SlideShare a Scribd company logo
1 of 15
VECTOR CALCULUS AND LINEAR
ALGEBRA
Presented by:-
Hetul Patel- 1404101160
Jaina Patel - 1404101160
Kinjal Patel - 1404101160
Kunj Patel -1404101160
Matangi Patel -1404101160
CONTENTS
 PHYSICAL INTERPRETATION OF GRADIENT
 CURL
 DIVERGENCE
 SOLENOIDAL AND IRROTATIONAL FIELDS
 DIRECTIONAL DERIVATIVE
GRADIENT OF A SCALAR FIELD
 The gradient of a scalar function f(x1, x2, x3, ..., xn) is
denoted by ∇f or where ∇ (the nabla symbol) denotes the
vector differential operator, del. The notation "grad(f)" is
also commonly used for the gradient.
 The gradient of f is defined as the unique vector field
whose dot product with any vector v at each point x is the
directional derivative of f along v. That is,
 In 3-dimensional cartesian coordinate system it is
denoted by:
j
f
 k
f
x y z
f  i
f

f
i 
f
j 
f
k
x y z
PHYSICAL INTERPRETATION OF
GRADIENT
 One is given in terms of the graph of some
function z = f(x, y), where f is a reasonable
function – say with continuous first partial
derivatives. In this case we can think of the
graph as a surface whose points have
variable heights over the x y – plane.
 An illustration is given below.
If, say, we place a marble at some point
(x, y) on this graph with zero initial force, its
motion will trace out a path on the surface,
and in fact it will choose the direction of
steepest descent.
 This direction of steepest descent is given
by the negative of the gradient of f. One
takes the negative direction because the
height is decreasing rather than increasing.
PHYSICAL INTERPRETATION OF
GRADIENT
 Using the language of vector fields, we may restate
this as follows: For the given function f(x, y),
gravitational force defines a vector field F over the
corresponding surface z = f(x, y), and the initial
velocity of an object at a point (x, y) is given
mathematically by – ∇f(x, y).
 The gradient also describes directions of maximum
change in other contexts. For example, if we think
of f as describing the temperature at a point (x, y),
then the gradient gives the direction in which the
temperature is increasing most rapidly.
CURL
 In vector calculus, the curl is a vector operator that
describes the infinitesimal rotation of a 3-
dimensional vector field.
 At every point in that field, the curl of that point is
represented by a vector.
 The attributes of this vector (length and direction)
characterize the rotation at that point.
 The direction of the curl is the axis of rotation, as
determined by the right hand rule, and the
magnitude of the curl is the magnitude of that
rotation.
CURL
 Definition:
 It is also defined as:
POINTS TO BE NOTED:
 If curl F=0 then F is called an irrotational vector.
 If F is irrotational, then there exists a scalar point
function ɸ such that F=∇ɸ where ɸ is called the
scalar potential of F.
 The work done in moving an object from point P to
Q in an irrotational field is
=ɸ(Q)- ɸ(P).
 The curl signifies the angular velocity or rotation of
the body.
DIVERGENCE
 In vector calculus, divergence is a vector operator
that measures the magnitude of a vector
field's source or sink at a given point, in terms of a
signed scalar.
 More technically, the divergence represents the
volume density of the outward flux of a vector field
from an infinitesimal volume around a given point.
DIVERGENCE
 If F = Pi + Q
and ∂P/∂x, ∂Q/∂y,
j + R k is a vector field on
and ∂R/∂z exist,
the divergence of F is the function of three variables
defined by:
div F 
P

Q

R
x y z
DIVERGENCE
 In terms of the gradient operator
 The divergence of F can be written symbolically as the dot
product of and F:
div F  F
  y 
  x    z 
   
 
     i     j     k
SOLENOIDAL AND IRROTATIONAL
FIELDS
 The with null divergence is called solenoidal, and
the field with null-curl is called irrotational field.
 The divergence of the curl of any vector field A must
be zero, i.e.
∇· (∇×A)=0
 Which shows that a solenoidal field can be
expressed in terms of the curl of another vector
field or that a curly field must be a solenoidal field.
SOLENOIDAL AND IRROTATIONAL FIELDS
 The curl of the gradient of any scalar field ɸ must
be zero , i.e. ,
∇ (∇ɸ)=0
 Which shows that an irrotational field can be
expressed in terms of the gradient of another scalar
field ,or a gradient field must be an irrotational field.
DIRECTIONAL DERIVATIVE
 The directional derivative is the rate at which the
function changes at a point in the direction . It is a
vector form of the usual derivative, and can be
defined as:-
=
=
Where ▼ is called "nabla" or "del"
and denotes a unit vector.
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx

More Related Content

Similar to vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx

curl and divergence1 in electrical eng.ppt
curl and divergence1 in electrical eng.pptcurl and divergence1 in electrical eng.ppt
curl and divergence1 in electrical eng.pptSamanZebari1
 
The Gradient field.pptx
The Gradient field.pptxThe Gradient field.pptx
The Gradient field.pptxjuliet974113
 
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....loniyakrishn
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Mahmood Adel
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorialEDESMITCRUZ1
 
Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funcionesdiegoalejandroalgara
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptxTabrijiIslam
 
Lesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvatureLesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvatureLawrence De Vera
 
Derivación e integración de funcione variables
Derivación e integración de funcione variablesDerivación e integración de funcione variables
Derivación e integración de funcione variablesValeriaCasanova4
 
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeksBeginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeksJinTaek Seo
 
L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equationsJames Tagara
 
Gradient, Divergence and Curl of function
Gradient, Divergence and Curl of functionGradient, Divergence and Curl of function
Gradient, Divergence and Curl of functionSR Physics Academy
 

Similar to vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx (20)

curl and divergence1 in electrical eng.ppt
curl and divergence1 in electrical eng.pptcurl and divergence1 in electrical eng.ppt
curl and divergence1 in electrical eng.ppt
 
16_05.ppt
16_05.ppt16_05.ppt
16_05.ppt
 
16_05gg.pptx
16_05gg.pptx16_05gg.pptx
16_05gg.pptx
 
VECTOR FUNCTION
VECTOR FUNCTION VECTOR FUNCTION
VECTOR FUNCTION
 
The Gradient field.pptx
The Gradient field.pptxThe Gradient field.pptx
The Gradient field.pptx
 
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
 
Vector Calculus.
Vector Calculus.Vector Calculus.
Vector Calculus.
 
Divergence
DivergenceDivergence
Divergence
 
Trabajo Leo mat 3 2021
Trabajo Leo mat 3 2021Trabajo Leo mat 3 2021
Trabajo Leo mat 3 2021
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
 
StewartCalc8_16_01.ppt
StewartCalc8_16_01.pptStewartCalc8_16_01.ppt
StewartCalc8_16_01.ppt
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorial
 
Dericavion e integracion de funciones
Dericavion e integracion de funcionesDericavion e integracion de funciones
Dericavion e integracion de funciones
 
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
13.1 Calculus_ch14_Partial_Directional_Derivatives.pptx
 
Lesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvatureLesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvature
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Derivación e integración de funcione variables
Derivación e integración de funcione variablesDerivación e integración de funcione variables
Derivación e integración de funcione variables
 
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeksBeginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
 
L15 the differentials & parametric equations
L15 the differentials & parametric equationsL15 the differentials & parametric equations
L15 the differentials & parametric equations
 
Gradient, Divergence and Curl of function
Gradient, Divergence and Curl of functionGradient, Divergence and Curl of function
Gradient, Divergence and Curl of function
 

More from ShalabhMishra10

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Chapter09-10 Pointers and operations .PPT
Chapter09-10  Pointers and operations .PPTChapter09-10  Pointers and operations .PPT
Chapter09-10 Pointers and operations .PPTShalabhMishra10
 
arrays, pointers and operations pointers
arrays, pointers and operations pointersarrays, pointers and operations pointers
arrays, pointers and operations pointersShalabhMishra10
 
Fourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingFourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingShalabhMishra10
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.pptShalabhMishra10
 
5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptxShalabhMishra10
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptShalabhMishra10
 
Non-Conventional Energy Sources_L1.pptx
Non-Conventional Energy Sources_L1.pptxNon-Conventional Energy Sources_L1.pptx
Non-Conventional Energy Sources_L1.pptxShalabhMishra10
 
physics121_lecture05.ppt
physics121_lecture05.pptphysics121_lecture05.ppt
physics121_lecture05.pptShalabhMishra10
 
dcmotor-190211092619.pptx
dcmotor-190211092619.pptxdcmotor-190211092619.pptx
dcmotor-190211092619.pptxShalabhMishra10
 
BEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxBEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxShalabhMishra10
 

More from ShalabhMishra10 (20)

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Chapter09-10 Pointers and operations .PPT
Chapter09-10  Pointers and operations .PPTChapter09-10  Pointers and operations .PPT
Chapter09-10 Pointers and operations .PPT
 
arrays, pointers and operations pointers
arrays, pointers and operations pointersarrays, pointers and operations pointers
arrays, pointers and operations pointers
 
Fourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingFourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processing
 
circuit theory.pptx
 circuit theory.pptx circuit theory.pptx
circuit theory.pptx
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.ppt
 
5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.ppt
 
class17A.ppt
class17A.pptclass17A.ppt
class17A.ppt
 
DC-machines (2).ppt
DC-machines (2).pptDC-machines (2).ppt
DC-machines (2).ppt
 
Unit7-DC_Motors.ppt
Unit7-DC_Motors.pptUnit7-DC_Motors.ppt
Unit7-DC_Motors.ppt
 
class13.ppt
class13.pptclass13.ppt
class13.ppt
 
emf-1-unit (1).ppt
emf-1-unit (1).pptemf-1-unit (1).ppt
emf-1-unit (1).ppt
 
Non-Conventional Energy Sources_L1.pptx
Non-Conventional Energy Sources_L1.pptxNon-Conventional Energy Sources_L1.pptx
Non-Conventional Energy Sources_L1.pptx
 
physics121_lecture05.ppt
physics121_lecture05.pptphysics121_lecture05.ppt
physics121_lecture05.ppt
 
dcmotor-190211092619.pptx
dcmotor-190211092619.pptxdcmotor-190211092619.pptx
dcmotor-190211092619.pptx
 
BEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxBEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptx
 
DC-machines (1).ppt
DC-machines (1).pptDC-machines (1).ppt
DC-machines (1).ppt
 
Lecture7.ppt
Lecture7.pptLecture7.ppt
Lecture7.ppt
 
class1A.ppt
class1A.pptclass1A.ppt
class1A.ppt
 

Recently uploaded

School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...manju garg
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...ssuserdfc773
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 

Recently uploaded (20)

School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 

vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx

  • 1. VECTOR CALCULUS AND LINEAR ALGEBRA Presented by:- Hetul Patel- 1404101160 Jaina Patel - 1404101160 Kinjal Patel - 1404101160 Kunj Patel -1404101160 Matangi Patel -1404101160
  • 2. CONTENTS  PHYSICAL INTERPRETATION OF GRADIENT  CURL  DIVERGENCE  SOLENOIDAL AND IRROTATIONAL FIELDS  DIRECTIONAL DERIVATIVE
  • 3. GRADIENT OF A SCALAR FIELD  The gradient of a scalar function f(x1, x2, x3, ..., xn) is denoted by ∇f or where ∇ (the nabla symbol) denotes the vector differential operator, del. The notation "grad(f)" is also commonly used for the gradient.  The gradient of f is defined as the unique vector field whose dot product with any vector v at each point x is the directional derivative of f along v. That is,  In 3-dimensional cartesian coordinate system it is denoted by: j f  k f x y z f  i f  f i  f j  f k x y z
  • 4. PHYSICAL INTERPRETATION OF GRADIENT  One is given in terms of the graph of some function z = f(x, y), where f is a reasonable function – say with continuous first partial derivatives. In this case we can think of the graph as a surface whose points have variable heights over the x y – plane.  An illustration is given below. If, say, we place a marble at some point (x, y) on this graph with zero initial force, its motion will trace out a path on the surface, and in fact it will choose the direction of steepest descent.  This direction of steepest descent is given by the negative of the gradient of f. One takes the negative direction because the height is decreasing rather than increasing.
  • 5. PHYSICAL INTERPRETATION OF GRADIENT  Using the language of vector fields, we may restate this as follows: For the given function f(x, y), gravitational force defines a vector field F over the corresponding surface z = f(x, y), and the initial velocity of an object at a point (x, y) is given mathematically by – ∇f(x, y).  The gradient also describes directions of maximum change in other contexts. For example, if we think of f as describing the temperature at a point (x, y), then the gradient gives the direction in which the temperature is increasing most rapidly.
  • 6. CURL  In vector calculus, the curl is a vector operator that describes the infinitesimal rotation of a 3- dimensional vector field.  At every point in that field, the curl of that point is represented by a vector.  The attributes of this vector (length and direction) characterize the rotation at that point.  The direction of the curl is the axis of rotation, as determined by the right hand rule, and the magnitude of the curl is the magnitude of that rotation.
  • 7. CURL  Definition:  It is also defined as:
  • 8. POINTS TO BE NOTED:  If curl F=0 then F is called an irrotational vector.  If F is irrotational, then there exists a scalar point function ɸ such that F=∇ɸ where ɸ is called the scalar potential of F.  The work done in moving an object from point P to Q in an irrotational field is =ɸ(Q)- ɸ(P).  The curl signifies the angular velocity or rotation of the body.
  • 9. DIVERGENCE  In vector calculus, divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar.  More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
  • 10. DIVERGENCE  If F = Pi + Q and ∂P/∂x, ∂Q/∂y, j + R k is a vector field on and ∂R/∂z exist, the divergence of F is the function of three variables defined by: div F  P  Q  R x y z
  • 11. DIVERGENCE  In terms of the gradient operator  The divergence of F can be written symbolically as the dot product of and F: div F  F   y    x    z             i     j     k
  • 12. SOLENOIDAL AND IRROTATIONAL FIELDS  The with null divergence is called solenoidal, and the field with null-curl is called irrotational field.  The divergence of the curl of any vector field A must be zero, i.e. ∇· (∇×A)=0  Which shows that a solenoidal field can be expressed in terms of the curl of another vector field or that a curly field must be a solenoidal field.
  • 13. SOLENOIDAL AND IRROTATIONAL FIELDS  The curl of the gradient of any scalar field ɸ must be zero , i.e. , ∇ (∇ɸ)=0  Which shows that an irrotational field can be expressed in terms of the gradient of another scalar field ,or a gradient field must be an irrotational field.
  • 14. DIRECTIONAL DERIVATIVE  The directional derivative is the rate at which the function changes at a point in the direction . It is a vector form of the usual derivative, and can be defined as:- = = Where ▼ is called "nabla" or "del" and denotes a unit vector.