SlideShare a Scribd company logo
1 of 6
Download to read offline
Curr Pediatr Res 2016; 20 (1&2): 1-6 ISSN 0971-9032
www.currentpediatrics.com
Curr Pediatr Res 2016 Volume 20 Issue 1 & 21
Incidence and etiology of acute kidney injury in children admitted to PICU
using pRIFLE criteria.
Srinivasa S1
, Reshmavathi V2
*
1
Professor and HOD, Department of Pediatrics, Kempegowda Institute of Medical Sciences, Bangalore, India.
2
Junior Resident, Department of Pediatrics, Kempegowda Institute of Medical Sciences, Bangalore, India.
Introduction
Acute Kidney Injury (AKI) has become a major global
health care challenge with an estimated 13.3 million cases
per year leading to an estimated mortality of 1.7 million
deaths per year globally. Increasing prevalence of AKI
is strongly associated with increased early and long term
patient morbidity and mortality [1]. According to recent
meta-analysis conducted by Paweena et al the pooled
incidence rate of AKI was 33.7% (95% CI, 26.9 to 41.3)
and AKI-associated mortality rates was 13.8% in children
(95% CI, 8.8 to 21.0) [2].
“0 by25” is an ambitious initiative of International Society
of Nephrology which aims to eliminate preventable deaths
from Acute Kidney Injury worldwide by 2025. This
initiative emphasizes the magnitude of the problem, the
global concern about AKI and its endeavour to eliminate
mortality and morbidity due to AKI.
Acute kidney injury previously called acute renal failure
is characterized by a reversible increase in the blood
concentration of creatinine and nitrogenous waste products
and by the inability of the kidney to appropriately regulate
fluid and electrolyte homeostasis [3]. If left untreated, the
condition has a high risk of multiple organ failure and
potentially death. Patients who suffer from AKI may have
subsequent renal dysfunction after original injury. Children
are more susceptible for this dysfunction [4].
Introduction: Acute Kidney Injury (AKI) is associated with severe morbidity and mortality.
Lack of consensus definition has been major limitation in improving outcomes. Acute Dialysis
Quality Initiative Group (ADQI) group proposed RIFLE (Risk, Injury, Failure, Loss of function,
End stage renal disease) criteria, criteria for defining AKI, later modified in children as pRIFLE
(pediatric RIFLE). This study tries to address the need of limited data on pediatric AKI.
Methodology: A prospective study conducted in between December 2013 to May 2015. Serum
creatinine level was estimated on all patients on admission and alternate days till discharge
from Pediatric Intensive Care Unit (PICU). Urine output was recorded. Estimated Creatinine-
Clearance (eCrCL) was calculated using Schwartz formula. AKI diagnosis and staging was
based on pRIFLE (pediatric RIFLE) criteria. Either eCrCl or urine output criteria were used to
diagnose and stage AKI, using criterion that leads to higher stage. Maximal stage that the patient
progressed during the stay in PICU was assigned the stage for that case. Data was compiled using
SPSS software.
Results: Of total 697 cases, 680 cases met inclusion criteria. Incidence of AKI was 178 (26.1%).
Stage ‘Risk (R)’, ‘Injury (I)’ and ‘Failure (F)’ constituted 60.7% (108), 28.6% (51) and 10.6%
(19) respectively. Maximum AKI occurred in < 1 year (28.1%) (p=0.003). Urine output and
creatinine criteria matching were there in 77%. Infections were commonest etiology. Amongst
infections dengue (30%) was most common, followed by sepsis (21.9%) and then pneumonia
(17.9%). Hypotension, nephrotoxic drugs, sepsis, need for mechanical ventilation were significant
(p<0.001) risk factors for AKI. Prerenal causes constituted 68% and renal 32%.
Conclusion: Incidence of AKI is high among critically ill children. pRIFLE staging system that
provides early identification and stratification of AKI. Infections are leading etiology of AKI in
children.
Abstract
Keywords: AKI, pRIFLE, PICU.
Accepted January 30, 2016
Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria.
Curr Pediatr Res 2016 Volume 20 Issue 1 & 2
2
For a long time there was lack of consensus on definition of
AKI.In2005,thefirstconsensusdefinitionofAKIfortheadult
population, based on the RIFLE (Risk, Injury, Failure, Loss
of function, End stage renal disease) criteria, was proposed
by the Acute Dialysis Quality Initiative Group (ADQI) [5].
The definition was later modified and evaluated in critically
ill pediatric patients and termed pRIFLE (Pediatric RIFLE)
criteria. The pRIFLE criteria differs from RIFLE criteria,
in that a) Only decrease in estimated creatinine clearance
(eCrCL), and not the change in glomerular filtration rate, is
used to determine grading b)The eCrCl is estimated using the
Schwartz formula, which incorporates the height and serum
creatinine level of the patient, and an age adjusted constant c)
pRIFLE incorporates a longer duration of urine output than in
adult RIFLE classification.
The spectrum and burden of AKI in developing countries
may be different from that of developed countries [6] The
patients from developing countries are younger, infection
associated AKI is more common and a significant
proportion may have already developed AKI at the time
of hospitalization. In addition, resource limitations in
managing children who require renal replacement therapy
add to the burden [7,8].
Most of the studies in AKI are based on adult population.
The incidence and clinico-etiological profile of AKI
varies from adults to children. Of the pediatric studies on
incidence of AKI, many are limited to developed countries
and often retrospective[9]. Hence limited data availability
on clinical profile of pediatric AKI from Indian children,
fallacies of retrospective studies, and regional variations in
the profile of AKI makes it compelling to study incidence
and outcome of AKI in pediatric patients and current study
tries to address this need
Methodology
This was a Prospective and observational study conducted
at Kempegowda Institute of Medical Sciences, Bangalore.
All patients within the age group of 1 month to 18 years
admitted to Pediatric Intensive Care Unit (PICU) in
between December 2013 to May 2015 were included in
the study. Patients with known kidney disease and post-
operative cases were excluded from the study.
The study was approved by the Institute Ethics
Committee. Informed consent was taken from parents of
all participants. Detailed clinical history and examination
was done, co-morbidities were noted, and relevant data
regarding investigations was collected for all children
admitted to PICU.
Serum creatinine levels were estimated by modified Jaffe
method, which is quick, simple, reliable and inexpensive
method of creatinine estimation [10]. Serum creatinine
was estimated on all patients admitted to PICU on the
day of admission and on alternate days till discharge from
PICU. Serum creatinine may be repeated frequently in
children who develop shock, sepsis, need for ventilation,
inotropes or diuretics. Creatinine estimation was done at
daily intervals in those patients with AKI.
Estimated creatinine clearance (eCrCL) was calculated
using Schwartz formula [11]. Age related creatinine
clearance was taken as the baseline CrCl.
Urine output measured and recorded as ml/kg/hour. Only
patients who were catheterized were considered for urine
output criteria.
Diagnosis and staging of AKI was based on Pediatric
RIFLE definition & classification. Either eCrCl or urine
output was used to diagnose and stage AKI, using a
criterion that leads to higher stage classification. Shock
was defined in presence of tachycardia, feeble pulses, cool
peripheries, hypotension (blood pressure <-2 Standard
deviation (SD) for age and sex) or capillary filling time > 3
seconds. Sepsis was the presence of systemic inflammatory
response syndrome with suspected or proven infection
[11]. The diagnosis of prerenal vs renal was decided based
on clinical diagnosis and supported by progressively
increasing serum creatinine values, even after 48 hours of
admission and appropriate fluid therapy (Table 1).
Estimated GFR for children is calculated using
SCHWARTZ formula
=
k x Height
eCrCL
S.Creatinine
k = 0.45 for infants 1 to 52 weeks old
k = 0.55 for children 1 to 13 years old
k = 0.55 for adolescent females 13-18 years old
k = 0.7 for adolescent males 13-18 years old
The maximal stage that the patient progressed during the
stay in PICU was assigned the final stage for that case. The
patients were evaluated to ascertain the etiology of AKI
and its progression and were followed until discharge.
Statistical analysis
The incidence of AKI in children is approximately 5%
among non-critically ill and 30% in critically ill according
to Basu and Askenazi et al [4,12].
Inordertoestimatetheseincidenceratesat95%confidence,
and precision of 2.5% for the non-critically ill and 9% for
critically ill, the minimum required sample sizes were 304
and 104, respectively (Formula used is n=z2
1-α/2
P(1-P)/€2
where z= 95% power and 5% level of significance (1.96), P
is the incidence, €= Absolute precision).The admissions to
our PICU in previous year were well above the minimum
required sample. Hence all the cases in the study period
were considered.
Descriptive and inferential statistical analysis has been
carried out in the present study. Results on continuous
measurements are presented on Mean ± SD (Min-Max)
and results on categorical measurements are presented
in Number (%). Significance is assessed at 5% level of
Srinivasa/Reshmavathi
Curr Pediatr Res 2016 Volume 20 Issue 1 & 23
significance. Student t test (two tailed, independent) has
been used to find the significance of study parameters on
continuous scale between two groups (Inter group analysis)
on metric parameters. Chi-square/ Fisher Exact test has
been used to find the significance of study parameters on
categorical scale between two or more groups. Multivariate
Logistic regression analysis was done to assess the risk
factors for development of AKI.
Statistical software
The Statistical software namely SAS 9.2, SPSS 15.0,
Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment
ver.2.11.1 were used for the analysis of the data and
Microsoft word and Excel have been used to generate
graphs, tables etc.
Results
Atotal of 697 cases were admitted during the study period.
Of these 17 cases were excluded and 680 cases were
included in the study.
In this study, out of 680 included patients admitted to PICU
during the study period 178 had AKI making an incidence
of 26.1%. Stage ‘Risk’ comprised maximum cases with
60.7% (108 cases), followed by ‘Injury’ comprised 28.6%
(51 cases) and ‘Failure’ comprised 10.6% (19 cases).
Maximum AKI occurred in <1 year (28.1%) and incidence
was highest among younger age group (p=0.003) (Figure
1).
Amongst the AKI cases creatinine criteria was used in all
cases while urine output criteria was applied for 190 cases.
RISK (R), INJURY (I) and FAILURE (F) cases were 108
(60.7%), 51(28.6%) and 19(10.7%) respectively by eCrCL
criteria. For urine output criteria, 74 cases of the 190 cases
had AKI. Among these 74 cases incidence of stage ‘R’was
31%. ‘I’ was 46% and ‘F’ was 23% respectively (Table 2).
Urine output criteria was applied for 74 of all AKI
cases and there was matching between urine output and
creatinine criteria in 57 cases (77%). There was 39.1%
matching in stage ‘RISK’, 91.2% in stage ‘INJURY’ and
100% in stage ‘FAILURE’ (Table 3).
In this study maximum AKI occurred in <1 year and
incidence was highest among younger age group (p=0.003)
(Table 4).
Infections were the leading cause of AKI. Amongst
Figure 1: Incidence of AKI in study group.
  Estimated Creatinine Clearance (eCrCl) Urine output
Risk decrease by 25% <0.5 ml/kg/h for 8 h
Injury decrease by 50% <0.5 ml/kg/h for 16 h
Failure decrease by 75% or eCrCl<35 ml/min/1.73 m2
<0.3 ml/kg/h for 24 h or anuric for 12 h
Loss Persistent failure >4 weeks  
End stage End-stage renal disease (persistent failure >3 months)  
eCCl, estimated creatinine clearance; pRIFLE, pediatric risk, injury, failure, loss and end-stage renal disease.
Table 1: Classification/staging system for acute kidney injury.
Stage
Creatinine Criteria Urine output Criteria
No AKI AKI Total No AKI AKI Total
No AKI 502(100%) 0(0%) 502(73.8%) 116(100%) 0(0%) 116(61.1%)
Risk 0(0%) 108(60.7%) 108(15.9%) 0(0%) 23(31.1%) 23(12.1%)
Injury 0(0%) 51(28.6%) 51(7.5%) 0(0%) 34(45.9%) 34(17.9%)
Failure 0(0%) 19(10.7%) 19(2.8%) 0(0%) 17(23.0%) 17(8.9%)
Total 502(100%) 178(100%) 680(100%) 116(100%) 74(100%) 190(100%)
P<0.001**, Significant, Chi-Square test
Table 2: Creatinine and urine output criteria stage in relation to incidence of AKI.
Final Rifle stage
Urine output stage (U
)
Total
RU
IU
FU
Risk 9(39.1%) 1(2.9%) 0(0%) 10(13.5%)
Injury 14(60.9%) 31(91.2%) 0(0%) 45(60.8%)
Failure 0(0%) 2(5.9%) 17(100%) 19(25.7%)
Total 23(100%) 34(100%) 17(100%) 74(100%)
Table 3: Matching between creatinine criteria staging and urine output staging.
Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria.
Curr Pediatr Res 2016 Volume 20 Issue 1 & 2
4
On univariate analysis, hypotension, nephrotoxic drugs,
sepsis, need for mechanical ventilation were significant
risk factors for AKI. 56.9% of patients with AKI were
boys. (p=0.818). There was no significant difference of
AKI between males and females Hypotension was found
in 75.3% of patients with AKI (p<0.001). Nephrotoxic
drugs were associated with 42.1% ofAKI cases (p<0.001).
Sepsis was present in 21.9% of AKI cases (p<0.001).
Need for mechanical ventilation was there in 20.2% cases
(p<0.001) (Table 6).
In this study, of all theAKI cases 68% were due to Prerenal
cause and 32% was renal cause (Table 7).
A Backward Wald logistic regression was performed to
ascertain the effects of hypotension, Sepsis,Ventilation and
nephrotoxic drugs usage on the likelihood that participants
have acute kidney injury. The logistic regression model
was statistically significant P<0.001 drawing an inference
that each of these risk factors were individually associated
with occurrence of AKI (Table 8).
Discussion
In the present study, the incidence of AKI in PICU was
26.1%. This was comparable to Krishnamurthy et al
where incidence was 25.1% [13]. It was high compared
to other studies conducted in developed countries such
as Schneider et al where incidence was 10% which used
only serum creatinine to define AKI and not change in
eCCl [14]. However it was lower than reported figure of
82% according to Akan-Arican et al, in which all patients
had respiratory failure and were in receipt of mechanical
Table 4: Association of Age in years in relation to incidence of
AKI.
Age in years
Final Rifle Stage
Total
No AKI AKI
<1 yr 110(21.9%) 50(28.1%) 160(23.5%)
1-2 yrs 96(19.1%) 35(19.7%) 131(19.3%)
2-5 yrs 86(17.1%) 43(24.2%) 129(19%)
5-10 yrs 71(14.1%) 27(15.2%) 98(14.4%)
10-15 yrs 97(19.3%) 18(10.1%) 115(16.9%)
>15 yrs 42(8.4%) 5(2.8%) 47(6.9%)
Total 502(100%) 178(100%) 680(100%)
P=0.003**, Significant, Chi-Square test
AKI etiology AKI cases
Number Percentage
Dengue 54 30.0
Pneumonia 32 17.9
Sepsis 39 21.9
Acute GE 9 5.05
HUS 4 2.24
ALS 10 5.61
Poisoning 15 8.42
Status epilepticus 7 3.9
Malignancy 2 1.12
Snake bite 2 1.12
Cardiac Failure 4 2.24
Table 5: Etiology of AKI.
Variables
Final Rifle stage
Total
(n=680)
P valueNo AKI
(n=502)
AKI
(n=178)
Gender
•	 Male 287(57.2%) 100(56.2%) 387(56.9%)
0.818
•	 Female 215(42.8%) 78(43.8%) 293(43.1%)
Hypotension
•	 Yes 154(30.7%) 134(75.3%) 288(42.4%)
<0.001
•	 No 348(69.3%) 44(24.7%) 392(57.6%)
Nephrotoxic drugs
•	 Yes 291(58%) 75(42.1%) 366(53.8%)
<0.001
•	 No 211(42%) 103(57.9%) 314(46.2%)
Sepsis
•	 Yes 52(10.4%) 39(21.9%) 91(13.4%)
<0.001
•	 No 450(89.6%) 139(78.1%) 589(86.6%)
Ventilator
•	 Yes 34(6.8%) 36(20.2%) 70(10.3%)
<0.001
•	 No 468(93.2%) 142(79.8%) 610(89.7%)
Table 6: Correlation of clinical variables in relation to incidence of AKI.
Cause of AKI No. of patients %
Pre Renal 121 68.0
Renal 57 32.0
Total 178 100.0
Table 7: Cause of AKI in relation to incidence of AKI in patients studied.
infections dengue (30%) was the most common etiology
associated with AKI, followed by sepsis (21.9%) and then
pneumonia (17.9%) (Table 5).
Srinivasa/Reshmavathi
Curr Pediatr Res 2016 Volume 20 Issue 1 & 25
Variables
Logistic regression results to predict the development of AKI 95%CI
Logit c
o-efficient
SE Wald P value Adj OR Lower Upper
Hypotension 1.78 0.21 70.95 <0.001 5.95 3.93 9.01
Nephrotoxic drugs -0.79 0.20 15.28 <0.001 0.45 0.31 0.67
Sepsis 0.91 0.27 11.81 0.001 2.50 1.48 4.20
ventilation 0.62 0.29 4.51 0.034 1.85 1.05 3.28
Table 8: Multivariate Logistic regression analysis to assess the risk factors for development of AKI
ventilation [15]. This difference can be explained by
heterogeneity of patient population, regional differences
and sample size can explain this difference.
AKI stratum R, I, F was diagnosed in 60.7%, 28.6% and
10.7% OFAKI cases. The results are comparable to Mehta
et al. Maximum number of AKI patients were in Stratum
R. Altogether there was progression in grades in 76 cases,
maximum progression was from 'No AKI' to stage R.
Amongst the three pRIFLE stages maximum progression
was seen in stage R to stage I. This was similar to results
of both Hoste et al and Hui et al which also showed
maximum progression to stage I from stage R [16,17]
Pediatric RIFLE criteria use both eCrCl and urine output
criteria for classification of AKI stages. In this study urine
output criteria was applied only to those patients who were
catherized for accurate measurement of urine output. Of
the cases for whom urine output criteria was applied there
was matching in 77% between urine output and eCrCl
criteria. Akcan-Arikan et al and Krishnamurthy et al
observed matching of 35% and 37% between urine output
and serum creatinine criteria comparable to the present
study [13,15]. It was observed that there is an increasing
trend in matching between the urine output and eCrCl with
progression of stage.
The maximum number, 28% of AKI patients were below
1 year in our study which was comparable to Mehta et
al. This shows that patients with AKI were younger than
those without AKI.
The etiology of AKI varies from developed and
developing countries. While sepsis, glomerulonephritis,
HUS and ATN predominate in developing countries,
these are replaced by major surgery, haemato-oncological
complications, nephrotoxic drugs and pulmonary failure
as cause of AKI. In this study too infections contributed to
majority of AKI cases. Amongst infections dengue (30%)
was the most common etiology associated with AKI,
followed by sepsis (21.9%) and then pneumonia (17.9%).
Tropical febrile illnesses have been associated with AKI.
Dengue is a tropical febrile illness that is common in
this part of country. Dengue constituted the majority of
cases. The next common etiology was sepsis. According
to both Krishnamurthy et al and Mehta et al sepsis was
the most common etiology associated with AKI. There
is geographical variation in the etiology. There were no
post renal etiologies detected in this study. This could be
probably attributed to the post renal causes run a chronic
course with progressive deterioration of renal function
and also that their detection is more frequent in pediatrics
wards than in PICU.
Prerenal causes account for majority of the AKI (68%) as
renal diseases were excluded from the study. In our study
risk factors for AKI were hypotension, nephrotoxic drugs,
sepsis and Need for Ventilation. Hypotension was found
in 75.3% of patients with AKI (p<0.001). Nephrotoxic
drugs were associated with 42.1% ofAKI cases (p<0.001).
Sepsis was present in 21.9% of AKI cases (p<0.001).
Need for mechanical ventilation was there in 20.2%
cases (p<0.001). This is comparable with Mehta et al and
Mendonca et al [18].
The potential limitation of this study is the use of an
assumed baseline eCrCl. Furthermore urine output criteria
could not be applied to all patients as only patients who
were catheterized were included for urine output criteria.
Conclusion
AKI incidence in high in children admitted to PICU.
AKI commonly associated with severe dengue, sepsis
and pneumonia. It is amenable to treatment provided
early diagnosis and prompt treatment. Early identification
requires uniform definition and staging system to guide
intervention. This study supports use of the pRIFLE score
as an easy and simple tool for identification and classifying
AKI.
References
1.	 Ravindra Mehta, J Cerda. International Society of
Nephrology’s 0by 25 Initative for acute kidney injury: a
human rights case for nephrology. The Lancet 2015.
2.	 Paweena Susantitaphong, Dinna N. Cruz, Cerda J, Maher
Abulfaraj, Fahad A, et al. For the Acute Kidney Injury
Advisory Group of the American Society of Nephrology.
‘World Incidence of AKI: A Meta-Analysis. ‘Clin J Am Soc
Nephrol 2013; 8: 1482-1493.
3.	 Andreoli SP.Acute kidney injury in children, Pediatr Nephrol
2009; 24:253-263.
4.	 Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein
SL. 3-5 year longitudinal follow-up of pediatric patients after
acute renal failure. Kidney Int 2006; 69:184-189.
5.	 Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P.
Acute renal failure: Definition, outcome measures, animal
models, fluid therapy and information technology needs: The
Second International Consensus Conference of the Acute
Dialysis Quality Initiative (ADQI) Group. Crit Care 2004;
8: R204-12.
Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria.
Curr Pediatr Res 2016 Volume 20 Issue 1 & 2
6
6.	 Lameire N, Van Biesen W, Vanholder R. The changing
epidemiology of acute renal failure. Nat Clin Pract Nephrol
2006; 2: 364-377.
7.	 Cerdá J, BaggaA, Kher V, Chakravarthi RM. The contrasting
characteristics of acute kidney injury in developed and
developing countries. Nat Clin Pract Nephrol 2008; 4: 138-
153.
8.	 Cerda J, Lameire N, Pannu N, Uchino S, Wang H, et al.
Epidemiology of acute kidney inury. Clin J AM Soc Nephrol
2008; 3: 881-886
9.	 Mehta P, SinhaA, SamiA, Hari P. Incidence ofAcute Kidney
Injury in Hospitalized Children.
10.	Bowers LS, Wong ET. Kinetic serum creatinine assay II. A
critical analysis and review. Clin Chem 1980; 26: 555-561.
11.	Goldstein B, Giroir B, Randolph A. International Pediatric
Sepsis Consensus Conference: Definitions for sepsis and
organ dysfunction in Pediatrics. Pediatr Crit Care Med 2005;
6: 2-8.
12.	Basu RK, Prasad DP, Wong H, Wheeler DS. An update and
review of acute kidney injury in pediatrics. Pediatr Crit Care
Med 2011; 12: 339-347.
13.	Krishnamurthy S, Mondal N, Narayanan P, Biswal N,
Srinivasan S, et al. Incidence and etiology of acute kidney
injury in southern india. Indian J Pediatr 2013; 80: 183-189.
14.	Schneider J, Khemani R, Grushkin C, et al. Serum creatinine
as stratified in the RIFLE score for acute kidney injury is
associated with mortality and length of stay for children in
the pediatric intensive care unit. Crit Care Med 2010; 38:
933-939.
15.	Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK,
Jefferson LS, et al. Modified RIFLE criteria in critically
ill children with acute kidney injury. Kidney Int 2007; 71:
1028-1035.
16.	Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus
DC, De Bacquer D, et al. RIFLE criteria for acute kidney
injury are associated with hospital mortality in critically ill
patients: A cohort analysis. Crit Care 2006; 10: R73-82.
17.	WF Hui, Chan W, Miu TY et al. acute kidney injury in the
pediatric intensive care unit: identification by modified
RIFLE criteria. Hong Kong Med J 2013; 19: 13-19.
18.	De Mendonça, Arnaldo, et al. "Acute renal failure in the
ICU: risk factors and outcome evaluated by the SOFAscore."
Intensive care medicine 2000; 915-921.
Correspondence to:
Dr Reshmavathi V
37, 1st Main, RMV 2nd Stage,
Amarjyothi Layout, Sanjaynagar,
Bangalore 560094,
India.
Tel: 9902645747
E-mail: dr.reshma.venkatram@gmail.com

More Related Content

What's hot

Classification and Regression Tree Analysis in Biomedical Research
Classification and Regression Tree Analysis in Biomedical Research Classification and Regression Tree Analysis in Biomedical Research
Classification and Regression Tree Analysis in Biomedical Research Salford Systems
 
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...KhalafAlGhamdi
 
Journal Club presentation on Outbreak Investigation Study
Journal Club presentation on Outbreak Investigation Study   Journal Club presentation on Outbreak Investigation Study
Journal Club presentation on Outbreak Investigation Study Kunal Modak
 
May 25, 2021 Perioperative Geriatrics
May 25, 2021   Perioperative GeriatricsMay 25, 2021   Perioperative Geriatrics
May 25, 2021 Perioperative GeriatricsCamilla Wong
 
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...dbpublications
 
The role of primary care in the management of crf patients
The role of primary care in the management of crf patientsThe role of primary care in the management of crf patients
The role of primary care in the management of crf patientsIvan De Paz Mejia
 
Benjamin Bearnot - New treatments for the infectious complications of substan...
Benjamin Bearnot - New treatments for the infectious complications of substan...Benjamin Bearnot - New treatments for the infectious complications of substan...
Benjamin Bearnot - New treatments for the infectious complications of substan...Benjamin Bearnot, MD
 
Journal club On Proton Pump Inhibitors. ...
Journal club On Proton Pump Inhibitors.                                      ...Journal club On Proton Pump Inhibitors.                                      ...
Journal club On Proton Pump Inhibitors. ...Dr.Saroj Poudel
 
Liquidos en el paciente septico
Liquidos en el paciente septicoLiquidos en el paciente septico
Liquidos en el paciente septicoAivan Lima
 
Academic Research Day_Presentation
Academic Research Day_PresentationAcademic Research Day_Presentation
Academic Research Day_PresentationKurt Daniels
 
Assessment of level of cognitive impairment among stroke patients
Assessment of level of cognitive impairment among stroke patientsAssessment of level of cognitive impairment among stroke patients
Assessment of level of cognitive impairment among stroke patientspharmaindexing
 
2004 pediat. motivos encaminhamento
2004 pediat. motivos encaminhamento 2004 pediat. motivos encaminhamento
2004 pediat. motivos encaminhamento gisa_legal
 
SSHC Journal Club presentation on the The Journal of Infectious Disease Volu...
SSHC Journal Club presentation on the The  Journal of Infectious Disease Volu...SSHC Journal Club presentation on the The  Journal of Infectious Disease Volu...
SSHC Journal Club presentation on the The Journal of Infectious Disease Volu...Sydney Sexual Health Centre
 
Pulse oximetry screening in newborns
Pulse oximetry screening in newbornsPulse oximetry screening in newborns
Pulse oximetry screening in newbornsgfalakha
 

What's hot (20)

Classification and Regression Tree Analysis in Biomedical Research
Classification and Regression Tree Analysis in Biomedical Research Classification and Regression Tree Analysis in Biomedical Research
Classification and Regression Tree Analysis in Biomedical Research
 
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...
Proton Pump Inhibitors and Risk of Acute and Chronic Kidney Disease: A Retros...
 
Final FRD
Final FRDFinal FRD
Final FRD
 
Journal Club presentation on Outbreak Investigation Study
Journal Club presentation on Outbreak Investigation Study   Journal Club presentation on Outbreak Investigation Study
Journal Club presentation on Outbreak Investigation Study
 
Hd o dp en ancianos fragiles
Hd o dp en ancianos fragilesHd o dp en ancianos fragiles
Hd o dp en ancianos fragiles
 
May 25, 2021 Perioperative Geriatrics
May 25, 2021   Perioperative GeriatricsMay 25, 2021   Perioperative Geriatrics
May 25, 2021 Perioperative Geriatrics
 
Jurnal 2 wawan
Jurnal 2 wawanJurnal 2 wawan
Jurnal 2 wawan
 
Dr kajal Srivastava
Dr kajal SrivastavaDr kajal Srivastava
Dr kajal Srivastava
 
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...
A Study On Clinical Profile Of Sepsis Patients In Intensive Care Unit Of A Te...
 
The role of primary care in the management of crf patients
The role of primary care in the management of crf patientsThe role of primary care in the management of crf patients
The role of primary care in the management of crf patients
 
Benjamin Bearnot - New treatments for the infectious complications of substan...
Benjamin Bearnot - New treatments for the infectious complications of substan...Benjamin Bearnot - New treatments for the infectious complications of substan...
Benjamin Bearnot - New treatments for the infectious complications of substan...
 
Journal club On Proton Pump Inhibitors. ...
Journal club On Proton Pump Inhibitors.                                      ...Journal club On Proton Pump Inhibitors.                                      ...
Journal club On Proton Pump Inhibitors. ...
 
Liquidos en el paciente septico
Liquidos en el paciente septicoLiquidos en el paciente septico
Liquidos en el paciente septico
 
Academic Research Day_Presentation
Academic Research Day_PresentationAcademic Research Day_Presentation
Academic Research Day_Presentation
 
Susan Ellenberg, Evaluating Treatments in Settings Demanding Urgency: Lessons...
Susan Ellenberg, Evaluating Treatments in Settings Demanding Urgency: Lessons...Susan Ellenberg, Evaluating Treatments in Settings Demanding Urgency: Lessons...
Susan Ellenberg, Evaluating Treatments in Settings Demanding Urgency: Lessons...
 
Assessment of level of cognitive impairment among stroke patients
Assessment of level of cognitive impairment among stroke patientsAssessment of level of cognitive impairment among stroke patients
Assessment of level of cognitive impairment among stroke patients
 
International Journal of Nephrology & Therapeutics
International Journal of Nephrology & TherapeuticsInternational Journal of Nephrology & Therapeutics
International Journal of Nephrology & Therapeutics
 
2004 pediat. motivos encaminhamento
2004 pediat. motivos encaminhamento 2004 pediat. motivos encaminhamento
2004 pediat. motivos encaminhamento
 
SSHC Journal Club presentation on the The Journal of Infectious Disease Volu...
SSHC Journal Club presentation on the The  Journal of Infectious Disease Volu...SSHC Journal Club presentation on the The  Journal of Infectious Disease Volu...
SSHC Journal Club presentation on the The Journal of Infectious Disease Volu...
 
Pulse oximetry screening in newborns
Pulse oximetry screening in newbornsPulse oximetry screening in newborns
Pulse oximetry screening in newborns
 

Similar to Incidence and-etiology-of-acute-kidney-injury-in-children-admitted-to-picuusing-prifle-criteria

acute kidney injury in critically ill children at pediatric intensive care unit
acute kidney injury in critically ill children at pediatric intensive care unitacute kidney injury in critically ill children at pediatric intensive care unit
acute kidney injury in critically ill children at pediatric intensive care unitSion Vrap
 
Acute Kidney Injury in Dengue Fever final.pptx
Acute Kidney Injury in Dengue Fever final.pptxAcute Kidney Injury in Dengue Fever final.pptx
Acute Kidney Injury in Dengue Fever final.pptxMOPHCHOLAVANAHALLY
 
Acute Kidney Injury in Dengue Fever.pptx
Acute Kidney Injury in Dengue Fever.pptxAcute Kidney Injury in Dengue Fever.pptx
Acute Kidney Injury in Dengue Fever.pptxJunaid Khan
 
presented at ESPID PNEUMONET
presented at ESPID  PNEUMONETpresented at ESPID  PNEUMONET
presented at ESPID PNEUMONETivana haluskova
 
Rn com ccc eco fetal
Rn com ccc   eco fetalRn com ccc   eco fetal
Rn com ccc eco fetalgisa_legal
 
Ann pediatrcard eco fetal no diag precoce
Ann pediatrcard eco fetal no diag precoceAnn pediatrcard eco fetal no diag precoce
Ann pediatrcard eco fetal no diag precocegisa_legal
 
Acute kidney injury asa guidelines
Acute kidney injury   asa guidelinesAcute kidney injury   asa guidelines
Acute kidney injury asa guidelinesMohamedKhamis77
 
Acute Kidney Injury in fever.pptx
Acute Kidney Injury in fever.pptxAcute Kidney Injury in fever.pptx
Acute Kidney Injury in fever.pptxDrTapasTripathi
 
Typhoid intestinal perforation in children still a persistent problem in a ...
Typhoid intestinal perforation in children   still a persistent problem in a ...Typhoid intestinal perforation in children   still a persistent problem in a ...
Typhoid intestinal perforation in children still a persistent problem in a ...Clinical Surgery Research Communications
 
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docx
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docxTHE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docx
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docxyudistiraanwar1
 
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...ijtsrd
 
Sample manuscript-original isi
Sample manuscript-original isiSample manuscript-original isi
Sample manuscript-original isianaana339
 
2011 cap in children
2011 cap in children2011 cap in children
2011 cap in childrenGerman Bri
 
Bacteriological profile of childhood sepsis at a tertiary health centre in so...
Bacteriological profile of childhood sepsis at a tertiary health centre in so...Bacteriological profile of childhood sepsis at a tertiary health centre in so...
Bacteriological profile of childhood sepsis at a tertiary health centre in so...QUESTJOURNAL
 
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...Serum interleukin - 6 level among sudanese patients with chronic kidney disea...
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...BioMedSciDirect Publications
 

Similar to Incidence and-etiology-of-acute-kidney-injury-in-children-admitted-to-picuusing-prifle-criteria (20)

acute kidney injury in critically ill children at pediatric intensive care unit
acute kidney injury in critically ill children at pediatric intensive care unitacute kidney injury in critically ill children at pediatric intensive care unit
acute kidney injury in critically ill children at pediatric intensive care unit
 
Acute Kidney Injury in Dengue Fever final.pptx
Acute Kidney Injury in Dengue Fever final.pptxAcute Kidney Injury in Dengue Fever final.pptx
Acute Kidney Injury in Dengue Fever final.pptx
 
Incidence_Epidemiology_Acute_Kidney_Injury_Tertiary_Care_Centre.pdf
Incidence_Epidemiology_Acute_Kidney_Injury_Tertiary_Care_Centre.pdfIncidence_Epidemiology_Acute_Kidney_Injury_Tertiary_Care_Centre.pdf
Incidence_Epidemiology_Acute_Kidney_Injury_Tertiary_Care_Centre.pdf
 
Acute Kidney Injury in Dengue Fever.pptx
Acute Kidney Injury in Dengue Fever.pptxAcute Kidney Injury in Dengue Fever.pptx
Acute Kidney Injury in Dengue Fever.pptx
 
CPRE
CPRECPRE
CPRE
 
presented at ESPID PNEUMONET
presented at ESPID  PNEUMONETpresented at ESPID  PNEUMONET
presented at ESPID PNEUMONET
 
Rn com ccc eco fetal
Rn com ccc   eco fetalRn com ccc   eco fetal
Rn com ccc eco fetal
 
Ann pediatrcard eco fetal no diag precoce
Ann pediatrcard eco fetal no diag precoceAnn pediatrcard eco fetal no diag precoce
Ann pediatrcard eco fetal no diag precoce
 
harer2018.pdf
harer2018.pdfharer2018.pdf
harer2018.pdf
 
Acute kidney injury asa guidelines
Acute kidney injury   asa guidelinesAcute kidney injury   asa guidelines
Acute kidney injury asa guidelines
 
Acute Kidney Injury in fever.pptx
Acute Kidney Injury in fever.pptxAcute Kidney Injury in fever.pptx
Acute Kidney Injury in fever.pptx
 
Typhoid intestinal perforation in children still a persistent problem in a ...
Typhoid intestinal perforation in children   still a persistent problem in a ...Typhoid intestinal perforation in children   still a persistent problem in a ...
Typhoid intestinal perforation in children still a persistent problem in a ...
 
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docx
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docxTHE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docx
THE RELATIONSHIP OF SIC and CLINICAL OUTCOME.docx
 
Acute pancreatitis
Acute pancreatitisAcute pancreatitis
Acute pancreatitis
 
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...
Comparison of Infection Episodes in CKD Patients with or without Hemodialysis...
 
Guía neumonía 2011
Guía neumonía 2011Guía neumonía 2011
Guía neumonía 2011
 
Sample manuscript-original isi
Sample manuscript-original isiSample manuscript-original isi
Sample manuscript-original isi
 
2011 cap in children
2011 cap in children2011 cap in children
2011 cap in children
 
Bacteriological profile of childhood sepsis at a tertiary health centre in so...
Bacteriological profile of childhood sepsis at a tertiary health centre in so...Bacteriological profile of childhood sepsis at a tertiary health centre in so...
Bacteriological profile of childhood sepsis at a tertiary health centre in so...
 
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...Serum interleukin - 6 level among sudanese patients with chronic kidney disea...
Serum interleukin - 6 level among sudanese patients with chronic kidney disea...
 

More from soad shedeed

The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...
The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...
The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...soad shedeed
 
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...soad shedeed
 
Guidelines december 2014_edition
Guidelines december 2014_editionGuidelines december 2014_edition
Guidelines december 2014_editionsoad shedeed
 
Answering the-essay-short-answer-exam-question
Answering the-essay-short-answer-exam-questionAnswering the-essay-short-answer-exam-question
Answering the-essay-short-answer-exam-questionsoad shedeed
 

More from soad shedeed (7)

The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...
The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...
The normal-range-of-heart-rate-at-birth-in-a-healthy-term-neonate-a-critical-...
 
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...
Noninvasive assessment-of-liver-fibrosis-in-egyptian-children-with-chronic-li...
 
Jra
JraJra
Jra
 
Emergency cases 1
Emergency cases 1Emergency cases 1
Emergency cases 1
 
Guidelines december 2014_edition
Guidelines december 2014_editionGuidelines december 2014_edition
Guidelines december 2014_edition
 
Chd guidlines
Chd guidlinesChd guidlines
Chd guidlines
 
Answering the-essay-short-answer-exam-question
Answering the-essay-short-answer-exam-questionAnswering the-essay-short-answer-exam-question
Answering the-essay-short-answer-exam-question
 

Recently uploaded

Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 

Recently uploaded (20)

Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 

Incidence and-etiology-of-acute-kidney-injury-in-children-admitted-to-picuusing-prifle-criteria

  • 1. Curr Pediatr Res 2016; 20 (1&2): 1-6 ISSN 0971-9032 www.currentpediatrics.com Curr Pediatr Res 2016 Volume 20 Issue 1 & 21 Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria. Srinivasa S1 , Reshmavathi V2 * 1 Professor and HOD, Department of Pediatrics, Kempegowda Institute of Medical Sciences, Bangalore, India. 2 Junior Resident, Department of Pediatrics, Kempegowda Institute of Medical Sciences, Bangalore, India. Introduction Acute Kidney Injury (AKI) has become a major global health care challenge with an estimated 13.3 million cases per year leading to an estimated mortality of 1.7 million deaths per year globally. Increasing prevalence of AKI is strongly associated with increased early and long term patient morbidity and mortality [1]. According to recent meta-analysis conducted by Paweena et al the pooled incidence rate of AKI was 33.7% (95% CI, 26.9 to 41.3) and AKI-associated mortality rates was 13.8% in children (95% CI, 8.8 to 21.0) [2]. “0 by25” is an ambitious initiative of International Society of Nephrology which aims to eliminate preventable deaths from Acute Kidney Injury worldwide by 2025. This initiative emphasizes the magnitude of the problem, the global concern about AKI and its endeavour to eliminate mortality and morbidity due to AKI. Acute kidney injury previously called acute renal failure is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to appropriately regulate fluid and electrolyte homeostasis [3]. If left untreated, the condition has a high risk of multiple organ failure and potentially death. Patients who suffer from AKI may have subsequent renal dysfunction after original injury. Children are more susceptible for this dysfunction [4]. Introduction: Acute Kidney Injury (AKI) is associated with severe morbidity and mortality. Lack of consensus definition has been major limitation in improving outcomes. Acute Dialysis Quality Initiative Group (ADQI) group proposed RIFLE (Risk, Injury, Failure, Loss of function, End stage renal disease) criteria, criteria for defining AKI, later modified in children as pRIFLE (pediatric RIFLE). This study tries to address the need of limited data on pediatric AKI. Methodology: A prospective study conducted in between December 2013 to May 2015. Serum creatinine level was estimated on all patients on admission and alternate days till discharge from Pediatric Intensive Care Unit (PICU). Urine output was recorded. Estimated Creatinine- Clearance (eCrCL) was calculated using Schwartz formula. AKI diagnosis and staging was based on pRIFLE (pediatric RIFLE) criteria. Either eCrCl or urine output criteria were used to diagnose and stage AKI, using criterion that leads to higher stage. Maximal stage that the patient progressed during the stay in PICU was assigned the stage for that case. Data was compiled using SPSS software. Results: Of total 697 cases, 680 cases met inclusion criteria. Incidence of AKI was 178 (26.1%). Stage ‘Risk (R)’, ‘Injury (I)’ and ‘Failure (F)’ constituted 60.7% (108), 28.6% (51) and 10.6% (19) respectively. Maximum AKI occurred in < 1 year (28.1%) (p=0.003). Urine output and creatinine criteria matching were there in 77%. Infections were commonest etiology. Amongst infections dengue (30%) was most common, followed by sepsis (21.9%) and then pneumonia (17.9%). Hypotension, nephrotoxic drugs, sepsis, need for mechanical ventilation were significant (p<0.001) risk factors for AKI. Prerenal causes constituted 68% and renal 32%. Conclusion: Incidence of AKI is high among critically ill children. pRIFLE staging system that provides early identification and stratification of AKI. Infections are leading etiology of AKI in children. Abstract Keywords: AKI, pRIFLE, PICU. Accepted January 30, 2016
  • 2. Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria. Curr Pediatr Res 2016 Volume 20 Issue 1 & 2 2 For a long time there was lack of consensus on definition of AKI.In2005,thefirstconsensusdefinitionofAKIfortheadult population, based on the RIFLE (Risk, Injury, Failure, Loss of function, End stage renal disease) criteria, was proposed by the Acute Dialysis Quality Initiative Group (ADQI) [5]. The definition was later modified and evaluated in critically ill pediatric patients and termed pRIFLE (Pediatric RIFLE) criteria. The pRIFLE criteria differs from RIFLE criteria, in that a) Only decrease in estimated creatinine clearance (eCrCL), and not the change in glomerular filtration rate, is used to determine grading b)The eCrCl is estimated using the Schwartz formula, which incorporates the height and serum creatinine level of the patient, and an age adjusted constant c) pRIFLE incorporates a longer duration of urine output than in adult RIFLE classification. The spectrum and burden of AKI in developing countries may be different from that of developed countries [6] The patients from developing countries are younger, infection associated AKI is more common and a significant proportion may have already developed AKI at the time of hospitalization. In addition, resource limitations in managing children who require renal replacement therapy add to the burden [7,8]. Most of the studies in AKI are based on adult population. The incidence and clinico-etiological profile of AKI varies from adults to children. Of the pediatric studies on incidence of AKI, many are limited to developed countries and often retrospective[9]. Hence limited data availability on clinical profile of pediatric AKI from Indian children, fallacies of retrospective studies, and regional variations in the profile of AKI makes it compelling to study incidence and outcome of AKI in pediatric patients and current study tries to address this need Methodology This was a Prospective and observational study conducted at Kempegowda Institute of Medical Sciences, Bangalore. All patients within the age group of 1 month to 18 years admitted to Pediatric Intensive Care Unit (PICU) in between December 2013 to May 2015 were included in the study. Patients with known kidney disease and post- operative cases were excluded from the study. The study was approved by the Institute Ethics Committee. Informed consent was taken from parents of all participants. Detailed clinical history and examination was done, co-morbidities were noted, and relevant data regarding investigations was collected for all children admitted to PICU. Serum creatinine levels were estimated by modified Jaffe method, which is quick, simple, reliable and inexpensive method of creatinine estimation [10]. Serum creatinine was estimated on all patients admitted to PICU on the day of admission and on alternate days till discharge from PICU. Serum creatinine may be repeated frequently in children who develop shock, sepsis, need for ventilation, inotropes or diuretics. Creatinine estimation was done at daily intervals in those patients with AKI. Estimated creatinine clearance (eCrCL) was calculated using Schwartz formula [11]. Age related creatinine clearance was taken as the baseline CrCl. Urine output measured and recorded as ml/kg/hour. Only patients who were catheterized were considered for urine output criteria. Diagnosis and staging of AKI was based on Pediatric RIFLE definition & classification. Either eCrCl or urine output was used to diagnose and stage AKI, using a criterion that leads to higher stage classification. Shock was defined in presence of tachycardia, feeble pulses, cool peripheries, hypotension (blood pressure <-2 Standard deviation (SD) for age and sex) or capillary filling time > 3 seconds. Sepsis was the presence of systemic inflammatory response syndrome with suspected or proven infection [11]. The diagnosis of prerenal vs renal was decided based on clinical diagnosis and supported by progressively increasing serum creatinine values, even after 48 hours of admission and appropriate fluid therapy (Table 1). Estimated GFR for children is calculated using SCHWARTZ formula = k x Height eCrCL S.Creatinine k = 0.45 for infants 1 to 52 weeks old k = 0.55 for children 1 to 13 years old k = 0.55 for adolescent females 13-18 years old k = 0.7 for adolescent males 13-18 years old The maximal stage that the patient progressed during the stay in PICU was assigned the final stage for that case. The patients were evaluated to ascertain the etiology of AKI and its progression and were followed until discharge. Statistical analysis The incidence of AKI in children is approximately 5% among non-critically ill and 30% in critically ill according to Basu and Askenazi et al [4,12]. Inordertoestimatetheseincidenceratesat95%confidence, and precision of 2.5% for the non-critically ill and 9% for critically ill, the minimum required sample sizes were 304 and 104, respectively (Formula used is n=z2 1-α/2 P(1-P)/€2 where z= 95% power and 5% level of significance (1.96), P is the incidence, €= Absolute precision).The admissions to our PICU in previous year were well above the minimum required sample. Hence all the cases in the study period were considered. Descriptive and inferential statistical analysis has been carried out in the present study. Results on continuous measurements are presented on Mean ± SD (Min-Max) and results on categorical measurements are presented in Number (%). Significance is assessed at 5% level of
  • 3. Srinivasa/Reshmavathi Curr Pediatr Res 2016 Volume 20 Issue 1 & 23 significance. Student t test (two tailed, independent) has been used to find the significance of study parameters on continuous scale between two groups (Inter group analysis) on metric parameters. Chi-square/ Fisher Exact test has been used to find the significance of study parameters on categorical scale between two or more groups. Multivariate Logistic regression analysis was done to assess the risk factors for development of AKI. Statistical software The Statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data and Microsoft word and Excel have been used to generate graphs, tables etc. Results Atotal of 697 cases were admitted during the study period. Of these 17 cases were excluded and 680 cases were included in the study. In this study, out of 680 included patients admitted to PICU during the study period 178 had AKI making an incidence of 26.1%. Stage ‘Risk’ comprised maximum cases with 60.7% (108 cases), followed by ‘Injury’ comprised 28.6% (51 cases) and ‘Failure’ comprised 10.6% (19 cases). Maximum AKI occurred in <1 year (28.1%) and incidence was highest among younger age group (p=0.003) (Figure 1). Amongst the AKI cases creatinine criteria was used in all cases while urine output criteria was applied for 190 cases. RISK (R), INJURY (I) and FAILURE (F) cases were 108 (60.7%), 51(28.6%) and 19(10.7%) respectively by eCrCL criteria. For urine output criteria, 74 cases of the 190 cases had AKI. Among these 74 cases incidence of stage ‘R’was 31%. ‘I’ was 46% and ‘F’ was 23% respectively (Table 2). Urine output criteria was applied for 74 of all AKI cases and there was matching between urine output and creatinine criteria in 57 cases (77%). There was 39.1% matching in stage ‘RISK’, 91.2% in stage ‘INJURY’ and 100% in stage ‘FAILURE’ (Table 3). In this study maximum AKI occurred in <1 year and incidence was highest among younger age group (p=0.003) (Table 4). Infections were the leading cause of AKI. Amongst Figure 1: Incidence of AKI in study group.   Estimated Creatinine Clearance (eCrCl) Urine output Risk decrease by 25% <0.5 ml/kg/h for 8 h Injury decrease by 50% <0.5 ml/kg/h for 16 h Failure decrease by 75% or eCrCl<35 ml/min/1.73 m2 <0.3 ml/kg/h for 24 h or anuric for 12 h Loss Persistent failure >4 weeks   End stage End-stage renal disease (persistent failure >3 months)   eCCl, estimated creatinine clearance; pRIFLE, pediatric risk, injury, failure, loss and end-stage renal disease. Table 1: Classification/staging system for acute kidney injury. Stage Creatinine Criteria Urine output Criteria No AKI AKI Total No AKI AKI Total No AKI 502(100%) 0(0%) 502(73.8%) 116(100%) 0(0%) 116(61.1%) Risk 0(0%) 108(60.7%) 108(15.9%) 0(0%) 23(31.1%) 23(12.1%) Injury 0(0%) 51(28.6%) 51(7.5%) 0(0%) 34(45.9%) 34(17.9%) Failure 0(0%) 19(10.7%) 19(2.8%) 0(0%) 17(23.0%) 17(8.9%) Total 502(100%) 178(100%) 680(100%) 116(100%) 74(100%) 190(100%) P<0.001**, Significant, Chi-Square test Table 2: Creatinine and urine output criteria stage in relation to incidence of AKI. Final Rifle stage Urine output stage (U ) Total RU IU FU Risk 9(39.1%) 1(2.9%) 0(0%) 10(13.5%) Injury 14(60.9%) 31(91.2%) 0(0%) 45(60.8%) Failure 0(0%) 2(5.9%) 17(100%) 19(25.7%) Total 23(100%) 34(100%) 17(100%) 74(100%) Table 3: Matching between creatinine criteria staging and urine output staging.
  • 4. Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria. Curr Pediatr Res 2016 Volume 20 Issue 1 & 2 4 On univariate analysis, hypotension, nephrotoxic drugs, sepsis, need for mechanical ventilation were significant risk factors for AKI. 56.9% of patients with AKI were boys. (p=0.818). There was no significant difference of AKI between males and females Hypotension was found in 75.3% of patients with AKI (p<0.001). Nephrotoxic drugs were associated with 42.1% ofAKI cases (p<0.001). Sepsis was present in 21.9% of AKI cases (p<0.001). Need for mechanical ventilation was there in 20.2% cases (p<0.001) (Table 6). In this study, of all theAKI cases 68% were due to Prerenal cause and 32% was renal cause (Table 7). A Backward Wald logistic regression was performed to ascertain the effects of hypotension, Sepsis,Ventilation and nephrotoxic drugs usage on the likelihood that participants have acute kidney injury. The logistic regression model was statistically significant P<0.001 drawing an inference that each of these risk factors were individually associated with occurrence of AKI (Table 8). Discussion In the present study, the incidence of AKI in PICU was 26.1%. This was comparable to Krishnamurthy et al where incidence was 25.1% [13]. It was high compared to other studies conducted in developed countries such as Schneider et al where incidence was 10% which used only serum creatinine to define AKI and not change in eCCl [14]. However it was lower than reported figure of 82% according to Akan-Arican et al, in which all patients had respiratory failure and were in receipt of mechanical Table 4: Association of Age in years in relation to incidence of AKI. Age in years Final Rifle Stage Total No AKI AKI <1 yr 110(21.9%) 50(28.1%) 160(23.5%) 1-2 yrs 96(19.1%) 35(19.7%) 131(19.3%) 2-5 yrs 86(17.1%) 43(24.2%) 129(19%) 5-10 yrs 71(14.1%) 27(15.2%) 98(14.4%) 10-15 yrs 97(19.3%) 18(10.1%) 115(16.9%) >15 yrs 42(8.4%) 5(2.8%) 47(6.9%) Total 502(100%) 178(100%) 680(100%) P=0.003**, Significant, Chi-Square test AKI etiology AKI cases Number Percentage Dengue 54 30.0 Pneumonia 32 17.9 Sepsis 39 21.9 Acute GE 9 5.05 HUS 4 2.24 ALS 10 5.61 Poisoning 15 8.42 Status epilepticus 7 3.9 Malignancy 2 1.12 Snake bite 2 1.12 Cardiac Failure 4 2.24 Table 5: Etiology of AKI. Variables Final Rifle stage Total (n=680) P valueNo AKI (n=502) AKI (n=178) Gender • Male 287(57.2%) 100(56.2%) 387(56.9%) 0.818 • Female 215(42.8%) 78(43.8%) 293(43.1%) Hypotension • Yes 154(30.7%) 134(75.3%) 288(42.4%) <0.001 • No 348(69.3%) 44(24.7%) 392(57.6%) Nephrotoxic drugs • Yes 291(58%) 75(42.1%) 366(53.8%) <0.001 • No 211(42%) 103(57.9%) 314(46.2%) Sepsis • Yes 52(10.4%) 39(21.9%) 91(13.4%) <0.001 • No 450(89.6%) 139(78.1%) 589(86.6%) Ventilator • Yes 34(6.8%) 36(20.2%) 70(10.3%) <0.001 • No 468(93.2%) 142(79.8%) 610(89.7%) Table 6: Correlation of clinical variables in relation to incidence of AKI. Cause of AKI No. of patients % Pre Renal 121 68.0 Renal 57 32.0 Total 178 100.0 Table 7: Cause of AKI in relation to incidence of AKI in patients studied. infections dengue (30%) was the most common etiology associated with AKI, followed by sepsis (21.9%) and then pneumonia (17.9%) (Table 5).
  • 5. Srinivasa/Reshmavathi Curr Pediatr Res 2016 Volume 20 Issue 1 & 25 Variables Logistic regression results to predict the development of AKI 95%CI Logit c o-efficient SE Wald P value Adj OR Lower Upper Hypotension 1.78 0.21 70.95 <0.001 5.95 3.93 9.01 Nephrotoxic drugs -0.79 0.20 15.28 <0.001 0.45 0.31 0.67 Sepsis 0.91 0.27 11.81 0.001 2.50 1.48 4.20 ventilation 0.62 0.29 4.51 0.034 1.85 1.05 3.28 Table 8: Multivariate Logistic regression analysis to assess the risk factors for development of AKI ventilation [15]. This difference can be explained by heterogeneity of patient population, regional differences and sample size can explain this difference. AKI stratum R, I, F was diagnosed in 60.7%, 28.6% and 10.7% OFAKI cases. The results are comparable to Mehta et al. Maximum number of AKI patients were in Stratum R. Altogether there was progression in grades in 76 cases, maximum progression was from 'No AKI' to stage R. Amongst the three pRIFLE stages maximum progression was seen in stage R to stage I. This was similar to results of both Hoste et al and Hui et al which also showed maximum progression to stage I from stage R [16,17] Pediatric RIFLE criteria use both eCrCl and urine output criteria for classification of AKI stages. In this study urine output criteria was applied only to those patients who were catherized for accurate measurement of urine output. Of the cases for whom urine output criteria was applied there was matching in 77% between urine output and eCrCl criteria. Akcan-Arikan et al and Krishnamurthy et al observed matching of 35% and 37% between urine output and serum creatinine criteria comparable to the present study [13,15]. It was observed that there is an increasing trend in matching between the urine output and eCrCl with progression of stage. The maximum number, 28% of AKI patients were below 1 year in our study which was comparable to Mehta et al. This shows that patients with AKI were younger than those without AKI. The etiology of AKI varies from developed and developing countries. While sepsis, glomerulonephritis, HUS and ATN predominate in developing countries, these are replaced by major surgery, haemato-oncological complications, nephrotoxic drugs and pulmonary failure as cause of AKI. In this study too infections contributed to majority of AKI cases. Amongst infections dengue (30%) was the most common etiology associated with AKI, followed by sepsis (21.9%) and then pneumonia (17.9%). Tropical febrile illnesses have been associated with AKI. Dengue is a tropical febrile illness that is common in this part of country. Dengue constituted the majority of cases. The next common etiology was sepsis. According to both Krishnamurthy et al and Mehta et al sepsis was the most common etiology associated with AKI. There is geographical variation in the etiology. There were no post renal etiologies detected in this study. This could be probably attributed to the post renal causes run a chronic course with progressive deterioration of renal function and also that their detection is more frequent in pediatrics wards than in PICU. Prerenal causes account for majority of the AKI (68%) as renal diseases were excluded from the study. In our study risk factors for AKI were hypotension, nephrotoxic drugs, sepsis and Need for Ventilation. Hypotension was found in 75.3% of patients with AKI (p<0.001). Nephrotoxic drugs were associated with 42.1% ofAKI cases (p<0.001). Sepsis was present in 21.9% of AKI cases (p<0.001). Need for mechanical ventilation was there in 20.2% cases (p<0.001). This is comparable with Mehta et al and Mendonca et al [18]. The potential limitation of this study is the use of an assumed baseline eCrCl. Furthermore urine output criteria could not be applied to all patients as only patients who were catheterized were included for urine output criteria. Conclusion AKI incidence in high in children admitted to PICU. AKI commonly associated with severe dengue, sepsis and pneumonia. It is amenable to treatment provided early diagnosis and prompt treatment. Early identification requires uniform definition and staging system to guide intervention. This study supports use of the pRIFLE score as an easy and simple tool for identification and classifying AKI. References 1. Ravindra Mehta, J Cerda. International Society of Nephrology’s 0by 25 Initative for acute kidney injury: a human rights case for nephrology. The Lancet 2015. 2. Paweena Susantitaphong, Dinna N. Cruz, Cerda J, Maher Abulfaraj, Fahad A, et al. For the Acute Kidney Injury Advisory Group of the American Society of Nephrology. ‘World Incidence of AKI: A Meta-Analysis. ‘Clin J Am Soc Nephrol 2013; 8: 1482-1493. 3. Andreoli SP.Acute kidney injury in children, Pediatr Nephrol 2009; 24:253-263. 4. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3-5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 2006; 69:184-189. 5. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure: Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204-12.
  • 6. Incidence and etiology of acute kidney injury in children admitted to PICU using pRIFLE criteria. Curr Pediatr Res 2016 Volume 20 Issue 1 & 2 6 6. Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol 2006; 2: 364-377. 7. Cerdá J, BaggaA, Kher V, Chakravarthi RM. The contrasting characteristics of acute kidney injury in developed and developing countries. Nat Clin Pract Nephrol 2008; 4: 138- 153. 8. Cerda J, Lameire N, Pannu N, Uchino S, Wang H, et al. Epidemiology of acute kidney inury. Clin J AM Soc Nephrol 2008; 3: 881-886 9. Mehta P, SinhaA, SamiA, Hari P. Incidence ofAcute Kidney Injury in Hospitalized Children. 10. Bowers LS, Wong ET. Kinetic serum creatinine assay II. A critical analysis and review. Clin Chem 1980; 26: 555-561. 11. Goldstein B, Giroir B, Randolph A. International Pediatric Sepsis Consensus Conference: Definitions for sepsis and organ dysfunction in Pediatrics. Pediatr Crit Care Med 2005; 6: 2-8. 12. Basu RK, Prasad DP, Wong H, Wheeler DS. An update and review of acute kidney injury in pediatrics. Pediatr Crit Care Med 2011; 12: 339-347. 13. Krishnamurthy S, Mondal N, Narayanan P, Biswal N, Srinivasan S, et al. Incidence and etiology of acute kidney injury in southern india. Indian J Pediatr 2013; 80: 183-189. 14. Schneider J, Khemani R, Grushkin C, et al. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 2010; 38: 933-939. 15. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 2007; 71: 1028-1035. 16. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit Care 2006; 10: R73-82. 17. WF Hui, Chan W, Miu TY et al. acute kidney injury in the pediatric intensive care unit: identification by modified RIFLE criteria. Hong Kong Med J 2013; 19: 13-19. 18. De Mendonça, Arnaldo, et al. "Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFAscore." Intensive care medicine 2000; 915-921. Correspondence to: Dr Reshmavathi V 37, 1st Main, RMV 2nd Stage, Amarjyothi Layout, Sanjaynagar, Bangalore 560094, India. Tel: 9902645747 E-mail: dr.reshma.venkatram@gmail.com