SlideShare a Scribd company logo
1 of 32
Download to read offline
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Neural Networks
Lecture 8: Identification Using Neural
Networks
H.A Talebi
Farzaneh Abdollahi
Department of Electrical Engineering
Amirkabir University of Technology
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 1/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Introduction
Representation of Dynamical Systems
Static Networks
Dynamic Networks
Identification Model
Direct modeling
Inverse Modeling
Example 1
Case Study
Example 2
Numerical Example
Example 3
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 2/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Engineers desired to model the systems by mathematical models.
This model can expressed by operator f from input space u into an output space
y.
System Identification problem: is finding ˆf which approximates f in desired
sense.
Identification of static systems: A typical example is pattern recognition:
Compact sets ui ∈ Rn
are mapped into elements yi ∈ Rm
in the output
Identification of dynamic systems: The operator f is implicitly defined by
I/O pairs of time function u(t), y(t), t ∈ [0, T] or in discrete time:
y(k + 1) = f (y(k), y(k − 1), ..., y(k − n), u(k), ..., u(k − m)), (1)
In both cases the objective to determine ˆf is
ˆy − y = ˆf − f ≤ , for some desired > 0.
Behavior of systems in practice are mostly described by dynamical models.
∴ Identification of dynamical systems is desired in this lecture.
In identification problem, it is always assumed that the system is stable
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 3/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Representation of Dynamical Systems by Neural Networks
1. Using Static Networks: Providing the
dynamics out of the network and apply static
networks such as multilayer networks (MLN).
Consists of an input layer, output layer
and at least one hidden layer
In fig. there are two hidden layers with
three weight matrices W1, W2 and W3
and a diagonal nonlinear operator Γ with
activation function elements.
Each layer of the network can be
represented by Ni [u] = Γ[Wi u].
The I/O mapping of MLN can be
represented by y = N[u] =
Γ[W3Γ[W2Γ[W1u]]] = N3N2N1[u]
The weights Wi are adjusted s.t min a
function of the error between the
network output y and desired output yd .
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 4/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Static Networks
The universal approximation theorem shows that a three layers NN with a
backpropagation training algorithm has the potential of behaving as a
universal approximator
Universal Approximation Theorem: Given any > 0 and any L2
function f : [0, 1]n ∈ Rn → Rm, there exists a three-layer
backpropagation network that can approximate f within mean-square
error accuracy.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 5/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Static Networks
Providing dynamical terms to inject to
static networks:
1. Tapped-Delay-Lines (TDL): Consider (1)
for identification (I/O Model)
y(k + 1) = f (y(k), y(k − 1), ..., y(k − n),
u(k), ..., u(k − m)),
Dynamical terms u(k − j), y(k − i) for
i = 1, ..., n, j = 1, ..., m is made by
delay elements out of the network and
injected to the network as input.
The static network is employed to
approximate the function f
∴ The model provided by the network
will be
ˆy(k + 1) = ˆf (ˆy(k), ˆy(k − 1), ...,
ˆy(k − n), u(k), ..., u(k − m)),
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 6/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Static Networks
Considering State Space model:
x(k + 1) = f (x(k), x(k − 1), ..., x(k − n), u(k), ..., u(k − m)),
y(k) = Cx(k)
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 7/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Static Networks
2 Filtering
in continuous-time networks the
delay operator can be shown by
integrator.
The dynamical model can be
represented by an MLN , N1[.], + a
transfer matrix of linear function,
W (s).
For example:
˙x(t) = f (x, u)±Ax,
where A is Hurwitz. Define
g(x, u) = f (x, u) − Ax
˙x = g(x, u) + Ax
Fig, shows 4 configurations using
filter.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 8/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Representation of Dynamical Systems by Neural Networks
2. Using Dynamic Networks: Time-Delay
Neural Networks (TDNN) [?] , Recurrent
networks such as Hopfield:
Consists of a single layer network N1,
included in feedback configuration and a
time delay
Can represent discrete-time dynamical
system as :
x(k + 1) = N1[x(k)], x(0) = x0
If N1 is suitably chosen, the solution of the
NN converge to the same equilibrium
point of the system.
In continuous-time, the feedback path has
a diagonal transfer matrix with 1/(s − α)
in diagonal.
∴ the system is represented by
˙x = αx + N1[x] + I
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 9/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Neural Networks Identification Model
Two principles of identification problems:
1. Identification model
2. Method of adjusting its parameters based on
identification error e(t)
Identification Model
1. Direct modeling:
it is applicable for control, monitoring,
simulation, signal processing
The objective: output of NN ˆy converge to
output of the system y(k)
∴ the signal of target is output of the system
Identification error e = y(k) − ˆy(k) can be
used for training.
The NN can be a MLN training with BP, such
that minimizes the identification error.
The structure of identification shown in Fig
named Parallel Model
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 10/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Direct Modeling
Drawback of parallel model:
There is a feedback in this
model which some times
makes convergence difficult
or even impossible.
2. Series-Parallel Model
In this model the
output of system is
fed to the NN
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 11/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Inverse Modeling
It is employed for the control
techniques which require inverse
dynamic
Objective is finding f −1, i.e.,
y → u
Input of the plant is target, u
Error identification is defined
e = u − ˆu
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 12/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Example 1: Using Filtering
Consider the nonlinear system
˙x = f (x, u) (2)
u ∈ Rm
: input vector, x ∈ Rn
: state vector, f (.): an unknown function.
Open loop system is stable.
Objective: Identifying f
Define filter:
Adding Ax to and subtracting from (2), where A is an arbitrary Hurwitz
matrix ˙x = Ax + g(x, u) (3)
where g(x, u) = f (x, u) − Ax.
Corresponding to the Hurwitz matrix A, M(s) := (sI − A)−1
is an n × n matrix
whose elements are stable transfer functions.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 13/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
The model for identification purposes:
˙ˆx = Aˆx + ˆg(ˆx, u)
The identification scheme is based on the parallel configuration
The states of the model are fed to the input of the neural network.
an MLP with at least three layers can represent the nonlinear function g as:
g(x, u) = W σ(V ¯x)
W and V are the ideal but unknown weight matrices
¯x = [x u]T
,
σ(.) is the transfer function of the hidden neurons that is usually considered
as a sigmoidal function:
σi (Vi ¯x) =
2
1 + exp−2Vi ¯x
− 1
where Vi is the ith row of V,
σi (Vi ¯x) is the ith element of σ(V ¯x).
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 14/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
g can be approximated by NN as
ˆg(ˆx, u) = ˆW σ( ˆV ˆ¯x)
The identifier is then given by
˙ˆx(t) = Aˆx + ˆW σ( ˆV ˆ¯x) + (x)
(x) ≤ N is the neural network’s bounded approximation error
the error dynamics:
˙˜x(t) = A˜x + ˜W σ( ˆV ˆ¯x) + w(t)
˜x = x − ˆx: identification error
˜W = W − ˆW , w(t) = W [σ(V ¯x) − σ( ˆV ˆ¯x)] − (x) is a bounded
disturbance term, i.e, w(t) ≤ ¯w for some pos. const. ¯w, due to the
sigmoidal function.
Objective function J = 1
2(˜xT ˜x)
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 15/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Training:
Updating weights:
˙ˆW = −η1(
∂J
∂ ˆW
) − ρ1 ˜x ˆW
˙ˆV = −η2(
∂J
∂ ˆV
) − ρ2 ˜x ˆV
Therefore:
netˆv = ˆV ˆ¯x
netˆw = ˆW σ( ˆV ˆ¯x).
∂J
∂ ˆW
and ∂J
∂ ˆV
can be computed according to
∂J
∂ ˆW
=
∂J
∂netˆw
.
∂netˆw
∂ ˆW
∂J
∂ ˆV
=
∂J
∂netˆv
.
∂netˆv
∂ ˆV
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 16/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
∂J
∂netˆw
=
∂J
∂˜x
.
∂˜x
∂ˆx
.
∂ˆx
∂netˆw
= −˜xT
.
∂ˆx
∂netˆw
∂J
∂netˆv
=
∂J
∂˜x
.
∂˜x
∂ˆx
.
∂ˆx
∂netˆv
= −˜xT
.
∂ˆx
∂netˆv
and
∂netˆw
∂ ˆW
= σ( ˆV ˆ¯x)
∂netˆv
∂ ˆV
= ˆ¯x
∂ ˙ˆx(t)
∂netˆw
= A
∂ˆx
∂netˆw
+
∂ˆg
∂netˆw
∂ ˙ˆx(t)
∂netˆv
= A
∂ˆx
∂netˆv
+
∂ˆg
∂netˆv
.
Which is dynamic BP. Modify BP algorithm s.t. the static
approximations of ∂ˆx
∂netˆw
and ∂ˆx
∂netˆv
(˙ˆx = 0)
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 17/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Thus, ∂ˆx
∂netˆw
= −A−1
∂ˆx
∂netˆv
= −A−1 ˆW (I − Λ( ˆV ˆ¯x))
where
Λ( ˆV ˆ¯x) = diag{σ2
i ( ˆVi ˆ¯x)}, i = 1, 2, ..., m.
Finally
˙ˆW = −η1(˜xT
A−1
)T
(σ( ˆV ˆ¯x))T
− ρ1 ˜x ˆW
˙ˆV = −η2(˜xT
A−1 ˆW (I − Λ( ˆV ˆ¯x)))T ˆ¯xT
− ρ2 ˜x ˆV
˜W = W − ˆW and ˜V = V − ˆV ,
It can be shown that ˜x, ˜W , and ˜V ∈ L∞
The estimation error and the weights error are all ultimately bounded [?].
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 18/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Series-Parallel Identifier
The function g can be approximated
byˆg(x, u) = ˆW σ( ˆV ¯x)
Only ˆ¯x is changed to ¯x.
The error dynamics
˙˜x(t) = A˜x + ˜W σ( ˆV ¯x) + w(t) where
w(t) = W [σ(V ¯x) − σ( ˆV ¯x)] + (x)
only definition of w(t) is changed.
Applying this change, the rest remains
the same
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 19/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Dynamic BP Without Static Approximation
∂J
∂ ˆW
=
∂J
∂˜x
.
∂˜x
∂ˆx
.
∂ˆx
∂netˆw
.
∂netˆw
∂ ˆW
= −˜xT
.
∂ˆx
∂netˆw
.σ( ˆV ˆ¯x)
∂J
∂ ˆV
=
∂J
∂˜x
.
∂˜x
∂ˆx
.
∂ˆx
∂netˆv
.
∂netˆv
∂ ˆV
= −˜xT
.
∂ˆx
∂netˆv
ˆ¯x
and dw =
∂ˆx(t)
∂netˆw
˙dw =
∂ ˙ˆx(t)
∂netˆw
= Adw +
∂ˆg
∂netˆw
= Adw + 1 (4)
dv =
∂ˆx(t)
∂netˆv
˙dv =
∂ ˙ˆx(t)
∂netˆv
= Adv +
∂ˆg
∂netˆv
= Adv + ˆW (I − Λ( ˆV ˆ¯x)) (5)
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 20/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Using Dynamic BP Without Static Approximation
Finally
˙ˆW = η1(˜xT
dw )T
(σ( ˆV ˆ¯x))T
− ρ1 ˜x ˆW
˙ˆV = η2(˜xT
dv ))T ˆ¯xT
− ρ2 ˜x ˆV
In learning rule procedure, first (4) and (5) should be solved then the
weights W and V is updated
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 21/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Case Study: Simulation Results on SSRMS
The Space Station Remote Manipulator System (SSRMS) is a 7 DoF
robot which has 7 revolute joints and two long flexible links (booms).
The SSRMS have no uniform mass and stiffness distributions. Most of its
masses are concentrated at the joints, and the joint structural flexibilities
contribute a major portion of the overall arm flexibility.
Dynamics of a flexible–link manipulator
M(q)¨q + h(q, ˙q) + Kq + F ˙q = u
u = [τT
01×m]T
, q = [θT
δT
]T
,
θ is the n × 1 vector of joint variables
δ is the m × 1 vector of deflection variables
h = [h1(q, ˙q) h2(q, ˙q)]T
: including gravity, Coriolis, and centrifugal forces;
M is the mass matrix,
K =
0n×n 0n×m
0m×n Km×m
is the stiffness matrix,
F = diag{F1, F2}: the viscous friction at the hub and in the structure,
τ: input torque.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 22/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Case Study: Simulation Results on SSRMS
http://english.sohu.com/20050729/n226492517.shtml
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 23/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Case Study: Simulation Results on SSRMS
A joint PD control is applied to stabilize the closed-loop system
boundedness of the signal x(t) is assured.
For a two link flexible manipulator
x = [θ1... θ7
˙θ1... ˙θ7 δ11 δ12 δ21 δ22
˙δ11
˙δ12
˙δ21
˙δ22]T
The input: u = [τ1, ..., τ7]
A is defined as A = −2I ∈ R22×22
Reference trajectory: sin(t)
The identifier:
Series-parallel
A three-layer NN network: 29 neurons in the input layer, 20 neurons in the
hidden layer, and 22 neurons in the output layer.
The 22 outputs correspond to
7 joint positions
7 joint velocities
4 in-plane deflection variables
4 out-of plane deflection variables
The learning rates and damping factors: η1 = η2 = 0.1, ρ1 = ρ2 = 0.001.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 24/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Case Study: Simulation Results on SSRMS
Simulation results for the SSRMS: (a-g) The joint positions, and (h-n)
the joint velocities.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 25/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Example 2: TDL
Consider the following nonlinear
system
y(k) = f (y(k − 1), ..., y(k − n))
+b0u(k) + ... + bmu(k − m)
u: input, y:output, f (.): an
unknown function.
Open loop system is stable.
Objective: Identifying f
Series-parallel identifier is applied.
β = [b0, b1, ..., bm]
Cost function: J = 1
2 e2
i where
ei = y − yh,
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 26/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Consider Linear in parameter MLP,
In sigmoidal function.σ, the weights of first layer is fixed V = I:
σi (¯x) = 2
1+exp−2¯x − 1
Updating law: w = −η( ∂J
∂w )
∴ ∂J
∂w = ∂J
∂ei
∂ei
∂w = −ei
∂N(.)
∂w
∂N(.)
∂w is obtained by BP method.
Numerical Example: Consider a second order system
yp(k + 1) = f [yp(k), yp(k − 1)] + u(k)
where f [yp(k), yp(k − 1)] =
yp(k)yp(k−1)[yp(k)+2.5]
1+y2
p (k)+y2
p (k−1)
.
After checking the stability system
Apply series-parallel identifier
u is random signal informally is distributed in [−2, 2]
η = 0.25
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 27/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Numerical Example Cont’d
The outputs of the plant and the model after the identification procedure
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 28/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
Example 3 [?]
A gray box identification,( the system model is known but it includes
some unknown, uncertain and/or time-varying parameters) is
proposed using Hopfield networks
Consider
˙x = A(x, u(t))(θn + θ(t))
y = x
y is the output,
θ is the unknowntime-dependantdeviation from the nominal values
A is a matrix that depends on the input u and the state x
y and A are assumed to be physically measurable.
Objective: estimating θ (i.e. min the estimation error: ˜θ = θ − ˆθ).
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 29/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
At each time interval assume time
is frozen so that
Ac = A(x(t), u(t)), yc = y(t)
Recall Gradient-Type Hopefield
C du
dt = Wv(t) + I
the weight matrix and the bias
vector are defined:
W = −AT
c Ac, I = AT
c Acθn −AT
c yc
The convergence of the identifier is
proven using Lyapunov method
It is examined for an idealized
single link manipulator
¨x = −g
l sinx − v
ml2 ˙x + 1
ml2 u
assume A = (sinx, ˙x, u) and
θn + θ = (−g
l , − v
ml2 , 1
ml2 )
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 30/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 31/32
Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3
References
K.S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems
using neural networks,” IEEE Trans. on Neural Networks, vol. 1, no. 1, pp. 4–27, March
1990.
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 32/32

More Related Content

What's hot

FUNCTION APPROXIMATION
FUNCTION APPROXIMATIONFUNCTION APPROXIMATION
FUNCTION APPROXIMATIONankita pandey
 
Tensor representations in signal processing and machine learning (tutorial ta...
Tensor representations in signal processing and machine learning (tutorial ta...Tensor representations in signal processing and machine learning (tutorial ta...
Tensor representations in signal processing and machine learning (tutorial ta...Tatsuya Yokota
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkHiroshi Kuwajima
 
Nonnegative Matrix Factorization
Nonnegative Matrix FactorizationNonnegative Matrix Factorization
Nonnegative Matrix FactorizationTatsuya Yokota
 
A Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersIDES Editor
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysisbutest
 
Lecture 06 marco aurelio ranzato - deep learning
Lecture 06   marco aurelio ranzato - deep learningLecture 06   marco aurelio ranzato - deep learning
Lecture 06 marco aurelio ranzato - deep learningmustafa sarac
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizationsDmitriy Selivanov
 
Neural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionNeural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionMostafa G. M. Mostafa
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsDmitriy Selivanov
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronMostafa G. M. Mostafa
 

What's hot (15)

FUNCTION APPROXIMATION
FUNCTION APPROXIMATIONFUNCTION APPROXIMATION
FUNCTION APPROXIMATION
 
neural networksNnf
neural networksNnfneural networksNnf
neural networksNnf
 
Tensor representations in signal processing and machine learning (tutorial ta...
Tensor representations in signal processing and machine learning (tutorial ta...Tensor representations in signal processing and machine learning (tutorial ta...
Tensor representations in signal processing and machine learning (tutorial ta...
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
 
Nonnegative Matrix Factorization
Nonnegative Matrix FactorizationNonnegative Matrix Factorization
Nonnegative Matrix Factorization
 
Max net
Max netMax net
Max net
 
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Backpropagation - Elisa Sayrol - UPC Barcelona 2018Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
 
A Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR Filters
 
Machine Learning and Statistical Analysis
Machine Learning and Statistical AnalysisMachine Learning and Statistical Analysis
Machine Learning and Statistical Analysis
 
Lecture 06 marco aurelio ranzato - deep learning
Lecture 06   marco aurelio ranzato - deep learningLecture 06   marco aurelio ranzato - deep learning
Lecture 06 marco aurelio ranzato - deep learning
 
Neural Networks
Neural NetworksNeural Networks
Neural Networks
 
Recsys matrix-factorizations
Recsys matrix-factorizationsRecsys matrix-factorizations
Recsys matrix-factorizations
 
Neural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear RegressionNeural Networks: Model Building Through Linear Regression
Neural Networks: Model Building Through Linear Regression
 
Matrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender SystemsMatrix Factorizations for Recommender Systems
Matrix Factorizations for Recommender Systems
 
Neural Networks: Multilayer Perceptron
Neural Networks: Multilayer PerceptronNeural Networks: Multilayer Perceptron
Neural Networks: Multilayer Perceptron
 

Similar to بررسی دو روش شناسایی سیستم های متغیر با زمان به همراه شبیه سازی و گزارش

Applications Section 1.3
Applications   Section 1.3Applications   Section 1.3
Applications Section 1.3mobart02
 
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...Waqas Tariq
 
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logicApproximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logicCemal Ardil
 
System Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic SplinesSystem Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic Splinesa3labdsp
 
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Cemal Ardil
 
ANNs have been widely used in various domains for: Pattern recognition Funct...
ANNs have been widely used in various domains for: Pattern recognition  Funct...ANNs have been widely used in various domains for: Pattern recognition  Funct...
ANNs have been widely used in various domains for: Pattern recognition Funct...vijaym148
 
Effect of Phasor Measurement Unit (PMU) on the Network Estimated Variables
Effect of Phasor Measurement Unit (PMU) on the Network Estimated VariablesEffect of Phasor Measurement Unit (PMU) on the Network Estimated Variables
Effect of Phasor Measurement Unit (PMU) on the Network Estimated VariablesIDES Editor
 
ACUMENS ON NEURAL NET AKG 20 7 23.pptx
ACUMENS ON NEURAL NET AKG 20 7 23.pptxACUMENS ON NEURAL NET AKG 20 7 23.pptx
ACUMENS ON NEURAL NET AKG 20 7 23.pptxgnans Kgnanshek
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
M7 - Neural Networks in machine learning.pdf
M7 - Neural Networks in machine learning.pdfM7 - Neural Networks in machine learning.pdf
M7 - Neural Networks in machine learning.pdfArushiKansal3
 
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)Ravikiran A
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Alexander Litvinenko
 

Similar to بررسی دو روش شناسایی سیستم های متغیر با زمان به همراه شبیه سازی و گزارش (20)

Applications Section 1.3
Applications   Section 1.3Applications   Section 1.3
Applications Section 1.3
 
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...
Incorporating Kalman Filter in the Optimization of Quantum Neural Network Par...
 
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logicApproximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
Approximate bounded-knowledge-extractionusing-type-i-fuzzy-logic
 
P73
P73P73
P73
 
Multi Layer Network
Multi Layer NetworkMulti Layer Network
Multi Layer Network
 
System Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic SplinesSystem Identification Based on Hammerstein Models Using Cubic Splines
System Identification Based on Hammerstein Models Using Cubic Splines
 
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
MNN
MNNMNN
MNN
 
ANNs have been widely used in various domains for: Pattern recognition Funct...
ANNs have been widely used in various domains for: Pattern recognition  Funct...ANNs have been widely used in various domains for: Pattern recognition  Funct...
ANNs have been widely used in various domains for: Pattern recognition Funct...
 
Introduction to Adaptive filters
Introduction to Adaptive filtersIntroduction to Adaptive filters
Introduction to Adaptive filters
 
ai7.ppt
ai7.pptai7.ppt
ai7.ppt
 
Effect of Phasor Measurement Unit (PMU) on the Network Estimated Variables
Effect of Phasor Measurement Unit (PMU) on the Network Estimated VariablesEffect of Phasor Measurement Unit (PMU) on the Network Estimated Variables
Effect of Phasor Measurement Unit (PMU) on the Network Estimated Variables
 
ACUMENS ON NEURAL NET AKG 20 7 23.pptx
ACUMENS ON NEURAL NET AKG 20 7 23.pptxACUMENS ON NEURAL NET AKG 20 7 23.pptx
ACUMENS ON NEURAL NET AKG 20 7 23.pptx
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Lecture 4: Classification of system
Lecture 4: Classification of system Lecture 4: Classification of system
Lecture 4: Classification of system
 
M7 - Neural Networks in machine learning.pdf
M7 - Neural Networks in machine learning.pdfM7 - Neural Networks in machine learning.pdf
M7 - Neural Networks in machine learning.pdf
 
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
 
Section9 stochastic
Section9 stochasticSection9 stochastic
Section9 stochastic
 

More from پروژه مارکت

روش المان محدود-تحلیل سازه
روش المان محدود-تحلیل سازهروش المان محدود-تحلیل سازه
روش المان محدود-تحلیل سازهپروژه مارکت
 
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توان
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توانشبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توان
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توانپروژه مارکت
 
مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان
 مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان
مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگانپروژه مارکت
 
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...پروژه مارکت
 
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...پروژه مارکت
 

More from پروژه مارکت (8)

روش المان محدود-تحلیل سازه
روش المان محدود-تحلیل سازهروش المان محدود-تحلیل سازه
روش المان محدود-تحلیل سازه
 
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توان
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توانشبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توان
شبیه سازی و کنترل منابع انرژی تجدید پذیر ترکیبی با هدف بهبود کیفیت توان
 
Comp1230 fall2020-assignment1.0 3
Comp1230 fall2020-assignment1.0 3Comp1230 fall2020-assignment1.0 3
Comp1230 fall2020-assignment1.0 3
 
پروژه متره و برآورد
پروژه متره و برآوردپروژه متره و برآورد
پروژه متره و برآورد
 
مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان
 مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان
مراحل ساخت، احداث و بهره برداری از ایستگاه مترو آزادگان
 
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...
نسخه ورد گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه...
 
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...
گزارشی از بازاریابی الکترونیکی شرکت اوبر- رشته تحصیلی مربوط به پروژه: مدیریت ...
 
حل تمرین داده کاوی
حل تمرین داده کاویحل تمرین داده کاوی
حل تمرین داده کاوی
 

Recently uploaded

Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 

Recently uploaded (20)

Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 

بررسی دو روش شناسایی سیستم های متغیر با زمان به همراه شبیه سازی و گزارش

  • 1. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Neural Networks Lecture 8: Identification Using Neural Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 1/32
  • 2. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Introduction Representation of Dynamical Systems Static Networks Dynamic Networks Identification Model Direct modeling Inverse Modeling Example 1 Case Study Example 2 Numerical Example Example 3 H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 2/32
  • 3. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Engineers desired to model the systems by mathematical models. This model can expressed by operator f from input space u into an output space y. System Identification problem: is finding ˆf which approximates f in desired sense. Identification of static systems: A typical example is pattern recognition: Compact sets ui ∈ Rn are mapped into elements yi ∈ Rm in the output Identification of dynamic systems: The operator f is implicitly defined by I/O pairs of time function u(t), y(t), t ∈ [0, T] or in discrete time: y(k + 1) = f (y(k), y(k − 1), ..., y(k − n), u(k), ..., u(k − m)), (1) In both cases the objective to determine ˆf is ˆy − y = ˆf − f ≤ , for some desired > 0. Behavior of systems in practice are mostly described by dynamical models. ∴ Identification of dynamical systems is desired in this lecture. In identification problem, it is always assumed that the system is stable H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 3/32
  • 4. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Representation of Dynamical Systems by Neural Networks 1. Using Static Networks: Providing the dynamics out of the network and apply static networks such as multilayer networks (MLN). Consists of an input layer, output layer and at least one hidden layer In fig. there are two hidden layers with three weight matrices W1, W2 and W3 and a diagonal nonlinear operator Γ with activation function elements. Each layer of the network can be represented by Ni [u] = Γ[Wi u]. The I/O mapping of MLN can be represented by y = N[u] = Γ[W3Γ[W2Γ[W1u]]] = N3N2N1[u] The weights Wi are adjusted s.t min a function of the error between the network output y and desired output yd . H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 4/32
  • 5. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Static Networks The universal approximation theorem shows that a three layers NN with a backpropagation training algorithm has the potential of behaving as a universal approximator Universal Approximation Theorem: Given any > 0 and any L2 function f : [0, 1]n ∈ Rn → Rm, there exists a three-layer backpropagation network that can approximate f within mean-square error accuracy. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 5/32
  • 6. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Static Networks Providing dynamical terms to inject to static networks: 1. Tapped-Delay-Lines (TDL): Consider (1) for identification (I/O Model) y(k + 1) = f (y(k), y(k − 1), ..., y(k − n), u(k), ..., u(k − m)), Dynamical terms u(k − j), y(k − i) for i = 1, ..., n, j = 1, ..., m is made by delay elements out of the network and injected to the network as input. The static network is employed to approximate the function f ∴ The model provided by the network will be ˆy(k + 1) = ˆf (ˆy(k), ˆy(k − 1), ..., ˆy(k − n), u(k), ..., u(k − m)), H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 6/32
  • 7. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Static Networks Considering State Space model: x(k + 1) = f (x(k), x(k − 1), ..., x(k − n), u(k), ..., u(k − m)), y(k) = Cx(k) H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 7/32
  • 8. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Static Networks 2 Filtering in continuous-time networks the delay operator can be shown by integrator. The dynamical model can be represented by an MLN , N1[.], + a transfer matrix of linear function, W (s). For example: ˙x(t) = f (x, u)±Ax, where A is Hurwitz. Define g(x, u) = f (x, u) − Ax ˙x = g(x, u) + Ax Fig, shows 4 configurations using filter. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 8/32
  • 9. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Representation of Dynamical Systems by Neural Networks 2. Using Dynamic Networks: Time-Delay Neural Networks (TDNN) [?] , Recurrent networks such as Hopfield: Consists of a single layer network N1, included in feedback configuration and a time delay Can represent discrete-time dynamical system as : x(k + 1) = N1[x(k)], x(0) = x0 If N1 is suitably chosen, the solution of the NN converge to the same equilibrium point of the system. In continuous-time, the feedback path has a diagonal transfer matrix with 1/(s − α) in diagonal. ∴ the system is represented by ˙x = αx + N1[x] + I H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 9/32
  • 10. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Neural Networks Identification Model Two principles of identification problems: 1. Identification model 2. Method of adjusting its parameters based on identification error e(t) Identification Model 1. Direct modeling: it is applicable for control, monitoring, simulation, signal processing The objective: output of NN ˆy converge to output of the system y(k) ∴ the signal of target is output of the system Identification error e = y(k) − ˆy(k) can be used for training. The NN can be a MLN training with BP, such that minimizes the identification error. The structure of identification shown in Fig named Parallel Model H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 10/32
  • 11. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Direct Modeling Drawback of parallel model: There is a feedback in this model which some times makes convergence difficult or even impossible. 2. Series-Parallel Model In this model the output of system is fed to the NN H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 11/32
  • 12. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Inverse Modeling It is employed for the control techniques which require inverse dynamic Objective is finding f −1, i.e., y → u Input of the plant is target, u Error identification is defined e = u − ˆu H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 12/32
  • 13. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Example 1: Using Filtering Consider the nonlinear system ˙x = f (x, u) (2) u ∈ Rm : input vector, x ∈ Rn : state vector, f (.): an unknown function. Open loop system is stable. Objective: Identifying f Define filter: Adding Ax to and subtracting from (2), where A is an arbitrary Hurwitz matrix ˙x = Ax + g(x, u) (3) where g(x, u) = f (x, u) − Ax. Corresponding to the Hurwitz matrix A, M(s) := (sI − A)−1 is an n × n matrix whose elements are stable transfer functions. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 13/32
  • 14. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 The model for identification purposes: ˙ˆx = Aˆx + ˆg(ˆx, u) The identification scheme is based on the parallel configuration The states of the model are fed to the input of the neural network. an MLP with at least three layers can represent the nonlinear function g as: g(x, u) = W σ(V ¯x) W and V are the ideal but unknown weight matrices ¯x = [x u]T , σ(.) is the transfer function of the hidden neurons that is usually considered as a sigmoidal function: σi (Vi ¯x) = 2 1 + exp−2Vi ¯x − 1 where Vi is the ith row of V, σi (Vi ¯x) is the ith element of σ(V ¯x). H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 14/32
  • 15. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 g can be approximated by NN as ˆg(ˆx, u) = ˆW σ( ˆV ˆ¯x) The identifier is then given by ˙ˆx(t) = Aˆx + ˆW σ( ˆV ˆ¯x) + (x) (x) ≤ N is the neural network’s bounded approximation error the error dynamics: ˙˜x(t) = A˜x + ˜W σ( ˆV ˆ¯x) + w(t) ˜x = x − ˆx: identification error ˜W = W − ˆW , w(t) = W [σ(V ¯x) − σ( ˆV ˆ¯x)] − (x) is a bounded disturbance term, i.e, w(t) ≤ ¯w for some pos. const. ¯w, due to the sigmoidal function. Objective function J = 1 2(˜xT ˜x) H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 15/32
  • 16. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Training: Updating weights: ˙ˆW = −η1( ∂J ∂ ˆW ) − ρ1 ˜x ˆW ˙ˆV = −η2( ∂J ∂ ˆV ) − ρ2 ˜x ˆV Therefore: netˆv = ˆV ˆ¯x netˆw = ˆW σ( ˆV ˆ¯x). ∂J ∂ ˆW and ∂J ∂ ˆV can be computed according to ∂J ∂ ˆW = ∂J ∂netˆw . ∂netˆw ∂ ˆW ∂J ∂ ˆV = ∂J ∂netˆv . ∂netˆv ∂ ˆV H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 16/32
  • 17. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 ∂J ∂netˆw = ∂J ∂˜x . ∂˜x ∂ˆx . ∂ˆx ∂netˆw = −˜xT . ∂ˆx ∂netˆw ∂J ∂netˆv = ∂J ∂˜x . ∂˜x ∂ˆx . ∂ˆx ∂netˆv = −˜xT . ∂ˆx ∂netˆv and ∂netˆw ∂ ˆW = σ( ˆV ˆ¯x) ∂netˆv ∂ ˆV = ˆ¯x ∂ ˙ˆx(t) ∂netˆw = A ∂ˆx ∂netˆw + ∂ˆg ∂netˆw ∂ ˙ˆx(t) ∂netˆv = A ∂ˆx ∂netˆv + ∂ˆg ∂netˆv . Which is dynamic BP. Modify BP algorithm s.t. the static approximations of ∂ˆx ∂netˆw and ∂ˆx ∂netˆv (˙ˆx = 0) H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 17/32
  • 18. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Thus, ∂ˆx ∂netˆw = −A−1 ∂ˆx ∂netˆv = −A−1 ˆW (I − Λ( ˆV ˆ¯x)) where Λ( ˆV ˆ¯x) = diag{σ2 i ( ˆVi ˆ¯x)}, i = 1, 2, ..., m. Finally ˙ˆW = −η1(˜xT A−1 )T (σ( ˆV ˆ¯x))T − ρ1 ˜x ˆW ˙ˆV = −η2(˜xT A−1 ˆW (I − Λ( ˆV ˆ¯x)))T ˆ¯xT − ρ2 ˜x ˆV ˜W = W − ˆW and ˜V = V − ˆV , It can be shown that ˜x, ˜W , and ˜V ∈ L∞ The estimation error and the weights error are all ultimately bounded [?]. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 18/32
  • 19. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Series-Parallel Identifier The function g can be approximated byˆg(x, u) = ˆW σ( ˆV ¯x) Only ˆ¯x is changed to ¯x. The error dynamics ˙˜x(t) = A˜x + ˜W σ( ˆV ¯x) + w(t) where w(t) = W [σ(V ¯x) − σ( ˆV ¯x)] + (x) only definition of w(t) is changed. Applying this change, the rest remains the same H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 19/32
  • 20. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Dynamic BP Without Static Approximation ∂J ∂ ˆW = ∂J ∂˜x . ∂˜x ∂ˆx . ∂ˆx ∂netˆw . ∂netˆw ∂ ˆW = −˜xT . ∂ˆx ∂netˆw .σ( ˆV ˆ¯x) ∂J ∂ ˆV = ∂J ∂˜x . ∂˜x ∂ˆx . ∂ˆx ∂netˆv . ∂netˆv ∂ ˆV = −˜xT . ∂ˆx ∂netˆv ˆ¯x and dw = ∂ˆx(t) ∂netˆw ˙dw = ∂ ˙ˆx(t) ∂netˆw = Adw + ∂ˆg ∂netˆw = Adw + 1 (4) dv = ∂ˆx(t) ∂netˆv ˙dv = ∂ ˙ˆx(t) ∂netˆv = Adv + ∂ˆg ∂netˆv = Adv + ˆW (I − Λ( ˆV ˆ¯x)) (5) H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 20/32
  • 21. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Using Dynamic BP Without Static Approximation Finally ˙ˆW = η1(˜xT dw )T (σ( ˆV ˆ¯x))T − ρ1 ˜x ˆW ˙ˆV = η2(˜xT dv ))T ˆ¯xT − ρ2 ˜x ˆV In learning rule procedure, first (4) and (5) should be solved then the weights W and V is updated H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 21/32
  • 22. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Case Study: Simulation Results on SSRMS The Space Station Remote Manipulator System (SSRMS) is a 7 DoF robot which has 7 revolute joints and two long flexible links (booms). The SSRMS have no uniform mass and stiffness distributions. Most of its masses are concentrated at the joints, and the joint structural flexibilities contribute a major portion of the overall arm flexibility. Dynamics of a flexible–link manipulator M(q)¨q + h(q, ˙q) + Kq + F ˙q = u u = [τT 01×m]T , q = [θT δT ]T , θ is the n × 1 vector of joint variables δ is the m × 1 vector of deflection variables h = [h1(q, ˙q) h2(q, ˙q)]T : including gravity, Coriolis, and centrifugal forces; M is the mass matrix, K = 0n×n 0n×m 0m×n Km×m is the stiffness matrix, F = diag{F1, F2}: the viscous friction at the hub and in the structure, τ: input torque. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 22/32
  • 23. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Case Study: Simulation Results on SSRMS http://english.sohu.com/20050729/n226492517.shtml H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 23/32
  • 24. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Case Study: Simulation Results on SSRMS A joint PD control is applied to stabilize the closed-loop system boundedness of the signal x(t) is assured. For a two link flexible manipulator x = [θ1... θ7 ˙θ1... ˙θ7 δ11 δ12 δ21 δ22 ˙δ11 ˙δ12 ˙δ21 ˙δ22]T The input: u = [τ1, ..., τ7] A is defined as A = −2I ∈ R22×22 Reference trajectory: sin(t) The identifier: Series-parallel A three-layer NN network: 29 neurons in the input layer, 20 neurons in the hidden layer, and 22 neurons in the output layer. The 22 outputs correspond to 7 joint positions 7 joint velocities 4 in-plane deflection variables 4 out-of plane deflection variables The learning rates and damping factors: η1 = η2 = 0.1, ρ1 = ρ2 = 0.001. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 24/32
  • 25. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Case Study: Simulation Results on SSRMS Simulation results for the SSRMS: (a-g) The joint positions, and (h-n) the joint velocities. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 25/32
  • 26. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Example 2: TDL Consider the following nonlinear system y(k) = f (y(k − 1), ..., y(k − n)) +b0u(k) + ... + bmu(k − m) u: input, y:output, f (.): an unknown function. Open loop system is stable. Objective: Identifying f Series-parallel identifier is applied. β = [b0, b1, ..., bm] Cost function: J = 1 2 e2 i where ei = y − yh, H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 26/32
  • 27. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Consider Linear in parameter MLP, In sigmoidal function.σ, the weights of first layer is fixed V = I: σi (¯x) = 2 1+exp−2¯x − 1 Updating law: w = −η( ∂J ∂w ) ∴ ∂J ∂w = ∂J ∂ei ∂ei ∂w = −ei ∂N(.) ∂w ∂N(.) ∂w is obtained by BP method. Numerical Example: Consider a second order system yp(k + 1) = f [yp(k), yp(k − 1)] + u(k) where f [yp(k), yp(k − 1)] = yp(k)yp(k−1)[yp(k)+2.5] 1+y2 p (k)+y2 p (k−1) . After checking the stability system Apply series-parallel identifier u is random signal informally is distributed in [−2, 2] η = 0.25 H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 27/32
  • 28. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Numerical Example Cont’d The outputs of the plant and the model after the identification procedure H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 28/32
  • 29. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 Example 3 [?] A gray box identification,( the system model is known but it includes some unknown, uncertain and/or time-varying parameters) is proposed using Hopfield networks Consider ˙x = A(x, u(t))(θn + θ(t)) y = x y is the output, θ is the unknowntime-dependantdeviation from the nominal values A is a matrix that depends on the input u and the state x y and A are assumed to be physically measurable. Objective: estimating θ (i.e. min the estimation error: ˜θ = θ − ˆθ). H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 29/32
  • 30. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 At each time interval assume time is frozen so that Ac = A(x(t), u(t)), yc = y(t) Recall Gradient-Type Hopefield C du dt = Wv(t) + I the weight matrix and the bias vector are defined: W = −AT c Ac, I = AT c Acθn −AT c yc The convergence of the identifier is proven using Lyapunov method It is examined for an idealized single link manipulator ¨x = −g l sinx − v ml2 ˙x + 1 ml2 u assume A = (sinx, ˙x, u) and θn + θ = (−g l , − v ml2 , 1 ml2 ) H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 30/32
  • 31. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 31/32
  • 32. Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3 References K.S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. on Neural Networks, vol. 1, no. 1, pp. 4–27, March 1990. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 32/32