 2002. [16] T. J. Choi, J. O. Kim, S. M. Jin, and G. Yoon, โ€œDetermination of the Concentrated State Using Multiple EEG Channels,โ€ International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 8, no. 8, pp. 1359-1362, 2014. [17] K. G. Smitha, S. Shenjie, K. P. Thomas, and A. P. Vinod, โ€œTwo player EEG-based neurofeedback ball game for attention enhancement,โ€ in International Conference on Systems, Man and Cybernetics, 2014, pp. 3150-3155. [18] D. Iacoviello, A. Petracca, M. Spezialetti, and G. Placidi, โ€œA real-time classification algorithm for EEG-based BCI driven by self-induced emotions,โ€ Computer Methods and Programs in Biomedicine, vol. 122, no. 3, pp. 293-303, 2015. [19] E. C. Djamal, H. Fadhilah, A. Najmurrokhman, A. Wulandari, and F. Renaldi, โ€œEmotion brain-computer interface using wavelet and recurrent neural networks,โ€ International Journal of Advances in Intelligent Informatics, vol. 6, no. 1, pp. 1-12, 2020. [20] E. C. Djamal, Suprijanto, and S. J. Setiadi, โ€œClassification of EEG-Based Hand Grasping Imagination Using Autoregressive and Neural Networks,โ€ Jurnal Teknologi, vol. 78, no. 6-6, pp. 105-110, 2016. [21] L. Wang, X. Liu, Z. Liang, Z. Yang, and X. Hu, โ€œAnalysis and classification of hybrid BCI based on motor imagery and speech imagery,โ€ Measurement, vol. 147, p. 106842, 2019. [22] A. Finke, A. Lenhardt, and H. Ritter, โ€œThe MindGame: A P300-based brain-computer interface game,โ€ Neural Networks, vol. 22, no. 9, pp. 1329-1333, 2009.
  • 9. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2748 - 2756 2756 [23] T. I. Voznenko, E. V Chepin, I. Voznenko, et al,, โ€œThe Control System Based Based on Extended BCI for a Robotic Wheelchair,โ€ in Procedia Computer Science, 2018, vol. 123, pp. 522-527. [24] T. Hosman, et al., โ€œBCI decoder performance comparison of an LSTM recurrent neural network and a Kalman filter in retrospective simulation,โ€ 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1066-1071, 2019. [25] J. Liu, Y. Cheng, and W. Zhang, โ€œDeep learning EEG response representation for brain computer interface,โ€ Chinese Control Conference, pp. 3518-3523, 2015. [26] S. Umar, M. Alsulaiman, and G. Muhammad, โ€œDeep Learning for EEG motor imagery classification based on multi- layer CNNs feature fusion,โ€ Future Generation Computer Systems, vol. 101, pp. 542-554, 2019. [27] E. A. Mohamed, M. Z. B. Yusoff, N. K. Selman, and A. S. Malik, โ€œEnhancing EEG Signals in Brain Computer Interface Using Wavelet Transform,โ€ in International Journal of Information and Electronics Engineering, vol. 4, no. 3, pp. 234-238, 2014. [28] C. Rodrigues, P. P. Rebouรงas, E. Peixoto, A. K. N, V. Hugo, and C. De Albuquerque, โ€œClassification of EEG signals to detect alcoholism using machine learning techniques,โ€ Pattern Recognition Letters, vol. 125, pp. 140-149, 2019. [29] E. C. Djamal and P. Lodaya, โ€œEEG Based Emotion Monitoring Using Wavelet and Learning Vector Quantization,โ€ 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2017), pp. 19-21, 2017. [30] A. N. Akansu and R. A. Haddad, โ€œMultiresolution signal decomposition,โ€ Academic Press, Second., no. 1, T. R. Hsing, Ed. Academic Press, pp. 22-25, 2001. [31] Y. Shen, H. Lu, and J. Jia, โ€œClassification of Motor Imagery EEG Signals with Deep Learning Models,โ€ Lecture Notes in Computer Science book series, vol. 10559, pp. 181-190, 2017. [32] J.-S. Wang, Y.-T. Yang, C.-Y. Hsu, and Y. Hsu, โ€œA Recurrent Neural Sleep-Stage Classifier Using Energy Features of EEG Signals,โ€ Neurocomputing, vol. 104, pp. 105-114, 2013. [33] A. Mazumder, A. Rakshit, and D. N. Tibarewala, โ€œA Back-Propagation Through Time Based Recurrent Neural Network Approach for Classification of Cognitive EEG States,โ€ 2015 IEEE International Conference on Engineering and Technology, no. March, pp. 1-5, 2015. [34] J. Zhou, M. Meng, Y. Gao, Y. Ma, and Q. Zhang, โ€œClassification of Motor Imagery EEG Using Wavelet Envelope Analysis and LSTM Networks,โ€ 2018 Chinese Control And Decision Conference (CCDC), pp. 5600-5605, 2018. [35] Y. Li, J. Huang, H. Zhou, and N. Zhong, โ€œHuman Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks,โ€ Applied Sciences, vol. 7, no. 10, p. 1060, 2017. BIOGRAPHIES OF AUTHORS Esmeralda Contessa Djamal received a Bachelor's degree in Engineering Physics from Institut Teknologi Bandung in 1994, a Master's degree in Instrument and Control from Institut Teknologi Bandung in 1998. Since Ph.D. dissertation until now, research on EEG classification and finished doctoral program from Institut Teknologi Bandung in 2005. She is a lecturer of Informatics Department, Universitas Jenderal Achmad Yani. Rifqi Dania Putra received his bachelor's degree in Informatics department from Universitas Jenderal Achmad Yani in 2019. E-mail: daniaputra24@gmail.com