1
Approccio sistemico per la sicurezza
delle gallerie in caso di incendio
e problemi strutturali specifici
Prof. Dr. Ing. ...
2
www.francobontempi.org
Str
o N
GER
2
3
Scopo della presentazione
• Far vedere gli aspetti piu’ generali della
progettazione strutturale antincendio:
Complessi...
4
OGGETTO
Caratteristiche delle gallerie
Geometrie
Impianti
1
www.francobontempi.org
Str
o N
GER
4
5
GEOMETRIE
www.francobontempi.org
Str
o N
GER
5
6
Tipo A - autostrade
www.francobontempi.org
Str
o N
GER
6
7
www.francobontempi.org
Str
o N
GER
7
8
Tipo B – extraurbane principali
www.francobontempi.org
Str
o N
GER
8
9
Tipo C – extraurbane secondarie
www.francobontempi.org
Str
o N
GER
9
10
www.francobontempi.org
Str
o N
GER
10
11
www.francobontempi.org
Str
o N
GER
11
12
www.francobontempi.org
Str
o N
GER
12
13
www.francobontempi.org
Str
o N
GER
13
14
www.francobontempi.org
Str
o N
GER
14
15
www.francobontempi.org
Str
o N
GER
15
16
www.francobontempi.org
Str
o N
GER
16
17
www.francobontempi.org
Str
o N
GER
17
18
Sistema vs Struttura
www.francobontempi.org
Str
o N
GER
Opera
Morta
Opera
Viva
18
19
IMPIANTI VENTILAZIONE
www.francobontempi.org
Str
o N
GER
19
20
www.francobontempi.org
Str
o N
GER
20
21
Piston effect
• Is the result of natural induced draft caused by
free-flowing traffic (> 50 km/h) in uni-directional
tu...
22
Mechanical ventilation
• “forced” ventilation is required where piston
effect is not sufficient such as in
– congested ...
23
TUNNEL VENTILATION SYSTEMS
• Road Tunnel Ventilation Systems have two modes of
operation:
• Normal ventilation, for con...
24
Longitudinal ventilation system
• employs jet fans suspended under tunnel roof; in
normal operation fresh air is introd...
25
www.francobontempi.org
Str
o N
GER
25
26
www.francobontempi.org
Str
o N
GER
26
27
Semi-transverse ventilation system
• employs ceiling plenum connected to central fan
room equipped with axial fans; in ...
28
Transverse ventilation system
• employs double supply and exhaust plenums
connected to central fan rooms equipped with
...
29
www.francobontempi.org
Str
o N
GER
29
30
www.francobontempi.org
Str
o N
GER
30
31
www.francobontempi.org
Str
o N
GER
31
32
Attachments
• Dispersion stack and fan room combined with
longitudinal ventilation: may be required in order
to reduce ...
33
www.francobontempi.org
Str
o N
GER
33
34
Ventilation unit
Air extraction
Ventilation unit
Supply of fresh air
www.francobontempi.org
Str
o N
GER
34
35
www.francobontempi.org
Str
o N
GER
35
36
COMPLESSITA’
Approccio prestazionale
Modellazione
Sicurezza
2
www.francobontempi.org
Str
o N
GER
36
37
LOOSEcouplingsTIGHT
LINEAR interactions NONLINEAR
System Complexity (Perrow)
www.francobontempi.org
Str
o N
GER
37
38
APPROCCIO PRESTAZIONALE
www.francobontempi.org
Str
o N
GER
38
39
www.francobontempi.org
Str
o N
GER
39
40
Prescrittivo (1)
APPROCCIO
PRESCRITTIVO
1) BASI DEL PROGETTO,
2) LIVELLI DI SCUREZZA,
3) PRESTAZIONI ATTESE
NON ESPLICI...
41
RequisitiRequisiti
Elementi CostituentiElementi Costituenti
Elementi CostituentiElementi Costituenti
Elementi Costituen...
42
Prestazionale (1)
APPROCCIO
PRESCRITTIVO
1) BASI DEL PROGETTO,
2) LIVELLI DI SCUREZZA,
3) PRESTAZIONI ATTESE
NON ESPLIC...
43
Prestazionale (2)RequisitiRequisiti
Elementi CostituentiElementi Costituenti
Elementi CostituentiElementi Costituenti
E...
44
START
END
DEFINIZIONE E DISANIMA
DEGLI OBIETTIVI
INDIVIDUAZIONE DELLE
SOLUZIONI ATTE A
RAGGIUNGERE GLI
OBIETTIVI
ATTIVI...
45
www.francobontempi.org
Str
o N
GER
45
46
www.francobontempi.org
Str
o N
GER
46
47
MODELLI
NUMERICI
MODELLI
FISICI
RISPETTO DI
PRESCRIZIONI
livello
1
OBIETTIVI
livello
3
DEFINIZIONE
DELLA
SOLUZIONE
STRU...
48
MODELLI
NUMERICI
MODELLI
FISICI
RISPETTO DI
PRESCRIZIONI
livello
1
OBIETTIVI
livello
3
DEFINIZIONE
DELLA
SOLUZIONE
STRU...
49
MODELLAZIONE
www.francobontempi.org
Str
o N
GER
49
5050
www.francobontempi.org
Str
o N
GER
50
51
Analysis Strategy #1:
Sensitivity governance of priorities
www.francobontempi.org
Str
o N
GER
51
52
Analysis Strategy #2:
Bounding behavior governance
www.francobontempi.org
Str
o N
GER
52
53
Analysis Strategy #3:
Redundancy Governance
www.francobontempi.org
Str
o N
GER
53
54
NUMERICAL
MODELING
www.francobontempi.org
Str
o N
GER
54
55
Factors for Coupling
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
TERMAL
STATE
(Temper...
56
Fully Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain an...
57
Staggered Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strai...
58
Temperature Driven Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Stra...
59
Scheme With No Memory
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain a...
6060
www.francobontempi.org
Str
o N
GER
6161
www.francobontempi.org
Str
o N
GER
6262
www.francobontempi.org
Str
o N
GER
6363
www.francobontempi.org
Str
o N
GER
64
SICUREZZA
www.francobontempi.org
Str
o N
GER
64
65
ATTRIBUTES
THREATS
MEANS
RELIABILITY
FAILURE
ERROR
FAULT
FAULT TOLERANT
DESIGN
FAULT DETECTION
FAULT DIAGNOSIS
FAULT MA...
66
ATTRIBUTE
S
RELIABILITY
AVAILABILITY
SAFETY
MAINTAINABILITY
INTEGRITY
SECURITY
FAILURE
ERROR
FAULT
permanent interrupti...
67
Structural Robustness (2)
• Capacity of a construction to show a
regular decrease of its structural quality
due to nega...
68
Levels of Structural Crisis
UsualULS&SLS
VerificationFormat
Structural Robustness
Assessment
1st level:
Material
Point
...
69
Bad vs Good Collapses
STRUCTURE
& LOADS
Collapse
Mechanism
NO SWAY
“IMPLOSION”
OF THE
STRUCTURE
“EXPLOSION”
OF THE
STRU...
70
Design Strategy #1: Continuity
www.francobontempi.org
Str
o N
GER
70
71
Design Strategy #2: Segmentation
www.francobontempi.org
Str
o N
GER
71
72
Esempio di valutazione
di roubustezza strutturale
www.francobontempi.org
Str
o N
GER
73
73
Esempio: edificio alto
www.francobontempi.org
Str
o N
GER
74
Analisi di un componente tipico
D0
www.francobontempi.org
Str
o N
GER
75D1 D2
Scenari (1-2)
www.francobontempi.org
Str
o N
GER
76D3 D4
Scenari (3-4)www.francobontempi.org
Str
o N
GER
77
Modalità di collasso (1-2)
D1 D2
www.francobontempi.org
Str
o N
GER
78
Modalità di collasso (3-4)
D3 D4
www.francobontempi.org
Str
o N
GER
79
Sintesi dei risultati: elemento critico
0
4
Lo scenario D4
è quello più cattivo:
l’elemento strutturale
critico individ...
80
Modellazione edificio alto
www.francobontempi.org
Str
o N
GER
81
www.francobontempi.org
Str
o N
GER
82
Scenario 1
(1 asta
eliminata)
Scenario 2
(3 aste
eliminate)
Scenario 3
(5 aste
eliminate)
Scenario 4
(7 aste
eliminate)...
83
Collasso secondo scenario 1www.francobontempi.org
Str
o N
GER
84
Collasso secondo scenario 2www.francobontempi.org
Str
o N
GER
85
Collasso secondo scenario 3www.francobontempi.org
Str
o N
GER
86
Collasso secondo scenario 4www.francobontempi.org
Str
o N
GER
87
Moltiplicatore Ultimo e sua variazione
4,05
3,57
3,19
2,64 2,40
0,48
0,86
1,41 1,65
0,00
0,50
1,00
1,50
2,00
2,50
3,00
...
88
AZIONE
Natura dell’azione incendio
Carattere accidentale
Carattere estensivo
Carattere intensivo
3
www.francobontempi.o...
89
Aspetti caratteristici dell’incendio
• Carattere estensivo
(diffusione nello spazio):
1.wildfire
2.urbanfire
3.all’este...
90
Carattere intensivo
www.francobontempi.org
Str
o N
GER
90
91
ISO 13387: Example of Design Fire
www.francobontempi.org
Str
o N
GER
91
92
Andamento nel tempo potenza termica
www.francobontempi.org
Str
o N
GER
92
93
www.francobontempi.org
Str
o N
GER
93
94
flashover
STRATEGIE
ATTIVE
(approccio
sistemico)
STRATEGIE
PASSIVE
(approccio
strutturale)
Tempo t
TemperaturaT(t)
anda...
95
F
L
A
S
H
O
V
E
R
passive
 Create fire
compartments
 Prevent damage
in the elements
 Prevent loss of
functionality i...
96
active
protection
passive
protection
no
failures
doesn’t
trigger
Y
N
Y
N
spreads
extinguishes
damages
Y
N
robustness
no...
97
www.francobontempi.org
Str
o N
GER
97
98
www.francobontempi.org
Str
o N
GER
98
99
SnakeFighter
www.francobontempi.org
Str
o N
GER
99
100
Carattere estensivo
www.francobontempi.org
Str
o N
GER
100
101
The Great Fire of Chicago, Oct. 7-10, 1871
www.francobontempi.org
Str
o N
GER
101
102
www.francobontempi.org
Str
o N
GER
102
103
www.francobontempi.org
Str
o N
GER
103
104
www.francobontempi.org
Str
o N
GER
104
105
www.francobontempi.org
Str
o N
GER
105
106
Windsor Hotel Madrid
www.francobontempi.org
Str
o N
GER
106
107
Natura accidentale
www.francobontempi.org
Str
o N
GER
107
108
Situazioni HPLC
High Probability Low Consequences
www.francobontempi.org
Str
o N
GER
108
109
LPHC events
Low Probability High Consequences
www.francobontempi.org
Str
o N
GER
109
110
HPLC
High Probability
Low
Consequences
LPHC
Low Probability
High
Consequences
release of energy SMALL LARGE
numbers of...
111
Approcci di analisi
HPLC
Eventi Frequenti con
Conseguenze Limitate
LPHC
Eventi Rari con
Conseguenze Elevate
Complessit...
112
CAPITOLO 2:
SICUREZZA
E
PRESTAZONI
ATTESE
QUALITA’
CAPITOLO 3:
AZIONI
AMBIENTALI
CAPITOLO 6:
AZIONI
ANTROPICHE
CAPITOL...
113
Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni,
deve individuare le possibili ...
114
Determine geometry,
construction and
use of the building
Establish maximum likely
fuel loads
Estimate maximum likely
n...
115
www.francobontempi.org
Str
o N
GER
115
116
SVILUPPO
Dinamica degli incendi in galleria
Effetti della ventilazione
4
www.francobontempi.org
Str
o N
GER
116
117
FIRE DYNAMICS IN TUNNELS
www.francobontempi.org
Str
o N
GER
117
118
Tunnel Fires vs Compartment Fires (0)
118
119
Tunnel Fires Progression (1)
www.francobontempi.org
Str
o N
GER
119
120
www.francobontempi.org
Str
o N
GER
120
121
www.francobontempi.org
Str
o N
GER
121
122
Tunnel Fires Progression (2)
www.francobontempi.org
Str
o N
GER
122
123
Effects of ventilation
www.francobontempi.org
Str
o N
GER
123
124
Temperature development
www.francobontempi.org
Str
o N
GER
124
125
Smoke development
• A smoke layer may be created in tunnels at the early stages
of a fire with essentially no longitud...
126
Backlayering
www.francobontempi.org
Str
o N
GER
126
127
www.francobontempi.org
Str
o N
GER
127
128
Maximum gas temperatures in the ceiling area of
the tunnel during tests with road vehicles
www.francobontempi.org
Str
...
129
Maximum gas temperatures in the ceiling area of
the tunnel during tests with road vehicles
www.francobontempi.org
Str
...
130
Maximum gas temperatures in the cross section
of the tunnel during tests with road vehicles
www.francobontempi.org
Str...
131
EMERGENCY VENTILATION
www.francobontempi.org
Str
o N
GER
131
132
Smoke stratification
www.francobontempi.org
Str
o N
GER
132
133
Natural smoke venting
• It can be sufficient in short, level tunnels
where smoke stratification allows for
escape in c...
134
Smoke filling long tunnel
www.francobontempi.org
Str
o N
GER
134
135
Emergency ventilation with
longitudinal system
• It can be employed in unidirectional, medium length
tunnels, with fre...
136
www.francobontempi.org
Str
o N
GER
136
137
www.francobontempi.org
Str
o N
GER
137
138
k size factor for HGV fire
www.francobontempi.org
Str
o N
GER
138
139
k size factor for small pool fire
www.francobontempi.org
Str
o N
GER
139
140
Emergency ventilation with semi-
transverse “point extraction” system
• Smoke is mechanically exhausted from single ce...
141
www.francobontempi.org
Str
o N
GER
141
142
Observation: goal
• The purpose of controlling the spread of smoke
is to keep people as long as possible in a
smoke-fr...
143
Observation: longitudinal velocity
• With practically zero longitudinal air velocity, the
smoke layer expands to both ...
144
Observations: turbulence
• With an air velocity of around 2 m/s, most of the
smoke of a medium-size fire spreads to on...
145
Observation: fresh air
• In a transverse ventilation system, the fresh air
jets entering the tunnel at the floor level...
146
Observation: smoke extraction
• In reversible semi-transverse ventilation with the
duct at the ceiling, the fresh air ...
147
Observation: traffic conditions
• For a tunnel with one-way traffic, designed for
queues (an urban area), the ventilat...
148
Strategies
www.francobontempi.org
Str
o N
GER
148
149
Smoke extraction
• Continuous extraction into a return air duct is
needed to remove a stratified smoke layer out of
th...
150
Tunnel with a single-point
extraction system
The usual way to control the longitudinal velocity is to provide several...
151
FIRE MODELING
www.francobontempi.org
Str
o N
GER
151
152
www.francobontempi.org
Str
o N
GER
152
153
www.francobontempi.org
Str
o N
GER
153
Levels
154
1D
www.francobontempi.org
Str
o N
GER
154
155
1D
www.francobontempi.org
Str
o N
GER
155
156
2D (zone model)
www.francobontempi.org
Str
o N
GER
156
157
2D (zone model)
www.francobontempi.org
Str
o N
GER
157
158
www.francobontempi.org
Str
o N
GER
158
159
FDS Simulation
3D (ventilation)
www.francobontempi.org
Str
o N
GER
159
160
FDS Simulation
3D (fire)
www.francobontempi.org
Str
o N
GER
160
161
3D (traffic)
www.francobontempi.org
Str
o N
GER
161
162
www.francobontempi.org
Str
o N
GER
162
163
Multiscale
www.francobontempi.org
Str
o N
GER
163
164
Multiscale (ventilation)
www.francobontempi.org
Str
o N
GER
164
165
Multiscale (fire)
www.francobontempi.org
Str
o N
GER
165
166
Multiscale (structural)
www.francobontempi.org
Str
o N
GER
166
167
Multiscale (structural)
www.francobontempi.org
Str
o N
GER
167
168
PROGETTO
Basis
Failure path
Risk
5
www.francobontempi.org
Str
o N
GER
168
169
BASIS
www.francobontempi.org
Str
o N
GER
169
170
Design Process - ISO 13387
A. Design constraints and possibilities
(blue),
B. Action definition and development
(red),...
171
SS0a
PRESCRIBED
DESIGN
PARAMETERS
SS0b
ESTIMATED
DESIGN
PARAMETERS
SS1
initiation and
development
of fire and
fire efl...
172
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
...
173
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
...
174
FIRE DETECTION
& SUPPRESSION
No
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
M...
175
Fire fighting timeline
www.francobontempi.org
Str
o N
GER
175
176
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
STRUCTURAL
MATERIAL
& PARTS
FIRE DETECTION
& SUPPRESSION
ORGANIZA...
177IN-DEPTH
DEFENCE
FAILURE PATH
www.francobontempi.org
Str
o N
GER
177
178
Controlled vs. Uncontrolled Events
www.francobontempi.org
Str
o N
GER
178
179
Controlled vs. Uncontrolled Events
www.francobontempi.org
Str
o N
GER
179
180
Fire safety concepts tree (NFPA)
1
2
3
4
5
6
7
8
9
Buchanan,2002
Strategie per
la gestione
dell'incendio
1
Prevenzione...
181
1
2
3
4
5
6
7
8
9
Strategie per
la gestione
dell'incendio
1
Prevenzione
2
Gestione
dell'evento
3
Gestione
dell'incendi...
182
Basis of tunnel fire safety design
• The first priority identified in the literature for fire
design of all tunnels is...
183
www.francobontempi.org
Str
o N
GER
183
184
RISK CONCERN
www.francobontempi.org
Str
o N
GER
184
185
Risk treatment
Option 1 :
RISK
AVOIDANCE
Option 2 :
RISK
REDUCTION
Option 3 :
RISK
TRANSFER
Option 4 :
RISK
ACCEPTANCE...
186
Option 1 Risk avoidance, which usually means not
proceeding to continue with the system; this is not
always a feasible...
187
Quantitative Risk Analysis
Luur,2002
www.francobontempi.org
Str
o N
GER
187
188
Risk Analysis, Assessment, Management
(IEC 1995)
www.francobontempi.org
Str
o N
GER
188
189
RISK CONCERNS
DEFINE CONTEXT
(social, individual,
political, organizational,
technological)
RSK ANALYSIS
(for the syst...
190
www.francobontempi.org
Str
o N
GER
190
191
SCENARIOS
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZAR...
192
ISHIKAWA DIAGRAMwww.francobontempi.org
Str
o N
GER
192
193
www.francobontempi.org
Str
o N
GER
193
194
EVENT TREE
Triggering
event
Fire
ignition
1. Fire
extinguished
by personnel
2. Intrusion of
fire fighters
Arson
Explos...
195
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZARD SCENARIO...
196
www.francobontempi.org
Str
o N
GER
196
197
www.francobontempi.org
Str
o N
GER
197
198
www.francobontempi.org
Str
o N
GER
198
199
F (frequency) – N (number of fatalities) curve
• An F–N curve is an alternative way of describing
the risk associated ...
200
FN-curves UK Road Rail Aviation Transport, 67-01
www.francobontempi.org
Str
o N
GER
200
201
Persson, M. Quantitative Risk Analysis Procedure for
the Fire Evacuation of a Road Tunnel - An Illustrative
Example. L...
202
Risk acceptance – ALARP (1)
RISK MAGNITUDE
INTOLERABLE
REGION
As
Low
As
Reasonably
Practicable
BROADLY ACCEPTABLE
REGI...
203
Risk acceptance – ALARP (2)
www.francobontempi.org
Str
o N
GER
203
204
www.francobontempi.org
Str
o N
GER
204
205
Risk reduction by design
www.francobontempi.org
Str
o N
GER
205
206
Monetary values – cost of human life (!)
What is the maximum amount the society (or the
decisionmaker) is willing to p...
207
RESISTENZA
6
www.francobontempi.org
Str
o N
GER
207
208
The burnt out interior
of the Mont Blanc Tunnel
www.francobontempi.org
Str
o N
GER
208
209
Curve temperatura - tempo
www.francobontempi.org
Str
o N
GER
209
210
Types of fire exposure
for tunnel analysis
0
200
400
600
800
1000
1200
1400
0 30 60 90 120 150 180
Temperature(°C)
Tim...
211
Cellulosic curve
• Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN
4102, AS 1530 etc.
• This...
212
Hydrocarbon (HC) curve
• Although the cellulosic curve has been in use for many years, it soon became
apparent that th...
213
Hydrocarbon mod. (HCM) curve
• Increased version of the hydrocarbon curve, prescribed by the French
regulations.
• The...
214
RABT ZTV curves
• The RABT curve was developed in Germany as a result of a series of test
programs such as the EUREKA ...
215
RWS (Rijkswaterstaat) curve
• The RWS curve was developed by the Ministry of Transport in the
Netherlands. This curve ...
216
www.francobontempi.org
Str
o N
GER
216
217
www.francobontempi.org
Str
o N
GER
217
218
Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar
tunnel – gas temperature and Radiation”,
Proc...
219
www.francobontempi.org
Str
o N
GER
219
220
www.francobontempi.org
Str
o N
GER
220
221
Fire Scenario Recommendation
www.francobontempi.org
Str
o N
GER
221
222
Verifiche
www.francobontempi.org
Str
o N
GER
222
223
Mechanical Analysis
• The mechanical analysis shall be performed for the
same duration as used in the temperature anal...
224
Verification of fire resistance (3D)
R = structural resistance
T = temperature
t = time
T=T(t)
R=R(t,T)=R(t,T(t))=R(t)...
225
Verification of fire resistance (R-safe)
R = structural resistance
T = temperature
t = time
Rfi,d,t
Efi,requ,t
www.fra...
226
Verification of fire resistance (R-fail)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure...
227
Verification of fire resistance (t)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
tf...
228
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td...
229
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td...
230
Comportamenti termo-meccanici
www.francobontempi.org
Str
o N
GER
231
Trasformazione del calcestruzzo
alle alte temperature
www.francobontempi.org
Str
o N
GER
232
Parametri per la relazione tensioni-deformazioni
per il calcestruzzo ad elevate temperature.
www.francobontempi.org
St...
233
Calcestruzzo ad aggregato siliceo in condizioni di
compressione uniassiale ad elevate temperature
www.francobontempi.o...
234
Variazione del coefficiente di riduzione della
resistenza a compressione del calcestruzzo ad
aggregato siliceo con la ...
235
Relazioni tensioni-deformazioni per acciai da
calcestruzzo armato ordinario
laminati a caldo ad elevate temperature
ww...
236
Parametri per la relazione tensioni-deformazioni
per acciai da calcestruzzo armato ordinario
laminati a caldo, a tempe...
237
Spalling
Spalling is an umbrella term, covering different damage phenomena
that may occur to a concrete structure duri...
238
• Explosive spalling occurs during the first 20-30 minutes of the
standard cellulosic and hydrocarbon fire curves.
• A...
239
www.francobontempi.org
Str
o N
GER
239
240
www.francobontempi.org
Str
o N
GER
240
241
CONCLUSIONI
Conceptual design
Resilience
7
www.francobontempi.org
Str
o N
GER
241
242
www.francobontempi.org
Str
o N
GER
243
Conceptual Design
www.francobontempi.org
Str
o N
GER
243
244
Conceptual Design
MULTI-HAZARD
BLACK-SWAN
DISASTER CHAIN
www.francobontempi.org
Str
o N
GER
244
245
Flow chart
Tabella dotazioni Frejùs
Forensic Engineering
www.francobontempi.org
Str
o N
GER
246246
Resilience
www.francobontempi.org
Str
o N
GER
247
Resilience
• Resilience is defined as
“the positive ability of a system or
company to adapt itself to the
consequences...
248
RESILIENCE
www.francobontempi.org
Str
o N
GER
248
249
www.francobontempi.org
Str
o N
GER
249
250
ACKNOWLEDGEMENTS
• Dr. Konstantinos GKOUMAS – Uniroma1
• Dr. Francesco PETRINI – Uniroma1
• Ing. Alessandra LO CANE – ...
251
251
251
Str
o N
GER
www.stronger2012.com
251
252
StroNGER S.r.l.
Research Spin-off for Structures of the Next Generation:
Energy Harvesting and Resilience
Roma – Milan...
Upcoming SlideShare
Loading in …5
×

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi

809 views

Published on

Giornata di Studio: LA RESISTENZA AL FUOCO DELLE STRUTTURE COSENZA,
Universita' della Calabria, 6 Febbraio 2014

Published in: Design
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
809
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi

  1. 1. 1 Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici Prof. Dr. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Universita’ degli Studi di Roma La Sapienza www.francobontempi.org Str o N GER 1
  2. 2. 2 www.francobontempi.org Str o N GER 2
  3. 3. 3 Scopo della presentazione • Far vedere gli aspetti piu’ generali della progettazione strutturale antincendio: Complessita’ del problema; Approccio sistemico; Natura accidentale dell’azione incendio; Progettazione prestazionale/prescrittiva; Aspetti specifici delle gallerie stradali. www.francobontempi.org Str o N GER 3
  4. 4. 4 OGGETTO Caratteristiche delle gallerie Geometrie Impianti 1 www.francobontempi.org Str o N GER 4
  5. 5. 5 GEOMETRIE www.francobontempi.org Str o N GER 5
  6. 6. 6 Tipo A - autostrade www.francobontempi.org Str o N GER 6
  7. 7. 7 www.francobontempi.org Str o N GER 7
  8. 8. 8 Tipo B – extraurbane principali www.francobontempi.org Str o N GER 8
  9. 9. 9 Tipo C – extraurbane secondarie www.francobontempi.org Str o N GER 9
  10. 10. 10 www.francobontempi.org Str o N GER 10
  11. 11. 11 www.francobontempi.org Str o N GER 11
  12. 12. 12 www.francobontempi.org Str o N GER 12
  13. 13. 13 www.francobontempi.org Str o N GER 13
  14. 14. 14 www.francobontempi.org Str o N GER 14
  15. 15. 15 www.francobontempi.org Str o N GER 15
  16. 16. 16 www.francobontempi.org Str o N GER 16
  17. 17. 17 www.francobontempi.org Str o N GER 17
  18. 18. 18 Sistema vs Struttura www.francobontempi.org Str o N GER Opera Morta Opera Viva 18
  19. 19. 19 IMPIANTI VENTILAZIONE www.francobontempi.org Str o N GER 19
  20. 20. 20 www.francobontempi.org Str o N GER 20
  21. 21. 21 Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. www.francobontempi.org Str o N GER 21
  22. 22. 22 Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in – congested traffic situations; – bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); – long tunnels with high traffic volumes. www.francobontempi.org Str o N GER 22
  23. 23. 23 TUNNEL VENTILATION SYSTEMS • Road Tunnel Ventilation Systems have two modes of operation: • Normal ventilation, for control of air quality inside tunnels due to vehicle exhaust emissions: – in any possible traffic situation, tunnel users and staff must not suffer any damage to their health regardless the duration of their stay in the tunnel; – the necessary visual range must be maintained to allow for safe stopping. • Emergency ventilation in case of fire, for smoke control: – the escape routes must be kept free from smoke to allow for self- rescue; – the activities of emergency services must be supported by providing the best possible conditions over a sufficient time period ; – the extent of damage and injuries (to people, vehicles and the tunnel structure itself) must be kept to a minimum. www.francobontempi.org Str o N GER 23
  24. 24. 24 Longitudinal ventilation system • employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. www.francobontempi.org Str o N GER 24
  25. 25. 25 www.francobontempi.org Str o N GER 25
  26. 26. 26 www.francobontempi.org Str o N GER 26
  27. 27. 27 Semi-transverse ventilation system • employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. www.francobontempi.org Str o N GER 27
  28. 28. 28 Transverse ventilation system • employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. www.francobontempi.org Str o N GER 28
  29. 29. 29 www.francobontempi.org Str o N GER 29
  30. 30. 30 www.francobontempi.org Str o N GER 30
  31. 31. 31 www.francobontempi.org Str o N GER 31
  32. 32. 32 Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. www.francobontempi.org Str o N GER 32
  33. 33. 33 www.francobontempi.org Str o N GER 33
  34. 34. 34 Ventilation unit Air extraction Ventilation unit Supply of fresh air www.francobontempi.org Str o N GER 34
  35. 35. 35 www.francobontempi.org Str o N GER 35
  36. 36. 36 COMPLESSITA’ Approccio prestazionale Modellazione Sicurezza 2 www.francobontempi.org Str o N GER 36
  37. 37. 37 LOOSEcouplingsTIGHT LINEAR interactions NONLINEAR System Complexity (Perrow) www.francobontempi.org Str o N GER 37
  38. 38. 38 APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 38
  39. 39. 39 www.francobontempi.org Str o N GER 39
  40. 40. 40 Prescrittivo (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 40
  41. 41. 41 RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti prescrittivo prestazionale RequisitiRequisiti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti prescrittivo prestazionale Prescrittivo (2) www.francobontempi.org Str o N GER 41
  42. 42. 42 Prestazionale (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 42
  43. 43. 43 Prestazionale (2)RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti prescrittivo prestazionale RequisitiRequisiti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti prescrittivo prestazionale www.francobontempi.org Str o N GER 43
  44. 44. 44 START END DEFINIZIONE E DISANIMA DEGLI OBIETTIVI INDIVIDUAZIONE DELLE SOLUZIONI ATTE A RAGGIUNGERE GLI OBIETTIVI ATTIVITA' DI MODELLAZIONE E MISURA GIUDIZIO DELLE PRESTAZIONI RISULTANTI No Yes www.francobontempi.org Str o N GER 44
  45. 45. 45 www.francobontempi.org Str o N GER 45
  46. 46. 46 www.francobontempi.org Str o N GER 46
  47. 47. 47 MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B www.francobontempi.org Str o N GER 47
  48. 48. 48 MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B www.francobontempi.org Str o N GER 48
  49. 49. 49 MODELLAZIONE www.francobontempi.org Str o N GER 49
  50. 50. 5050 www.francobontempi.org Str o N GER 50
  51. 51. 51 Analysis Strategy #1: Sensitivity governance of priorities www.francobontempi.org Str o N GER 51
  52. 52. 52 Analysis Strategy #2: Bounding behavior governance www.francobontempi.org Str o N GER 52
  53. 53. 53 Analysis Strategy #3: Redundancy Governance www.francobontempi.org Str o N GER 53
  54. 54. 54 NUMERICAL MODELING www.francobontempi.org Str o N GER 54
  55. 55. 55 Factors for Coupling MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) INFORMATION FLOW DIRECTION time tK www.francobontempi.org Str o N GER 55
  56. 56. 56 Fully Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 56
  57. 57. 57 Staggered Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 57
  58. 58. 58 Temperature Driven Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 58
  59. 59. 59 Scheme With No Memory time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 59
  60. 60. 6060 www.francobontempi.org Str o N GER
  61. 61. 6161 www.francobontempi.org Str o N GER
  62. 62. 6262 www.francobontempi.org Str o N GER
  63. 63. 6363 www.francobontempi.org Str o N GER
  64. 64. 64 SICUREZZA www.francobontempi.org Str o N GER 64
  65. 65. 65 ATTRIBUTES THREATS MEANS RELIABILITY FAILURE ERROR FAULT FAULT TOLERANT DESIGN FAULT DETECTION FAULT DIAGNOSIS FAULT MANAGING DEPENDABILITY of STRUCTURAL SYSTEMS AVAILABILITY SAFETY MAINTAINABILITY permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant INTEGRITY ways to increase the dependability of a system An understanding of the things that can affect the dependability of a system A way to assess the dependability of a system the trustworthiness of a system which allows reliance to be justifiably placed on the service it delivers SECURITY High level / active performance Low level / passive performance Visions, I., Laprie, J.C., Randell, B., Dependability and its threats: a taxonomy, 18th IFIP World Computer Congress, Toulouse (France) 2004. www.francobontempi.org Str o N GER 65
  66. 66. 66 ATTRIBUTE S RELIABILITY AVAILABILITY SAFETY MAINTAINABILITY INTEGRITY SECURITY FAILURE ERROR FAULT permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant THREATS Structural Robustness (1) 66 www.francobontempi.org Str o N GER 66
  67. 67. 67 Structural Robustness (2) • Capacity of a construction to show a regular decrease of its structural quality due to negative causes. It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). www.francobontempi.org Str o N GER 67
  68. 68. 68 Levels of Structural Crisis UsualULS&SLS VerificationFormat Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System www.francobontempi.org Str o N GER 68
  69. 69. 69 Bad vs Good Collapses STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY www.francobontempi.org Str o N GER 69
  70. 70. 70 Design Strategy #1: Continuity www.francobontempi.org Str o N GER 70
  71. 71. 71 Design Strategy #2: Segmentation www.francobontempi.org Str o N GER 71
  72. 72. 72 Esempio di valutazione di roubustezza strutturale www.francobontempi.org Str o N GER
  73. 73. 73 73 Esempio: edificio alto www.francobontempi.org Str o N GER
  74. 74. 74 Analisi di un componente tipico D0 www.francobontempi.org Str o N GER
  75. 75. 75D1 D2 Scenari (1-2) www.francobontempi.org Str o N GER
  76. 76. 76D3 D4 Scenari (3-4)www.francobontempi.org Str o N GER
  77. 77. 77 Modalità di collasso (1-2) D1 D2 www.francobontempi.org Str o N GER
  78. 78. 78 Modalità di collasso (3-4) D3 D4 www.francobontempi.org Str o N GER
  79. 79. 79 Sintesi dei risultati: elemento critico 0 4 Lo scenario D4 è quello più cattivo: l’elemento strutturale critico individuato è la colonna più esterna! www.francobontempi.org Str o N GER
  80. 80. 80 Modellazione edificio alto www.francobontempi.org Str o N GER
  81. 81. 81 www.francobontempi.org Str o N GER
  82. 82. 82 Scenario 1 (1 asta eliminata) Scenario 2 (3 aste eliminate) Scenario 3 (5 aste eliminate) Scenario 4 (7 aste eliminate) Scenari di danneggiamentowww.francobontempi.org Str o N GER
  83. 83. 83 Collasso secondo scenario 1www.francobontempi.org Str o N GER
  84. 84. 84 Collasso secondo scenario 2www.francobontempi.org Str o N GER
  85. 85. 85 Collasso secondo scenario 3www.francobontempi.org Str o N GER
  86. 86. 86 Collasso secondo scenario 4www.francobontempi.org Str o N GER
  87. 87. 87 Moltiplicatore Ultimo e sua variazione 4,05 3,57 3,19 2,64 2,40 0,48 0,86 1,41 1,65 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 D0 D1 D2 D3 D4 Scenario di danneggiamento u Delta F F Sintesi dei risultati Δ u u www.francobontempi.org Str o N GER
  88. 88. 88 AZIONE Natura dell’azione incendio Carattere accidentale Carattere estensivo Carattere intensivo 3 www.francobontempi.org Str o N GER 88
  89. 89. 89 Aspetti caratteristici dell’incendio • Carattere estensivo (diffusione nello spazio): 1.wildfire 2.urbanfire 3.all’esterno di una costruzione 4.all’interno di una costruzione • Carattere intensivo (andamento nel tempo). • Natura accidentale. www.francobontempi.org Str o N GER 89
  90. 90. 90 Carattere intensivo www.francobontempi.org Str o N GER 90
  91. 91. 91 ISO 13387: Example of Design Fire www.francobontempi.org Str o N GER 91
  92. 92. 92 Andamento nel tempo potenza termica www.francobontempi.org Str o N GER 92
  93. 93. 93 www.francobontempi.org Str o N GER 93
  94. 94. 94 flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive Strategie www.francobontempi.org Str o N GER 94
  95. 95. 95 F L A S H O V E R passive  Create fire compartments  Prevent damage in the elements  Prevent loss of functionality in the building active  Detection measures (smoke, heat, flame detectors)  Suppression measures (sprinklers, fire extinguisher, standpipes, firemen)  Smoke and heat evacuation system prevention protection robustness  Limit ignition sources  Limit hazardous human behavior  Emergency procedure and evacuation  Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) Fire Safety Strategies systemic structural www.francobontempi.org Str o N GER 95
  96. 96. 96 active protection passive protection no failures doesn’t trigger Y N Y N spreads extinguishes damages Y N robustness no collapse collapse Y N triggers prevention1 42 3 Fire Safety Strategies www.francobontempi.org Str o N GER 96
  97. 97. 97 www.francobontempi.org Str o N GER 97
  98. 98. 98 www.francobontempi.org Str o N GER 98
  99. 99. 99 SnakeFighter www.francobontempi.org Str o N GER 99
  100. 100. 100 Carattere estensivo www.francobontempi.org Str o N GER 100
  101. 101. 101 The Great Fire of Chicago, Oct. 7-10, 1871 www.francobontempi.org Str o N GER 101
  102. 102. 102 www.francobontempi.org Str o N GER 102
  103. 103. 103 www.francobontempi.org Str o N GER 103
  104. 104. 104 www.francobontempi.org Str o N GER 104
  105. 105. 105 www.francobontempi.org Str o N GER 105
  106. 106. 106 Windsor Hotel Madrid www.francobontempi.org Str o N GER 106
  107. 107. 107 Natura accidentale www.francobontempi.org Str o N GER 107
  108. 108. 108 Situazioni HPLC High Probability Low Consequences www.francobontempi.org Str o N GER 108
  109. 109. 109 LPHC events Low Probability High Consequences www.francobontempi.org Str o N GER 109
  110. 110. 110 HPLC High Probability Low Consequences LPHC Low Probability High Consequences release of energy SMALL LARGE numbers of breakdown SMALL LARGE people involved FEW MANY nonlinearity WEAK STRONG interactions WEAK STRONG uncertainty WEAK STRONG decomposability HIGH LOW course predictability HIGH LOW HPLC vs LPHC events 110
  111. 111. 111 Approcci di analisi HPLC Eventi Frequenti con Conseguenze Limitate LPHC Eventi Rari con Conseguenze Elevate Complessità: Aspetti non lineari e Meccanismi di interazioni Impostazione del problema: DETERMINISTICA STOCASTICA ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA ANALISI PRAGMATICA CON SCENARI www.francobontempi.org Str o N GER 111
  112. 112. 112 CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE QUALITA’ CAPITOLO 3: AZIONI AMBIENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 4: AZIONI ACCIDENTALI DOMANDA CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI PRODOTTO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI CAPITOLO 8: COLLAUDO STATICO CONTROLLO Italian Code for Constructions D.M. 14 settembre 2005 www.francobontempi.org Str o N GER 112
  113. 113. 113 Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito:  lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto;  lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura;  lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. Scenari (D.M. 14 settembre 2005) www.francobontempi.org Str o N GER 113
  114. 114. 114 Determine geometry, construction and use of the building Establish maximum likely fuel loads Estimate maximum likely number of occupants and their locations Assume certain fire protection features Carry out fire engineering analysis Acceptable performance Accept design Modify fire protection features Establish performance requirements No Yes Buchanan,2002 www.francobontempi.org Str o N GER 114
  115. 115. 115 www.francobontempi.org Str o N GER 115
  116. 116. 116 SVILUPPO Dinamica degli incendi in galleria Effetti della ventilazione 4 www.francobontempi.org Str o N GER 116
  117. 117. 117 FIRE DYNAMICS IN TUNNELS www.francobontempi.org Str o N GER 117
  118. 118. 118 Tunnel Fires vs Compartment Fires (0) 118
  119. 119. 119 Tunnel Fires Progression (1) www.francobontempi.org Str o N GER 119
  120. 120. 120 www.francobontempi.org Str o N GER 120
  121. 121. 121 www.francobontempi.org Str o N GER 121
  122. 122. 122 Tunnel Fires Progression (2) www.francobontempi.org Str o N GER 122
  123. 123. 123 Effects of ventilation www.francobontempi.org Str o N GER 123
  124. 124. 124 Temperature development www.francobontempi.org Str o N GER 124
  125. 125. 125 Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. www.francobontempi.org Str o N GER 125
  126. 126. 126 Backlayering www.francobontempi.org Str o N GER 126
  127. 127. 127 www.francobontempi.org Str o N GER 127
  128. 128. 128 Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 128
  129. 129. 129 Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 129
  130. 130. 130 Maximum gas temperatures in the cross section of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 130
  131. 131. 131 EMERGENCY VENTILATION www.francobontempi.org Str o N GER 131
  132. 132. 132 Smoke stratification www.francobontempi.org Str o N GER 132
  133. 133. 133 Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. www.francobontempi.org Str o N GER 133
  134. 134. 134 Smoke filling long tunnel www.francobontempi.org Str o N GER 134
  135. 135. 135 Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. www.francobontempi.org Str o N GER 135
  136. 136. 136 www.francobontempi.org Str o N GER 136
  137. 137. 137 www.francobontempi.org Str o N GER 137
  138. 138. 138 k size factor for HGV fire www.francobontempi.org Str o N GER 138
  139. 139. 139 k size factor for small pool fire www.francobontempi.org Str o N GER 139
  140. 140. 140 Emergency ventilation with semi- transverse “point extraction” system • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. www.francobontempi.org Str o N GER 140
  141. 141. 141 www.francobontempi.org Str o N GER 141
  142. 142. 142 Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. www.francobontempi.org Str o N GER 142
  143. 143. 143 Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire cross section. www.francobontempi.org Str o N GER 143
  144. 144. 144 Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. www.francobontempi.org Str o N GER 144
  145. 145. 145 Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. www.francobontempi.org Str o N GER 145
  146. 146. 146 Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. www.francobontempi.org Str o N GER 146
  147. 147. 147 Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-and- go traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. www.francobontempi.org Str o N GER 147
  148. 148. 148 Strategies www.francobontempi.org Str o N GER 148
  149. 149. 149 Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. www.francobontempi.org Str o N GER 149
  150. 150. 150 Tunnel with a single-point extraction system The usual way to control the longitudinal velocity is to provide several independent ventilation sections. When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. By reversing the fan operation in the exhaust air duct, this duct can be used to supply air and vice versa. www.francobontempi.org Str o N GER 150
  151. 151. 151 FIRE MODELING www.francobontempi.org Str o N GER 151
  152. 152. 152 www.francobontempi.org Str o N GER 152
  153. 153. 153 www.francobontempi.org Str o N GER 153 Levels
  154. 154. 154 1D www.francobontempi.org Str o N GER 154
  155. 155. 155 1D www.francobontempi.org Str o N GER 155
  156. 156. 156 2D (zone model) www.francobontempi.org Str o N GER 156
  157. 157. 157 2D (zone model) www.francobontempi.org Str o N GER 157
  158. 158. 158 www.francobontempi.org Str o N GER 158
  159. 159. 159 FDS Simulation 3D (ventilation) www.francobontempi.org Str o N GER 159
  160. 160. 160 FDS Simulation 3D (fire) www.francobontempi.org Str o N GER 160
  161. 161. 161 3D (traffic) www.francobontempi.org Str o N GER 161
  162. 162. 162 www.francobontempi.org Str o N GER 162
  163. 163. 163 Multiscale www.francobontempi.org Str o N GER 163
  164. 164. 164 Multiscale (ventilation) www.francobontempi.org Str o N GER 164
  165. 165. 165 Multiscale (fire) www.francobontempi.org Str o N GER 165
  166. 166. 166 Multiscale (structural) www.francobontempi.org Str o N GER 166
  167. 167. 167 Multiscale (structural) www.francobontempi.org Str o N GER 167
  168. 168. 168 PROGETTO Basis Failure path Risk 5 www.francobontempi.org Str o N GER 168
  169. 169. 169 BASIS www.francobontempi.org Str o N GER 169
  170. 170. 170 Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 3/22/2011 www.francobontempi.org Str o N GER 170
  171. 171. 171 SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS SS1 initiation and development of fire and fire efluent SS2 movement of fire effluent SS3 structural response and fire spread beyond enclosure of origin SS4 detection, activitation and suppression SS5 life safety: occupant behavior, location and condition SS6 property loss SS7 business interruption SS8 contamination of environment SS9 destruction of heritage (0) DESIGN CONSTRAINTS AND POSSIBILITIES (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE BUSOFINFORMATION RESULTS DESIGN ACTION SAFETY&PERFORMANCE FSEwww.francobontempi.org Str o N GER 171 DESIGN RESPONSE
  172. 172. 172 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL SYSTEM CHARACTERISTICS STRUCTURAL SYSTEM WEAKNESS www.francobontempi.org Str o N GER 172
  173. 173. 173 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats No Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes www.francobontempi.org Str o N GER 173
  174. 174. 174 FIRE DETECTION & SUPPRESSION No active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes 3/22/2011 174 PROGETTAZIONE STRUTTURALE ANTINCENDIO www.francobontempi.org Str o N GER 174
  175. 175. 175 Fire fighting timeline www.francobontempi.org Str o N GER 175
  176. 176. 176 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY STRUCTURAL MATERIAL & PARTS FIRE DETECTION & SUPPRESSION ORGANIZATION & FIREFIGHTERS MAINTENANCE & USE CRISIS www.francobontempi.org Str o N GER 176
  177. 177. 177IN-DEPTH DEFENCE FAILURE PATH www.francobontempi.org Str o N GER 177
  178. 178. 178 Controlled vs. Uncontrolled Events www.francobontempi.org Str o N GER 178
  179. 179. 179 Controlled vs. Uncontrolled Events www.francobontempi.org Str o N GER 179
  180. 180. 180 Fire safety concepts tree (NFPA) 1 2 3 4 5 6 7 8 9 Buchanan,2002 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 www.francobontempi.org Str o N GER 180
  181. 181. 181 1 2 3 4 5 6 7 8 9 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 Fire safety concepts tree (NFPA) Buchanan,2002 www.francobontempi.org Str o N GER 181
  182. 182. 182 Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. www.francobontempi.org Str o N GER 182
  183. 183. 183 www.francobontempi.org Str o N GER 183
  184. 184. 184 RISK CONCERN www.francobontempi.org Str o N GER 184
  185. 185. 185 Risk treatment Option 1 : RISK AVOIDANCE Option 2 : RISK REDUCTION Option 3 : RISK TRANSFER Option 4 : RISK ACCEPTANCE START STOP No No No Yes Yes Yes No 100 % 50 % 50 % 30 % 20 % 25 % 5 % www.francobontempi.org Str o N GER 185
  186. 186. 186 Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other measures can be taken. www.francobontempi.org Str o N GER 186
  187. 187. 187 Quantitative Risk Analysis Luur,2002 www.francobontempi.org Str o N GER 187
  188. 188. 188 Risk Analysis, Assessment, Management (IEC 1995) www.francobontempi.org Str o N GER 188
  189. 189. 189 RISK CONCERNS DEFINE CONTEXT (social, individual, political, organizational, technological) RSK ANALYSIS (for the system are defined organization, scenarios, and consequences of occurences) RISK ASSESSMENT (compare risks against criteria) RISK TREATMENT option 1 - avoidance option 2 - reduction option 3 - transfer option 4 - acceptance MONITOR AND REVIEW RISK MANAGEMENT RISK ANALYSIS RISK ASSESSMENT www.francobontempi.org Str o N GER 189
  190. 190. 190 www.francobontempi.org Str o N GER 190
  191. 191. 191 SCENARIOS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS FIRE EVENT www.francobontempi.org Str o N GER 191
  192. 192. 192 ISHIKAWA DIAGRAMwww.francobontempi.org Str o N GER 192
  193. 193. 193 www.francobontempi.org Str o N GER 193
  194. 194. 194 EVENT TREE Triggering event Fire ignition 1. Fire extinguished by personnel 2. Intrusion of fire fighters Arson Explosion Short circuit Cigarette fire YES (P1) NO (1-P1) YES (P2) NO (1-P2) Scenario Other A1 A2 A3 A4 A5 3. Fire suppression YES (P3) NO (1-P3) YES (P3) NO (1-P3) Fire location AREA A (PA) YES (P1) NO (1-P1) YES (P2) NO (1-P2) B1 B2 B3 B4 B5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA B (PB) YES (P1) NO (1-P1) YES (P2) NO (1-P2) C1 C2 C3 C4 C5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA C (PC) www.francobontempi.org Str o N GER 194 PREPARAZIONE EVOLUZIONE
  195. 195. 195 DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS NUMERICAL MODELING SIMULATIONSwww.francobontempi.org Str o N GER 195
  196. 196. 196 www.francobontempi.org Str o N GER 196
  197. 197. 197 www.francobontempi.org Str o N GER 197
  198. 198. 198 www.francobontempi.org Str o N GER 198
  199. 199. 199 F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to large- scale accidents, and is thus especially suited for characterizing societal risk. www.francobontempi.org Str o N GER 199
  200. 200. 200 FN-curves UK Road Rail Aviation Transport, 67-01 www.francobontempi.org Str o N GER 200
  201. 201. 201 Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 www.francobontempi.org Str o N GER 201
  202. 202. 202 Risk acceptance – ALARP (1) RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable www.francobontempi.org Str o N GER 202
  203. 203. 203 Risk acceptance – ALARP (2) www.francobontempi.org Str o N GER 203
  204. 204. 204 www.francobontempi.org Str o N GER 204
  205. 205. 205 Risk reduction by design www.francobontempi.org Str o N GER 205
  206. 206. 206 Monetary values – cost of human life (!) What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. www.francobontempi.org Str o N GER 206
  207. 207. 207 RESISTENZA 6 www.francobontempi.org Str o N GER 207
  208. 208. 208 The burnt out interior of the Mont Blanc Tunnel www.francobontempi.org Str o N GER 208
  209. 209. 209 Curve temperatura - tempo www.francobontempi.org Str o N GER 209
  210. 210. 210 Types of fire exposure for tunnel analysis 0 200 400 600 800 1000 1200 1400 0 30 60 90 120 150 180 Temperature(°C) Time (min.) Cellulosic Hydrocarbon Hydrocarbon modified RABT-ZTV train RABT-ZTV car RWS www.francobontempi.org Str o N GER 210
  211. 211. 211 Cellulosic curve • Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building materials. www.francobontempi.org Str o N GER 211
  212. 212. 212 Hydrocarbon (HC) curve • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials e.g. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. www.francobontempi.org Str o N GER 212
  213. 213. 213 Hydrocarbon mod. (HCM) curve • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result of it. www.francobontempi.org Str o N GER 213
  214. 214. 214 RABT ZTV curves • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 www.francobontempi.org Str o N GER 214
  215. 215. 215 RWS (Rijkswaterstaat) curve • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C and the temperature on the reinforcement should not exceed 250°C. RWS, RijksWaterStaatTime (minutes) T (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 www.francobontempi.org Str o N GER 215
  216. 216. 216 www.francobontempi.org Str o N GER 216
  217. 217. 217 www.francobontempi.org Str o N GER 217
  218. 218. 218 Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. www.francobontempi.org Str o N GER 218
  219. 219. 219 www.francobontempi.org Str o N GER 219
  220. 220. 220 www.francobontempi.org Str o N GER 220
  221. 221. 221 Fire Scenario Recommendation www.francobontempi.org Str o N GER 221
  222. 222. 222 Verifiche www.francobontempi.org Str o N GER 222
  223. 223. 223 Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: – in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); – in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) – In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); www.francobontempi.org Str o N GER 223
  224. 224. 224 Verification of fire resistance (3D) R = structural resistance T = temperature t = time T=T(t) R=R(t,T)=R(t,T(t))=R(t) www.francobontempi.org Str o N GER 224
  225. 225. 225 Verification of fire resistance (R-safe) R = structural resistance T = temperature t = time Rfi,d,t Efi,requ,t www.francobontempi.org Str o N GER 225
  226. 226. 226 Verification of fire resistance (R-fail) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! www.francobontempi.org Str o N GER 226
  227. 227. 227 Verification of fire resistance (t) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! tfi,d ≥ tfi,requ www.francobontempi.org Str o N GER 227
  228. 228. 228 Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr www.francobontempi.org Str o N GER 228
  229. 229. 229 Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr www.francobontempi.org Str o N GER 229
  230. 230. 230 Comportamenti termo-meccanici www.francobontempi.org Str o N GER
  231. 231. 231 Trasformazione del calcestruzzo alle alte temperature www.francobontempi.org Str o N GER
  232. 232. 232 Parametri per la relazione tensioni-deformazioni per il calcestruzzo ad elevate temperature. www.francobontempi.org Str o N GER
  233. 233. 233 Calcestruzzo ad aggregato siliceo in condizioni di compressione uniassiale ad elevate temperature www.francobontempi.org Str o N GER
  234. 234. 234 Variazione del coefficiente di riduzione della resistenza a compressione del calcestruzzo ad aggregato siliceo con la temperatura www.francobontempi.org Str o N GER
  235. 235. 235 Relazioni tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo ad elevate temperature www.francobontempi.org Str o N GER
  236. 236. 236 Parametri per la relazione tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo, a temperature elevate www.francobontempi.org Str o N GER
  237. 237. 237 Spalling Spalling is an umbrella term, covering different damage phenomena that may occur to a concrete structure during fire. These phenomena are caused by different mechanisms: •Pore pressure rises due to evaporating water when the temperature rises; •Compression of the heated surface due to a thermal gradient in the cross section; •Internal cracking due to difference in thermal expansion between aggregate and cement paste; •Cracking due to difference in thermal expansion/deformation between concrete and reinforcement bars; •Strength loss due to chemical transitions during heating. www.francobontempi.org Str o N GER
  238. 238. 238 • Explosive spalling occurs during the first 20-30 minutes of the standard cellulosic and hydrocarbon fire curves. • After the 2nd minute of a typical hydrocarbon exposure, spalling can occur in high strength concretes with polypropylene fibres and in concretes with high moisture content independent of the type of standard curve. Also, concretes with high moisture content can suffer spalling after the 3rd minute of exposure. • External temperature increments between 20-30ºC/min are typical in the occurrence of explosive spalling. • Temperature increments of more than 3ºC/min are enough for the occurrence of explosive spalling. • Concrete external layers can be released from concrete members when these reach temperatures between 250 - 420ºC; 375 - 425ºC. Spalling criteria (literature review) www.francobontempi.org Str o N GER
  239. 239. 239 www.francobontempi.org Str o N GER 239
  240. 240. 240 www.francobontempi.org Str o N GER 240
  241. 241. 241 CONCLUSIONI Conceptual design Resilience 7 www.francobontempi.org Str o N GER 241
  242. 242. 242 www.francobontempi.org Str o N GER
  243. 243. 243 Conceptual Design www.francobontempi.org Str o N GER 243
  244. 244. 244 Conceptual Design MULTI-HAZARD BLACK-SWAN DISASTER CHAIN www.francobontempi.org Str o N GER 244
  245. 245. 245 Flow chart Tabella dotazioni Frejùs Forensic Engineering www.francobontempi.org Str o N GER
  246. 246. 246246 Resilience www.francobontempi.org Str o N GER
  247. 247. 247 Resilience • Resilience is defined as “the positive ability of a system or company to adapt itself to the consequences of a catastrophic failure caused by power outage, a fire, a bomb or similar event” or as "the ability of a system to cope with change". www.francobontempi.org Str o N GER 247
  248. 248. 248 RESILIENCE www.francobontempi.org Str o N GER 248
  249. 249. 249 www.francobontempi.org Str o N GER 249
  250. 250. 250 ACKNOWLEDGEMENTS • Dr. Konstantinos GKOUMAS – Uniroma1 • Dr. Francesco PETRINI – Uniroma1 • Ing. Alessandra LO CANE – MIT • Dr. Filippo GENTILI – Coimbra (PT) • Mr. Tiziano BARONCELLI – Uniroma1 www.francobontempi.org Str o N GER 250
  251. 251. 251 251 251 Str o N GER www.stronger2012.com 251
  252. 252. 252 StroNGER S.r.l. Research Spin-off for Structures of the Next Generation: Energy Harvesting and Resilience Roma – Milano – Terni – Atene - Nice Cote Azur Sede operativa: Via Giacomo Peroni 442-444, Tecnopolo Tiburtino, 00131 Roma (ITALY) - info@stronger2012.com Str o N GER www.stronger2012.com 252

×