SlideShare a Scribd company logo
1 of 8
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 5, October 2020, pp. 2772~2779
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i5.14279  2772
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
A novel method for digital data encoding-decoding
Amjad Y. Hindi
Communication Engineering department, Faculty of Engineering Technology, Al-Balqa Applied University, Jordan
Article Info ABSTRACT
Article history:
Received Oct 6, 2019
Revised Feb 13, 2020
Accepted Feb 27, 2020
Cryptography is one of the paramount and most vital data treatment processes,
it allows us to be secure in our electronic transactions. The process of
cryptography protects our valuable data such as private account numbers and
transaction amounts, electronic signatures replace handwritten signatures or
credit card authorizations, and public-key encryption provides confidentiality.
The objective of data encryption is to keep digital data confidentiality save as
it is stored on computer systems and transferred using the internet or other
computer networks. In this paper we will focus in enhancing security level of
the encryption-decryption process by introducing a novel method, which uses
any digital color image to encode-decode secret message, the using of a special
key to encrypt-decrypt the encoded-decoded message, the color image will be
known only by the transmitter and receiver to keep the process of data
treatment confidential, the obtained experimental results by the proposed
method will be analyzed to prove the enhancement in process efficiency
and confidentiality.
Keywords:
AES
Decoder
DES
Digital image
Encoder
Hight
Histogram
LED
Speedup
This is an open access article under the CC BY-SA license.
Corresponding Author:
Amjad Y. Hindi,
Communication Engineering department,
Faculty of Engineering Technology,
Al-Balqa Applied University.
Email: amjadhindi@bau.edu.jo
1. INTRODUCTION
Digital color image [1-3] is one of most commonly used data types; it is usually represented by a 3D
matrix (red, green, and blue colors are assigned to the first, second, and third dimensions correspondingly),
each color value is ranges from 0 to 255, the repetition of each color value forms the image histogram [4, 5] as
shown in Figures 1 and 2. If the color image is clear and normalized then the histogram will cover all the values
between 0 and 255 [4, 5], thus the color values can be used to handle the ASCII value of any character in any
secret message, allowing us to use the color image for secure data cryptography. The goal of data cryptography
is to protect data and to improve the security wherever data is stored or conveyed [6]. Many methods were
proposed to insure the security of transmitted secret message [7-9], which are using the techniques of data
hiding, the secret message is to be hidden in a covering image, the covering image will be encrypted [10-15].
In this research, a new method which is falls in the category of standard method of data encryption-decryption
such as DES, AES, LED, and hight methods.
TELKOMNIKA Telecommun Comput El Control 
A novel method for digital data encoding-decoding (Amjad Y. Hindi)
2773
Figure 1. Color image and histogram
Figure 2. Reshaped color images and total histogram
2. BACKGROUND
2.1. DES encryption-decryption
Data encryption standard (DES) [16] is a block cipher, at the encryption site, DES divides the secret
message into 64 bits blocks, takes a 64-bit text and makes a 64-bit code; at the receiving end, DES takes
a 64-bit ciphertext and creates a 64-bit block. Theprocess of encryption is two parts which are initial
permutationsand final permutations (P-boxes), and sixteen Feistel rounds [15, 17]. EachFeistel round uses
a different key generated by an algorithm described below. Figure 3 shows the structure of data encryption
standard at the sender site.
Figure 3. DES structure [18]
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779
2774
2.2. AES data encryption-decryption
Advanced encryption standard (AES) consists of two techniques for encryption and decryption of
ciphertext. Which are known as substitution and permutation network (SPN) [19, 20]. AES dealswith plaintext
blocks of 128 bits (16 bytes) size. Each block is represented by 4x4 matrixes and AES operates on a matrix of
bytes. AES uses several rounds and logical-mathematical operation to perform encryption and decryption
processes as shown in Figure 4 [20]
Figure 4. AES structure [15]
2.3. Hight data encryption-decreyption
HIGHT (High security and light weight) is a symmetric method of data encryption-decryption, which
uses a 64 bit key and 64 bit ciphertext block and it is suitable for low-resource device [21]. Hight hasa simple
structure with usesa basic arithmetic operation–XOR as shawn in Figure 5, addition/subtraction in modular
256, and circular shift rotation, without using S-Box [22, 23].
Figure 5. Hight structure [18]
TELKOMNIKA Telecommun Comput El Control 
A novel method for digital data encoding-decoding (Amjad Y. Hindi)
2775
2.4. LED data encryption-decryption
Light encryption device (LED) is an SPN type Lightweight block cipher was first introduced by Guo
et al. in 2011 [24]. The step function performed 8 times for the 64 bit key and 12 times for the 128-bit keys.
The keys used in LED block cipher may vary from 64 bits to 128 bits [25, 26]. LEDdivides the input key into
two blocks of 64-bit keys and processesin parallel. So more than one input can be processed at a time, thereby
the speed of architecture increased at the cost of the area. The operation involved in the architecture is add
round key, add constant, substitute cells, shift rows and mix columns [26].
3. THE PROBLEM
Digital image has a huge size (the dimensions of a digital image are expressed in terms of its pixels,
for instance “800x600” or “1520x1280” where the first number is the width of the photo and the second number
the height of the photo). Using the available standards of data encryption-decryption for color images will
require more efforts, the image must be divided into blocks, each block must be encrypted, and then decrypted.
This will increase the encryption-decryption times, thus will decrease the standard methods efficiency.
4. THE PROPOSED SOLUTION
The proposed solution introduces a method that uses a digital color image to encode the secret message
in the encrypption phase, and the same color image in the decryption phase as an image-decoder as shown in
Figure 6. The following procedures show the implementation of the proposed method:
a) Encryption procedure:
Phase 1: Private key (PK) generation:
This phase will be implemented once by generating a random integer array with a big number of
element to suit any message with any length, the generated PK must be saved and must be known by the sender
and the reciever.
Phase 2: Message encoding:
Message encodinghas will be implemented as followes:
− Select the secret message.
− Get the length of the message.
− Select the image-encoder.
− Get the image size.
− Reshape the image into one row array.
For each character in the message find the first occuranes of character ASCII value in the image, and store the
positing in encoded array.
Phase 3: Encryption phase:
The Encryption phase is performed by the following steps:
− Load PK
− Adjust the PK to match the message lengt.
− XOR the encoded array with PK to get the encrypted message.
Table 1 shows an example of message encryption.
Figure 6. Proposed method structure
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779
2776
Table 1. Message encryption example
Message characters Encoded message Key Encrypted message
z 1958 242 1876
i 1348 58 1406
a 1009 154 875
d 702 123 709
1656 227 1691
a 1009 194 819
l 908 116 1016
q 2115 4 2119
a 1009 209 800
d 702 113 719
i 1348 156 1496
b) Decryption procedure:
Phase 1: Get PK:
By loading the PKthis phase can be implemented.
Phase 2: Get the decrypted message
The message treatement takes the following four steps:
− Use the encrypted message.
− find the message length.
− Adjust PK to suit the message length.
− XOR the key with the message to get the decoded message array.
Phase 3: Message decoding
The process of message decoding hasthe following steps:
− Get the decoded secret message.
− Get the length of the message.
− Select the image-decoder.
− Get the image size.
− Reshape the image into one row array.
− Use each value in the decoded message as a position in the image to get the pixel value as an ASCII code
of the character.
5. IMPLEMENTATION AND EXPERIMENTAL RESULTS
A matlab code was writen to implement the proposed method of message encryption-decryption,
several experiment were performed as followos:
a) Experiment 1: Encrypting the same secret message using various image-encoder:
One secret message was taken, the prposed method was implemented using various color images,
Table 2 shows the results of this experiment. From the results shown in Table 2 we can see that using various
color image as an encoders-decoders leads to producing different encoded and encrypted messages.
Table 2. Experiment 1 results
Original
message
Image 1 Image 2 Image 3 Image 4 Image 5
Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted
z 2019 1809 133 119 159 109 403 353 132 118
i 61 7 243 201 260 318 487 477 79 117
a 76 214 222 68 311 429 384 282 73 211
d 33 90 224 155 270 373 1413 1534 75 48
410 377 24 251 9946 9785 704 547 298 457
a 76 142 222 28 311 501 384 322 73 139
l 30 106 115 7 214 162 505 397 252 136
q 51 55 494 490 316 312 420 416 88 92
a 76 157 222 15 311 486 384 337 73 152
d 33 80 224 145 270 383 1413 1524 75 58
i 61 161 243 111 260 408 487 379 79 211
b) Experiment 2: Encrypting deffirent secret messages using the same image-encoder:
Different secret messages weres taken, the prposed method was implemented using the same color
image as an encoder-decoder, Table 3 shows the results of this experiment. From the results shown in Table 3
TELKOMNIKA Telecommun Comput El Control 
A novel method for digital data encoding-decoding (Amjad Y. Hindi)
2777
we can see that using the same color image to encode-decode various messages leads to producing different
encoded and encrypted messages.
Table 3. Experiment 2 results
Message 1 Message 2 Message 3 Message 4 Message 5
Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted
2019 1809 1271 1029 99 145 96 146 86 164
61 7 76 118 42 16 76 118 76 118
76 214 76 214 42 176 30 132 30 132
33 90 33 90 76 55 51 72 1421 1526
410 377 410 377 48 211 76 175 410 377
76 142 76 142 410 344 410 344 388 326
30 106 37 81 241 133 99 23 99 23
51 55 42 46 391 387 87 83 32 36
76 157 76 157 50 227 87 134 34 243
33 80 33 80 33 80 30 111 34 83
61 161 256 412 76 208 61 161 30 130
c) Experiment 3: Calculating encryption and decryption times
Different color images were selected as an encoder-decoder and used to encrypt-decrypt 8 bytes secret
message, the results of this experiment are shown in Table 4. From the obtained results in this experiment we
can see that any color image can be used as an encoder-decoder, but it is better to use an image with small size,
this image will be suitable and will reduce the encryption time (encryption time includes encoding time and
encryption time).
Table 4. Experiment 3 results
Image size Encryption time(S) Decryption time(S)
152x171x3 0.0390 0.00001
165x247x3 0.0420 0.00001
183x275x3 0.0490 0.00001
360x480x3 0.0660 0.00001
360x480x3 0.0710 0.00001
846x1504x3 0.2720 0.00001
981x1470x3 0.3090 0.00001
1071x1600x3 0.3570 0.00001
d) Experiment 4: Comparisons with other methods
A matlab codes were to implement other standards of message encryption-decryption, a message of 8
bytes length (64 bits block) was selected and treated by each method, Table 5 shows the results of this
experiment. From the results shown in Table 5 we can see that the proposed method is the most efficient
method, because it requires a minimum time for message encryption-decryption as shown in Figure 7.
Table 5. Experiment 4 results
Test Proposed DES AES LED Hight
1 0.0394 0.0769 0.3441 0.3084 0.2663
2 0.0393 0.0763 0.3448 0.3089 0.2660
3 0.0393 0.0762 0.3444 0.3085 0.2667
4 0.0394 0.0769 0.3449 0.3088 0.2667
5 0.0394 0.0762 0.3447 0.3085 0.2670
6 0.0396 0.0766 0.3447 0.3085 0.2666
7 0.0391 0.0770 0.3443 0.3085 0.2664
8 0.0390 0.0767 0.3442 0.3084 0.2662
9 0.0395 0.0769 0.3442 0.3089 0.2666
10 0.0399 0.0760 0.3442 0.3080 0.2667
The average encryption times for the used methods were calculated, Table 6 shows the results of
calculations. From the results shown in Table 6 we can calculate the speedup of the proposed method using
the following formula:
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779
2778
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑂𝑡ℎ𝑒𝑟𝑚𝑒𝑡ℎ𝑜𝑑𝑡𝑖𝑚𝑒
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑚𝑒𝑡ℎ𝑜𝑑𝑡𝑖𝑚𝑒
The results of speedup calculations are shown in Table 7. From the results shown in Table 7 we can see that
the proposed method has a significant speedup comparing with other standards of data encryption.
Figure 7. Time comparisons
Table 6. Average encryption time
Method Encryption time(S)
DES 0.0760
AES 0.344000
LED 0.3080
Hight 0.266000
Proposed 0.0390
Table 7. Speedup calculation
Method Speedup
DES 1.9487
AES 8.8205
LED 7.8974
Hight 6.8205
6. CONCLUSION
A novel method of data encryption-decryption based on image encoding-decoding was proposed,
implemented and tested, from the obtained experimental results we can conclude that the proposed method has
the following advantages compared with other standards used for data cryptography. Any digital image (color
or gray) can be used as an encoder-decoder, any message can be encoded-decoded by any image, the same
image can be used to encode-decode any message, the message length is unlimited, a message may be
considered as one block, or it can be divided into block with various sizes. PK generation is a very simple
process and it easy to update the key any time. The proposed method has a significant speedup, thus it is more
efficient than other methods. The proposed method is very secure. It provides two level of security the PK level
and encoder-decoder level.
REFERENCES
[1] Z. A. Alqadi, M. O. Al-Dwairi, A. A. Abu Jazar, R. A. Zneit, “Optimized True- RGB color Image Processing,” World
Applied Sciences Journal, vol. 8, no. 10, pp. 1175-1182, 2010.
[2] Z. A. Alqadi, A. A. Moustafa, M. Alduari, “True Color Image Enhancement Using Morphological Operations,”
International Review on Computers & Software, vol. 4, no. 5, pp. 557-562, 2009.
[3] A. Moustafa, Z. A. Alqadi, “Color Image Reconstruction Using A New R'G'I Model,” Journal of Computer
Science,vol. 5, no. 4, pp. 250-254, 2009.
TELKOMNIKA Telecommun Comput El Control 
A novel method for digital data encoding-decoding (Amjad Y. Hindi)
2779
[4] J. A. Azzeh, H. Alhatamleh, Z. A. Alqadi, M. K. Abuzalata, “Creating a Color Map to be used to Convert a Gray
Image to Color Image,” International Journal of Computer Applications, vol. 153, no. 2, pp. 31-34, 2016.
[5] J. A. Azzeh, Z. Alqadi, M. Abuzalata, “Performance Analysis of Artificial Neural Networks used for Color Image
Recognition and Retrieving,” International Journal of Computer Science and Mobile Computing, vol. 8, no. 2,
pp. 20-33, 2019.
[6] M. J. Aqel, Z. A. Alqadi, I. M. El Emary, “Analysis of Stream Cipher Security Algorithm,” Journal of Information
and Computing Science, vol. 2, no. 4, pp. 288-298, 2007.
[7] J. A. Azzeh, B. Zahran, Z. Alqadi, B. Ayyoub, M. Mesleh, “A Novel Based on Image Blocking Method to
Encrypt-Decrypt Color,” International Journal on Informatics Visualization, vol. 3, no. 1, pp 86-93, 2019.
[8] A. Y. Hindi, M. O. Dwairi, Z. A. AlQadi, “A Novel Technique for Data Steganography,” Engineering, Technology &
Applied Science Research, vol. 9, no. 6, pp. 4942-4945, 2019.
[9] J. Nadir, Z. Alqadi, A. A. Ein, “Classification of Matrix Multiplication Methods Used to Encrypt-decrypt Color
Image,” International Journal of Computer and Information Technology, vol. 5, no. 5, pp. 459-464, 2016.
[10] M. J. Aqel, Z. A. Qadi, A. A. Abdullah, “RGB Color Image Encryption-Decryption Using Image Segmentation and
Matrix Multiplication,” International Journal of Engineering & Technology, vol. 7, no. 3.13, pp. 104-107, 2018.
[11] Z. A. Alqadi, M. O. Al-Dwairi, H. Zaini, et al., “ZJICD algorithm for JPEG image compression/decompression,”
Elixir International Journal, vol. 94, pp. 40368-40374, 2016.
[12] A. Y. Hendi, M. O. Dwairi, Z. A. Al-Qadi, and M. Soliman, “A Novel Simple and Highly Secure Method for Data
Encryption-Decryption,” International Journal of Communication Networks and Information Security, vol. 11, no. 1,
pp. 232-238, 2019.
[13] J. Nadir, A. A. Ein , Z. Alqadi, “A Technique to Encrypt-decrypt Stereo Wave File,” International Journal of
Computer and Information Technology, vol. 05, no. 05, pp. 465-470, 2016.
[14] M. O. Al-Dwairi, A. Y. Hendi, M. S. Soliman, Z. A. A. Alqadi, “A new method for voice signal features creation,”
International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4092~4098, 2019.
[15] M. O. Al-Dwairi, A. Y. Hendi, Z. A. AlQadi, “An Efficient and Highly Secure Technique to Encrypt and Decrypt
Color Images,” Engineering, Technology & Applied Science Research, vol. 9, no. 3, pp. 4165-4168, 2019.
[16] National Bureau of Standards NBS FIPS PUB 81, “Guidelines for Implementing and Using the NBS Data Encryption
Standard, U.S. Department of Commerce,” 1995.
[17] H. Alanazi, H. A. Jalab, A. A. Zaidan, B .B. Zaidan, “New Frame Work of Hidden Data with in Non Multimedia File,”
International Journal of Computer and Network Security, vol. 2, no. 1, pp. 46-54, 2010.
[18] A. W. Naji, S. A. Hameed, B. B. Zaidan, et al., “Novel Framework for Hidden Data in the Image Page within
Executable File Using Computation between Advance Encryption Standard and Distortion Techniques,” International
Journal of Computer Science and Information Security, vol. 3, no. 1, pp. 73-78, 2009.
[19] Jain R., Jejurkar R., Chopade S., Vaidya S., & Sanap M., “AES Algorithm Using 512 Bit Key Implementation for
Secure Communication,” International journal of innovative Research in Computer and Communication Engineering,
vol. 2, no. 3, pp. 3516-22, 2014.
[20] Abdullah A. M., Aziz R. H. H., “New Approaches to Encrypt and Decrypt Data in Image using Cryptography and
Steganography Algorithm,” International Journal of Computer Applications, vol. 143, no. 4, pp. 11-17, 2016.
[21] J. Daemen, L. Knudsen and V. Rijmen, “The Block Cipher Square,” International Workshop on Fast Software
Encryption, pp. 137-151, 1997.
[22] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication forRFID Systems Using the AES
Algorithm,” International Workshop on Cryptographic Hardware and Embedded Systems, 2004.
[23] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain ofSand,” IEE Proceedings on
Information Security, vol. 152, no. 1, pp. 13-20, 2005.
[24] B. Jyrwa, R. Paily, “An Area-Throughput Efficient FPGA Implementation of Block Cipher AES Algorithm,”
International Conference on Advances in computing, control, and telecommunication technologies, 2009.
[25] Lim C. H., Korkishko T, “mCrypton – A Lightweight Block Cipher for Security of Low Cost RFID Tags and Sensors,”
International Workshop on Information Security Applications, 2005.
[26] Hong D., Sung J., Hong S., et al., “HIGHT: A New Block Cipher Suitable for Low-Resource Device,” 8th
International Workshop, pp.46-59, 2006.

More Related Content

What's hot

A Robust Image Watermarking Technique using Luminance Based Area Selection an...
A Robust Image Watermarking Technique using Luminance Based Area Selection an...A Robust Image Watermarking Technique using Luminance Based Area Selection an...
A Robust Image Watermarking Technique using Luminance Based Area Selection an...IRJET Journal
 
Modified Blowfish algorithm analysis using derivation cases
Modified Blowfish algorithm analysis using derivation casesModified Blowfish algorithm analysis using derivation cases
Modified Blowfish algorithm analysis using derivation casesjournalBEEI
 
Encryption of Decomposed Image by using ASCII Code based Carrier Signal
Encryption of Decomposed Image by using ASCII Code based Carrier SignalEncryption of Decomposed Image by using ASCII Code based Carrier Signal
Encryption of Decomposed Image by using ASCII Code based Carrier SignalIRJET Journal
 
New Blind Muti-signature Schemes based on ECDLP
New Blind Muti-signature Schemes based on ECDLP New Blind Muti-signature Schemes based on ECDLP
New Blind Muti-signature Schemes based on ECDLP IJECEIAES
 
A novel secure combination technique of steganography and cryptography
A novel secure combination technique of steganography and cryptographyA novel secure combination technique of steganography and cryptography
A novel secure combination technique of steganography and cryptographyZac Darcy
 
Chaos Encryption and Coding for Image Transmission over Noisy Channels
Chaos Encryption and Coding for Image Transmission over Noisy ChannelsChaos Encryption and Coding for Image Transmission over Noisy Channels
Chaos Encryption and Coding for Image Transmission over Noisy Channelsiosrjce
 
Iris images encryption based on QR code and chaotic map
Iris images encryption based on QR code and chaotic mapIris images encryption based on QR code and chaotic map
Iris images encryption based on QR code and chaotic mapTELKOMNIKA JOURNAL
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeIJERD Editor
 
A Hybrid Approach for Ensuring Security in Data Communication
A Hybrid Approach for Ensuring Security in Data Communication A Hybrid Approach for Ensuring Security in Data Communication
A Hybrid Approach for Ensuring Security in Data Communication cscpconf
 
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...IJNSA Journal
 
Image encryption using aes key expansion
Image encryption using aes key expansionImage encryption using aes key expansion
Image encryption using aes key expansionSreeda Perikamana
 

What's hot (16)

A Robust Image Watermarking Technique using Luminance Based Area Selection an...
A Robust Image Watermarking Technique using Luminance Based Area Selection an...A Robust Image Watermarking Technique using Luminance Based Area Selection an...
A Robust Image Watermarking Technique using Luminance Based Area Selection an...
 
CR_CSI_119
CR_CSI_119CR_CSI_119
CR_CSI_119
 
Modified Blowfish algorithm analysis using derivation cases
Modified Blowfish algorithm analysis using derivation casesModified Blowfish algorithm analysis using derivation cases
Modified Blowfish algorithm analysis using derivation cases
 
Encryption of Decomposed Image by using ASCII Code based Carrier Signal
Encryption of Decomposed Image by using ASCII Code based Carrier SignalEncryption of Decomposed Image by using ASCII Code based Carrier Signal
Encryption of Decomposed Image by using ASCII Code based Carrier Signal
 
New Blind Muti-signature Schemes based on ECDLP
New Blind Muti-signature Schemes based on ECDLP New Blind Muti-signature Schemes based on ECDLP
New Blind Muti-signature Schemes based on ECDLP
 
A novel secure combination technique of steganography and cryptography
A novel secure combination technique of steganography and cryptographyA novel secure combination technique of steganography and cryptography
A novel secure combination technique of steganography and cryptography
 
Chaos Encryption and Coding for Image Transmission over Noisy Channels
Chaos Encryption and Coding for Image Transmission over Noisy ChannelsChaos Encryption and Coding for Image Transmission over Noisy Channels
Chaos Encryption and Coding for Image Transmission over Noisy Channels
 
Secure image encryption using aes
Secure image encryption using aesSecure image encryption using aes
Secure image encryption using aes
 
Iris images encryption based on QR code and chaotic map
Iris images encryption based on QR code and chaotic mapIris images encryption based on QR code and chaotic map
Iris images encryption based on QR code and chaotic map
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Novel watermarkig scheme with watermark encryption for copyrig protec...
Novel  watermarkig        scheme with watermark encryption for copyrig protec...Novel  watermarkig        scheme with watermark encryption for copyrig protec...
Novel watermarkig scheme with watermark encryption for copyrig protec...
 
A Hybrid Approach for Ensuring Security in Data Communication
A Hybrid Approach for Ensuring Security in Data Communication A Hybrid Approach for Ensuring Security in Data Communication
A Hybrid Approach for Ensuring Security in Data Communication
 
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...
Digital Watermarking through Embedding of Encrypted and Arithmetically Compre...
 
Compressed Image Authentication using CDMA Watermarking and EMRC6 Encryption
Compressed Image Authentication using CDMA Watermarking and EMRC6 EncryptionCompressed Image Authentication using CDMA Watermarking and EMRC6 Encryption
Compressed Image Authentication using CDMA Watermarking and EMRC6 Encryption
 
Image encryption using aes key expansion
Image encryption using aes key expansionImage encryption using aes key expansion
Image encryption using aes key expansion
 
It3116411644
It3116411644It3116411644
It3116411644
 

Similar to A novel method for digital data encoding-decoding

IRJET-Triple Layered Security on Android Based SMS Transaction
IRJET-Triple Layered Security on Android Based SMS TransactionIRJET-Triple Layered Security on Android Based SMS Transaction
IRJET-Triple Layered Security on Android Based SMS TransactionIRJET Journal
 
Data Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionData Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionBRNSSPublicationHubI
 
A Novel Secure Combination Technique of Steganography and Cryptography
A Novel Secure Combination Technique of Steganography and CryptographyA Novel Secure Combination Technique of Steganography and Cryptography
A Novel Secure Combination Technique of Steganography and CryptographyZac Darcy
 
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”IOSR Journals
 
Encrypting and Decrypting Message via Image Slicing
Encrypting and Decrypting Message via Image SlicingEncrypting and Decrypting Message via Image Slicing
Encrypting and Decrypting Message via Image SlicingIRJET Journal
 
Iaetsd implementation of lsb image steganography system using edge detection
Iaetsd implementation of lsb image steganography system using edge detectionIaetsd implementation of lsb image steganography system using edge detection
Iaetsd implementation of lsb image steganography system using edge detectionIaetsd Iaetsd
 
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUESADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUESIRJET Journal
 
A New hybrid method in watermarking using DCT and AES
A New hybrid method in watermarking using DCT and AESA New hybrid method in watermarking using DCT and AES
A New hybrid method in watermarking using DCT and AESIJERD Editor
 
Secure Data Storage on Cloud System for Privacy Preserving
Secure Data Storage on Cloud System for Privacy PreservingSecure Data Storage on Cloud System for Privacy Preserving
Secure Data Storage on Cloud System for Privacy PreservingIRJET Journal
 
Novel watermarkig scheme with watermark encryption for copyrig protec...
Novel  watermarkig        scheme with watermark encryption for copyrig protec...Novel  watermarkig        scheme with watermark encryption for copyrig protec...
Novel watermarkig scheme with watermark encryption for copyrig protec...Sebastin Antony Joe
 
Watermarking of JPEG2000 Compressed Images with Improved Encryption
Watermarking of JPEG2000 Compressed Images with Improved EncryptionWatermarking of JPEG2000 Compressed Images with Improved Encryption
Watermarking of JPEG2000 Compressed Images with Improved EncryptionEditor IJCATR
 
Security using image processing
Security using image processingSecurity using image processing
Security using image processingIJMIT JOURNAL
 
Security using image processing
Security using image processingSecurity using image processing
Security using image processingIJMIT JOURNAL
 
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...IJECEIAES
 
Implementation for Data Hiding using Visual Cryptography
Implementation for Data Hiding using Visual Cryptography           Implementation for Data Hiding using Visual Cryptography
Implementation for Data Hiding using Visual Cryptography IRJET Journal
 
IRJET- Implementation of AES Algorithm in Arduino Mega2560 Board
IRJET- Implementation of AES Algorithm in Arduino Mega2560 BoardIRJET- Implementation of AES Algorithm in Arduino Mega2560 Board
IRJET- Implementation of AES Algorithm in Arduino Mega2560 BoardIRJET Journal
 

Similar to A novel method for digital data encoding-decoding (20)

IRJET-Triple Layered Security on Android Based SMS Transaction
IRJET-Triple Layered Security on Android Based SMS TransactionIRJET-Triple Layered Security on Android Based SMS Transaction
IRJET-Triple Layered Security on Android Based SMS Transaction
 
Data Communication Using Cryptography Encryption
Data Communication Using Cryptography EncryptionData Communication Using Cryptography Encryption
Data Communication Using Cryptography Encryption
 
Ijcnc050208
Ijcnc050208Ijcnc050208
Ijcnc050208
 
A Novel Secure Combination Technique of Steganography and Cryptography
A Novel Secure Combination Technique of Steganography and CryptographyA Novel Secure Combination Technique of Steganography and Cryptography
A Novel Secure Combination Technique of Steganography and Cryptography
 
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”
“Proposed Model for Network Security Issues Using Elliptical Curve Cryptography”
 
Technical seminar ppt
Technical seminar pptTechnical seminar ppt
Technical seminar ppt
 
Encrypting and Decrypting Message via Image Slicing
Encrypting and Decrypting Message via Image SlicingEncrypting and Decrypting Message via Image Slicing
Encrypting and Decrypting Message via Image Slicing
 
Iaetsd implementation of lsb image steganography system using edge detection
Iaetsd implementation of lsb image steganography system using edge detectionIaetsd implementation of lsb image steganography system using edge detection
Iaetsd implementation of lsb image steganography system using edge detection
 
RC4 Technique in Visual Cryptography
RC4 Technique in Visual CryptographyRC4 Technique in Visual Cryptography
RC4 Technique in Visual Cryptography
 
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUESADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES
ADVANCED SECURITY USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES
 
A New hybrid method in watermarking using DCT and AES
A New hybrid method in watermarking using DCT and AESA New hybrid method in watermarking using DCT and AES
A New hybrid method in watermarking using DCT and AES
 
Enhancement of Prefix Chiper in Format Preserving Encryption
Enhancement of Prefix Chiper in Format Preserving EncryptionEnhancement of Prefix Chiper in Format Preserving Encryption
Enhancement of Prefix Chiper in Format Preserving Encryption
 
Secure Data Storage on Cloud System for Privacy Preserving
Secure Data Storage on Cloud System for Privacy PreservingSecure Data Storage on Cloud System for Privacy Preserving
Secure Data Storage on Cloud System for Privacy Preserving
 
Novel watermarkig scheme with watermark encryption for copyrig protec...
Novel  watermarkig        scheme with watermark encryption for copyrig protec...Novel  watermarkig        scheme with watermark encryption for copyrig protec...
Novel watermarkig scheme with watermark encryption for copyrig protec...
 
Watermarking of JPEG2000 Compressed Images with Improved Encryption
Watermarking of JPEG2000 Compressed Images with Improved EncryptionWatermarking of JPEG2000 Compressed Images with Improved Encryption
Watermarking of JPEG2000 Compressed Images with Improved Encryption
 
Security using image processing
Security using image processingSecurity using image processing
Security using image processing
 
Security using image processing
Security using image processingSecurity using image processing
Security using image processing
 
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...
DARE Algorithm: A New Security Protocol by Integration of Different Cryptogra...
 
Implementation for Data Hiding using Visual Cryptography
Implementation for Data Hiding using Visual Cryptography           Implementation for Data Hiding using Visual Cryptography
Implementation for Data Hiding using Visual Cryptography
 
IRJET- Implementation of AES Algorithm in Arduino Mega2560 Board
IRJET- Implementation of AES Algorithm in Arduino Mega2560 BoardIRJET- Implementation of AES Algorithm in Arduino Mega2560 Board
IRJET- Implementation of AES Algorithm in Arduino Mega2560 Board
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 

Recently uploaded (20)

8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 

A novel method for digital data encoding-decoding

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 5, October 2020, pp. 2772~2779 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i5.14279  2772 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA A novel method for digital data encoding-decoding Amjad Y. Hindi Communication Engineering department, Faculty of Engineering Technology, Al-Balqa Applied University, Jordan Article Info ABSTRACT Article history: Received Oct 6, 2019 Revised Feb 13, 2020 Accepted Feb 27, 2020 Cryptography is one of the paramount and most vital data treatment processes, it allows us to be secure in our electronic transactions. The process of cryptography protects our valuable data such as private account numbers and transaction amounts, electronic signatures replace handwritten signatures or credit card authorizations, and public-key encryption provides confidentiality. The objective of data encryption is to keep digital data confidentiality save as it is stored on computer systems and transferred using the internet or other computer networks. In this paper we will focus in enhancing security level of the encryption-decryption process by introducing a novel method, which uses any digital color image to encode-decode secret message, the using of a special key to encrypt-decrypt the encoded-decoded message, the color image will be known only by the transmitter and receiver to keep the process of data treatment confidential, the obtained experimental results by the proposed method will be analyzed to prove the enhancement in process efficiency and confidentiality. Keywords: AES Decoder DES Digital image Encoder Hight Histogram LED Speedup This is an open access article under the CC BY-SA license. Corresponding Author: Amjad Y. Hindi, Communication Engineering department, Faculty of Engineering Technology, Al-Balqa Applied University. Email: amjadhindi@bau.edu.jo 1. INTRODUCTION Digital color image [1-3] is one of most commonly used data types; it is usually represented by a 3D matrix (red, green, and blue colors are assigned to the first, second, and third dimensions correspondingly), each color value is ranges from 0 to 255, the repetition of each color value forms the image histogram [4, 5] as shown in Figures 1 and 2. If the color image is clear and normalized then the histogram will cover all the values between 0 and 255 [4, 5], thus the color values can be used to handle the ASCII value of any character in any secret message, allowing us to use the color image for secure data cryptography. The goal of data cryptography is to protect data and to improve the security wherever data is stored or conveyed [6]. Many methods were proposed to insure the security of transmitted secret message [7-9], which are using the techniques of data hiding, the secret message is to be hidden in a covering image, the covering image will be encrypted [10-15]. In this research, a new method which is falls in the category of standard method of data encryption-decryption such as DES, AES, LED, and hight methods.
  • 2. TELKOMNIKA Telecommun Comput El Control  A novel method for digital data encoding-decoding (Amjad Y. Hindi) 2773 Figure 1. Color image and histogram Figure 2. Reshaped color images and total histogram 2. BACKGROUND 2.1. DES encryption-decryption Data encryption standard (DES) [16] is a block cipher, at the encryption site, DES divides the secret message into 64 bits blocks, takes a 64-bit text and makes a 64-bit code; at the receiving end, DES takes a 64-bit ciphertext and creates a 64-bit block. Theprocess of encryption is two parts which are initial permutationsand final permutations (P-boxes), and sixteen Feistel rounds [15, 17]. EachFeistel round uses a different key generated by an algorithm described below. Figure 3 shows the structure of data encryption standard at the sender site. Figure 3. DES structure [18]
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779 2774 2.2. AES data encryption-decryption Advanced encryption standard (AES) consists of two techniques for encryption and decryption of ciphertext. Which are known as substitution and permutation network (SPN) [19, 20]. AES dealswith plaintext blocks of 128 bits (16 bytes) size. Each block is represented by 4x4 matrixes and AES operates on a matrix of bytes. AES uses several rounds and logical-mathematical operation to perform encryption and decryption processes as shown in Figure 4 [20] Figure 4. AES structure [15] 2.3. Hight data encryption-decreyption HIGHT (High security and light weight) is a symmetric method of data encryption-decryption, which uses a 64 bit key and 64 bit ciphertext block and it is suitable for low-resource device [21]. Hight hasa simple structure with usesa basic arithmetic operation–XOR as shawn in Figure 5, addition/subtraction in modular 256, and circular shift rotation, without using S-Box [22, 23]. Figure 5. Hight structure [18]
  • 4. TELKOMNIKA Telecommun Comput El Control  A novel method for digital data encoding-decoding (Amjad Y. Hindi) 2775 2.4. LED data encryption-decryption Light encryption device (LED) is an SPN type Lightweight block cipher was first introduced by Guo et al. in 2011 [24]. The step function performed 8 times for the 64 bit key and 12 times for the 128-bit keys. The keys used in LED block cipher may vary from 64 bits to 128 bits [25, 26]. LEDdivides the input key into two blocks of 64-bit keys and processesin parallel. So more than one input can be processed at a time, thereby the speed of architecture increased at the cost of the area. The operation involved in the architecture is add round key, add constant, substitute cells, shift rows and mix columns [26]. 3. THE PROBLEM Digital image has a huge size (the dimensions of a digital image are expressed in terms of its pixels, for instance “800x600” or “1520x1280” where the first number is the width of the photo and the second number the height of the photo). Using the available standards of data encryption-decryption for color images will require more efforts, the image must be divided into blocks, each block must be encrypted, and then decrypted. This will increase the encryption-decryption times, thus will decrease the standard methods efficiency. 4. THE PROPOSED SOLUTION The proposed solution introduces a method that uses a digital color image to encode the secret message in the encrypption phase, and the same color image in the decryption phase as an image-decoder as shown in Figure 6. The following procedures show the implementation of the proposed method: a) Encryption procedure: Phase 1: Private key (PK) generation: This phase will be implemented once by generating a random integer array with a big number of element to suit any message with any length, the generated PK must be saved and must be known by the sender and the reciever. Phase 2: Message encoding: Message encodinghas will be implemented as followes: − Select the secret message. − Get the length of the message. − Select the image-encoder. − Get the image size. − Reshape the image into one row array. For each character in the message find the first occuranes of character ASCII value in the image, and store the positing in encoded array. Phase 3: Encryption phase: The Encryption phase is performed by the following steps: − Load PK − Adjust the PK to match the message lengt. − XOR the encoded array with PK to get the encrypted message. Table 1 shows an example of message encryption. Figure 6. Proposed method structure
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779 2776 Table 1. Message encryption example Message characters Encoded message Key Encrypted message z 1958 242 1876 i 1348 58 1406 a 1009 154 875 d 702 123 709 1656 227 1691 a 1009 194 819 l 908 116 1016 q 2115 4 2119 a 1009 209 800 d 702 113 719 i 1348 156 1496 b) Decryption procedure: Phase 1: Get PK: By loading the PKthis phase can be implemented. Phase 2: Get the decrypted message The message treatement takes the following four steps: − Use the encrypted message. − find the message length. − Adjust PK to suit the message length. − XOR the key with the message to get the decoded message array. Phase 3: Message decoding The process of message decoding hasthe following steps: − Get the decoded secret message. − Get the length of the message. − Select the image-decoder. − Get the image size. − Reshape the image into one row array. − Use each value in the decoded message as a position in the image to get the pixel value as an ASCII code of the character. 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS A matlab code was writen to implement the proposed method of message encryption-decryption, several experiment were performed as followos: a) Experiment 1: Encrypting the same secret message using various image-encoder: One secret message was taken, the prposed method was implemented using various color images, Table 2 shows the results of this experiment. From the results shown in Table 2 we can see that using various color image as an encoders-decoders leads to producing different encoded and encrypted messages. Table 2. Experiment 1 results Original message Image 1 Image 2 Image 3 Image 4 Image 5 Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted z 2019 1809 133 119 159 109 403 353 132 118 i 61 7 243 201 260 318 487 477 79 117 a 76 214 222 68 311 429 384 282 73 211 d 33 90 224 155 270 373 1413 1534 75 48 410 377 24 251 9946 9785 704 547 298 457 a 76 142 222 28 311 501 384 322 73 139 l 30 106 115 7 214 162 505 397 252 136 q 51 55 494 490 316 312 420 416 88 92 a 76 157 222 15 311 486 384 337 73 152 d 33 80 224 145 270 383 1413 1524 75 58 i 61 161 243 111 260 408 487 379 79 211 b) Experiment 2: Encrypting deffirent secret messages using the same image-encoder: Different secret messages weres taken, the prposed method was implemented using the same color image as an encoder-decoder, Table 3 shows the results of this experiment. From the results shown in Table 3
  • 6. TELKOMNIKA Telecommun Comput El Control  A novel method for digital data encoding-decoding (Amjad Y. Hindi) 2777 we can see that using the same color image to encode-decode various messages leads to producing different encoded and encrypted messages. Table 3. Experiment 2 results Message 1 Message 2 Message 3 Message 4 Message 5 Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted Encoded Encrypted 2019 1809 1271 1029 99 145 96 146 86 164 61 7 76 118 42 16 76 118 76 118 76 214 76 214 42 176 30 132 30 132 33 90 33 90 76 55 51 72 1421 1526 410 377 410 377 48 211 76 175 410 377 76 142 76 142 410 344 410 344 388 326 30 106 37 81 241 133 99 23 99 23 51 55 42 46 391 387 87 83 32 36 76 157 76 157 50 227 87 134 34 243 33 80 33 80 33 80 30 111 34 83 61 161 256 412 76 208 61 161 30 130 c) Experiment 3: Calculating encryption and decryption times Different color images were selected as an encoder-decoder and used to encrypt-decrypt 8 bytes secret message, the results of this experiment are shown in Table 4. From the obtained results in this experiment we can see that any color image can be used as an encoder-decoder, but it is better to use an image with small size, this image will be suitable and will reduce the encryption time (encryption time includes encoding time and encryption time). Table 4. Experiment 3 results Image size Encryption time(S) Decryption time(S) 152x171x3 0.0390 0.00001 165x247x3 0.0420 0.00001 183x275x3 0.0490 0.00001 360x480x3 0.0660 0.00001 360x480x3 0.0710 0.00001 846x1504x3 0.2720 0.00001 981x1470x3 0.3090 0.00001 1071x1600x3 0.3570 0.00001 d) Experiment 4: Comparisons with other methods A matlab codes were to implement other standards of message encryption-decryption, a message of 8 bytes length (64 bits block) was selected and treated by each method, Table 5 shows the results of this experiment. From the results shown in Table 5 we can see that the proposed method is the most efficient method, because it requires a minimum time for message encryption-decryption as shown in Figure 7. Table 5. Experiment 4 results Test Proposed DES AES LED Hight 1 0.0394 0.0769 0.3441 0.3084 0.2663 2 0.0393 0.0763 0.3448 0.3089 0.2660 3 0.0393 0.0762 0.3444 0.3085 0.2667 4 0.0394 0.0769 0.3449 0.3088 0.2667 5 0.0394 0.0762 0.3447 0.3085 0.2670 6 0.0396 0.0766 0.3447 0.3085 0.2666 7 0.0391 0.0770 0.3443 0.3085 0.2664 8 0.0390 0.0767 0.3442 0.3084 0.2662 9 0.0395 0.0769 0.3442 0.3089 0.2666 10 0.0399 0.0760 0.3442 0.3080 0.2667 The average encryption times for the used methods were calculated, Table 6 shows the results of calculations. From the results shown in Table 6 we can calculate the speedup of the proposed method using the following formula:
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2772 - 2779 2778 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑂𝑡ℎ𝑒𝑟𝑚𝑒𝑡ℎ𝑜𝑑𝑡𝑖𝑚𝑒 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑚𝑒𝑡ℎ𝑜𝑑𝑡𝑖𝑚𝑒 The results of speedup calculations are shown in Table 7. From the results shown in Table 7 we can see that the proposed method has a significant speedup comparing with other standards of data encryption. Figure 7. Time comparisons Table 6. Average encryption time Method Encryption time(S) DES 0.0760 AES 0.344000 LED 0.3080 Hight 0.266000 Proposed 0.0390 Table 7. Speedup calculation Method Speedup DES 1.9487 AES 8.8205 LED 7.8974 Hight 6.8205 6. CONCLUSION A novel method of data encryption-decryption based on image encoding-decoding was proposed, implemented and tested, from the obtained experimental results we can conclude that the proposed method has the following advantages compared with other standards used for data cryptography. Any digital image (color or gray) can be used as an encoder-decoder, any message can be encoded-decoded by any image, the same image can be used to encode-decode any message, the message length is unlimited, a message may be considered as one block, or it can be divided into block with various sizes. PK generation is a very simple process and it easy to update the key any time. The proposed method has a significant speedup, thus it is more efficient than other methods. The proposed method is very secure. It provides two level of security the PK level and encoder-decoder level. REFERENCES [1] Z. A. Alqadi, M. O. Al-Dwairi, A. A. Abu Jazar, R. A. Zneit, “Optimized True- RGB color Image Processing,” World Applied Sciences Journal, vol. 8, no. 10, pp. 1175-1182, 2010. [2] Z. A. Alqadi, A. A. Moustafa, M. Alduari, “True Color Image Enhancement Using Morphological Operations,” International Review on Computers & Software, vol. 4, no. 5, pp. 557-562, 2009. [3] A. Moustafa, Z. A. Alqadi, “Color Image Reconstruction Using A New R'G'I Model,” Journal of Computer Science,vol. 5, no. 4, pp. 250-254, 2009.
  • 8. TELKOMNIKA Telecommun Comput El Control  A novel method for digital data encoding-decoding (Amjad Y. Hindi) 2779 [4] J. A. Azzeh, H. Alhatamleh, Z. A. Alqadi, M. K. Abuzalata, “Creating a Color Map to be used to Convert a Gray Image to Color Image,” International Journal of Computer Applications, vol. 153, no. 2, pp. 31-34, 2016. [5] J. A. Azzeh, Z. Alqadi, M. Abuzalata, “Performance Analysis of Artificial Neural Networks used for Color Image Recognition and Retrieving,” International Journal of Computer Science and Mobile Computing, vol. 8, no. 2, pp. 20-33, 2019. [6] M. J. Aqel, Z. A. Alqadi, I. M. El Emary, “Analysis of Stream Cipher Security Algorithm,” Journal of Information and Computing Science, vol. 2, no. 4, pp. 288-298, 2007. [7] J. A. Azzeh, B. Zahran, Z. Alqadi, B. Ayyoub, M. Mesleh, “A Novel Based on Image Blocking Method to Encrypt-Decrypt Color,” International Journal on Informatics Visualization, vol. 3, no. 1, pp 86-93, 2019. [8] A. Y. Hindi, M. O. Dwairi, Z. A. AlQadi, “A Novel Technique for Data Steganography,” Engineering, Technology & Applied Science Research, vol. 9, no. 6, pp. 4942-4945, 2019. [9] J. Nadir, Z. Alqadi, A. A. Ein, “Classification of Matrix Multiplication Methods Used to Encrypt-decrypt Color Image,” International Journal of Computer and Information Technology, vol. 5, no. 5, pp. 459-464, 2016. [10] M. J. Aqel, Z. A. Qadi, A. A. Abdullah, “RGB Color Image Encryption-Decryption Using Image Segmentation and Matrix Multiplication,” International Journal of Engineering & Technology, vol. 7, no. 3.13, pp. 104-107, 2018. [11] Z. A. Alqadi, M. O. Al-Dwairi, H. Zaini, et al., “ZJICD algorithm for JPEG image compression/decompression,” Elixir International Journal, vol. 94, pp. 40368-40374, 2016. [12] A. Y. Hendi, M. O. Dwairi, Z. A. Al-Qadi, and M. Soliman, “A Novel Simple and Highly Secure Method for Data Encryption-Decryption,” International Journal of Communication Networks and Information Security, vol. 11, no. 1, pp. 232-238, 2019. [13] J. Nadir, A. A. Ein , Z. Alqadi, “A Technique to Encrypt-decrypt Stereo Wave File,” International Journal of Computer and Information Technology, vol. 05, no. 05, pp. 465-470, 2016. [14] M. O. Al-Dwairi, A. Y. Hendi, M. S. Soliman, Z. A. A. Alqadi, “A new method for voice signal features creation,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4092~4098, 2019. [15] M. O. Al-Dwairi, A. Y. Hendi, Z. A. AlQadi, “An Efficient and Highly Secure Technique to Encrypt and Decrypt Color Images,” Engineering, Technology & Applied Science Research, vol. 9, no. 3, pp. 4165-4168, 2019. [16] National Bureau of Standards NBS FIPS PUB 81, “Guidelines for Implementing and Using the NBS Data Encryption Standard, U.S. Department of Commerce,” 1995. [17] H. Alanazi, H. A. Jalab, A. A. Zaidan, B .B. Zaidan, “New Frame Work of Hidden Data with in Non Multimedia File,” International Journal of Computer and Network Security, vol. 2, no. 1, pp. 46-54, 2010. [18] A. W. Naji, S. A. Hameed, B. B. Zaidan, et al., “Novel Framework for Hidden Data in the Image Page within Executable File Using Computation between Advance Encryption Standard and Distortion Techniques,” International Journal of Computer Science and Information Security, vol. 3, no. 1, pp. 73-78, 2009. [19] Jain R., Jejurkar R., Chopade S., Vaidya S., & Sanap M., “AES Algorithm Using 512 Bit Key Implementation for Secure Communication,” International journal of innovative Research in Computer and Communication Engineering, vol. 2, no. 3, pp. 3516-22, 2014. [20] Abdullah A. M., Aziz R. H. H., “New Approaches to Encrypt and Decrypt Data in Image using Cryptography and Steganography Algorithm,” International Journal of Computer Applications, vol. 143, no. 4, pp. 11-17, 2016. [21] J. Daemen, L. Knudsen and V. Rijmen, “The Block Cipher Square,” International Workshop on Fast Software Encryption, pp. 137-151, 1997. [22] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication forRFID Systems Using the AES Algorithm,” International Workshop on Cryptographic Hardware and Embedded Systems, 2004. [23] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain ofSand,” IEE Proceedings on Information Security, vol. 152, no. 1, pp. 13-20, 2005. [24] B. Jyrwa, R. Paily, “An Area-Throughput Efficient FPGA Implementation of Block Cipher AES Algorithm,” International Conference on Advances in computing, control, and telecommunication technologies, 2009. [25] Lim C. H., Korkishko T, “mCrypton – A Lightweight Block Cipher for Security of Low Cost RFID Tags and Sensors,” International Workshop on Information Security Applications, 2005. [26] Hong D., Sung J., Hong S., et al., “HIGHT: A New Block Cipher Suitable for Low-Resource Device,” 8th International Workshop, pp.46-59, 2006.