
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on September 24, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Electroencephalogram (EEG) is useful for biological research and clinical diagnosis. These signals are however contaminated with artifacts which must be removed to have pure EEG signals. These artifacts can be removed by using Independent Component Analysis (ICA). In this paper we studied the performance of three ICA algorithms (FastICA, JADE, and Radical) as well as our newly developed ICA technique which utilizes wavelet transform. Comparing these ICA algorithms, it is observed that our new technique performs as well as these algorithms at denoising EEG signals.
Be the first to like this
Be the first to comment