SlideShare a Scribd company logo
1 of 19
Download to read offline
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 1
PUMPS & PUMPING SYSTEMS
1. INTRODUCTION..........................................................................................................1
2. TYPE OF PUMPS..........................................................................................................5
3. ASSESSMENT OF PUMPS.......................................................................................9
4. ENERGY EFFICIENCY OPPORTUNITIES...................................................10
5. OPTION CHECKLIST..............................................................................................16
6. WORKSHEETS ...........................................................................................................17
7. REFERENCES .............................................................................................................19
1. INTRODUCTION
This section briefly describes the main features of pumps and pumping systems.1
1.1 What are pumps and pumping systems?
Pumping systems account for nearly 20% of the world’s electrical energy demand and range
from 25-50% of the energy usage in certain industrial plant operations (US DOE, 2004).
Pumps have two main purposes:
Transfer of liquid from one place to another place (e.g. water from an underground
aquifer into a water storage tank)
Circulate liquid around a system (e.g. cooling water or lubricants through machines and
equipment)
The main components of a pumping
system are:
Pumps (different types of pumps are
explained in section 2)
Prime movers: electric motors,
diesel engines or air system
Piping, used to carry the fluid
Valves, used to control the flow in
the system
Other fittings, controls and
instrumentation
End-use equipment, which have
different requirements (e.g. pressure,
flow) and therefore determine the
pumping system components and
configuration. Examples include heat exchangers, tanks and hydraulic machines.
1
Information was sourced from three US DOE publications: Improving Pumping System Performance – a Sourcebook for
Industry (1999); Pump Life Cycle Costs – A Guide to LCC Analysis for Pumping Systems (2001); and Variable Speed
Pumping – A Guide to Successful Applications (2004). These publications are recommended for further reading.
Figure 1. A Pumping System in an Industry
(US DOE, 2001)
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 2
The pump and the prime mover are typically the most energy inefficient components.
1.2 Pumping system characteristics
1.2.1 Resistance of the system: head
Pressure is needed to pump the liquid through the system at a certain rate. This pressure has
to be high enough to overcome the resistance of the system, which is also called “head”. The
total head is the sum of static head and friction head:
a) Static head
Static head is the difference in height between the source and destination of the pumped
liquid (see Figure 2a). Static head is independent of flow (see Figure 2b). The static head at a
certain pressure depends on the weight of the liquid and can be calculated with this equation:
Head (in feet) = Pressure (psi) X 2.31
Specific gravity
Static head consists of:
Static suction head (hS): resulting from lifting the liquid relative to the pump center line.
The hS is positive if the liquid level is above pump centerline, and negative if the liquid
level is below pump centerline (also called “suction lift)
Static discharge head (hd): the vertical distance between the pump centerline and the
surface of the liquid in the destination tank.
Figure 2a. Static Head Figure 2b. Static Head Versus Flow
b) Friction head (hf)
This is the loss needed to overcome that is caused by the resistance to flow in the pipe and
fittings. It is dependent on size, condition and type of pipe, number and type of pipe fittings,
flow rate, and nature of the liquid. The friction head is proportional to the square of the flow
rate as shown in figure 3. A closed loop circulating system only exhibits friction head (i.e. not
static head).
Static
head
Flow
destination
source
Static
head
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 3
Figure 3. Frictional Head versus Flow
In most cases the total head of a system is a combination of static head and friction head as
shown in Figures 4a and 4b.
Figure 4a. System with High Static Head Figure 4b. System with Low Static Head
1.2.2 Pump performance curve
The head and flow rate determine the performance of a pump, which is graphically shown in
Figure 5 as the performance curve or pump characteristic curve. The figure shows a typical
curve of a centrifugal pump where the head gradually decreases with increasing flow.
As the resistance of a system increases, the head will also increase. This in turn causes the
flow rate to decrease and will eventually reach zero. A zero flow rate is only acceptable for a
short period without causing to the pump to burn out.
Friction
head
Flow
System
head
Flow
Static head
Friction
head
System
curve
System
head
Flow
Static head
Friction
head
System
curve
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 4
Figure 5. Performance Curve of a Pump
1.2.3 Pump operating point
The rate of flow at a certain head is called the duty point. The pump performance curve is
made up of many duty points. The pump operating point is determined by the intersection of
the system curve and the pump curve as shown in Figure 6.
Figure 6. Pump Operating Point (US DOE, 2001)
1.2.4 Pump suction performance (NPSH)
Cavitation or vaporization is the formation of bubbles inside the pump. This may occur when
at the fluid’s local static pressure becomes lower than the liquid’s vapor pressure (at the
actual temperature). A possible cause is when the fluid accelerates in a control valve or
around a pump impeller.
Vaporization itself does not cause any damage. However, when the velocity is decreased and
pressure increased, the vapor will evaporate and collapse. This has three undesirable effects:
Erosion of vane surfaces, especially when pumping water-based liquids
Increase of noise and vibration, resulting in shorter seal and bearing life
Flow
Head
Static
head
Pump performance
curve
System
curve
Pump
operating
point
Head
Flow
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 5
Partially choking of the impeller passages, which reduces the pump performance and can
lead to loss of total head in extreme cases.
The Net Positive Suction Head Available (NPSHA) indicates how much the pump suction
exceeds the liquid vapor pressure, and is a characteristic of the system design. The NPSH
Required (NPSHR) is the pump suction needed to avoid cavitation, and is a characteristic of
the pump design.
2. TYPE OF PUMPS
This section describes the various types of pumps.2
Pumps come in a variety of sizes for a
wide range of applications. They can be classified according to their basic operating principle
as dynamic or positive displacement pumps (Figure 7).
Figure 7. Different types of pumps
In principle, any liquid can be handled by any of the pump designs. Where different pump
designs could be used, the centrifugal pump is generally the most economical followed by
rotary and reciprocating pumps. Although, positive displacement pumps are generally more
efficient than centrifugal pumps, the benefit of higher efficiency tends to be offset by
increased maintenance costs.
2.1. Positive displacement pumps
Positive displacement pumps are distinguished by the way they operate: liquid is taken from
one end and positively discharged at the other end for every revolution. Positive displacement
pumps are widely used for pumping fluids other than water, mostly viscous fluids.
2
Section 2 is taken (with edits) from Pumps and Pumping Systems, with permission from the Bureau of Energy Efficiency,
India
Dynamic
Positive
Displacement
Centrifugal Special effect Rotary Reciprocating
Internal
gear
External
gear
Lobe
Slide
vane
Others (e.g.
Impulse, Buoyancy)
Pumps
Dynamic
Positive
Displacement
Centrifugal Special effect Rotary Reciprocating
Internal
gear
External
gear
Lobe
Slide
vane
Others (e.g.
Impulse, Buoyancy)
Pumps
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 6
Positive displacement pumps are further classified based upon the mode of displacement:
Reciprocating pump if the displacement is by reciprocation of a piston plunger.
Reciprocating pumps are used only for pumping viscous liquids and oil wells.
Rotary pumps if the displacement is by rotary action of a gear, cam or vanes in a chamber
of diaphragm in a fixed casing. Rotary pumps are further classified such as internal gear,
external gear, lobe and slide vane etc. These pumps are used for special services with
particular conditions existing in industrial sites.
In all positive displacement type pumps, a fixed quantity of liquid is pumped after each
revolution. So if the delivery pipe is blocked, the pressure rises to a very high value, which
can damage the pump.
2.2 Dynamic pumps
Dynamic pumps are also characterized by their mode of operation: a rotating impeller
converts kinetic energy into pressure or velocity that is needed to pump the fluid.
There are two types of dynamic pumps:
Centrifugal pumps are the most common pumps used for pumping water in industrial
applications. Typically, more than 75% of the pumps installed in an industry are
centrifugal pumps. For this reason, this pump is further described below.
Special effect pumps are particularly used for specialized conditions at an industrial site.
2.2.1 How a centrifugal pump works
A centrifugal pump is one of the simplest pieces of equipment in any process plant. Figure 8
shows how this type of pump operates:
Liquid is forced into an impeller either by atmospheric pressure, or in case of a jet pump
by artificial pressure.
The vanes of impeller pass kinetic energy to the liquid, thereby causing the liquid to
rotate. The liquid leaves the impeller at high velocity.
The impeller is surrounded by a volute casing or in case of a turbine pump a stationary
diffuser ring. The volute or stationary diffuser ring converts the kinetic energy into
pressure energy.
Figure 8. Liquid Flow Path of a Centrifugal Pump (Sahdev M)
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 7
2.2.2 Components of a centrifugal pump
The main components of a centrifugal pump are shown in Figure 9 and described below:
Rotating components: an impeller coupled to a shaft
Stationary components: casing, casing cover, and bearings.
Figure 9. Main Components of a Centrifugal Pump (Sahdev)
a) Impeller
An impeller is a circular metallic disc with a built-in passage for the flow of fluid. Impellers
are generally made of bronze, polycarbonate, cast iron or stainless steel, but other materials
are also used. As the performance of the pump depends on the type of impeller, it is
important to select a suitable design and to maintain the impeller in good condition.
The number of impellers determines the number of stages of the pump. A single stage pump
has one impeller and is best suited for low head (= pressure) service. A two-stage pump has
two impellers in series for medium head service. A multi-stage pump has three or more
impellers in series for high head service.
Impellers can be classified on the basis of:
Major direction of flow from the rotation axis: radial flow, axial flow, mixed flow
Suction type: single suction and double suction
Shape or mechanical construction:
− Closed impellers have vanes enclosed by shrouds (= covers) on both sides (Figure
10). They are generally used for water pumps as the vanes totally enclose the water.
This prevents the water from moving from the delivery side to the suction side, which
would reduce the pump efficiency. In order to separate the discharge chamber from
the suction chamber, a running joint is necessary between the impeller and pump
casing. This joint is provided by wearing rings, which are mounted either over
extended portion of impeller shroud or inside the cylindrical surface of pump casing.
A disadvantage of closed impellers is the higher risk of blockage.
− Open and semi-open impellers (Figure 10) are less likely to clog. But to avoid
clogging through internal re-circulation, the volute or back-plate of the pump must be
manually adjusted to get the proper impeller setting.
− Vortex pump impellers are suitable for solid and "stringy" materials but they are up to
50% less efficient than conventional designs.
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 8
b) Shaft
The shaft transfers the torque from the motor to the impeller during the startup and operation
of the pump.
c) Casing
The main function of casing is to enclose the impeller at suction and delivery ends and
thereby form a pressure vessel. The pressure at suction end may be as little as one-tenth of
atmospheric pressure and at delivery end may be twenty times the atmospheric pressure in a
single-stage pump. For multi-stage pumps the pressure difference is much higher. The casing
is designed to withstand at least twice this pressure to ensure a large enough safety margin.
A second function of casing is to provide a supporting and bearing medium for the shaft and
impeller. Therefore the pump casing should be designed to
Provide easy access to all parts of pump for inspection, maintenance and repair
Make the casing leak-proof by providing stuffing boxes
Connect the suction and delivery pipes directly to the flanges
Be coupled easily to its prime mover (i.e. electric motor) without any power loss.
Figure 11. Cut-away of a pump showing Volute
Casing (Sahdev)
Figure 12. Solid Casing (Sahdev)
Figure 10. Closed and Open Impeller Types (Sahdev)
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 9
There are two types of casings
Volute casing (Figure 11) has impellers that are fitted inside the casings. One of the main
purposes is to help balance the hydraulic pressure on the shaft of the pump. However,
operating pumps with volute casings at a lower capacity than the manufacturer’s
recommended capacity, can result in lateral stress on the shaft of the pump. This can
cause increased wearing of the seals, bearings, and the shaft itself. Double-volute casings
are used when the radial force becomes significant at reduced capacities.
Circular casing has stationary diffusion vanes surrounding the impeller periphery that
convert speed into pressure energy. These casings are mostly used for multi-stage pumps.
The casings can be designed as:
− Solid casing (Figure 12): the entire casing and the discharge nozzle are contained in
one casting or fabricated piece.
− Split casing: two or more parts are joined together. When the casing parts are divided
by horizontal plane, the casing is called horizontally split or axially split casing.
3. ASSESSMENT OF PUMPS
This section explains how the performance of pumps and pumping systems can be assessed.3
3.1. How to calculate pump performance
The work performed by a pump is a function of the total head and of the weight of the liquid
pumped in a given time period. Pump shaft power (Ps) is the actual horsepower delivered to
the pump shaft, and can be calculated as follows:
Pump shaft power Ps = Hydraulic power hp / Pump efficiency ηpump
or
Pump efficiency ηpump = Hydraulic power / Pump shaft power
Pump output, water horsepower or hydraulic horsepower (hp) is the liquid horsepower
delivered by the pump, and can be calculated as follows:
Hydraulic power hp = Q (m3
/s) x (hd - hs in m) x ρ (kg/m3
) x g (m/s2
) / 1000
Where:
Q = flow rate
hd = discharge head
hs = suction head
ρ = density of the fluid
g = acceleration due to gravity
3
This section is based on Pumps and Pumping Systems. In: Energy Efficiency in Electrical Utilities, chapter 6,
2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India.
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 10
3.2 Difficulties in the assessment of pumps
In practice, it is more difficult to assess pump performance. Some important reasons are:
Absence of pump specification data: Pump specification data (see Worksheet 1 in section
6) are required to assess the pump performance. Most companies do not keep original
equipment manufacturer (OEM) documents that provide these data. In these cases, the
percentage pump loading for a pump flow or head cannot be estimated satisfactorily.
Difficulty in flow measurement: It is difficult to measure the actual flow. The methods
are used to estimate the flow. In most cases the flow rate is calculated based on type of
fluid, head and pipe size etc, but the calculated figure may not be accurate. Another
method is to divide the tank volume by the time it takes for the pump to fill the tank. This
method can, however, only be applied if one pump is in operation and if the discharge
valve of the tank is closed. The most sophisticated, accurate and least time consuming
way to measure the pump flow is by measurement with an ultrasonic flow meter.
Improper calibration of pressure gauges and measuring instruments: Proper calibration
of all pressure gauges at suction and discharge lines and other power measuring
instruments is important to obtain accurate measurements. But calibration has not always
been carried out. Sometimes correction factors are used when gauges and instruments are
not properly calibrated. Both will lead to incorrect performance assessment of pumps.
4. ENERGY EFFICIENCY OPPORTUNITIES
This section includes main areas for improving pumps and pumping systems. The main areas
for energy conservation include:
Selecting the right pump
Controlling the flow rate by speed variation
Pumps in parallel to meet varying demand
Eliminating flow control valve
Eliminating by-pass control
Start/stop control of pump
Impeller trimming
4.1 Selecting the right pump4
In selecting the pump, suppliers try to match the system curve supplied by the user with a
pump curve that satisfies these needs as closely as possible. The pump operating point is the
point where the pump curve and the system resistance curve intersect (as explained in section
1.2.3). However, it is impossible for one operating point to meet all desired operating
conditions. For example, when the discharge valve is throttled, the system resistance curve
shifts to the left and so does the operating point (see Figure 13).
Figure 13 below shows a typical vendor-supplied pump performance curves for a centrifugal
pump where clear water is the pumping liquid.
4
Section 4.1 is taken (with edits) from Pumps and Pumping Systems. In: Energy Efficiency in Electrical
Utilities, chapter 6, 2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India.
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 11
The Best Efficiency Point (BEP) is the pumping capacity at maximum impeller diameter, in
other words, at which the efficiency of the pump is highest. All points to the right or left of
the BEP have a lower efficiency. The BEP is affected when the selected pump is oversized.
The reason is that the flow of oversized pumps must be controlled with different methods,
such as a throttle valve or a by-pass line. These provide additional resistance by increasing
the friction. As a result the system curve shifts to the left and intersects the pump curve at
another point. The BEP is now also lower. In other words, the pump efficiency is reduced
because the output flow is reduced but power consumption is not. Inefficiencies of oversized
pumps can be overcome by, for example, the installation of VSDs, two-speed drives, lower
rpm, smaller impeller or trimmed impeller (BEE, 2004).
4.2 Controlling flow rate by speed variation
4.2.1 Explaining the effect of speed5
A centrifugal pump’s rotating impeller generates head. The impeller’s peripheral velocity is
directly related to shaft rotational speed. Therefore varying the rotational speed has a direct
effect on the performance of the pump.
5
Section 4.2.1 is taken (with edits) from Pumps and Pumping Systems. In: Energy Efficiency in Electrical
Utilities, chapter 6, 2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India.
Figure 13: Typical centrifugal pump performance curve given by suppliers
(Bureau of Energy Efficiency, 2004)
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 12
The pump performance parameters (flow rate, head, power) will change with varying rotating
speeds. To safely control a pump at different speeds it is therefore important to understand
the relationships between the two. The equations that explain these relationships are known
as the “Affinity Laws”:
Flow rate (Q) is proportional to the rotating speed (N)
Head (H) is proportional to the square of the rotating speed
Power (P) is proportional to the cube of the rotating speed
Q α N
H α N2
P α N3
As can be seen from the above laws, doubling the rotating speed of the centrifugal pump will
increase the power consumption by 8 times. Conversely a small reduction in speed will result
in a very large reduction in power consumption. This forms the basis for energy conservation
in centrifugal pumps with varying flow requirements.
It is relevant to note that flow control by speed regulation is always more efficient than by a
control valve. This is because valves reduce the flow, but not the energy consumed by pumps.
In addition to energy savings, there could be other benefits of lower speeds.
Bearings life is increased. This is because bearings carry the hydraulic forces on the
impeller (created by the pressure profile inside the pump casing), which are reduced
approximately with the square of speed. For a pump, bearing life is proportional to the
seventh power of speed (N7
)!
Vibration and noise are reduced and seal life is increased, provided that the duty point
remains within the allowable operating range.
4.2.2 Using variable speed drive (VSD)
As explained earlier, controlling the pump speed is the most efficient way to control the flow,
because when the pump’s speed is reduced, the power consumption is also reduced. The most
commonly used method to reduce pump speed is Variable Speed Drive (VSD).
VSDs allow pump speed adjustments over a continuous range, avoiding the need to jump
from speed to speed as with multiple-speed pumps. VSDs control pump speeds use two types
of systems:
Mechanical VSDs include hydraulic clutches, fluid couplings, and adjustable belts and
pulleys.
Electrical VSDs include eddy current clutches, wound-rotor motor controllers, and
variable frequency drives (VFDs). VFDs are the most popular and adjust the electrical
frequency of the power supplied to a motor to change the motor’s rotational speed.
For many systems, VFDs offer a means to improve the pump operating efficiency under
different operating conditions. The effect of slowing pump speed on the pump operation is
illustrated in Figure 14. When a VFD reduced the RPM of a pump, the head/flow and power
curves move down and to the left, and the efficiency curve also shifts to the left.
The major advantages of VSD application in addition to energy saving are (US DOE, 2004):
Improved process control because VSDs can correct small variations in flow more
quickly.
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 13
Improved system reliability because wear of pumps, bearings and seals is reduced.
Reduction of capital & maintenance cost because control valves, by-pass lines, and
conventional starters are no longer needed.
Soft starter capability: VSDs allow the motor the motor to have a lower startup current.
Figure 14. Effect of VFD (US DOE, 2004)
4.3 Pumps in parallel to meet varying demand
Operating two pumps in parallel and turning one of when the demand is lower, can result in
significant energy savings. Pumps providing different flow rates can be used. Parallel pumps
are an option when the static head is more than fifty percent of the total head. Figure 15
shows the pump curve for a single pump, two pumps operating in parallel and three pumps
operating in parallel. It also shows that the system curve normally does not change by
running pumps in parallel. The flow rate is lower than the sum of the flow rates of the
different pumps.
Figure 15. Typical performance curves for pumps in parallel (BPMA)
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 14
4.4 Eliminating flow control valve
Another method to control the flow by closing or opening the discharge valve (this is also
known as “throttling” the valves). While this method reduces the flow, it does not reduce the
power consumed, as the total head (static head) increases. Figure 16 shows how the system
curve moves upwards and to the left when a discharge valve is half closed.
This method increases vibration and corrosion and thereby increases maintenance costs of
pumps and potentially reduces their lifetimes. VSDs are a better solution from an energy
efficiency perspective.
Figure 16. Control of Pump Flow by Valve (BPMA)
4.5 Eliminating by-pass control
The flow can also be reduced by installing a by-pass control system, in which the discharge
of the pump is divided into two flows going into two separate pipelines. One of the pipelines
delivers the fluid to the delivery point, while the second pipeline returns the fluid to the
source. In other words, part of the fluid is pumped around for no reason, and thus is an energy
wastage. This option should therefore be avoided.
4.6 Start/stop control of pump
A simple and reasonable energy efficient way to reduce the flow rate is by starting and
stopping the pump, provided that this does not happen to frequently. An example where this
option can be applied, is when a pump is used to fill a storage tank from which the fluid flows
to the process at a steady rate. In this system, controllers are installed at the minimum and
maximum level inside the tank to start and stop the pump. Some companies use this method
also to avoid lower the maximum demand (i.e. by pumping at non-peak hours).
4.7 Impeller trimming
Changing the impeller diameter gives a proportional change in the impeller’s peripheral
velocity. Similar to the affinity laws, the following equations apply to the impeller diameter
D:
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 15
Q α D
H α D2
P α D3
Changing the impeller diameter is an energy efficient way to control the pump flow rate.
However, for this option, the following should be considered:
This option cannot be used where varying flow patterns exist.
The impeller should not be trimmed more than 25% of the original impeller size,
otherwise it leads to vibration due to cavitation and therefore decrease the pump
efficiency.
The balance of the pump has to been maintained, i.e. the impeller trimming should be the
same on all sides.
Changing the impeller itself is a better option than trimming the impeller, but is also more
expensive and sometimes the smaller impeller is too small.
Figure 17 illustrates the effect of impeller diameter reduction on centrifugal pump
performance.
Figure 17. Impeller diameter reduction on centrifugal pump performance
(Bureau of Energy Efficiency, 2004)
A comparison of different energy conservation options in pumps and pumping system is
summarized below.
Table 1. Comparison of different energy conservation options in pumps
(adapted from US DOE 2001)
Parameter Change control
valve
Trim impeller VFD
Impeller diameter 430 mm 375 mm 430 mm
Pump head 71.7 m 42 m 34.5 m
Pump efficiency 75.1% 72.1% 77%
Rate of flow 80 m3
/hr 80 m3
/hr 80 m3
/hr
Power consumed 23.1 kW 14 kW 11.6 kW
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 16
5. OPTION CHECKLIST
This section includes most important options to improve energy efficiency of pumps and
pumping systems.
Operate pumps near their best efficiency point (BEP)
Ensure adequate NPSH at site of installation
Modify pumping system and pumps losses to minimize throttling.
Ensure availability of basic instruments at pumps like pressure gauges, flow meters
Adapt to wide load variation with variable speed drives or sequenced control of
multiple units
Avoid operating more than one pump for the same application
Use booster pumps for small loads requiring higher pressures
To improve the performance of heat exchangers, reduce the difference in temperature
between the inlet and outlet rather than increasing the flow rate
Repair seals and packing to minimize water loss by dripping
Balance the system to minimize flows and reduce pump power requirements
Avoid pumping head with a free-fall return (gravity), and use the siphon effect
Conduct a water balance to minimize water consumption, thus optimum pump
operation
Avoid cooling water re-circulation in DG sets, air compressors, refrigeration systems,
cooling towers feed water pumps, condenser pumps and process pumps
In multiple pump operations, carefully combine the operation of pumps to avoid
throttling
Replace old pumps with energy efficient pumps
T improve the efficiency of oversized pumps, install variable speed drive, downsize /
replace impeller, or replace with a smaller pump
Optimize the number of stages in multi-stage pump if margins in pressure exist
Reduce the system resistance by pressure drop assessment and pipe size optimization
Regularly check for vibration to predict bearing damage, misalignments, unbalance,
foundation looseness etc.
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 17
6. WORKSHEETS
This section includes following worksheets:
Pump Specification Data
Pump Efficiency Calculation
Worksheet 1: PUMP SPECIFICATION DATA
No. Parameter Units Pump number
1 2 3
1 Make
2 Type (reciprocating/centrifugal)
3 Discharge capacity m3
/hr
4 Head developed mmWC
5 Fluid Handled
6 Density of fluid kg/m3
7 Temperature of fluid 0
C
8 Pump input power kW
9 Pump speed RPM
10 Pump rated efficiency %
11 Specific power consumption kW/(m3
/hr)
12 Pump motor
Rated power kW
Full load current Amp
Rated speed RPM
Supply voltage Volts
Rated efficiency %
Rated power factor
Supply frequency Hz
13 Bearing type
Pump (driving end)
Pump (non-driving end)
Motor (driving end)
Motor (non-driving end)
14 Lubricant grade
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 18
Worksheet 2: PUMP EFFICIENCY CALCULATION
No. Parameter Units Pump number
1 2 3
1 Fluid flow measured or estimated (Q) m3
/sec
2 Suction head (Including head correction
due to pressure gauge location)
m
3 Discharge head (including head
correction due to pressure gauge
location)
m
4 Total dynamic head (TDH) m
5 Density of fluid (γ) kg/m3
6 Motor input power (P) kW
7 Supply frequency Hz
8 Pump input power kW
9 Hudraulic power (Ph)
Q x H x γ x 9.81/1000
kW
10 Combined efficiency (ηc)
Ph/P x 100
%
11 Pump efficiency (ηp)
(ηc/motor efficiency) x 100
%
12 Specific power consumption
P/Q
kW/(m3
/sec)
13 % Motor loading with respect to power %
14 % Pump loading with respect to flow %
15 % Pump loading with respect to total
dynamic head (TDH)
%
Electrical Energy Equipment: Pumps and Pumping Systems
Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 19
7. REFERENCES
American Council for Energy Efficiency Economy. www.aceee.org
Bureau of Energy Efficiency, Ministry of Power, India. 2004. Pumps and Pumping Systems.
In: Energy Efficiency in Electrical Utilities, chapter 6.
Fluide Design Inc. www.fluidedesign.com
GAMBICA Association, BPMA. Variable Speed Driven Pumps, Best Practice Guide.
www.gambica.org.uk/pdfs/VSD_Pumps.pdf
Hydraulic Institute. www.pumpschool.org, www.pumpschool.com/intro/pdtree.htm
Pacific Liquid and Air Systems. www.pacificliquid.com
Sahdev, M. Centrifugal Pumps: Basic concepts of operation, maintenance and trouble
shooting, Part I. Presented at The Chemical Engineers’ Resource Page.
www.cheresources.com. Downloaded from: www.idcon.com/pdf-doc/centrifugalpumps.pdf
The Engineering Toolbox. www.engineeringtoolbox.com
US Department of Energy (DOE), Office of Industrial Technologies. Pump Life Cycle Costs:
A guide to LCC analysis for pumping systems. DOE/GO-102001-1190. 2001.
http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html
US Department of Energy (US DOE), Office of Industrial Technologies. Variable Speed
Pumping – A Guide to Successful Applications. Executive Summary. 2004.
http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html
US Department of Energy (US DOE), Office of Industrial Technologies. Improving Pump
System performance, A Source Book for Industry. As part of: Motor Challenge Program. 1999
http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html
Copyright:
Copyright © United Nations Environment Programme (year 2006)
This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without
special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate
receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale
or any other commercial purpose whatsoever without prior permission from the United Nations Environment Programme.
Disclaimer:
This energy equipment module was prepared as part of the project “Greenhouse Gas Emission Reduction from Industry in
Asia and the Pacific” (GERIAP) by the National Productivity Council, India. While reasonable efforts have been made to
ensure that the contents of this publication are factually correct and properly referenced, UNEP does not accept
responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be
occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

More Related Content

What's hot

Pumps working principal
Pumps working principalPumps working principal
Pumps working principalRohit Sorte
 
Selection of pump
Selection of pumpSelection of pump
Selection of pumpsofrani
 
7117897 pumps-turbines
7117897 pumps-turbines7117897 pumps-turbines
7117897 pumps-turbinesOmer Omera
 
pumps and its types-ppt
pumps and its types-pptpumps and its types-ppt
pumps and its types-pptDharmas India
 
Performance of-turbines
Performance of-turbinesPerformance of-turbines
Performance of-turbinesMd Sujon Babu
 
الخلاصة فى المضخات الهيدروليكية
الخلاصة فى المضخات الهيدروليكيةالخلاصة فى المضخات الهيدروليكية
الخلاصة فى المضخات الهيدروليكيةAhmed El-emam
 
pumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classificationspumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classificationsTalha Hussain
 
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdf
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdfINTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdf
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdfBagusSigit3
 

What's hot (20)

Pumps working principal
Pumps working principalPumps working principal
Pumps working principal
 
Selection of pump
Selection of pumpSelection of pump
Selection of pump
 
7117897 pumps-turbines
7117897 pumps-turbines7117897 pumps-turbines
7117897 pumps-turbines
 
pumps and its types-ppt
pumps and its types-pptpumps and its types-ppt
pumps and its types-ppt
 
Performance of-turbines
Performance of-turbinesPerformance of-turbines
Performance of-turbines
 
Pump
PumpPump
Pump
 
Pump and Types Of Pumps
Pump and Types Of PumpsPump and Types Of Pumps
Pump and Types Of Pumps
 
centrifugal pump project
centrifugal pump projectcentrifugal pump project
centrifugal pump project
 
الخلاصة فى المضخات الهيدروليكية
الخلاصة فى المضخات الهيدروليكيةالخلاصة فى المضخات الهيدروليكية
الخلاصة فى المضخات الهيدروليكية
 
Introduction of pump
Introduction of pumpIntroduction of pump
Introduction of pump
 
Pumps
PumpsPumps
Pumps
 
Centrifugal Pumps
Centrifugal PumpsCentrifugal Pumps
Centrifugal Pumps
 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic Pumps
 
Pump and it's types
Pump and it's types Pump and it's types
Pump and it's types
 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic Pumps
 
pumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classificationspumps and centrifugal pump and their classifications
pumps and centrifugal pump and their classifications
 
Centrifugal Pumps
Centrifugal PumpsCentrifugal Pumps
Centrifugal Pumps
 
Pumps and types of pumps
Pumps and types of pumpsPumps and types of pumps
Pumps and types of pumps
 
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdf
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdfINTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdf
INTRODUCTION TO PUMPS, COMPRESSORS, FANS & BLOWERS.pdf
 
Selection of pump zbj
Selection of pump zbjSelection of pump zbj
Selection of pump zbj
 

Similar to Chapter pumps and pumping systems

IRJET- Experimental Setup of Centrifugal Pump
IRJET- Experimental Setup of Centrifugal PumpIRJET- Experimental Setup of Centrifugal Pump
IRJET- Experimental Setup of Centrifugal PumpIRJET Journal
 
Pump installation and Maintenance.pdf
Pump installation and Maintenance.pdfPump installation and Maintenance.pdf
Pump installation and Maintenance.pdfhuzaifaali22
 
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...Christopher Okafor
 
Lecture Notes of Industerial Equipments
Lecture Notes of Industerial EquipmentsLecture Notes of Industerial Equipments
Lecture Notes of Industerial EquipmentsBarhm Mohamad
 
API Pumps design, application and selection
API Pumps design, application and selectionAPI Pumps design, application and selection
API Pumps design, application and selectionAlireza Bagherian
 
Hydraulic Pumps, Motors and Actuators
Hydraulic Pumps, Motors and ActuatorsHydraulic Pumps, Motors and Actuators
Hydraulic Pumps, Motors and ActuatorsRAHUL THAKER
 
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  finalWeek 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 finalCharlton Inao
 
DOMESTIC PUMP SHORT COURSE.docx
DOMESTIC PUMP SHORT COURSE.docxDOMESTIC PUMP SHORT COURSE.docx
DOMESTIC PUMP SHORT COURSE.docxGeoffreyMichael1
 
Different types of hydraulic accumulators
Different types of hydraulic  accumulatorsDifferent types of hydraulic  accumulators
Different types of hydraulic accumulatorsPrem Baboo
 
Pumps and compressor
Pumps and compressorPumps and compressor
Pumps and compressormohameddiaa34
 
Pumps and pumping system
Pumps and pumping systemPumps and pumping system
Pumps and pumping systemWasiullah Khan
 
Pump training
Pump trainingPump training
Pump trainingDurgham75
 
Different types of hydraulic accumulators
Different types of hydraulic  accumulatorsDifferent types of hydraulic  accumulators
Different types of hydraulic accumulatorsPrem Baboo
 
Analysis and Optimization of Axial Flow Turbo Pump
Analysis and Optimization of Axial Flow Turbo PumpAnalysis and Optimization of Axial Flow Turbo Pump
Analysis and Optimization of Axial Flow Turbo PumpIRJET Journal
 
Education know how to specify an efficient pump
Education   know how to specify an efficient pumpEducation   know how to specify an efficient pump
Education know how to specify an efficient pumpPunam Chauhan
 
Engineering plant facilities 03 mechanics fundamentals
Engineering plant facilities 03 mechanics fundamentalsEngineering plant facilities 03 mechanics fundamentals
Engineering plant facilities 03 mechanics fundamentalsLuis Cabrera
 
Centrifugal & Reciprocating Pumps
Centrifugal & Reciprocating Pumps Centrifugal & Reciprocating Pumps
Centrifugal & Reciprocating Pumps Amira Abdallah
 

Similar to Chapter pumps and pumping systems (20)

Pumps
Pumps Pumps
Pumps
 
IRJET- Experimental Setup of Centrifugal Pump
IRJET- Experimental Setup of Centrifugal PumpIRJET- Experimental Setup of Centrifugal Pump
IRJET- Experimental Setup of Centrifugal Pump
 
Pump installation and Maintenance.pdf
Pump installation and Maintenance.pdfPump installation and Maintenance.pdf
Pump installation and Maintenance.pdf
 
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...
Basics Concepts of Operation, Maintenance, and Troubleshooting of a Centrifug...
 
Lecture Notes of Industerial Equipments
Lecture Notes of Industerial EquipmentsLecture Notes of Industerial Equipments
Lecture Notes of Industerial Equipments
 
API Pumps design, application and selection
API Pumps design, application and selectionAPI Pumps design, application and selection
API Pumps design, application and selection
 
Hydraulic Pumps, Motors and Actuators
Hydraulic Pumps, Motors and ActuatorsHydraulic Pumps, Motors and Actuators
Hydraulic Pumps, Motors and Actuators
 
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  finalWeek 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
 
Report on pumps
Report on pumpsReport on pumps
Report on pumps
 
DOMESTIC PUMP SHORT COURSE.docx
DOMESTIC PUMP SHORT COURSE.docxDOMESTIC PUMP SHORT COURSE.docx
DOMESTIC PUMP SHORT COURSE.docx
 
Different types of hydraulic accumulators
Different types of hydraulic  accumulatorsDifferent types of hydraulic  accumulators
Different types of hydraulic accumulators
 
Pumps and compressor
Pumps and compressorPumps and compressor
Pumps and compressor
 
Pumps and pumping system
Pumps and pumping systemPumps and pumping system
Pumps and pumping system
 
Pump training
Pump trainingPump training
Pump training
 
Different types of hydraulic accumulators
Different types of hydraulic  accumulatorsDifferent types of hydraulic  accumulators
Different types of hydraulic accumulators
 
Analysis and Optimization of Axial Flow Turbo Pump
Analysis and Optimization of Axial Flow Turbo PumpAnalysis and Optimization of Axial Flow Turbo Pump
Analysis and Optimization of Axial Flow Turbo Pump
 
Education know how to specify an efficient pump
Education   know how to specify an efficient pumpEducation   know how to specify an efficient pump
Education know how to specify an efficient pump
 
Engineering plant facilities 03 mechanics fundamentals
Engineering plant facilities 03 mechanics fundamentalsEngineering plant facilities 03 mechanics fundamentals
Engineering plant facilities 03 mechanics fundamentals
 
Centrifugal & Reciprocating Pumps
Centrifugal & Reciprocating Pumps Centrifugal & Reciprocating Pumps
Centrifugal & Reciprocating Pumps
 
Pumps
PumpsPumps
Pumps
 

Recently uploaded

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 

Recently uploaded (20)

Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 

Chapter pumps and pumping systems

  • 1. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 1 PUMPS & PUMPING SYSTEMS 1. INTRODUCTION..........................................................................................................1 2. TYPE OF PUMPS..........................................................................................................5 3. ASSESSMENT OF PUMPS.......................................................................................9 4. ENERGY EFFICIENCY OPPORTUNITIES...................................................10 5. OPTION CHECKLIST..............................................................................................16 6. WORKSHEETS ...........................................................................................................17 7. REFERENCES .............................................................................................................19 1. INTRODUCTION This section briefly describes the main features of pumps and pumping systems.1 1.1 What are pumps and pumping systems? Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in certain industrial plant operations (US DOE, 2004). Pumps have two main purposes: Transfer of liquid from one place to another place (e.g. water from an underground aquifer into a water storage tank) Circulate liquid around a system (e.g. cooling water or lubricants through machines and equipment) The main components of a pumping system are: Pumps (different types of pumps are explained in section 2) Prime movers: electric motors, diesel engines or air system Piping, used to carry the fluid Valves, used to control the flow in the system Other fittings, controls and instrumentation End-use equipment, which have different requirements (e.g. pressure, flow) and therefore determine the pumping system components and configuration. Examples include heat exchangers, tanks and hydraulic machines. 1 Information was sourced from three US DOE publications: Improving Pumping System Performance – a Sourcebook for Industry (1999); Pump Life Cycle Costs – A Guide to LCC Analysis for Pumping Systems (2001); and Variable Speed Pumping – A Guide to Successful Applications (2004). These publications are recommended for further reading. Figure 1. A Pumping System in an Industry (US DOE, 2001)
  • 2. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 2 The pump and the prime mover are typically the most energy inefficient components. 1.2 Pumping system characteristics 1.2.1 Resistance of the system: head Pressure is needed to pump the liquid through the system at a certain rate. This pressure has to be high enough to overcome the resistance of the system, which is also called “head”. The total head is the sum of static head and friction head: a) Static head Static head is the difference in height between the source and destination of the pumped liquid (see Figure 2a). Static head is independent of flow (see Figure 2b). The static head at a certain pressure depends on the weight of the liquid and can be calculated with this equation: Head (in feet) = Pressure (psi) X 2.31 Specific gravity Static head consists of: Static suction head (hS): resulting from lifting the liquid relative to the pump center line. The hS is positive if the liquid level is above pump centerline, and negative if the liquid level is below pump centerline (also called “suction lift) Static discharge head (hd): the vertical distance between the pump centerline and the surface of the liquid in the destination tank. Figure 2a. Static Head Figure 2b. Static Head Versus Flow b) Friction head (hf) This is the loss needed to overcome that is caused by the resistance to flow in the pipe and fittings. It is dependent on size, condition and type of pipe, number and type of pipe fittings, flow rate, and nature of the liquid. The friction head is proportional to the square of the flow rate as shown in figure 3. A closed loop circulating system only exhibits friction head (i.e. not static head). Static head Flow destination source Static head
  • 3. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 3 Figure 3. Frictional Head versus Flow In most cases the total head of a system is a combination of static head and friction head as shown in Figures 4a and 4b. Figure 4a. System with High Static Head Figure 4b. System with Low Static Head 1.2.2 Pump performance curve The head and flow rate determine the performance of a pump, which is graphically shown in Figure 5 as the performance curve or pump characteristic curve. The figure shows a typical curve of a centrifugal pump where the head gradually decreases with increasing flow. As the resistance of a system increases, the head will also increase. This in turn causes the flow rate to decrease and will eventually reach zero. A zero flow rate is only acceptable for a short period without causing to the pump to burn out. Friction head Flow System head Flow Static head Friction head System curve System head Flow Static head Friction head System curve
  • 4. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 4 Figure 5. Performance Curve of a Pump 1.2.3 Pump operating point The rate of flow at a certain head is called the duty point. The pump performance curve is made up of many duty points. The pump operating point is determined by the intersection of the system curve and the pump curve as shown in Figure 6. Figure 6. Pump Operating Point (US DOE, 2001) 1.2.4 Pump suction performance (NPSH) Cavitation or vaporization is the formation of bubbles inside the pump. This may occur when at the fluid’s local static pressure becomes lower than the liquid’s vapor pressure (at the actual temperature). A possible cause is when the fluid accelerates in a control valve or around a pump impeller. Vaporization itself does not cause any damage. However, when the velocity is decreased and pressure increased, the vapor will evaporate and collapse. This has three undesirable effects: Erosion of vane surfaces, especially when pumping water-based liquids Increase of noise and vibration, resulting in shorter seal and bearing life Flow Head Static head Pump performance curve System curve Pump operating point Head Flow
  • 5. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 5 Partially choking of the impeller passages, which reduces the pump performance and can lead to loss of total head in extreme cases. The Net Positive Suction Head Available (NPSHA) indicates how much the pump suction exceeds the liquid vapor pressure, and is a characteristic of the system design. The NPSH Required (NPSHR) is the pump suction needed to avoid cavitation, and is a characteristic of the pump design. 2. TYPE OF PUMPS This section describes the various types of pumps.2 Pumps come in a variety of sizes for a wide range of applications. They can be classified according to their basic operating principle as dynamic or positive displacement pumps (Figure 7). Figure 7. Different types of pumps In principle, any liquid can be handled by any of the pump designs. Where different pump designs could be used, the centrifugal pump is generally the most economical followed by rotary and reciprocating pumps. Although, positive displacement pumps are generally more efficient than centrifugal pumps, the benefit of higher efficiency tends to be offset by increased maintenance costs. 2.1. Positive displacement pumps Positive displacement pumps are distinguished by the way they operate: liquid is taken from one end and positively discharged at the other end for every revolution. Positive displacement pumps are widely used for pumping fluids other than water, mostly viscous fluids. 2 Section 2 is taken (with edits) from Pumps and Pumping Systems, with permission from the Bureau of Energy Efficiency, India Dynamic Positive Displacement Centrifugal Special effect Rotary Reciprocating Internal gear External gear Lobe Slide vane Others (e.g. Impulse, Buoyancy) Pumps Dynamic Positive Displacement Centrifugal Special effect Rotary Reciprocating Internal gear External gear Lobe Slide vane Others (e.g. Impulse, Buoyancy) Pumps
  • 6. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 6 Positive displacement pumps are further classified based upon the mode of displacement: Reciprocating pump if the displacement is by reciprocation of a piston plunger. Reciprocating pumps are used only for pumping viscous liquids and oil wells. Rotary pumps if the displacement is by rotary action of a gear, cam or vanes in a chamber of diaphragm in a fixed casing. Rotary pumps are further classified such as internal gear, external gear, lobe and slide vane etc. These pumps are used for special services with particular conditions existing in industrial sites. In all positive displacement type pumps, a fixed quantity of liquid is pumped after each revolution. So if the delivery pipe is blocked, the pressure rises to a very high value, which can damage the pump. 2.2 Dynamic pumps Dynamic pumps are also characterized by their mode of operation: a rotating impeller converts kinetic energy into pressure or velocity that is needed to pump the fluid. There are two types of dynamic pumps: Centrifugal pumps are the most common pumps used for pumping water in industrial applications. Typically, more than 75% of the pumps installed in an industry are centrifugal pumps. For this reason, this pump is further described below. Special effect pumps are particularly used for specialized conditions at an industrial site. 2.2.1 How a centrifugal pump works A centrifugal pump is one of the simplest pieces of equipment in any process plant. Figure 8 shows how this type of pump operates: Liquid is forced into an impeller either by atmospheric pressure, or in case of a jet pump by artificial pressure. The vanes of impeller pass kinetic energy to the liquid, thereby causing the liquid to rotate. The liquid leaves the impeller at high velocity. The impeller is surrounded by a volute casing or in case of a turbine pump a stationary diffuser ring. The volute or stationary diffuser ring converts the kinetic energy into pressure energy. Figure 8. Liquid Flow Path of a Centrifugal Pump (Sahdev M)
  • 7. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 7 2.2.2 Components of a centrifugal pump The main components of a centrifugal pump are shown in Figure 9 and described below: Rotating components: an impeller coupled to a shaft Stationary components: casing, casing cover, and bearings. Figure 9. Main Components of a Centrifugal Pump (Sahdev) a) Impeller An impeller is a circular metallic disc with a built-in passage for the flow of fluid. Impellers are generally made of bronze, polycarbonate, cast iron or stainless steel, but other materials are also used. As the performance of the pump depends on the type of impeller, it is important to select a suitable design and to maintain the impeller in good condition. The number of impellers determines the number of stages of the pump. A single stage pump has one impeller and is best suited for low head (= pressure) service. A two-stage pump has two impellers in series for medium head service. A multi-stage pump has three or more impellers in series for high head service. Impellers can be classified on the basis of: Major direction of flow from the rotation axis: radial flow, axial flow, mixed flow Suction type: single suction and double suction Shape or mechanical construction: − Closed impellers have vanes enclosed by shrouds (= covers) on both sides (Figure 10). They are generally used for water pumps as the vanes totally enclose the water. This prevents the water from moving from the delivery side to the suction side, which would reduce the pump efficiency. In order to separate the discharge chamber from the suction chamber, a running joint is necessary between the impeller and pump casing. This joint is provided by wearing rings, which are mounted either over extended portion of impeller shroud or inside the cylindrical surface of pump casing. A disadvantage of closed impellers is the higher risk of blockage. − Open and semi-open impellers (Figure 10) are less likely to clog. But to avoid clogging through internal re-circulation, the volute or back-plate of the pump must be manually adjusted to get the proper impeller setting. − Vortex pump impellers are suitable for solid and "stringy" materials but they are up to 50% less efficient than conventional designs.
  • 8. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 8 b) Shaft The shaft transfers the torque from the motor to the impeller during the startup and operation of the pump. c) Casing The main function of casing is to enclose the impeller at suction and delivery ends and thereby form a pressure vessel. The pressure at suction end may be as little as one-tenth of atmospheric pressure and at delivery end may be twenty times the atmospheric pressure in a single-stage pump. For multi-stage pumps the pressure difference is much higher. The casing is designed to withstand at least twice this pressure to ensure a large enough safety margin. A second function of casing is to provide a supporting and bearing medium for the shaft and impeller. Therefore the pump casing should be designed to Provide easy access to all parts of pump for inspection, maintenance and repair Make the casing leak-proof by providing stuffing boxes Connect the suction and delivery pipes directly to the flanges Be coupled easily to its prime mover (i.e. electric motor) without any power loss. Figure 11. Cut-away of a pump showing Volute Casing (Sahdev) Figure 12. Solid Casing (Sahdev) Figure 10. Closed and Open Impeller Types (Sahdev)
  • 9. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 9 There are two types of casings Volute casing (Figure 11) has impellers that are fitted inside the casings. One of the main purposes is to help balance the hydraulic pressure on the shaft of the pump. However, operating pumps with volute casings at a lower capacity than the manufacturer’s recommended capacity, can result in lateral stress on the shaft of the pump. This can cause increased wearing of the seals, bearings, and the shaft itself. Double-volute casings are used when the radial force becomes significant at reduced capacities. Circular casing has stationary diffusion vanes surrounding the impeller periphery that convert speed into pressure energy. These casings are mostly used for multi-stage pumps. The casings can be designed as: − Solid casing (Figure 12): the entire casing and the discharge nozzle are contained in one casting or fabricated piece. − Split casing: two or more parts are joined together. When the casing parts are divided by horizontal plane, the casing is called horizontally split or axially split casing. 3. ASSESSMENT OF PUMPS This section explains how the performance of pumps and pumping systems can be assessed.3 3.1. How to calculate pump performance The work performed by a pump is a function of the total head and of the weight of the liquid pumped in a given time period. Pump shaft power (Ps) is the actual horsepower delivered to the pump shaft, and can be calculated as follows: Pump shaft power Ps = Hydraulic power hp / Pump efficiency ηpump or Pump efficiency ηpump = Hydraulic power / Pump shaft power Pump output, water horsepower or hydraulic horsepower (hp) is the liquid horsepower delivered by the pump, and can be calculated as follows: Hydraulic power hp = Q (m3 /s) x (hd - hs in m) x ρ (kg/m3 ) x g (m/s2 ) / 1000 Where: Q = flow rate hd = discharge head hs = suction head ρ = density of the fluid g = acceleration due to gravity 3 This section is based on Pumps and Pumping Systems. In: Energy Efficiency in Electrical Utilities, chapter 6, 2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India.
  • 10. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 10 3.2 Difficulties in the assessment of pumps In practice, it is more difficult to assess pump performance. Some important reasons are: Absence of pump specification data: Pump specification data (see Worksheet 1 in section 6) are required to assess the pump performance. Most companies do not keep original equipment manufacturer (OEM) documents that provide these data. In these cases, the percentage pump loading for a pump flow or head cannot be estimated satisfactorily. Difficulty in flow measurement: It is difficult to measure the actual flow. The methods are used to estimate the flow. In most cases the flow rate is calculated based on type of fluid, head and pipe size etc, but the calculated figure may not be accurate. Another method is to divide the tank volume by the time it takes for the pump to fill the tank. This method can, however, only be applied if one pump is in operation and if the discharge valve of the tank is closed. The most sophisticated, accurate and least time consuming way to measure the pump flow is by measurement with an ultrasonic flow meter. Improper calibration of pressure gauges and measuring instruments: Proper calibration of all pressure gauges at suction and discharge lines and other power measuring instruments is important to obtain accurate measurements. But calibration has not always been carried out. Sometimes correction factors are used when gauges and instruments are not properly calibrated. Both will lead to incorrect performance assessment of pumps. 4. ENERGY EFFICIENCY OPPORTUNITIES This section includes main areas for improving pumps and pumping systems. The main areas for energy conservation include: Selecting the right pump Controlling the flow rate by speed variation Pumps in parallel to meet varying demand Eliminating flow control valve Eliminating by-pass control Start/stop control of pump Impeller trimming 4.1 Selecting the right pump4 In selecting the pump, suppliers try to match the system curve supplied by the user with a pump curve that satisfies these needs as closely as possible. The pump operating point is the point where the pump curve and the system resistance curve intersect (as explained in section 1.2.3). However, it is impossible for one operating point to meet all desired operating conditions. For example, when the discharge valve is throttled, the system resistance curve shifts to the left and so does the operating point (see Figure 13). Figure 13 below shows a typical vendor-supplied pump performance curves for a centrifugal pump where clear water is the pumping liquid. 4 Section 4.1 is taken (with edits) from Pumps and Pumping Systems. In: Energy Efficiency in Electrical Utilities, chapter 6, 2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India.
  • 11. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 11 The Best Efficiency Point (BEP) is the pumping capacity at maximum impeller diameter, in other words, at which the efficiency of the pump is highest. All points to the right or left of the BEP have a lower efficiency. The BEP is affected when the selected pump is oversized. The reason is that the flow of oversized pumps must be controlled with different methods, such as a throttle valve or a by-pass line. These provide additional resistance by increasing the friction. As a result the system curve shifts to the left and intersects the pump curve at another point. The BEP is now also lower. In other words, the pump efficiency is reduced because the output flow is reduced but power consumption is not. Inefficiencies of oversized pumps can be overcome by, for example, the installation of VSDs, two-speed drives, lower rpm, smaller impeller or trimmed impeller (BEE, 2004). 4.2 Controlling flow rate by speed variation 4.2.1 Explaining the effect of speed5 A centrifugal pump’s rotating impeller generates head. The impeller’s peripheral velocity is directly related to shaft rotational speed. Therefore varying the rotational speed has a direct effect on the performance of the pump. 5 Section 4.2.1 is taken (with edits) from Pumps and Pumping Systems. In: Energy Efficiency in Electrical Utilities, chapter 6, 2004, with permission from the Bureau of Energy Efficiency, Ministry of Power, India. Figure 13: Typical centrifugal pump performance curve given by suppliers (Bureau of Energy Efficiency, 2004)
  • 12. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 12 The pump performance parameters (flow rate, head, power) will change with varying rotating speeds. To safely control a pump at different speeds it is therefore important to understand the relationships between the two. The equations that explain these relationships are known as the “Affinity Laws”: Flow rate (Q) is proportional to the rotating speed (N) Head (H) is proportional to the square of the rotating speed Power (P) is proportional to the cube of the rotating speed Q α N H α N2 P α N3 As can be seen from the above laws, doubling the rotating speed of the centrifugal pump will increase the power consumption by 8 times. Conversely a small reduction in speed will result in a very large reduction in power consumption. This forms the basis for energy conservation in centrifugal pumps with varying flow requirements. It is relevant to note that flow control by speed regulation is always more efficient than by a control valve. This is because valves reduce the flow, but not the energy consumed by pumps. In addition to energy savings, there could be other benefits of lower speeds. Bearings life is increased. This is because bearings carry the hydraulic forces on the impeller (created by the pressure profile inside the pump casing), which are reduced approximately with the square of speed. For a pump, bearing life is proportional to the seventh power of speed (N7 )! Vibration and noise are reduced and seal life is increased, provided that the duty point remains within the allowable operating range. 4.2.2 Using variable speed drive (VSD) As explained earlier, controlling the pump speed is the most efficient way to control the flow, because when the pump’s speed is reduced, the power consumption is also reduced. The most commonly used method to reduce pump speed is Variable Speed Drive (VSD). VSDs allow pump speed adjustments over a continuous range, avoiding the need to jump from speed to speed as with multiple-speed pumps. VSDs control pump speeds use two types of systems: Mechanical VSDs include hydraulic clutches, fluid couplings, and adjustable belts and pulleys. Electrical VSDs include eddy current clutches, wound-rotor motor controllers, and variable frequency drives (VFDs). VFDs are the most popular and adjust the electrical frequency of the power supplied to a motor to change the motor’s rotational speed. For many systems, VFDs offer a means to improve the pump operating efficiency under different operating conditions. The effect of slowing pump speed on the pump operation is illustrated in Figure 14. When a VFD reduced the RPM of a pump, the head/flow and power curves move down and to the left, and the efficiency curve also shifts to the left. The major advantages of VSD application in addition to energy saving are (US DOE, 2004): Improved process control because VSDs can correct small variations in flow more quickly.
  • 13. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 13 Improved system reliability because wear of pumps, bearings and seals is reduced. Reduction of capital & maintenance cost because control valves, by-pass lines, and conventional starters are no longer needed. Soft starter capability: VSDs allow the motor the motor to have a lower startup current. Figure 14. Effect of VFD (US DOE, 2004) 4.3 Pumps in parallel to meet varying demand Operating two pumps in parallel and turning one of when the demand is lower, can result in significant energy savings. Pumps providing different flow rates can be used. Parallel pumps are an option when the static head is more than fifty percent of the total head. Figure 15 shows the pump curve for a single pump, two pumps operating in parallel and three pumps operating in parallel. It also shows that the system curve normally does not change by running pumps in parallel. The flow rate is lower than the sum of the flow rates of the different pumps. Figure 15. Typical performance curves for pumps in parallel (BPMA)
  • 14. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 14 4.4 Eliminating flow control valve Another method to control the flow by closing or opening the discharge valve (this is also known as “throttling” the valves). While this method reduces the flow, it does not reduce the power consumed, as the total head (static head) increases. Figure 16 shows how the system curve moves upwards and to the left when a discharge valve is half closed. This method increases vibration and corrosion and thereby increases maintenance costs of pumps and potentially reduces their lifetimes. VSDs are a better solution from an energy efficiency perspective. Figure 16. Control of Pump Flow by Valve (BPMA) 4.5 Eliminating by-pass control The flow can also be reduced by installing a by-pass control system, in which the discharge of the pump is divided into two flows going into two separate pipelines. One of the pipelines delivers the fluid to the delivery point, while the second pipeline returns the fluid to the source. In other words, part of the fluid is pumped around for no reason, and thus is an energy wastage. This option should therefore be avoided. 4.6 Start/stop control of pump A simple and reasonable energy efficient way to reduce the flow rate is by starting and stopping the pump, provided that this does not happen to frequently. An example where this option can be applied, is when a pump is used to fill a storage tank from which the fluid flows to the process at a steady rate. In this system, controllers are installed at the minimum and maximum level inside the tank to start and stop the pump. Some companies use this method also to avoid lower the maximum demand (i.e. by pumping at non-peak hours). 4.7 Impeller trimming Changing the impeller diameter gives a proportional change in the impeller’s peripheral velocity. Similar to the affinity laws, the following equations apply to the impeller diameter D:
  • 15. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 15 Q α D H α D2 P α D3 Changing the impeller diameter is an energy efficient way to control the pump flow rate. However, for this option, the following should be considered: This option cannot be used where varying flow patterns exist. The impeller should not be trimmed more than 25% of the original impeller size, otherwise it leads to vibration due to cavitation and therefore decrease the pump efficiency. The balance of the pump has to been maintained, i.e. the impeller trimming should be the same on all sides. Changing the impeller itself is a better option than trimming the impeller, but is also more expensive and sometimes the smaller impeller is too small. Figure 17 illustrates the effect of impeller diameter reduction on centrifugal pump performance. Figure 17. Impeller diameter reduction on centrifugal pump performance (Bureau of Energy Efficiency, 2004) A comparison of different energy conservation options in pumps and pumping system is summarized below. Table 1. Comparison of different energy conservation options in pumps (adapted from US DOE 2001) Parameter Change control valve Trim impeller VFD Impeller diameter 430 mm 375 mm 430 mm Pump head 71.7 m 42 m 34.5 m Pump efficiency 75.1% 72.1% 77% Rate of flow 80 m3 /hr 80 m3 /hr 80 m3 /hr Power consumed 23.1 kW 14 kW 11.6 kW
  • 16. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 16 5. OPTION CHECKLIST This section includes most important options to improve energy efficiency of pumps and pumping systems. Operate pumps near their best efficiency point (BEP) Ensure adequate NPSH at site of installation Modify pumping system and pumps losses to minimize throttling. Ensure availability of basic instruments at pumps like pressure gauges, flow meters Adapt to wide load variation with variable speed drives or sequenced control of multiple units Avoid operating more than one pump for the same application Use booster pumps for small loads requiring higher pressures To improve the performance of heat exchangers, reduce the difference in temperature between the inlet and outlet rather than increasing the flow rate Repair seals and packing to minimize water loss by dripping Balance the system to minimize flows and reduce pump power requirements Avoid pumping head with a free-fall return (gravity), and use the siphon effect Conduct a water balance to minimize water consumption, thus optimum pump operation Avoid cooling water re-circulation in DG sets, air compressors, refrigeration systems, cooling towers feed water pumps, condenser pumps and process pumps In multiple pump operations, carefully combine the operation of pumps to avoid throttling Replace old pumps with energy efficient pumps T improve the efficiency of oversized pumps, install variable speed drive, downsize / replace impeller, or replace with a smaller pump Optimize the number of stages in multi-stage pump if margins in pressure exist Reduce the system resistance by pressure drop assessment and pipe size optimization Regularly check for vibration to predict bearing damage, misalignments, unbalance, foundation looseness etc.
  • 17. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 17 6. WORKSHEETS This section includes following worksheets: Pump Specification Data Pump Efficiency Calculation Worksheet 1: PUMP SPECIFICATION DATA No. Parameter Units Pump number 1 2 3 1 Make 2 Type (reciprocating/centrifugal) 3 Discharge capacity m3 /hr 4 Head developed mmWC 5 Fluid Handled 6 Density of fluid kg/m3 7 Temperature of fluid 0 C 8 Pump input power kW 9 Pump speed RPM 10 Pump rated efficiency % 11 Specific power consumption kW/(m3 /hr) 12 Pump motor Rated power kW Full load current Amp Rated speed RPM Supply voltage Volts Rated efficiency % Rated power factor Supply frequency Hz 13 Bearing type Pump (driving end) Pump (non-driving end) Motor (driving end) Motor (non-driving end) 14 Lubricant grade
  • 18. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 18 Worksheet 2: PUMP EFFICIENCY CALCULATION No. Parameter Units Pump number 1 2 3 1 Fluid flow measured or estimated (Q) m3 /sec 2 Suction head (Including head correction due to pressure gauge location) m 3 Discharge head (including head correction due to pressure gauge location) m 4 Total dynamic head (TDH) m 5 Density of fluid (γ) kg/m3 6 Motor input power (P) kW 7 Supply frequency Hz 8 Pump input power kW 9 Hudraulic power (Ph) Q x H x γ x 9.81/1000 kW 10 Combined efficiency (ηc) Ph/P x 100 % 11 Pump efficiency (ηp) (ηc/motor efficiency) x 100 % 12 Specific power consumption P/Q kW/(m3 /sec) 13 % Motor loading with respect to power % 14 % Pump loading with respect to flow % 15 % Pump loading with respect to total dynamic head (TDH) %
  • 19. Electrical Energy Equipment: Pumps and Pumping Systems Energy Efficiency Guide for Industry in Asia- www.energyefficiencyasia.org ©UNEP 2006 19 7. REFERENCES American Council for Energy Efficiency Economy. www.aceee.org Bureau of Energy Efficiency, Ministry of Power, India. 2004. Pumps and Pumping Systems. In: Energy Efficiency in Electrical Utilities, chapter 6. Fluide Design Inc. www.fluidedesign.com GAMBICA Association, BPMA. Variable Speed Driven Pumps, Best Practice Guide. www.gambica.org.uk/pdfs/VSD_Pumps.pdf Hydraulic Institute. www.pumpschool.org, www.pumpschool.com/intro/pdtree.htm Pacific Liquid and Air Systems. www.pacificliquid.com Sahdev, M. Centrifugal Pumps: Basic concepts of operation, maintenance and trouble shooting, Part I. Presented at The Chemical Engineers’ Resource Page. www.cheresources.com. Downloaded from: www.idcon.com/pdf-doc/centrifugalpumps.pdf The Engineering Toolbox. www.engineeringtoolbox.com US Department of Energy (DOE), Office of Industrial Technologies. Pump Life Cycle Costs: A guide to LCC analysis for pumping systems. DOE/GO-102001-1190. 2001. http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html US Department of Energy (US DOE), Office of Industrial Technologies. Variable Speed Pumping – A Guide to Successful Applications. Executive Summary. 2004. http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html US Department of Energy (US DOE), Office of Industrial Technologies. Improving Pump System performance, A Source Book for Industry. As part of: Motor Challenge Program. 1999 http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html Copyright: Copyright © United Nations Environment Programme (year 2006) This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission from the United Nations Environment Programme. Disclaimer: This energy equipment module was prepared as part of the project “Greenhouse Gas Emission Reduction from Industry in Asia and the Pacific” (GERIAP) by the National Productivity Council, India. While reasonable efforts have been made to ensure that the contents of this publication are factually correct and properly referenced, UNEP does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.