SlideShare a Scribd company logo
1 of 27
Download to read offline
SMA 2101: CALCULUS I
c
⃝Francis O. Ochieng
francokech@gmail.com
YouTube: Prof. Francis Oketch∗
Department of Pure and Applied Mathematics
Jomo Kenyatta University of Agriculture and Technology
Course content
• Functions: definition, domain, range, codomain, composition (or composite), inverse.
• Limits, continuity and differentiability of a function.
• Differentiation by first principle and by rule for xn (integral and fractional n).
• Other techniques of differentiation, i.e., sums, products, quotients, chain rule; their applications
to algebraic, trigonometric, logarithmic, exponential, and inverse trigonometric functions all of
a single variable.
• Implicit and parametric differentiation.
• Applications of differentiation to: rates of change, small changes, stationary points, equations of
tangents and normal lines, kinematics, and economics and financial models (cost, revenue and
profit).
• Introduction to integration and its applications to area and volume.
References
[1] Calculus: Early Transcendentals (8th Edition) by James Stewart
[2] Calculus with Analytic Geometry by Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards;
5th edition
[3] Calculus and Analytical Geometry (9th edition) by George B. Thomas and Ross L. Finney
[4] Advanced Engineering Mathematics (10th ed.) by Erwin Kreyszig
[5] Calculus by Larson Hostellem
Lecture 4
1 Derivatives of functions
Definition 1.1 (First principle). The derivative of a function f(x) denoted by f′(x) or
df
dx
is the rate
of change of f with respect to x, and is given by
.
.
f′
(x) = lim
h→0
[
f(x + h) − f(x)
h
]
,
for all x for which this limit exists.
∗
https://www.youtube.com/channel/UC7wd3x6 08GNoUbLxmaC4vA
1
c
⃝Francis Oketch
The process of finding the derivative f′(x) is called differentiation of f(x). The above relation is
called first principle of differentiation or differentiation by the definition or differentiation of first kind.
Geometrically, consider the curve y = f(x) and let ∆x = h.
Here, ∆y = f(x + h) − f(x). So, gradient of the secant
line through points A and B is
∆y
∆x
=
f(x + h) − f(x)
h
.
Taking limit as h → 0 yields
dy
dx
= lim
h→0
f(x + h) − f(x)
h
= f′
(x)
Therefore,
.
.
dy
dx
= f′
(x)
Example(s):
(a) Use first principle of differentiation to find the derivative of the function f(x) = x2.
Solution
Given f(x) = x2, we have f(x + h) = (x + h)2. By the first principle of differentiation, we have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
(x + h)2 − x2
h
= lim
h→0
x2 + 2hx + h2 − x2
h
= lim
h→0
2hx + h2
h
= lim
h→0
(2x + h)
D.S
= (2x + 0)
= 2x
(b) Use first principle of differentiation to find the derivative of the following functions: (i) f(x) =
1
x
and (ii) f(x) =
√
x.
Solution
i) Given f(x) =
1
x
, we have f(x + h) =
1
x + h
. By the first principle of differentiation, we
have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
(
1
x+h − 1
x
)
h
= lim
h→0
x − (x + h)
hx(x + h)
= lim
h→0
−h
hx(x + h)
= lim
h→0
−1
x(x + h)
D.S
=
−1
x(x + 0)
= −
1
x2
ii) Given f(x) =
√
x, we have f(x + h) =
√
x + h. By the first principle of differentiation, we
have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
√
x + h −
√
x
h
= lim
h→0
(
√
x + h −
√
x)(
√
x + h +
√
x)
h(
√
x + h +
√
x)
= lim
h→0
x + h − x
h(
√
x + h +
√
x)
= lim
h→0
h
h(
√
x + h +
√
x)
= lim
h→0
1
√
x + h +
√
x
D.S
=
1
√
x + 0 +
√
x
=
1
2
√
x
2
1.1 Basic differentiation rules c
⃝Francis Oketch
Exercise:
(a) Use first principle of differentiation to find the derivative of the following functions.
i) f(x) = −x3 + 3x2 + 4 [ans: f′(x) = −3x2 + 6x]
ii) f(x) =
3x
1 − 5x
[ans: f′(x) =
3
(1 − 5x)2
]
iii) f(x) =
−7 + 5x
−3 − 2x
[ans: f′(x) =
−29
(−3 − 2x)2
]
iv) f(x) =
√
6x + 2 − 5 [ans: f′(x) =
3
√
6x + 2
]
v) f(x) =
1
√
x + 2
[ans: f′(x) =
−1
2
√
x(
√
x + 2)2
]
1.1 Basic differentiation rules
 The derivative of a constant
If f(x) = c (a constant) for all x, then f′(x) = 0 for all x. That is, .
.
dc
dx
= f′
(x) = 0 .
Proof. Given f(x) = c ⇒ f(x + h) = c. Thus, from the first principle, we have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
c − c
h
= lim
h→0
0
h
= 0
 The power rule
If f(x) = xn for n ∈ R, then .
.
f′
(x) = nxn−1
. That is, bring down the power and reduce the
power by one.
Proof. Given f(x) = xn ⇒ f(x+h) = (x+h)n = xn +nxn−1h+
n(n − 1)
2!
xn−2h2 +· · ·+hn.
Thus, from the first principle, we have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
(
xn + nxn−1h +
n(n − 1)
2!
xn−2h2 + · · · + hn − xn
)
h
= lim
h→0
(
nxn−1h +
n(n − 1)
2!
xn−2h2 + · · · + hn
)
h
= lim
h→0
(
nxn−1
+
n(n − 1)
2!
xn−2
h + · · · + hn−1
)
D.S
=
(
nxn−1
+
n(n − 1)
2!
xn−2
(0) + · · · + (0)n−1
)
= nxn−1
For example,
i) If f(x) = 6x5, then f′(x) = 30x4.
ii) If f(x) = x10, then f′(x) = 10x9.
 The derivative of a linear combination
If f(x) and g(x) are differentiable functions of x and a and b are constants, then
.
.
d
dx
[af(x) + bg(x)] = af′
(x) + bg′
(x)
3
1.1 Basic differentiation rules c
⃝Francis Oketch
Proof. Let y(x) = af(x) + bg(x). Thus, from the first principle, we have
dy
dx
= lim
h→0
y(x + h) − y(x)
h
= lim
h→0
[af(x + h) + bg(x + h)] − [af(x) + bg(x)]
h
= lim
h→0
a[f(x + h) − f(x)] + b[g(x + h) − g(x)]
h
= a lim
h→0
f(x + h) − f(x)
h
+ b lim
h→0
g(x + h) − g(x)
h
= af′
(x) + bg′
(x)
For example,
i) If y = 24x + 8x5, then
dy
dx
= 24 + 40x4.
ii) If y = 7x3 − 9x2 + 4x + 2, then
dy
dx
= 21x2 − 18x + 4.
 The product rule
If u(x) and v(x) are differentiable functions of x, then the product u(x)v(x) is also a differentiable
function of x, and
.
.
d
dx
[u(x)v(x)] = u′
(x)v(x) + u(x)v′
(x)
Proof. Let y(x) = u(x)v(x). Thus, from the first principle, we have
dy
dx
= lim
h→0
y(x + h) − y(x)
h
= lim
h→0
u(x + h)v(x + h) − u(x)v(x)
h
= lim
h→0
u(x + h)v(x + h) − u(x)v(x + h) + u(x)v(x + h) − u(x)v(x)
h
= lim
h→0
[u(x + h) − u(x)] v(x + h) + u(x) [v(x + h) − v(x)]
h
= lim
h→0
[u(x + h) − u(x)] v(x + h)
h
+ lim
h→0
u(x) [v(x + h) − v(x)]
h
=
[
lim
h→0
u(x + h) − u(x)
h
] [
lim
h→0
v(x + h)
]
+ u(x) lim
h→0
v(x + h) − v(x)
h
= u′
(x)v(x) + u(x)v′
(x)
→ Note: the product rule says that the derivative of the product of two functions is formed by
multiplying the derivative of each function by the other function and then adding the results.
In general, suppose y = u1(x)u2(x) · · · un(x), then
.
.
dy
dx
= u′
1(x)u2(x) · · · un(x) + u1(x)u′
2(x) · · · un(x) + · · · + u1(x)u2(x) · · · u′
n(x)
Example(s):
(a) Find the derivative of f(x) = (1 − 5x2)(6x2 − 4x + 1).
Solution
Let f(x) = uv, where u = 1 − 5x2 and v = 6x2 − 4x + 1. Differentiating yields u′ = −10x
and v′ = 12x − 4. Therefore,
f′
(x) = u′
v + uv′
= (−10x)(6x2
− 4x + 1) + (1 − 5x2
)(12x − 4)
= −60x3
+ 40x2
− 10x + 12x − 4 − 60x3
+ 20x2
= −120x3
+ 60x2
+ 2x − 4
4
1.1 Basic differentiation rules c
⃝Francis Oketch
(b) Find the derivative of y = (x − 2)(x2 + 6)(x4 + 1).
Solution
Let y = uvw, where u = x − 2, v = x2 + 6 and w = x4 + 1. Differentiating yields
u′ = 1, v′ = 2x and w′ = 4x3. Therefore,
dy
dx
= u′
vw + uv′
w + uvw′
= (1)(x2
+ 6)(x4
+ 1) + (x − 2)(2x)(x4
+ 1) + (x − 2)(x2
+ 6)(4x3
)
=
(
x6
+ x2
+ 6x4
+ 6
)
+ 2x
(
x5
+ x − 2x4
+ 2
)
+ 4x3
(
x3
+ 6x − 2x2
− 12
)
= x6
+ x2
+ 6x4
+ 6 + 2x6
+ 2x2
− 4x5
+ 4x + 4x6
+ 24x4
− 8x5
− 48x3
= 7x6
− 12x5
+ 30x4
− 48x3
+ 3x2
+ 4x + 6
 The quotient rule
If u(x) and v(x) are differentiable functions of x, then the quotient
u(x)
v(x)
(where v(x) ̸= 0) is also
a differentiable function of x, and
.
.
d
dx
[
u(x)
v(x)
]
=
u′(x)v(x) − u(x)v′(x)
[v(x)]2
Proof. Let y(x) =
u(x)
v(x)
. Thus, from the first principle, we have
dy
dx
= lim
h→0
y(x + h) − y(x)
h
= lim
h→0
u(x + h)
v(x + h)
−
u(x)
v(x)
h
= lim
h→0
u(x + h)v(x) − u(x)v(x + h)
hv(x)v(x + h)
= lim
h→0
u(x + h)v(x) − u(x)v(x) + u(x)v(x) − u(x)v(x + h)
hv(x)v(x + h)
= lim
h→0
[u(x + h) − u(x)] v(x) − u(x) [v(x + h) − v(x)]
hv(x)v(x + h)
=
lim
h→0
[u(x + h) − u(x)]
h
v(x) − u(x) lim
h→0
[v(x + h) − v(x)]
h
lim
h→0
v(x)v(x + h)
=
u′(x)v(x) − u(x)v′(x)
[v(x)]2
Example(s):
(a) Differentiate y =
2x2 + 1
x2 − 1
.
Solution
Let y =
u
v
, where u = 2x2 + 1 and v = x2 − 1. Differentiating yields u′ = 4x and v′ = 2x.
Therefore,
dy
dx
=
vu′ − uv′
v2
=
(x2 − 1)(4x) − (2x2 + 1)(2x)
(x2 − 1)2
=
4x3 − 4x − 4x3 − 2x
(x2 − 1)2
=
−6x
(x2 − 1)2
(b) Differentiate y =
x3
x − 1
.
Solution
5
1.1 Basic differentiation rules c
⃝Francis Oketch
Let y =
u
v
, where u = x3 and v = x − 1. Differentiating yields u′ = 3x2 and v′ = 1.
Therefore,
dy
dx
=
vu′ − uv′
v2
=
(x − 1)(3x2) − (x3)(1)
(x − 1)2
=
3x3 − 3x2 − x3
(x − 1)2
=
2x3 − 3x2
(x − 1)2
 The chain rule
Suppose that y is a differentiable function of u and u is a differentiable function of x (i.e.,
y = y(u) and u = u(x)), then y is a (differentiable) function of x by extension (i.e., y = y(u(x)))
and
.
.
dy
dx
=
dy
du
·
du
dx
→ Note: chain rule is used when we want to differentiate a function of another function.
Example(s):
(a) Differentiate with respect to x the function y = (3x + 4)4.
Solution
Let y = u4, where u = 3x + 4. Differentiating yields
dy
du
= 4u3 and
du
dx
= 3. Therefore,
chain rule yields
dy
dx
=
dy
du
·
du
dx
= (4u3
)(3) = 12u3
= 12(3x + 4)3
(b) Differentiate with respect to x the function y = (x2 + 3x)7.
Solution
Let y = u7, where u = x2 +3x. Differentiating yields
dy
du
= 7u6 and
du
dx
= 2x+3. Therefore,
chain rule yields
dy
dx
=
dy
du
·
du
dx
= (7u6
)(2x + 3) = 7(x2
+ 3x)6
(2x + 3)
(c) Find
dy
dx
if y = (1 − 3x2)5.
Solution
Let y = u5, where u = 1 − 3x2. Differentiating yields
dy
du
= 5u4 and
du
dx
= −6x. Therefore,
chain rule yields
dy
dx
=
dy
du
·
du
dx
= (5u4
)(−6x) = −30x(u4
) = −30x(1 − 3x2
)4
(d) Find
dy
dx
if y =
(
1 + 2x
1 + x
)2
.
Solution
Let y = u2, where u =
1 + 2x
1 + x
. Differentiating yields
dy
du
= 2u and
du
dx
=
(1 + x)(2) − (1 + 2x)(1)
(1 + x)2
=
1
(1 + x)2
. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (2u)
[
1
(1 + x)2
]
= 2
[
1 + 2x
1 + x
] [
1
(1 + x)2
]
=
2(1 + 2x)
(1 + x)3
6
1.2 Derivative of trigonometric functions c
⃝Francis Oketch
(e) Differentiate with respect to x the function y =
√
1 +
√
1 +
√
1 + x.
Solution
Let u =
√
1 + x, v =
√
1 + u, and w =
√
1 + v. Then, y = w. Differentiating yields
dy
dw
= 1,
du
dx
=
1
2(1 + x)
1
2
,
dv
du
=
1
2(1 + u)
1
2
, and
dw
dv
=
1
2(1 + v)
1
2
. Therefore, chain rule yields
dy
dx
=
dy
dw
·
dw
dv
·
dv
du
·
du
dx
= (1)
[
1
2(1 + v)
1
2
] [
1
2(1 + u)
1
2
] [
1
2(1 + x)
1
2
]
=
1
8(1 + v)
1
2 (1 + u)
1
2 (1 + x)
1
2
=
1
8
(√
1 + v
) (√
1 + u
) (√
1 + x
)
=
1
8
(√
1 +
√
1 +
√
1 + x
) (√
1 +
√
1 + x
)
(√
1 + x
)
→ Note: (Direct chain rule)
Consider the function y = [f(x)]n
. Then, direct chain rule yields
.
.
dy
dx
= n [f(x)]n−1
· f′
(x)
For example, if y = (1 − 3x2)5 then DCR yields
dy
dx
= 5(1 − 3x2)4(0 − 6x) = −30x(1 − 3x2)4.
Exercise:
(a) Use chain rule to differentiate the following functions
i) y = (3x2 + 5)3
ii) y = (3x3 + 5x)2
iii) y = (7x2 − 4)
1
3
iv) y = (6x2 − 4x)−2
v) y = (3x2 − 5)−2
3
vi) y = (1 + x4 − 2x3)4(1 − 4x2)3
(b) Find
dy
dx
when y =
√
1 + x
1 − x
. [ans:
dy
dx
=
1
(1 + x)
1
2 (1 − x)
3
2
]
(c) Differentiate with respect to x the function y =
√
x +
√
x +
√
x.
Lecture 4
1.2 Derivative of trigonometric functions
 Derivative of sin x and cos x
.
.
d
dx
[sin x] = cos x and
d
dx
[cos x] = − sin x
Proof. i) Sine
7
1.2 Derivative of trigonometric functions c
⃝Francis Oketch
Let f(x) = sin x. Thus, from the first principle of differentiation and using the trigonometric
identity sin(A + B) = sin A cos B + sin B cos A, we have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
sin(x + h) − sin x
h
= lim
h→0
sin x cos h + sin h cos x − sin x
h
= lim
h→0
− sin x(1 − cos h) + sin h cos x
h
= − sin x
[
lim
h→0
(1 − cos h)
h
]
+ cos x
[
lim
h→0
sin h
h
]
= (− sin x)(0) + (cos x)(1)
= cos x
ii) Cosine
Similarly, let f(x) = cos x. Thus, from the first principle of differentiation and using the
trigonometric identity cos(A + B) = cos A cos B − sin A sin B, we have
f′
(x) = lim
h→0
f(x + h) − f(x)
h
= lim
h→0
cos(x + h) − cos x
h
= lim
h→0
cos x cos h − sin x sin h − cos x
h
= lim
h→0
− cos x(1 − cos h) − sin x sin h
h
= − cos x
[
lim
h→0
(1 − cos h)
h
]
− sin x
[
lim
h→0
sin h
h
]
= (− cos x)(0) − (sin x)(1)
= − sin x
Example(s):
(a) Differentiate the following functions wrt x: (i) y = sin(3x + 2), (ii) y = cos3 x, (iii) y =
sin(x2), (iv) y = x sin(x), (v) y =
sin x
x
, and (vi) y = cos2(3x).
Solution
i) Given that y = sin(3x + 2). Let y = sin(u), where u = 3x + 2. Differentiating yields
dy
du
= cos u and
du
dx
= 3. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (cos u)(3) = 3 cos(3x + 2)
ii) Given that y = cos3 x. Let y = u3, where u = cos x. Differentiating yields
dy
du
= 3u2
and
du
dx
= − sin x. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (3u2
)(− sin x) = −3 sin x cos2
x
iii) Given that y = sin(x2). Let y = sin(u), where u = x2. Differentiating yields
dy
du
= cos u
and
du
dx
= 2x. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (cos u)(2x) = 2x cos(x2
)
iv) Given that y = x sin(x). Let y = uv, where u = x and v = sin(x). Differentiating
yields u′ = 1 and v′ = cos x. Therefore, product rule yields
dy
dx
= uv′
+ vu′
= (x)(cos x) + (sin x)(1) = x cos x + sin x
8
1.2 Derivative of trigonometric functions c
⃝Francis Oketch
v) Given that y =
sin x
x
. Let y =
u
v
, where u = sin x and v = x. Differentiating yields
u′ = cos x and v′ = 1. Therefore, quotient rule yields
dy
dx
=
vu′ − uv′
v2
=
(x)(cos x) − (sin x)(1)
x2
=
x cos x − sin x
x2
vi) Given that y = cos2(3x). Let y = u2, where u = cos(3x). Differentiating yields
dy
du
= 2u and
du
dx
= −3 sin(3x). Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (2u)[−3 sin(3x)] = −6 cos(3x) sin(3x)
(b) If y =
√
1 + sin x, show that
dy
dx
=
1
2
√
1 − sin x.
Solution
Let y = u
1
2 , where u = 1 + sin x. Differentiating yields
dy
du
=
1
2
u−1
2 and
du
dx
= cos x.
Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
=
(
1
2
u− 1
2
)
(cos x) =
cos x
2
√
u
=
cos x
2
√
1 + sin x
=
1
2
cos x
√
1 − sin x
(
√
1 + sin x)(
√
1 − sin x)
=
1
2
cos x
√
1 − sin x
√
1 − sin2 x
=
1
2
cos x
√
1 − sin x
√
cos2 x
=
1
2
√
1 − sin x
(c) Find
dy
dx
if y = sin(cos x).
Solution
Let y = sin u, where u = cos x. Differentiating yields
dy
du
= cos u and
du
dx
= − sin x.
Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (cos u)(− sin x) = − cos(cos x) sin x
In general,
.
.
d
dx
[sin (f(x))] = f′
(x) cos (f(x)) and
d
dx
[cos (f(x))] = −f′
(x) sin (f(x))
Exercise:
(a) Find
dy
dx
if y = sin(
√
x).
(b) If y =
√
1 + sin x
1 − sin x
, show that
dy
dx
=
1
1 − sin x
.
(c) If m is a positive integer, find the differential coefficients with respect to x of (i) sinm x and
(ii) sin(xm).
(d) Differentiate the following functions with respect to x: (i) y = sin 3x, (ii) y = cos(x2),
(iii) y =
√
sin 2x, (iv) y = 4 sin2(x
2 ), (v) y = sin x cos 2x, (vi) y =
cos 2x
sin 3x
, and (vii)
y = 2 cos x + 2x sin x − x2 cos x.
 Derivative of tan x, cot x, sec x and cosec x
9
1.2 Derivative of trigonometric functions c
⃝Francis Oketch
I Tangent
Let y = tan x =
sin x
cos x
. Differentiating using quotient rule yields
dy
dx
=
(cos x)(cos x) − (sin x)(− sin x)
cos2 x
=
cos2 x + sin2 x
cos2 x
=
1
cos2 x
= sec2
x
Therefore, .
.
d
dx
[tan x] = sec2
x .
II Cotangent
Let y = cot x =
cos x
sin x
. Differentiating using quotient rule yields
dy
dx
=
(sin x)(− sin x) − (cos x)(cos x)
sin2 x
=
−
[
sin2 x + cos2 x
]
sin2 x
=
−1
sin2 x
= −cosec2
x
Therefore, .
.
d
dx
[cot x] = −cosec2
x .
III Secant
Let y = sec x =
1
cos x
. Differentiating using quotient rule yields
dy
dx
=
(cos x)(0) − (1)(− sin x)
cos2 x
=
sin x
cos2 x
=
1
cos x
·
sin x
cos x
= sec x tan x
Therefore, .
.
d
dx
[sec x] = sec x tan x .
IV Cosecant
Let y = cosec x =
1
sin x
. Differentiating using quotient rule yields
dy
dx
=
(sin x)(0) − (1)(cos x)
sin2 x
=
− cos x
sin2 x
=
−1
sin x
·
cos x
sin x
= −cosec x cot x
Therefore, .
.
d
dx
[cosec x] = −cosec x cot x .
In summary, we have
f(x) f′(x)
sin x cos x
cos x − sin x
tan x sec2 x
cosec x −cosec x cot x
sec x sec x tan x
cot x −cosec2x
Example(s):
(a) Differentiate the following functions with respect to x: (i) y = tan 2x, (ii) y = cot 3x, (iii)
y = 3 sec 2x, (iv) y = sec x tan x, (v) y = x2 cot x, and (vi) y =
x
tan x
.
Solution
10
1.2 Derivative of trigonometric functions c
⃝Francis Oketch
i) Given that y = tan 2x. Let y = tan u, where u = 2x. Differentiating yields
dy
du
= sec2 u
and
du
dx
= 2. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (sec2
u)(2) = 2 sec2
(2x)
ii) Given that y = cot 3x. Let y = cot u, where u = 3x. Differentiating yields
dy
du
=
−cosec2u and
du
dx
= 3. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (−cosec2
u)(3) = −3cosec2
(3x)
iii) Given that y = 3 sec 2x. Let y = 3 sec u, where u = 2x. Differentiating yields
dy
du
=
3 sec u tan u and
du
dx
= 2. Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (3 sec u tan u)(2) = 6 sec(2x) tan(2x)
iv) Given that y = sec x tan x. Let y = uv, where u = sec x and v = tan x. Differentiating
yields u′ = sec x tan x and v′ = sec2 x. Therefore, product rule yields
dy
dx
= uv′
+ vu′
= (sec x)(sec2
x) + (tan x)(sec x tan x) = sec3
x + sec x tan2
x
v) Given that y = x2 cot x. Let y = uv, where u = x2 and v = cot x. Differentiating
yields u′ = 2x and v′ = −cosec2x. Therefore, product rule yields
dy
dx
= uv′
+ vu′
= (x2
)(−cosec2
x) + (cot x)(2x) = 2x cot x − x2
cosec2
x
vi) Given that y =
x
tan x
. Let y =
u
v
, where u = x and v = tan x. Differentiating yields
u′ = 1 and v′ = sec2 x. Therefore, quotient rule yields
dy
dx
=
vu′ − uv′
v2
=
(tan x)(1) − (x)(sec2 x)
tan2 x
=
tan x − x sec2 x
tan2 x
In general,
.
.
d
dx
[tan (f(x))] = f′
(x) sec2
(f(x)) and
d
dx
[cot (f(x))] = −f′
(x)cosec2
(f(x))
.
.
d
dx
[sec (f(x))] = f′
(x) sec (f(x)) tan (f(x)) and
d
dx
[cosec (f(x))] = −f′
(x)cosec (f(x)) cot (f(x))
Exercise:
(a) Differentiate the following functions with respect to x: (i) y = sec2 2x, (ii) y = 3 sec x tan x,
(iii) y = −cosec2
(
1
2 x
)
, and (iv) y =
sec x
x
.
(b) If y = (tan x + sec x)m
, where m is a positive integer. Show that
dy
dx
= my sec x.
Lecture 5
11
1.3 Derivative of exponential functions c
⃝Francis Oketch
1.3 Derivative of exponential functions
A standard exponential function of x takes the form y = ex or y = exp(x). The number e ≈ 2.7183 is
called Euler’s constant. To differentiate the standard exponential function, use the rule
.
.
d
dx
[ex
] = ex
Proof. Given y(x) = ex ⇒ y(x + h) = ex+h = exeh. Thus, by the first principle of differentiation,
we have
y′
(x) = lim
h→0
[
y(x + h) − y(x)
h
]
= lim
h→0
[
exeh − ex
h
]
= ex
lim
h→0
[
eh − 1
h
]
From the table, we have
h 0.0001 0.001 0.01 0.1 -0.01 -0.001
eh − 1
h
1.0005 1.05
Hence, lim
h→0
[
eh − 1
h
]
= 1
Therefore, y′(x) = ex(1) = ex.
In general, suppose y = ef(x). Let y = eu, where u = f(x). Differentiating yields
dy
du
= eu and
du
dx
= f′(x). By chain rule, we have
dy
dx
=
dy
du
·
du
dx
= eu · f′(x) = f′(x)ef(x). Therefore,
.
.
d
dx
[
ef(x)
]
= f′
(x)ef(x)
In other words, to differentiate y = ef(x), multiply the exponential function by the derivative of the
exponent.
Example(s):
(a) Find
dy
dx
given (i) y = e−6x and (ii) y = ex2
Solution
i) Given y = e−6x. Let u = −6x ⇒ y = eu. Differentiating we get
du
dx
= −6 and
dy
du
= eu.
Hence, chain rule yields
dy
dx
=
dy
du
·
du
dx
= −6eu = −6e−6x. Therefore,
dy
dx
= −6e−6x.
ii) Given y = ex2
. Let u = x2 ⇒ y = eu. Differentiating we get
du
dx
= 2x and
dy
du
= eu.
Hence, chain rule yields
dy
dx
=
dy
du
·
du
dx
= 2xeu = 2xex2
. Therefore,
dy
dx
= 2xex2
.
(b) Differentiate the following functions with respect to x: (i) y = 2e−3x + e4x and (ii) y = 2esin 3θ.
Solution
Using direct chain rule, we have
i)
dy
dx
= 2
d
dx
[
e−3x
]
+
d
dx
[
e4x
]
= 2
[
e−3x d
dx
(−3x)
]
+
[
e4x d
dx
(4x)
]
= −6e−3x + 4e4x.
ii)
dy
dθ
= 2
d
dθ
[
esin 3θ
]
= 2
[
esin 3θ d
dθ
(sin 3θ)
]
= 2esin 3θ(3 cos 3θ) = 6esin 3θ cos 3θ.
(c) If y = e−2x cos 4x, find
dy
dx
.
Solution
12
1.4 Derivative of natural logarithmic functions c
⃝Francis Oketch
Product rule yields
dy
dx
= e−2x d
dx
[cos 4x] + cos 4x
d
dx
[
e−2x
]
= −4e−2x
sin 4x − 2e−2x
cos 4x
Exercise:
1. Find
dy
dx
given:
i) y =
√
xe
√
x + e
√
x2+1
ii) y =
e2x
1 + x2e3x
iii) y =
(
6 + e3x cos 4x
)4
iv) y = esin 5x + 2x2ecos 3x
v) y =
(
e3x2+6x
)
cos (ex + e−x)
vi) y = etan(4+sin 3x) +
1
e2x + e5x
+ 6.
1.4 Derivative of natural logarithmic functions
A natural logarithmic function of x is logarithm of x to base e, i.e., loge x = ln x. Thus in index form,
x can be rewritten as x = eln x. Similarly, y = eln y, a = eln a, etc. Suppose y = ln x. Then,
.
.
d
dx
[ln x] =
1
x
Proof. Given y = ln x. Taking exponential on both sides yields ey = x. Differentiating both sides
with respect to x yields ey dy
dx
= 1 ⇒
dy
dx
=
1
ey
=
1
x
. Therefore,
dy
dx
=
1
x
.
In general, suppose y = ln[f(x)]. Then, ey = f(x). Differentiating both sides with respect to x yields
ey dy
dx
= f′
(x) ⇒
dy
dx
=
f′(x)
ey
=
f′(x)
f(x)
Therefore,
.
.
d
dx
{ln[f(x)]} =
f′(x)
f(x)
In other words, to differentiate y = ln[f(x)], multiply the reciprocal of the parameter by the derivative
of the parameter.
Example(s):
(a) Find
dy
dx
given: (i) y = ln(x2), (ii) y = ln(cos 2x), (iii) y = ln
( √
x2 + 1
3
√
x3 + 1
)
.
Solution
i) Given y = ln(x2). Let u = x2 ⇒ y = ln(u). Differentiating yields
du
dx
= 2x and
dy
du
=
1
u
=
1
x2
. Hence, chain rule yields
dy
dx
=
dy
du
·
du
dx
=
2x
x2
=
2
x
. Therefore,
dy
dx
=
2
x
13
1.4 Derivative of natural logarithmic functions c
⃝Francis Oketch
ii) Let y = ln(u) where u = cos 2x. Differentiating yields
dy
du
=
1
u
and
du
dx
= −2 sin 2x. Hence,
chain rule yields
dy
dx
=
dy
du
·
du
dx
=
−2 sin 2x
u
=
−2 sin 2x
cos 2x
= −2 tan 2x. Therefore,
dy
dx
= −2 tan 2x
iii) Given y = ln
( √
x2 + 1
3
√
x3 + 1
)
⇒ y = ln
[
(x2 + 1)1/2
(x3 + 1)1/3
]
=
1
2
ln
(
x2 + 1
)
−
1
3
ln
(
x3 + 1
)
.
Thus, y =
1
2
ln
(
x2 + 1
)
−
1
3
ln
(
x3 + 1
)
. Differentiating both sides with respect to x yields
dy
dx
=
1
2
d
dx
[
ln
(
x2
+ 1
)]
−
1
3
d
dx
[
ln
(
x3
+ 1
)]
=
1
2 (x2 + 1)
d
dx
(
x2
+ 1
)
−
1
3 (x3 + 1)
d
dx
(
x3
+ 1
)
=
1
2 (x2 + 1)
(2x) −
1
3 (x3 + 1)
(
3x2
)
=
x
(x2 + 1)
−
x2
(x3 + 1)
=
x(x3 + 1) − x2(x2 + 1)
(x2 + 1)(x3 + 1)
=
x4 + x − x4 − x2)
(x2 + 1)(x3 + 1)
=
x − x2
(x2 + 1)(x3 + 1)
(b) Find
dy
dx
given that y = sin (ln 2x).
Solution
Let y = sin u, where u = ln 2x. Thus, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (cos u)
[
1
2x
·
d
dx
(2x)
]
= (cos u)
[
1
x
]
=
cos u
x
=
cos(ln 2x)
x
(c) Find
dy
dx
given y =
√
1 + x
1 − x
.
Solution
Given y =
√
1 + x
1 − x
. Taking natural logarithm on both sides yields
ln y = ln
(
1 + x
1 − x
)1/2
=
1
2
ln
(
1 + x
1 − x
)
=
1
2
[ln(1 + x) − ln(1 − x)]
Thus, ln y =
1
2
[ln(1 + x) − ln(1 − x)]. Differentiating with respect to x yields
d
dx
[ln y] =
1
2
{
d
dx
[ln(1 + x)] −
d
dx
[ln(1 − x)]
}
⇒
1
y
dy
dx
=
1
2
{
1
(1 + x)
d
dx
(1 + x) −
1
(1 − x)
d
dx
(1 − x)
}
=
1
2
{
1
1 + x
+
1
1 − x
}
=
1
1 − x2
Therefore,
dy
dx
=
1
1 − x2
y =
1
1 − x2
√
1 + x
1 − x
=
1
(1 + x)(1 − x)
·
(1 + x)1/2
(1 − x)1/2
=
1
(1 + x)1/2(1 − x)3/2
Exercise:
(a) i) If y = (
√
x − 1)ex ln x, find
dy
dx
. [ans:
dy
dx
=
ex
2x
√
x − 1
{
(2x2 − x) ln x + 2x − 2
}
]
14
1.5 Implicit differentiation c
⃝Francis Oketch
ii) Find the gradient of the curve y = ln(
√
1 + sin 2x) at the point where x =
π
2
. [ans: = -1]
(b) Find
dy
dx
given:
i) y = ln
√
2x + 6
ii) y =
√
x ln(
√
x)
iii) y =
1 + 2x2 ln 3x
1 +
√
sec(ln 2x)
iv) y =
1
1 + 2 ln 46x
−
1
sin(ln(15x2))
v) y =
(
2x2 + ln
√
x
)6
(1 + 2x sec 2x)3
vi) y = cot
(
ln 2x + e3x
)
Lecture 6
1.5 Implicit differentiation
An implicit function is a function where the dependent variable y is not expressed explicitly in terms
of the independent variable x (i.e., a function where y is not the subject of the formula). To find
dy
dx
,
follow these steps:
i) Differentiate x normally
ii) Apply direct chain rule in differentiating y
iii) Collect like terms and make
dy
dx
the subject
Example(s):
1. Find
dy
dx
given x4 + y5 = 125.
Solution
Differentiating the given equation implicitly with respect to x, we get
4x3
+ 5y4 dy
dx
= 0 ⇒
dy
dx
= −
4x3
5y4
2. Find
dy
dx
given y + xy + y2 = 2.
Solution
Differentiating the given equation implicitly with respect to x, we get
dy
dx
+ x
dy
dx
+ (1)y + 2y
dy
dx
= 0 ⇒
dy
dx
=
−y
1 + x + 2y
3. Find
dy
dx
when y3 − 3x2y + 2x3 = 0.
Solution
Differentiating the given equation implicitly with respect to x, we get
3y2 dy
dx
− 3x2 dy
dx
− 6xy + 6x2
= 0 ⇒ (3y2
− 3x2
)
dy
dx
= 6xy − 6x2
15
1.6 Differentiation of other forms of exponential functions c
⃝Francis Oketch
Therefore,
dy
dx
=
6x(y − x)
3(y2 − x2)
=
6x(y − x)
3(y + x)(y − x)
=
2x
y + x
4. If y2 − 2y
√
1 + x2 + x2 = 0, show that
dy
dx
=
x
√
1 + x2
.
Solution
Differentiating the given equation implicitly with respect to x, we get
2y
dy
dx
−2
√
1 + x2
dy
dx
−2y
[
1
2
(1 + x2
)−1
2
]
(2x)+2x = 0 ⇒
(
2y − 2
√
1 + x2
) dy
dx
=
2xy
√
1 + x2
−2x
Therefore,
dy
dx
=
2xy
√
1 + x2
− 2x
2y − 2
√
1 + x2
=
2x
(
y −
√
1 + x2
)
2
√
1 + x2
(
y −
√
1 + x2
) =
x
√
1 + x2
Exercise:
1. Find
dy
dx
given:
(a) xy3 − 2x2y2 + x4 = 1
(b) x2 sin y − y cos x = 10x3
(c) x cos y − y2 sin x = 2
(d) exy2
= 10
(
x2 + y2
)
(e) ln(x2 +
√
y) = sin(xy2)
(f) tan y sin x = cos(xy)
(g) cos(x + y) sin(x − y) = 20x2
(h) y2ex2y =
30
√
xy
(i) ln
(
x + y
x2y
)
= 10x2
(j) cos(xy) = 4x2 + y2
2. Find
dy
dx
and
d2y
dx2
given that 2x2y3 + x4 = 6y2 + 2x.
1.6 Differentiation of other forms of exponential functions
Consider exponential functions of the form
I: A constant raised to a function (e.g., y = 10tan 3x)
In this case, introduce natural logarithm on both sides first. On the left differentiate implicitly
and on the right hand side differentiate normally.
Example(s):
(a) Find
dy
dx
given: (i) y = ax2
where a is a constant, (ii) y = 3−x2+6x+10, and (iii) y = 4sin 5x.
Solution
16
1.6 Differentiation of other forms of exponential functions c
⃝Francis Oketch
i) Given y = ax2
. Taking natural logarithm on both sides yields
ln y = x2
ln a
Differentiating with respect to x yields
d
dx
[ln y] =
d
dx
[x2
ln a] ⇒
1
y
dy
dx
= 2x ln a ⇒
dy
dx
= 2xy ln a
Therefore,
dy
dx
= 2xax2
ln a.
ii) Given y = 3−x2+6x+10. Taking natural logarithm on both sides yields
ln y = (−x2
+ 6x + 10) ln 3
Differentiating with respect to x yields
1
y
dy
dx
= (−2x + 6) ln 3 ⇒
dy
dx
= (−2x + 6)y ln 3
Therefore,
dy
dx
= (−2x + 6)3−x2+6x+10 ln 3.
iii) Given y = 4sin 5x. Taking natural logarithm on both sides yields
ln y = sin 5x ln 4
Differentiating with respect to x yields
1
y
dy
dx
= 5 cos 5x ln 4 ⇒
dy
dx
= (5 cos 5x)y ln 4
Therefore,
dy
dx
= (5 cos 5x)4sin 5x ln 4.
Exercise:
i) Find
dy
dx
given y = ax + bx, where a and b are constants. [ans:
dy
dx
= ax ln a + bx ln b]
II: A function raised to a function (e.g., y = xtan 3x)
In this case, introduce natural logarithm on both sides first. On the left differentiate implicitly
and on the right hand side differentiate using product rule.
Example(s):
(a) Find
dy
dx
given: (i) y = xx, (ii) y = (tan x)x
, (iii) y = (sin 4x)x2
, and (iv) y =
(
ex2
)x
.
Solution
i) Given y = xx. Taking natural logarithm on both sides yields
ln y = x ln x
Differentiating with respect to x yields
d
dx
[ln y] =
d
dx
[x ln x]
⇒
1
y
dy
dx
= x
d
dx
[ln x] + ln x
d
dx
(x) = x ·
1
x
+ ln x
= 1 + ln x
Therefore,
dy
dx
= y(1 + ln x) = xx(1 + ln x).
17
1.6 Differentiation of other forms of exponential functions c
⃝Francis Oketch
ii) Given y = (tan x)x
. Taking natural logarithm on both sides yields
ln y = x ln(tan x)
Differentiating with respect to x yields
d
dx
[ln y] =
d
dx
[x ln(tan x)]
⇒
1
y
dy
dx
= x
d
dx
[ln(tan x)] + ln(tan x)
d
dx
(x) = x ·
sec2 x
tan x
+ ln(tan x)
=
x sec2 x
tan x
+ ln(tan x)
Therefore,
dy
dx
= y
(
x sec2 x
tan x
+ ln(tan x)
)
= (tan x)x
(
x sec2 x
tan x
+ ln(tan x)
)
.
iii) Given y = (sin 4x)x2
. Taking natural logarithm on both sides yields
ln y = x2
ln(sin 4x)
Differentiating with respect to x yields
d
dx
[ln y] =
d
dx
[x2
ln(sin 4x)]
⇒
1
y
dy
dx
= x2 d
dx
[ln(sin 4x)] + ln(sin 4x)
d
dx
(x2
) = x2
·
4 cos 4x
sin 4x
+ 2x ln(sin 4x)
= 4x2
cot 4x + 2x ln(sin 4x)
Therefore,
dy
dx
= y
[
4x2 cot 4x + 2x ln(sin 4x)
]
= (sin 4x)x2 [
4x2 cot 4x + 2x ln(sin 4x)
]
.
Exercise:
(a) Differentiate the following functions with respect to x.
i) y = xcos x. [ans:
dy
dx
= xcos x
(
− sin x ln x +
cos x
x
)
]
ii) y = (sin x)x. [ans:
dy
dx
= (sin x)x (ln(sin x) + x cot x)]
iii) y = (x + x2)x. [ans:
dy
dx
= (x + x2)x
(
ln(x + x2) +
1 + 2x
1 + x
)
]
iv) yx = x. [ans:
dy
dx
=
y
x
(
1
x
− ln y
)
]
v) xy = sin x. [ans:
dy
dx
=
1
ln x
(
cot x −
y
x
)
]
vi) ysin x =
√
x. [ans:
dy
dx
=
y
sin x
(
1
2x
− cot x ln y
)
]
(b) Find
dy
dx
given:
i) y = (cos 3x)sin 3x
ii) y = ax + sin (2x)
iii) y = (cos x)x
+ 2x2
iv) y = sin
(
a2x + 3x
)
III: Derivatives of other logarithmic functions e.g., y = log2(3x2 + 1)
To find
dy
dx
, first convert the logarithm to index notation then introduce natural logarithm on
both sides.
Example(s):
18
1.7 Inverse trigonometric functions c
⃝Francis Oketch
(a) Find
dy
dx
given: (i) y = log2(3x2 + 1), (ii) y = logsin x x, and (iii) y = logx(cos 3x)
Solution
i) Given y = log2(3x2 + 1). In index notation, we have 2y = 3x2 + 1. Taking natural
logarithm on both sides yields
y ln 2 = ln(3x2
+ 1)
Differentiating with respect to x yields
d
dx
[y ln 2] =
d
dx
[ln(3x2
+ 1)] ⇒
dy
dx
ln 2 =
6x
3x2 + 1
Therefore,
dy
dx
=
6x
(3x2 + 1) ln 2
.
ii) Given y = logsin x x. In index notation, we have (sin x)y
= x. Taking natural logarithm
on both sides yields
y ln(sin x) = ln x
Differentiating with respect to x yields
y
cos x
sin x
+ ln(sin x)
dy
dx
=
1
x
⇒ y cot x + ln(sin x)
dy
dx
=
1
x
Therefore,
dy
dx
=
(
1
x
− y cot x
)
1
ln(sin x)
.
iii) Given y = logx(cos 3x). In index notation, we have xy = cos 3x. Taking natural
logarithm on both sides yields
y ln x = ln(cos 3x)
Differentiating with respect to x yields
y
x
+ ln(x)
dy
dx
=
−3 sin 3x
cos 3x
⇒
y
x
+ ln(x)
dy
dx
= −3 tan 3x
Therefore,
dy
dx
=
(
−
y
x
− 3 tan 3x
)
1
ln x
.
Lecture 7
1.7 Inverse trigonometric functions
y = sin−1
x = arcsin x, y = cos−1
x = arccos x, y = tan−1
x = arctan x
y = cosec−1
x = arccosec x, y = sec−1
x = arcsec x, y = cot−1
x = arccot x.
→ Note: sin−1 x ̸=
1
sin x
, cos−1 x ̸=
1
cos x
, etc.
1.7.1 Derivative of inverse trigonometric functions
To find
dy
dx
, follow these steps
i) Introduce the trigonometric function corresponding to the given inverse on both sides of the
given equation
ii) Differentiate implicitly on the left hand side and differentiate normally on the right hand side.
iii) Make
dy
dx
the subject.
19
1.7 Inverse trigonometric functions c
⃝Francis Oketch
To find a suitable form of the trigonometric function in the denominator,
 put the given equation in place of y, or
 replace the denominator by either making use of trigonometric identities or draw a right angled
triangle and find the missing side using Pythagoras theorem, as follows:
For example,
I Let y = sin−1 x ⇒ sin y = x. Differentiating both sides with respect to x yields
cos y
dy
dx
= 1 ⇒
dy
dx
=
1
cos y
 Formula 1: putting y = sin−1 x in place of y yields
dy
dx
=
1
cos
(
sin−1 x
)
 Formula 2:
 using the identity cos2 y + sin2 y = 1 ⇒ cos y =
√
1 − sin2 y. Thus,
dy
dx
=
1
√
1 − sin2 y
. Putting sin y = x yields
dy
dx
=
1
√
1 − x2
, or
 using the right angled triangle
.
.
√
1 − x2
.
x
.
1
.
y
From sin y = x, we have opposite is x and hypotenuse is 1. From
Pythagoras theorem, the adjacent is given by
√
1 − x2. From the
diagram, cos y =
√
1 − x2. Hence,
dy
dx
=
1
√
1 − x2
Therefore, .
.
d
dx
[
sin−1
x
]
=
1
√
1 − x2 .
II Let y = cos−1 x ⇒ cos y = x. Differentiating both sides with respect to x yields
− sin y
dy
dx
= 1 ⇒
dy
dx
=
−1
sin y
=
−1
√
1 − cos2 y
=
−1
√
1 − x2
Therefore, .
.
d
dx
[
cos−1
x
]
=
−1
√
1 − x2 .
III Let y = tan−1 x ⇒ tan y = x. Differentiating both sides with respect to x yields
sec2
y
dy
dx
= 1 ⇒
dy
dx
=
1
sec2 y
=
1
1 + tan2 y
=
1
1 + x2
Therefore, .
.
d
dx
[
tan−1
x
]
=
1
1 + x2 .
IV Let y = cot−1 x ⇒ cot y = x. Differentiating both sides with respect to x yields
−cosec2
y
dy
dx
= 1 ⇒
dy
dx
=
−1
cosec2y
=
−1
1 + cot2 y
=
−1
1 + x2
Therefore, .
.
d
dx
[
cot−1
x
]
=
−1
1 + x2 .
V Let y = sec−1 x ⇒ sec y = x. Differentiating both sides with respect to x yields
sec y tan y
dy
dx
= 1 ⇒
dy
dx
=
1
sec y tan y
=
1
sec y
(√
sec2 y − 1
) =
1
x
√
x2 − 1
Therefore, .
.
d
dx
[
sec−1
x
]
=
1
x
√
x2 − 1
.
20
1.7 Inverse trigonometric functions c
⃝Francis Oketch
VI Let y = cosec−1x ⇒ cosec y = x. Differentiating both sides with respect to x yields
−cosec y cot y
dy
dx
= 1 ⇒
dy
dx
=
−1
cosec y cot y
=
−1
cosec y
(√
cosec2y − 1
) =
−1
x
√
x2 − 1
Therefore, .
.
d
dx
[
cosec−1
x
]
=
−1
x
√
x2 − 1
.
Example(s):
(a) Find
dy
dx
if y = sin−1(2x2 + x + 1).
Solution
Let y = sin−1 u, where u = 2x2 + x + 1. Differentiating yields
dy
du
=
1
√
1 − u2
and
du
dx
= 4x + 1.
Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
=
(
1
√
1 − u2
)
(4x + 1) =
4x + 1
√
1 − (2x2 + x + 1)2
(b) Find
dy
dx
if y = cos−1(2x + 1).
Solution
Let y = cos−1 u, where u = 2x+1. Differentiating yields
dy
du
=
−1
√
1 − u2
and
du
dx
= 2. Therefore,
chain rule yields
dy
dx
=
dy
du
·
du
dx
=
(
−1
√
1 − u2
)
(2) =
−2
√
1 − (2x + 1)2
(c) Find
dy
dx
if y = tan−1(cos x + x).
Solution
Let y = tan−1 u, where u = cos x + x. Differentiating yields
dy
du
=
1
1 + u2
and
du
dx
= − sin x + 1.
Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
=
(
1
1 + u2
)
(− sin x + 1) =
− sin x + 1
1 + (cos x + x)2
(d) Differentiate y = x sin−1 x with respect to x.
Solution
Let y = uv, where u = x and v = sin−1 x. Differentiating yields u′ = 1 and v′ =
1
√
1 − x2
.
Therefore, product rule yields
dy
dx
= uv′
+ vu′
= (x)
(
1
√
1 − x2
)
+ (sin−1
x)(1) =
x
√
1 − x2
+ sin−1
x
(e) Find
dθ
dt
when (i) θ = cos−1(1 − 2t2) and (ii) θ = sin−1(2t3 − 1).
Solution
21
1.7 Inverse trigonometric functions c
⃝Francis Oketch
i) Given that θ = cos−1(1 − 2t2). Let θ = cos−1 u, where u = 1 − 2t2. Differentiating yields
dθ
du
=
−1
√
1 − u2
and
du
dt
= −4t. Therefore, chain rule yields
dθ
dt
=
dθ
du
·
du
dt
=
(
−1
√
1 − u2
)
(−4t) =
4t
√
1 − (1 − 2t2)2
=
4t
√
1 − 1 + 4t2 − 4t4
=
4t
√
4t2(1 − t2)
=
4t
2t
√
1 − t2
=
2
√
1 − t2
ii) Given that θ = sin−1(2t3 − 1). Let θ = sin−1 u, where u = 2t3 − 1. Differentiating yields
dθ
du
=
1
√
1 − u2
and
du
dt
= 6t2. Therefore, chain rule yields
dθ
dt
=
dθ
du
·
du
dt
=
(
1
√
1 − u2
)
(6t2
) =
6t2
√
1 − (2t3 − 1)2
=
6t2
√
1 − 4t6 + 4t3 − 1
=
4t
√
4t2(t − t4)
=
6t2
2t
√
t − t4
=
3t
√
t − t4
(f) If y =
(
tan−1 x
)2
, prove that
d
dx
{
(1 + x2)
dy
dx
}
=
2
1 + x2
.
Proof. Let y = u2, where u = tan−1 x. Differentiating yields
dy
du
= 2u and
du
dx
=
1
1 + x2
.
Therefore, chain rule yields
dy
dx
=
dy
du
·
du
dx
= (2u)
(
1
1 + x2
)
=
2 tan−1 x
1 + x2
Now,
d
dx
{
(1 + x2
)
dy
dx
}
=
d
dx
{
(1 + x2
)
2 tan−1 x
1 + x2
}
=
d
dx
{
2 tan−1
x
}
=
2
1 + x2
Exercise:
(a) i) If y = sin−1(cos x), show that
dy
dx
= −1.
ii) If y = sin−1(3x − 4x3), show that
√
1 − x2
dy
dx
= 3.
iii) If u = θ2 +
(
sin−1 θ
)2
− 2θ
√
1 − θ2 sin−1 θ, show that
√
1 − θ2
du
dθ
= 4θ2 sin−1 θ.
(b) Find the derivative of the following functions: (i) y = x2
(
sin−1)x
)2
, (ii) y =
√
tan−1 x, and (iii)
y = sin
(
tan−1 x
)
.
(c) Find
dy
dx
given that y = sin−1 √
x. [ans:
dy
dx
=
1
2
√
x − x2
]
(d) Find
dy
dx
given:
i) y = esin−1(3x) +
1
2x + cos−1(4x)
ii) y = 2x + cos−1(4x)
iii) y = ln
(
x2 + 2x
)
iv) y =
sin−1(3x)
23x + sin 3x
22
1.8 Parametric differentiation c
⃝Francis Oketch
v) y = cosec−1(3x)
vi) y = x2cosec−1(4x)
vii) y = xx sin−1(2x)
(e) Trey knows the following values for f(x) and f′(x):
x 5 6 7 8 9
f(x) 8 2 7 9 5
f′(x) -3 1 -8 9 6
i) Let h(x) = ln(5x + 3) tan−1(f(x)). Find h′(8) [ans: h′(8) = 0.5826]
ii) Let m(x) = sec−1(f(x)). Find m′(8) [ans: m′(8) = 1.1118]
(f) Brendan knows the following values for f(x) and f′(x):
x 3 4 5 6 7
f(x) -0.6 0.7 0.7 -0.3 -0.4
f′(x) 10 -9 6 -5 -2
i) Let h(x) = sin−1(f(x)). Find h′(3) [ans: h′(3) = 12.5]
ii) Let m(x) = e5x sin−1(f(x)). Find m′(3) [ans: m′(3) = 3.0345 × 107]
CAT 1
Lecture 8
1.8 Parametric differentiation
If both x and y are defined as functions of another variable (parameter), say t, i.e., x = x(t), y = y(t),
then
.
.
dy
dx
=
(
dy
dt
)
÷
(
dx
dt
)
=
dy/dt
dx/dt
Example(s):
1. Find
dy
dx
, in terms of the parameter t, when (a) x = at2, y = 2at, (b) x = (t + 1)2, y = (t2 − 1),
and (c) x = cos−1(3t), y = sin−1(3t).
Solution
(a)
dx
dt
= 2at,
dy
dt
= 2a. Therefore,
dy
dx
=
dy/dt
dx/dt
=
2a
2at
=
1
t
.
(b)
dx
dt
= 2(t + 1),
dy
dt
= 2t. Therefore,
dy
dx
=
dy/dt
dx/dt
=
2t
2(t + 1)
=
t
t + 1
.
(c) Rewrite as cos x = 3t, sin y = 3t. Differentiating with respect to t yields − sin x
dx
dt
= 3 and
cos y
dy
dt
= 3. Hence,
dx
dt
= −
3
sin x
= −
3
√
1 − 9t2
and
dy
dt
=
3
cos y
=
3
√
1 − 9t2
. Therefore,
dy
dx
=
dy/dt
dx/dt
=
(
3
√
1 − 9t2
)
÷
(
−
3
√
1 − 9t2
)
= −1.
Exercise:
(a) Find
dy
dx
given:
23
1.9 Higher order derivatives c
⃝Francis Oketch
i) x = ln(2t2), y = ln(4 + t2)
ii) x = 2t, y = 2−t
iii) x = tan−1(2t), y = sec−1(2t)
iv) x = t sin(t2), y = t3 cos(t2)
v) x =
t2
1 + t2
, y =
1 − t2
1 + t2
vi) x = et cos 2t, y = e−t sin 2t
vii) x =
2t
1 + 3t
, y = t3 − 4t + 8
viii) x = θ − sin 2θ, y = θ + cos 2θ
ix) x = a cos3 θ, y = b sin3 θ
1.9 Higher order derivatives
Suppose y(x) is an n−times differentiable function of x. Then,
First derivative of y(x) is given by
dy
dx
= y′(x)
Second derivative of y(x) is given by
d
dx
(
dy
dx
)
=
d2y
dx2
= y′′(x)
Third derivative of y(x) is given by
d
dx
(
d2y
dx2
)
=
d3y
dx3
= y′′′(x)
.
.
.
.
.
.
nth derivative of y(x) is given by
d
dx
(
dn−1y
dxn−1
)
=
dny
dxn
= y(n)(x)
Example(s):
1. Given that y = 4x3 − 6x2 − 9x + 1, find
dy
dx
,
d2y
dx2
,
d3y
dx3
, and
d4y
dx4
.
Solution
dy
dx
= 12x2 − 12x − 9,
d2y
dx2
= 24x − 12,
d3y
dx3
= 24,
d4y
dx4
= 0.
2. Find
d2y
dx2
and
d3y
dx3
when (a) y = x10 and (b) y = cos 2x.
Solution
(a)
dy
dx
= 10x9,
d2y
dx2
= 90x8,
d3y
dx3
= 720x7.
(b)
dy
dx
= −2 sin 2x,
d2y
dx2
= −4 cos 2x,
d3y
dx3
= 8 sin 2x.
3. If y =
cos x
x
, prove that
d2y
dx2
+
2
x
dy
dx
+ y = 0.
Proof. Quotient rule yields
dy
dx
=
x
d
dx
[cos x] − cos x
d
dx
[x]
x2
=
−x sin x − cos x
x2
.
d2y
dx2
=
x2 d
dx
[−x sin x − cos x] − (−x sin x − cos x)
d
dx
[x2]
x4
=
x2(−x cos x − sin x + sin x) + (x sin x + cos x)(2x)
x4
=
−x3 cos x + 2x2 sin x + 2x cos x
x4
=
−x2 cos x + 2x sin x + 2 cos x
x3
24
c
⃝Francis Oketch
Now,
d2y
dx2
+
2
x
dy
dx
+ y =
−x2 cos x + 2x sin x + 2 cos x
x3
+
2
x
(
−x sin x − cos x
x2
)
+
cos x
x
=
−x2 cos x + 2x sin x + 2 cos x − 2x sin x − 2 cos x + x2 cos x
x3
= 0
4. Given that u and v are functions of x, show that
d3
dx3
(uv) =
d3u
dx3
v + 3
d2u
dx2
dv
dx
+ 3
du
dx
d2v
dx2
+ u
d3v
dx3
.
Proof.
d3
dx3
(uv) =
d
dx
[
d2
dx2
(uv)
]
=
d
dx
[
d
dx
{
d
dx
(uv)
}]
=
d
dx
[
d
dx
{
du
dx
v + u
dv
dx
}]
(product rule)
=
d
dx
[
d2u
dx2
v + 2
du
dx
dv
dx
+ u
d2v
dx2
]
=
d3u
dx3
v +
d2u
dx2
dv
dx
+ 2
d2u
dx2
dv
dx
+ 2
du
dx
d2v
dx2
+
du
dx
d2v
dx2
+ u
d3v
dx3
=
d3u
dx3
v + 3
d2u
dx2
dv
dx
+ 3
du
dx
d2v
dx2
+ u
d3v
dx3
Exercise:
1. Find
d2y
dx2
when (a) y = (1+4x+x2) sin x, (b) y = x tan−1 x, (c) y =
x2
1 + x
, (d) y = (3x−sin 2x)2,
and (e) y = ln(3x3 + 4x − 1) + xex2
.
2. If y =
sin x
x
, find
dy
dx
and
d2y
dx2
. Hence, prove that x2 d2y
dx2
+ 4x
dy
dx
+ (x2 + 2)y = 0.
Lecture 9
2 L’Hôpital’s rule
If on direct substitution we get indeterminate forms such as
0
0
or
±∞
±∞
, then the L’Hôpital’s rule states
that
.
.
lim
x→a
f(x)
g(x)
= lim
x→a
f′(x)
g′(x)
provided the limit exists. Repeat finding derivatives until you get a meaningful result.
Example(s):
1. Evaluate the following using L’Hôpital’s rule
(a) lim
x→2
x2 + x − 6
x − 2
Solution
lim
x→2
x2 + x − 6
x − 2
D.S
=
0
0
(indeterminate)
L′H
= lim
x→2
2x + 1
1
D.S
= 5
25
c
⃝Francis Oketch
(b) lim
x→−2
x2 + 3x + 2
2x2 − 8
Solution
lim
x→−2
x2 + 3x + 2
2x2 − 8
D.S
=
0
0
(indeterminate)
L′H
= lim
x→−2
2x + 3
4x
D.S
=
1
8
(c) lim
x→∞
5x3 − 1
4x3 − 2x − 7
.
Solution
lim
x→∞
5x3 − 1
4x3 − 2x − 7
D.S
=
∞
∞
(indeterminate)
L′H
= lim
x→∞
15x2
12x2 − 2
D.S
=
∞
∞
(indeterminate)
L′H
= lim
x→∞
30x
24x
D.S
=
∞
∞
(indeterminate)
L′H
= lim
x→∞
30
24
=
5
4
(d) lim
x→0
x − sin x
x3
Solution
On direct substitution, we have lim
x→0
x − sin x
x3
=
0 − sin 0
03
=
0
0
(indeterminate). So,
lim
x→0
x − sin x
x3
L′H
=
1 − cos x
3x2
D.S
=
0
0
(indeterminate)
L′H
= lim
x→0
sin x
6x
D.S
=
0
0
(indeterminate)
L′H
= lim
x→0
cos x
6
D.S
=
1
6
Exercise:
1. Evaluate
(a) lim
x→0
2 sin x − sin 2x
2ex − 2 − x2
(b) lim
x→∞
7x − 28
x3
(c) lim
x→1
x2 − x − 2
x2 − 1
(d) lim
x→0
sin 7x
4x
. [ans: = 7/4]
(e) lim
x→0+
cot x
ln x2
.
(f) lim
y→π
2
(
cos y
π
2 − y
)
. [ans: = 1]
26
c
⃝Francis Oketch
(g) lim
θ→0
1 − cos θ
θ
. [ans: = 0]
(h) lim
θ→0
sin2 θ
θ2
. [ans: = 1]
2. Amy knows the following values for f(x) and g(x): f(−6) = 1, g(−6) = 1, f′(−6) = 6 and
g′(−6) = −5. Assume all functions are continuous, find the following.
(a) lim
x→−6
ln(g(x))
[f(x)]2 − 1
. [ans: = −
5
12
]
(b) lim
x→−6
[g(x) − 1]2
[f(x) − 1]2
. [ans: =
25
36
]
(c) lim
x→−6
g(x)[f(x) − 1]
f(x)[g(x) − 1]
. [ans: = −
6
5
]
27

More Related Content

Similar to CALCULUS I: Essential Functions, Limits, and Differentiation

The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]Hazrul156
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdfRajuSingh806014
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfPeterEsnayderBarranz
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJJkedst
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B techRaj verma
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoioNoorYassinHJamel
 

Similar to CALCULUS I: Essential Functions, Limits, and Differentiation (20)

The chain rule
The chain ruleThe chain rule
The chain rule
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Derivatives
DerivativesDerivatives
Derivatives
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdf
 
Math refresher
Math refresherMath refresher
Math refresher
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 

Recently uploaded

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 

CALCULUS I: Essential Functions, Limits, and Differentiation

  • 1. SMA 2101: CALCULUS I c ⃝Francis O. Ochieng francokech@gmail.com YouTube: Prof. Francis Oketch∗ Department of Pure and Applied Mathematics Jomo Kenyatta University of Agriculture and Technology Course content • Functions: definition, domain, range, codomain, composition (or composite), inverse. • Limits, continuity and differentiability of a function. • Differentiation by first principle and by rule for xn (integral and fractional n). • Other techniques of differentiation, i.e., sums, products, quotients, chain rule; their applications to algebraic, trigonometric, logarithmic, exponential, and inverse trigonometric functions all of a single variable. • Implicit and parametric differentiation. • Applications of differentiation to: rates of change, small changes, stationary points, equations of tangents and normal lines, kinematics, and economics and financial models (cost, revenue and profit). • Introduction to integration and its applications to area and volume. References [1] Calculus: Early Transcendentals (8th Edition) by James Stewart [2] Calculus with Analytic Geometry by Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards; 5th edition [3] Calculus and Analytical Geometry (9th edition) by George B. Thomas and Ross L. Finney [4] Advanced Engineering Mathematics (10th ed.) by Erwin Kreyszig [5] Calculus by Larson Hostellem Lecture 4 1 Derivatives of functions Definition 1.1 (First principle). The derivative of a function f(x) denoted by f′(x) or df dx is the rate of change of f with respect to x, and is given by . . f′ (x) = lim h→0 [ f(x + h) − f(x) h ] , for all x for which this limit exists. ∗ https://www.youtube.com/channel/UC7wd3x6 08GNoUbLxmaC4vA 1
  • 2. c ⃝Francis Oketch The process of finding the derivative f′(x) is called differentiation of f(x). The above relation is called first principle of differentiation or differentiation by the definition or differentiation of first kind. Geometrically, consider the curve y = f(x) and let ∆x = h. Here, ∆y = f(x + h) − f(x). So, gradient of the secant line through points A and B is ∆y ∆x = f(x + h) − f(x) h . Taking limit as h → 0 yields dy dx = lim h→0 f(x + h) − f(x) h = f′ (x) Therefore, . . dy dx = f′ (x) Example(s): (a) Use first principle of differentiation to find the derivative of the function f(x) = x2. Solution Given f(x) = x2, we have f(x + h) = (x + h)2. By the first principle of differentiation, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 (x + h)2 − x2 h = lim h→0 x2 + 2hx + h2 − x2 h = lim h→0 2hx + h2 h = lim h→0 (2x + h) D.S = (2x + 0) = 2x (b) Use first principle of differentiation to find the derivative of the following functions: (i) f(x) = 1 x and (ii) f(x) = √ x. Solution i) Given f(x) = 1 x , we have f(x + h) = 1 x + h . By the first principle of differentiation, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 ( 1 x+h − 1 x ) h = lim h→0 x − (x + h) hx(x + h) = lim h→0 −h hx(x + h) = lim h→0 −1 x(x + h) D.S = −1 x(x + 0) = − 1 x2 ii) Given f(x) = √ x, we have f(x + h) = √ x + h. By the first principle of differentiation, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 √ x + h − √ x h = lim h→0 ( √ x + h − √ x)( √ x + h + √ x) h( √ x + h + √ x) = lim h→0 x + h − x h( √ x + h + √ x) = lim h→0 h h( √ x + h + √ x) = lim h→0 1 √ x + h + √ x D.S = 1 √ x + 0 + √ x = 1 2 √ x 2
  • 3. 1.1 Basic differentiation rules c ⃝Francis Oketch Exercise: (a) Use first principle of differentiation to find the derivative of the following functions. i) f(x) = −x3 + 3x2 + 4 [ans: f′(x) = −3x2 + 6x] ii) f(x) = 3x 1 − 5x [ans: f′(x) = 3 (1 − 5x)2 ] iii) f(x) = −7 + 5x −3 − 2x [ans: f′(x) = −29 (−3 − 2x)2 ] iv) f(x) = √ 6x + 2 − 5 [ans: f′(x) = 3 √ 6x + 2 ] v) f(x) = 1 √ x + 2 [ans: f′(x) = −1 2 √ x( √ x + 2)2 ] 1.1 Basic differentiation rules The derivative of a constant If f(x) = c (a constant) for all x, then f′(x) = 0 for all x. That is, . . dc dx = f′ (x) = 0 . Proof. Given f(x) = c ⇒ f(x + h) = c. Thus, from the first principle, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 c − c h = lim h→0 0 h = 0 The power rule If f(x) = xn for n ∈ R, then . . f′ (x) = nxn−1 . That is, bring down the power and reduce the power by one. Proof. Given f(x) = xn ⇒ f(x+h) = (x+h)n = xn +nxn−1h+ n(n − 1) 2! xn−2h2 +· · ·+hn. Thus, from the first principle, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 ( xn + nxn−1h + n(n − 1) 2! xn−2h2 + · · · + hn − xn ) h = lim h→0 ( nxn−1h + n(n − 1) 2! xn−2h2 + · · · + hn ) h = lim h→0 ( nxn−1 + n(n − 1) 2! xn−2 h + · · · + hn−1 ) D.S = ( nxn−1 + n(n − 1) 2! xn−2 (0) + · · · + (0)n−1 ) = nxn−1 For example, i) If f(x) = 6x5, then f′(x) = 30x4. ii) If f(x) = x10, then f′(x) = 10x9. The derivative of a linear combination If f(x) and g(x) are differentiable functions of x and a and b are constants, then . . d dx [af(x) + bg(x)] = af′ (x) + bg′ (x) 3
  • 4. 1.1 Basic differentiation rules c ⃝Francis Oketch Proof. Let y(x) = af(x) + bg(x). Thus, from the first principle, we have dy dx = lim h→0 y(x + h) − y(x) h = lim h→0 [af(x + h) + bg(x + h)] − [af(x) + bg(x)] h = lim h→0 a[f(x + h) − f(x)] + b[g(x + h) − g(x)] h = a lim h→0 f(x + h) − f(x) h + b lim h→0 g(x + h) − g(x) h = af′ (x) + bg′ (x) For example, i) If y = 24x + 8x5, then dy dx = 24 + 40x4. ii) If y = 7x3 − 9x2 + 4x + 2, then dy dx = 21x2 − 18x + 4. The product rule If u(x) and v(x) are differentiable functions of x, then the product u(x)v(x) is also a differentiable function of x, and . . d dx [u(x)v(x)] = u′ (x)v(x) + u(x)v′ (x) Proof. Let y(x) = u(x)v(x). Thus, from the first principle, we have dy dx = lim h→0 y(x + h) − y(x) h = lim h→0 u(x + h)v(x + h) − u(x)v(x) h = lim h→0 u(x + h)v(x + h) − u(x)v(x + h) + u(x)v(x + h) − u(x)v(x) h = lim h→0 [u(x + h) − u(x)] v(x + h) + u(x) [v(x + h) − v(x)] h = lim h→0 [u(x + h) − u(x)] v(x + h) h + lim h→0 u(x) [v(x + h) − v(x)] h = [ lim h→0 u(x + h) − u(x) h ] [ lim h→0 v(x + h) ] + u(x) lim h→0 v(x + h) − v(x) h = u′ (x)v(x) + u(x)v′ (x) → Note: the product rule says that the derivative of the product of two functions is formed by multiplying the derivative of each function by the other function and then adding the results. In general, suppose y = u1(x)u2(x) · · · un(x), then . . dy dx = u′ 1(x)u2(x) · · · un(x) + u1(x)u′ 2(x) · · · un(x) + · · · + u1(x)u2(x) · · · u′ n(x) Example(s): (a) Find the derivative of f(x) = (1 − 5x2)(6x2 − 4x + 1). Solution Let f(x) = uv, where u = 1 − 5x2 and v = 6x2 − 4x + 1. Differentiating yields u′ = −10x and v′ = 12x − 4. Therefore, f′ (x) = u′ v + uv′ = (−10x)(6x2 − 4x + 1) + (1 − 5x2 )(12x − 4) = −60x3 + 40x2 − 10x + 12x − 4 − 60x3 + 20x2 = −120x3 + 60x2 + 2x − 4 4
  • 5. 1.1 Basic differentiation rules c ⃝Francis Oketch (b) Find the derivative of y = (x − 2)(x2 + 6)(x4 + 1). Solution Let y = uvw, where u = x − 2, v = x2 + 6 and w = x4 + 1. Differentiating yields u′ = 1, v′ = 2x and w′ = 4x3. Therefore, dy dx = u′ vw + uv′ w + uvw′ = (1)(x2 + 6)(x4 + 1) + (x − 2)(2x)(x4 + 1) + (x − 2)(x2 + 6)(4x3 ) = ( x6 + x2 + 6x4 + 6 ) + 2x ( x5 + x − 2x4 + 2 ) + 4x3 ( x3 + 6x − 2x2 − 12 ) = x6 + x2 + 6x4 + 6 + 2x6 + 2x2 − 4x5 + 4x + 4x6 + 24x4 − 8x5 − 48x3 = 7x6 − 12x5 + 30x4 − 48x3 + 3x2 + 4x + 6 The quotient rule If u(x) and v(x) are differentiable functions of x, then the quotient u(x) v(x) (where v(x) ̸= 0) is also a differentiable function of x, and . . d dx [ u(x) v(x) ] = u′(x)v(x) − u(x)v′(x) [v(x)]2 Proof. Let y(x) = u(x) v(x) . Thus, from the first principle, we have dy dx = lim h→0 y(x + h) − y(x) h = lim h→0 u(x + h) v(x + h) − u(x) v(x) h = lim h→0 u(x + h)v(x) − u(x)v(x + h) hv(x)v(x + h) = lim h→0 u(x + h)v(x) − u(x)v(x) + u(x)v(x) − u(x)v(x + h) hv(x)v(x + h) = lim h→0 [u(x + h) − u(x)] v(x) − u(x) [v(x + h) − v(x)] hv(x)v(x + h) = lim h→0 [u(x + h) − u(x)] h v(x) − u(x) lim h→0 [v(x + h) − v(x)] h lim h→0 v(x)v(x + h) = u′(x)v(x) − u(x)v′(x) [v(x)]2 Example(s): (a) Differentiate y = 2x2 + 1 x2 − 1 . Solution Let y = u v , where u = 2x2 + 1 and v = x2 − 1. Differentiating yields u′ = 4x and v′ = 2x. Therefore, dy dx = vu′ − uv′ v2 = (x2 − 1)(4x) − (2x2 + 1)(2x) (x2 − 1)2 = 4x3 − 4x − 4x3 − 2x (x2 − 1)2 = −6x (x2 − 1)2 (b) Differentiate y = x3 x − 1 . Solution 5
  • 6. 1.1 Basic differentiation rules c ⃝Francis Oketch Let y = u v , where u = x3 and v = x − 1. Differentiating yields u′ = 3x2 and v′ = 1. Therefore, dy dx = vu′ − uv′ v2 = (x − 1)(3x2) − (x3)(1) (x − 1)2 = 3x3 − 3x2 − x3 (x − 1)2 = 2x3 − 3x2 (x − 1)2 The chain rule Suppose that y is a differentiable function of u and u is a differentiable function of x (i.e., y = y(u) and u = u(x)), then y is a (differentiable) function of x by extension (i.e., y = y(u(x))) and . . dy dx = dy du · du dx → Note: chain rule is used when we want to differentiate a function of another function. Example(s): (a) Differentiate with respect to x the function y = (3x + 4)4. Solution Let y = u4, where u = 3x + 4. Differentiating yields dy du = 4u3 and du dx = 3. Therefore, chain rule yields dy dx = dy du · du dx = (4u3 )(3) = 12u3 = 12(3x + 4)3 (b) Differentiate with respect to x the function y = (x2 + 3x)7. Solution Let y = u7, where u = x2 +3x. Differentiating yields dy du = 7u6 and du dx = 2x+3. Therefore, chain rule yields dy dx = dy du · du dx = (7u6 )(2x + 3) = 7(x2 + 3x)6 (2x + 3) (c) Find dy dx if y = (1 − 3x2)5. Solution Let y = u5, where u = 1 − 3x2. Differentiating yields dy du = 5u4 and du dx = −6x. Therefore, chain rule yields dy dx = dy du · du dx = (5u4 )(−6x) = −30x(u4 ) = −30x(1 − 3x2 )4 (d) Find dy dx if y = ( 1 + 2x 1 + x )2 . Solution Let y = u2, where u = 1 + 2x 1 + x . Differentiating yields dy du = 2u and du dx = (1 + x)(2) − (1 + 2x)(1) (1 + x)2 = 1 (1 + x)2 . Therefore, chain rule yields dy dx = dy du · du dx = (2u) [ 1 (1 + x)2 ] = 2 [ 1 + 2x 1 + x ] [ 1 (1 + x)2 ] = 2(1 + 2x) (1 + x)3 6
  • 7. 1.2 Derivative of trigonometric functions c ⃝Francis Oketch (e) Differentiate with respect to x the function y = √ 1 + √ 1 + √ 1 + x. Solution Let u = √ 1 + x, v = √ 1 + u, and w = √ 1 + v. Then, y = w. Differentiating yields dy dw = 1, du dx = 1 2(1 + x) 1 2 , dv du = 1 2(1 + u) 1 2 , and dw dv = 1 2(1 + v) 1 2 . Therefore, chain rule yields dy dx = dy dw · dw dv · dv du · du dx = (1) [ 1 2(1 + v) 1 2 ] [ 1 2(1 + u) 1 2 ] [ 1 2(1 + x) 1 2 ] = 1 8(1 + v) 1 2 (1 + u) 1 2 (1 + x) 1 2 = 1 8 (√ 1 + v ) (√ 1 + u ) (√ 1 + x ) = 1 8 (√ 1 + √ 1 + √ 1 + x ) (√ 1 + √ 1 + x ) (√ 1 + x ) → Note: (Direct chain rule) Consider the function y = [f(x)]n . Then, direct chain rule yields . . dy dx = n [f(x)]n−1 · f′ (x) For example, if y = (1 − 3x2)5 then DCR yields dy dx = 5(1 − 3x2)4(0 − 6x) = −30x(1 − 3x2)4. Exercise: (a) Use chain rule to differentiate the following functions i) y = (3x2 + 5)3 ii) y = (3x3 + 5x)2 iii) y = (7x2 − 4) 1 3 iv) y = (6x2 − 4x)−2 v) y = (3x2 − 5)−2 3 vi) y = (1 + x4 − 2x3)4(1 − 4x2)3 (b) Find dy dx when y = √ 1 + x 1 − x . [ans: dy dx = 1 (1 + x) 1 2 (1 − x) 3 2 ] (c) Differentiate with respect to x the function y = √ x + √ x + √ x. Lecture 4 1.2 Derivative of trigonometric functions Derivative of sin x and cos x . . d dx [sin x] = cos x and d dx [cos x] = − sin x Proof. i) Sine 7
  • 8. 1.2 Derivative of trigonometric functions c ⃝Francis Oketch Let f(x) = sin x. Thus, from the first principle of differentiation and using the trigonometric identity sin(A + B) = sin A cos B + sin B cos A, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 sin(x + h) − sin x h = lim h→0 sin x cos h + sin h cos x − sin x h = lim h→0 − sin x(1 − cos h) + sin h cos x h = − sin x [ lim h→0 (1 − cos h) h ] + cos x [ lim h→0 sin h h ] = (− sin x)(0) + (cos x)(1) = cos x ii) Cosine Similarly, let f(x) = cos x. Thus, from the first principle of differentiation and using the trigonometric identity cos(A + B) = cos A cos B − sin A sin B, we have f′ (x) = lim h→0 f(x + h) − f(x) h = lim h→0 cos(x + h) − cos x h = lim h→0 cos x cos h − sin x sin h − cos x h = lim h→0 − cos x(1 − cos h) − sin x sin h h = − cos x [ lim h→0 (1 − cos h) h ] − sin x [ lim h→0 sin h h ] = (− cos x)(0) − (sin x)(1) = − sin x Example(s): (a) Differentiate the following functions wrt x: (i) y = sin(3x + 2), (ii) y = cos3 x, (iii) y = sin(x2), (iv) y = x sin(x), (v) y = sin x x , and (vi) y = cos2(3x). Solution i) Given that y = sin(3x + 2). Let y = sin(u), where u = 3x + 2. Differentiating yields dy du = cos u and du dx = 3. Therefore, chain rule yields dy dx = dy du · du dx = (cos u)(3) = 3 cos(3x + 2) ii) Given that y = cos3 x. Let y = u3, where u = cos x. Differentiating yields dy du = 3u2 and du dx = − sin x. Therefore, chain rule yields dy dx = dy du · du dx = (3u2 )(− sin x) = −3 sin x cos2 x iii) Given that y = sin(x2). Let y = sin(u), where u = x2. Differentiating yields dy du = cos u and du dx = 2x. Therefore, chain rule yields dy dx = dy du · du dx = (cos u)(2x) = 2x cos(x2 ) iv) Given that y = x sin(x). Let y = uv, where u = x and v = sin(x). Differentiating yields u′ = 1 and v′ = cos x. Therefore, product rule yields dy dx = uv′ + vu′ = (x)(cos x) + (sin x)(1) = x cos x + sin x 8
  • 9. 1.2 Derivative of trigonometric functions c ⃝Francis Oketch v) Given that y = sin x x . Let y = u v , where u = sin x and v = x. Differentiating yields u′ = cos x and v′ = 1. Therefore, quotient rule yields dy dx = vu′ − uv′ v2 = (x)(cos x) − (sin x)(1) x2 = x cos x − sin x x2 vi) Given that y = cos2(3x). Let y = u2, where u = cos(3x). Differentiating yields dy du = 2u and du dx = −3 sin(3x). Therefore, chain rule yields dy dx = dy du · du dx = (2u)[−3 sin(3x)] = −6 cos(3x) sin(3x) (b) If y = √ 1 + sin x, show that dy dx = 1 2 √ 1 − sin x. Solution Let y = u 1 2 , where u = 1 + sin x. Differentiating yields dy du = 1 2 u−1 2 and du dx = cos x. Therefore, chain rule yields dy dx = dy du · du dx = ( 1 2 u− 1 2 ) (cos x) = cos x 2 √ u = cos x 2 √ 1 + sin x = 1 2 cos x √ 1 − sin x ( √ 1 + sin x)( √ 1 − sin x) = 1 2 cos x √ 1 − sin x √ 1 − sin2 x = 1 2 cos x √ 1 − sin x √ cos2 x = 1 2 √ 1 − sin x (c) Find dy dx if y = sin(cos x). Solution Let y = sin u, where u = cos x. Differentiating yields dy du = cos u and du dx = − sin x. Therefore, chain rule yields dy dx = dy du · du dx = (cos u)(− sin x) = − cos(cos x) sin x In general, . . d dx [sin (f(x))] = f′ (x) cos (f(x)) and d dx [cos (f(x))] = −f′ (x) sin (f(x)) Exercise: (a) Find dy dx if y = sin( √ x). (b) If y = √ 1 + sin x 1 − sin x , show that dy dx = 1 1 − sin x . (c) If m is a positive integer, find the differential coefficients with respect to x of (i) sinm x and (ii) sin(xm). (d) Differentiate the following functions with respect to x: (i) y = sin 3x, (ii) y = cos(x2), (iii) y = √ sin 2x, (iv) y = 4 sin2(x 2 ), (v) y = sin x cos 2x, (vi) y = cos 2x sin 3x , and (vii) y = 2 cos x + 2x sin x − x2 cos x. Derivative of tan x, cot x, sec x and cosec x 9
  • 10. 1.2 Derivative of trigonometric functions c ⃝Francis Oketch I Tangent Let y = tan x = sin x cos x . Differentiating using quotient rule yields dy dx = (cos x)(cos x) − (sin x)(− sin x) cos2 x = cos2 x + sin2 x cos2 x = 1 cos2 x = sec2 x Therefore, . . d dx [tan x] = sec2 x . II Cotangent Let y = cot x = cos x sin x . Differentiating using quotient rule yields dy dx = (sin x)(− sin x) − (cos x)(cos x) sin2 x = − [ sin2 x + cos2 x ] sin2 x = −1 sin2 x = −cosec2 x Therefore, . . d dx [cot x] = −cosec2 x . III Secant Let y = sec x = 1 cos x . Differentiating using quotient rule yields dy dx = (cos x)(0) − (1)(− sin x) cos2 x = sin x cos2 x = 1 cos x · sin x cos x = sec x tan x Therefore, . . d dx [sec x] = sec x tan x . IV Cosecant Let y = cosec x = 1 sin x . Differentiating using quotient rule yields dy dx = (sin x)(0) − (1)(cos x) sin2 x = − cos x sin2 x = −1 sin x · cos x sin x = −cosec x cot x Therefore, . . d dx [cosec x] = −cosec x cot x . In summary, we have f(x) f′(x) sin x cos x cos x − sin x tan x sec2 x cosec x −cosec x cot x sec x sec x tan x cot x −cosec2x Example(s): (a) Differentiate the following functions with respect to x: (i) y = tan 2x, (ii) y = cot 3x, (iii) y = 3 sec 2x, (iv) y = sec x tan x, (v) y = x2 cot x, and (vi) y = x tan x . Solution 10
  • 11. 1.2 Derivative of trigonometric functions c ⃝Francis Oketch i) Given that y = tan 2x. Let y = tan u, where u = 2x. Differentiating yields dy du = sec2 u and du dx = 2. Therefore, chain rule yields dy dx = dy du · du dx = (sec2 u)(2) = 2 sec2 (2x) ii) Given that y = cot 3x. Let y = cot u, where u = 3x. Differentiating yields dy du = −cosec2u and du dx = 3. Therefore, chain rule yields dy dx = dy du · du dx = (−cosec2 u)(3) = −3cosec2 (3x) iii) Given that y = 3 sec 2x. Let y = 3 sec u, where u = 2x. Differentiating yields dy du = 3 sec u tan u and du dx = 2. Therefore, chain rule yields dy dx = dy du · du dx = (3 sec u tan u)(2) = 6 sec(2x) tan(2x) iv) Given that y = sec x tan x. Let y = uv, where u = sec x and v = tan x. Differentiating yields u′ = sec x tan x and v′ = sec2 x. Therefore, product rule yields dy dx = uv′ + vu′ = (sec x)(sec2 x) + (tan x)(sec x tan x) = sec3 x + sec x tan2 x v) Given that y = x2 cot x. Let y = uv, where u = x2 and v = cot x. Differentiating yields u′ = 2x and v′ = −cosec2x. Therefore, product rule yields dy dx = uv′ + vu′ = (x2 )(−cosec2 x) + (cot x)(2x) = 2x cot x − x2 cosec2 x vi) Given that y = x tan x . Let y = u v , where u = x and v = tan x. Differentiating yields u′ = 1 and v′ = sec2 x. Therefore, quotient rule yields dy dx = vu′ − uv′ v2 = (tan x)(1) − (x)(sec2 x) tan2 x = tan x − x sec2 x tan2 x In general, . . d dx [tan (f(x))] = f′ (x) sec2 (f(x)) and d dx [cot (f(x))] = −f′ (x)cosec2 (f(x)) . . d dx [sec (f(x))] = f′ (x) sec (f(x)) tan (f(x)) and d dx [cosec (f(x))] = −f′ (x)cosec (f(x)) cot (f(x)) Exercise: (a) Differentiate the following functions with respect to x: (i) y = sec2 2x, (ii) y = 3 sec x tan x, (iii) y = −cosec2 ( 1 2 x ) , and (iv) y = sec x x . (b) If y = (tan x + sec x)m , where m is a positive integer. Show that dy dx = my sec x. Lecture 5 11
  • 12. 1.3 Derivative of exponential functions c ⃝Francis Oketch 1.3 Derivative of exponential functions A standard exponential function of x takes the form y = ex or y = exp(x). The number e ≈ 2.7183 is called Euler’s constant. To differentiate the standard exponential function, use the rule . . d dx [ex ] = ex Proof. Given y(x) = ex ⇒ y(x + h) = ex+h = exeh. Thus, by the first principle of differentiation, we have y′ (x) = lim h→0 [ y(x + h) − y(x) h ] = lim h→0 [ exeh − ex h ] = ex lim h→0 [ eh − 1 h ] From the table, we have h 0.0001 0.001 0.01 0.1 -0.01 -0.001 eh − 1 h 1.0005 1.05 Hence, lim h→0 [ eh − 1 h ] = 1 Therefore, y′(x) = ex(1) = ex. In general, suppose y = ef(x). Let y = eu, where u = f(x). Differentiating yields dy du = eu and du dx = f′(x). By chain rule, we have dy dx = dy du · du dx = eu · f′(x) = f′(x)ef(x). Therefore, . . d dx [ ef(x) ] = f′ (x)ef(x) In other words, to differentiate y = ef(x), multiply the exponential function by the derivative of the exponent. Example(s): (a) Find dy dx given (i) y = e−6x and (ii) y = ex2 Solution i) Given y = e−6x. Let u = −6x ⇒ y = eu. Differentiating we get du dx = −6 and dy du = eu. Hence, chain rule yields dy dx = dy du · du dx = −6eu = −6e−6x. Therefore, dy dx = −6e−6x. ii) Given y = ex2 . Let u = x2 ⇒ y = eu. Differentiating we get du dx = 2x and dy du = eu. Hence, chain rule yields dy dx = dy du · du dx = 2xeu = 2xex2 . Therefore, dy dx = 2xex2 . (b) Differentiate the following functions with respect to x: (i) y = 2e−3x + e4x and (ii) y = 2esin 3θ. Solution Using direct chain rule, we have i) dy dx = 2 d dx [ e−3x ] + d dx [ e4x ] = 2 [ e−3x d dx (−3x) ] + [ e4x d dx (4x) ] = −6e−3x + 4e4x. ii) dy dθ = 2 d dθ [ esin 3θ ] = 2 [ esin 3θ d dθ (sin 3θ) ] = 2esin 3θ(3 cos 3θ) = 6esin 3θ cos 3θ. (c) If y = e−2x cos 4x, find dy dx . Solution 12
  • 13. 1.4 Derivative of natural logarithmic functions c ⃝Francis Oketch Product rule yields dy dx = e−2x d dx [cos 4x] + cos 4x d dx [ e−2x ] = −4e−2x sin 4x − 2e−2x cos 4x Exercise: 1. Find dy dx given: i) y = √ xe √ x + e √ x2+1 ii) y = e2x 1 + x2e3x iii) y = ( 6 + e3x cos 4x )4 iv) y = esin 5x + 2x2ecos 3x v) y = ( e3x2+6x ) cos (ex + e−x) vi) y = etan(4+sin 3x) + 1 e2x + e5x + 6. 1.4 Derivative of natural logarithmic functions A natural logarithmic function of x is logarithm of x to base e, i.e., loge x = ln x. Thus in index form, x can be rewritten as x = eln x. Similarly, y = eln y, a = eln a, etc. Suppose y = ln x. Then, . . d dx [ln x] = 1 x Proof. Given y = ln x. Taking exponential on both sides yields ey = x. Differentiating both sides with respect to x yields ey dy dx = 1 ⇒ dy dx = 1 ey = 1 x . Therefore, dy dx = 1 x . In general, suppose y = ln[f(x)]. Then, ey = f(x). Differentiating both sides with respect to x yields ey dy dx = f′ (x) ⇒ dy dx = f′(x) ey = f′(x) f(x) Therefore, . . d dx {ln[f(x)]} = f′(x) f(x) In other words, to differentiate y = ln[f(x)], multiply the reciprocal of the parameter by the derivative of the parameter. Example(s): (a) Find dy dx given: (i) y = ln(x2), (ii) y = ln(cos 2x), (iii) y = ln ( √ x2 + 1 3 √ x3 + 1 ) . Solution i) Given y = ln(x2). Let u = x2 ⇒ y = ln(u). Differentiating yields du dx = 2x and dy du = 1 u = 1 x2 . Hence, chain rule yields dy dx = dy du · du dx = 2x x2 = 2 x . Therefore, dy dx = 2 x 13
  • 14. 1.4 Derivative of natural logarithmic functions c ⃝Francis Oketch ii) Let y = ln(u) where u = cos 2x. Differentiating yields dy du = 1 u and du dx = −2 sin 2x. Hence, chain rule yields dy dx = dy du · du dx = −2 sin 2x u = −2 sin 2x cos 2x = −2 tan 2x. Therefore, dy dx = −2 tan 2x iii) Given y = ln ( √ x2 + 1 3 √ x3 + 1 ) ⇒ y = ln [ (x2 + 1)1/2 (x3 + 1)1/3 ] = 1 2 ln ( x2 + 1 ) − 1 3 ln ( x3 + 1 ) . Thus, y = 1 2 ln ( x2 + 1 ) − 1 3 ln ( x3 + 1 ) . Differentiating both sides with respect to x yields dy dx = 1 2 d dx [ ln ( x2 + 1 )] − 1 3 d dx [ ln ( x3 + 1 )] = 1 2 (x2 + 1) d dx ( x2 + 1 ) − 1 3 (x3 + 1) d dx ( x3 + 1 ) = 1 2 (x2 + 1) (2x) − 1 3 (x3 + 1) ( 3x2 ) = x (x2 + 1) − x2 (x3 + 1) = x(x3 + 1) − x2(x2 + 1) (x2 + 1)(x3 + 1) = x4 + x − x4 − x2) (x2 + 1)(x3 + 1) = x − x2 (x2 + 1)(x3 + 1) (b) Find dy dx given that y = sin (ln 2x). Solution Let y = sin u, where u = ln 2x. Thus, chain rule yields dy dx = dy du · du dx = (cos u) [ 1 2x · d dx (2x) ] = (cos u) [ 1 x ] = cos u x = cos(ln 2x) x (c) Find dy dx given y = √ 1 + x 1 − x . Solution Given y = √ 1 + x 1 − x . Taking natural logarithm on both sides yields ln y = ln ( 1 + x 1 − x )1/2 = 1 2 ln ( 1 + x 1 − x ) = 1 2 [ln(1 + x) − ln(1 − x)] Thus, ln y = 1 2 [ln(1 + x) − ln(1 − x)]. Differentiating with respect to x yields d dx [ln y] = 1 2 { d dx [ln(1 + x)] − d dx [ln(1 − x)] } ⇒ 1 y dy dx = 1 2 { 1 (1 + x) d dx (1 + x) − 1 (1 − x) d dx (1 − x) } = 1 2 { 1 1 + x + 1 1 − x } = 1 1 − x2 Therefore, dy dx = 1 1 − x2 y = 1 1 − x2 √ 1 + x 1 − x = 1 (1 + x)(1 − x) · (1 + x)1/2 (1 − x)1/2 = 1 (1 + x)1/2(1 − x)3/2 Exercise: (a) i) If y = ( √ x − 1)ex ln x, find dy dx . [ans: dy dx = ex 2x √ x − 1 { (2x2 − x) ln x + 2x − 2 } ] 14
  • 15. 1.5 Implicit differentiation c ⃝Francis Oketch ii) Find the gradient of the curve y = ln( √ 1 + sin 2x) at the point where x = π 2 . [ans: = -1] (b) Find dy dx given: i) y = ln √ 2x + 6 ii) y = √ x ln( √ x) iii) y = 1 + 2x2 ln 3x 1 + √ sec(ln 2x) iv) y = 1 1 + 2 ln 46x − 1 sin(ln(15x2)) v) y = ( 2x2 + ln √ x )6 (1 + 2x sec 2x)3 vi) y = cot ( ln 2x + e3x ) Lecture 6 1.5 Implicit differentiation An implicit function is a function where the dependent variable y is not expressed explicitly in terms of the independent variable x (i.e., a function where y is not the subject of the formula). To find dy dx , follow these steps: i) Differentiate x normally ii) Apply direct chain rule in differentiating y iii) Collect like terms and make dy dx the subject Example(s): 1. Find dy dx given x4 + y5 = 125. Solution Differentiating the given equation implicitly with respect to x, we get 4x3 + 5y4 dy dx = 0 ⇒ dy dx = − 4x3 5y4 2. Find dy dx given y + xy + y2 = 2. Solution Differentiating the given equation implicitly with respect to x, we get dy dx + x dy dx + (1)y + 2y dy dx = 0 ⇒ dy dx = −y 1 + x + 2y 3. Find dy dx when y3 − 3x2y + 2x3 = 0. Solution Differentiating the given equation implicitly with respect to x, we get 3y2 dy dx − 3x2 dy dx − 6xy + 6x2 = 0 ⇒ (3y2 − 3x2 ) dy dx = 6xy − 6x2 15
  • 16. 1.6 Differentiation of other forms of exponential functions c ⃝Francis Oketch Therefore, dy dx = 6x(y − x) 3(y2 − x2) = 6x(y − x) 3(y + x)(y − x) = 2x y + x 4. If y2 − 2y √ 1 + x2 + x2 = 0, show that dy dx = x √ 1 + x2 . Solution Differentiating the given equation implicitly with respect to x, we get 2y dy dx −2 √ 1 + x2 dy dx −2y [ 1 2 (1 + x2 )−1 2 ] (2x)+2x = 0 ⇒ ( 2y − 2 √ 1 + x2 ) dy dx = 2xy √ 1 + x2 −2x Therefore, dy dx = 2xy √ 1 + x2 − 2x 2y − 2 √ 1 + x2 = 2x ( y − √ 1 + x2 ) 2 √ 1 + x2 ( y − √ 1 + x2 ) = x √ 1 + x2 Exercise: 1. Find dy dx given: (a) xy3 − 2x2y2 + x4 = 1 (b) x2 sin y − y cos x = 10x3 (c) x cos y − y2 sin x = 2 (d) exy2 = 10 ( x2 + y2 ) (e) ln(x2 + √ y) = sin(xy2) (f) tan y sin x = cos(xy) (g) cos(x + y) sin(x − y) = 20x2 (h) y2ex2y = 30 √ xy (i) ln ( x + y x2y ) = 10x2 (j) cos(xy) = 4x2 + y2 2. Find dy dx and d2y dx2 given that 2x2y3 + x4 = 6y2 + 2x. 1.6 Differentiation of other forms of exponential functions Consider exponential functions of the form I: A constant raised to a function (e.g., y = 10tan 3x) In this case, introduce natural logarithm on both sides first. On the left differentiate implicitly and on the right hand side differentiate normally. Example(s): (a) Find dy dx given: (i) y = ax2 where a is a constant, (ii) y = 3−x2+6x+10, and (iii) y = 4sin 5x. Solution 16
  • 17. 1.6 Differentiation of other forms of exponential functions c ⃝Francis Oketch i) Given y = ax2 . Taking natural logarithm on both sides yields ln y = x2 ln a Differentiating with respect to x yields d dx [ln y] = d dx [x2 ln a] ⇒ 1 y dy dx = 2x ln a ⇒ dy dx = 2xy ln a Therefore, dy dx = 2xax2 ln a. ii) Given y = 3−x2+6x+10. Taking natural logarithm on both sides yields ln y = (−x2 + 6x + 10) ln 3 Differentiating with respect to x yields 1 y dy dx = (−2x + 6) ln 3 ⇒ dy dx = (−2x + 6)y ln 3 Therefore, dy dx = (−2x + 6)3−x2+6x+10 ln 3. iii) Given y = 4sin 5x. Taking natural logarithm on both sides yields ln y = sin 5x ln 4 Differentiating with respect to x yields 1 y dy dx = 5 cos 5x ln 4 ⇒ dy dx = (5 cos 5x)y ln 4 Therefore, dy dx = (5 cos 5x)4sin 5x ln 4. Exercise: i) Find dy dx given y = ax + bx, where a and b are constants. [ans: dy dx = ax ln a + bx ln b] II: A function raised to a function (e.g., y = xtan 3x) In this case, introduce natural logarithm on both sides first. On the left differentiate implicitly and on the right hand side differentiate using product rule. Example(s): (a) Find dy dx given: (i) y = xx, (ii) y = (tan x)x , (iii) y = (sin 4x)x2 , and (iv) y = ( ex2 )x . Solution i) Given y = xx. Taking natural logarithm on both sides yields ln y = x ln x Differentiating with respect to x yields d dx [ln y] = d dx [x ln x] ⇒ 1 y dy dx = x d dx [ln x] + ln x d dx (x) = x · 1 x + ln x = 1 + ln x Therefore, dy dx = y(1 + ln x) = xx(1 + ln x). 17
  • 18. 1.6 Differentiation of other forms of exponential functions c ⃝Francis Oketch ii) Given y = (tan x)x . Taking natural logarithm on both sides yields ln y = x ln(tan x) Differentiating with respect to x yields d dx [ln y] = d dx [x ln(tan x)] ⇒ 1 y dy dx = x d dx [ln(tan x)] + ln(tan x) d dx (x) = x · sec2 x tan x + ln(tan x) = x sec2 x tan x + ln(tan x) Therefore, dy dx = y ( x sec2 x tan x + ln(tan x) ) = (tan x)x ( x sec2 x tan x + ln(tan x) ) . iii) Given y = (sin 4x)x2 . Taking natural logarithm on both sides yields ln y = x2 ln(sin 4x) Differentiating with respect to x yields d dx [ln y] = d dx [x2 ln(sin 4x)] ⇒ 1 y dy dx = x2 d dx [ln(sin 4x)] + ln(sin 4x) d dx (x2 ) = x2 · 4 cos 4x sin 4x + 2x ln(sin 4x) = 4x2 cot 4x + 2x ln(sin 4x) Therefore, dy dx = y [ 4x2 cot 4x + 2x ln(sin 4x) ] = (sin 4x)x2 [ 4x2 cot 4x + 2x ln(sin 4x) ] . Exercise: (a) Differentiate the following functions with respect to x. i) y = xcos x. [ans: dy dx = xcos x ( − sin x ln x + cos x x ) ] ii) y = (sin x)x. [ans: dy dx = (sin x)x (ln(sin x) + x cot x)] iii) y = (x + x2)x. [ans: dy dx = (x + x2)x ( ln(x + x2) + 1 + 2x 1 + x ) ] iv) yx = x. [ans: dy dx = y x ( 1 x − ln y ) ] v) xy = sin x. [ans: dy dx = 1 ln x ( cot x − y x ) ] vi) ysin x = √ x. [ans: dy dx = y sin x ( 1 2x − cot x ln y ) ] (b) Find dy dx given: i) y = (cos 3x)sin 3x ii) y = ax + sin (2x) iii) y = (cos x)x + 2x2 iv) y = sin ( a2x + 3x ) III: Derivatives of other logarithmic functions e.g., y = log2(3x2 + 1) To find dy dx , first convert the logarithm to index notation then introduce natural logarithm on both sides. Example(s): 18
  • 19. 1.7 Inverse trigonometric functions c ⃝Francis Oketch (a) Find dy dx given: (i) y = log2(3x2 + 1), (ii) y = logsin x x, and (iii) y = logx(cos 3x) Solution i) Given y = log2(3x2 + 1). In index notation, we have 2y = 3x2 + 1. Taking natural logarithm on both sides yields y ln 2 = ln(3x2 + 1) Differentiating with respect to x yields d dx [y ln 2] = d dx [ln(3x2 + 1)] ⇒ dy dx ln 2 = 6x 3x2 + 1 Therefore, dy dx = 6x (3x2 + 1) ln 2 . ii) Given y = logsin x x. In index notation, we have (sin x)y = x. Taking natural logarithm on both sides yields y ln(sin x) = ln x Differentiating with respect to x yields y cos x sin x + ln(sin x) dy dx = 1 x ⇒ y cot x + ln(sin x) dy dx = 1 x Therefore, dy dx = ( 1 x − y cot x ) 1 ln(sin x) . iii) Given y = logx(cos 3x). In index notation, we have xy = cos 3x. Taking natural logarithm on both sides yields y ln x = ln(cos 3x) Differentiating with respect to x yields y x + ln(x) dy dx = −3 sin 3x cos 3x ⇒ y x + ln(x) dy dx = −3 tan 3x Therefore, dy dx = ( − y x − 3 tan 3x ) 1 ln x . Lecture 7 1.7 Inverse trigonometric functions y = sin−1 x = arcsin x, y = cos−1 x = arccos x, y = tan−1 x = arctan x y = cosec−1 x = arccosec x, y = sec−1 x = arcsec x, y = cot−1 x = arccot x. → Note: sin−1 x ̸= 1 sin x , cos−1 x ̸= 1 cos x , etc. 1.7.1 Derivative of inverse trigonometric functions To find dy dx , follow these steps i) Introduce the trigonometric function corresponding to the given inverse on both sides of the given equation ii) Differentiate implicitly on the left hand side and differentiate normally on the right hand side. iii) Make dy dx the subject. 19
  • 20. 1.7 Inverse trigonometric functions c ⃝Francis Oketch To find a suitable form of the trigonometric function in the denominator, put the given equation in place of y, or replace the denominator by either making use of trigonometric identities or draw a right angled triangle and find the missing side using Pythagoras theorem, as follows: For example, I Let y = sin−1 x ⇒ sin y = x. Differentiating both sides with respect to x yields cos y dy dx = 1 ⇒ dy dx = 1 cos y Formula 1: putting y = sin−1 x in place of y yields dy dx = 1 cos ( sin−1 x ) Formula 2: using the identity cos2 y + sin2 y = 1 ⇒ cos y = √ 1 − sin2 y. Thus, dy dx = 1 √ 1 − sin2 y . Putting sin y = x yields dy dx = 1 √ 1 − x2 , or using the right angled triangle . . √ 1 − x2 . x . 1 . y From sin y = x, we have opposite is x and hypotenuse is 1. From Pythagoras theorem, the adjacent is given by √ 1 − x2. From the diagram, cos y = √ 1 − x2. Hence, dy dx = 1 √ 1 − x2 Therefore, . . d dx [ sin−1 x ] = 1 √ 1 − x2 . II Let y = cos−1 x ⇒ cos y = x. Differentiating both sides with respect to x yields − sin y dy dx = 1 ⇒ dy dx = −1 sin y = −1 √ 1 − cos2 y = −1 √ 1 − x2 Therefore, . . d dx [ cos−1 x ] = −1 √ 1 − x2 . III Let y = tan−1 x ⇒ tan y = x. Differentiating both sides with respect to x yields sec2 y dy dx = 1 ⇒ dy dx = 1 sec2 y = 1 1 + tan2 y = 1 1 + x2 Therefore, . . d dx [ tan−1 x ] = 1 1 + x2 . IV Let y = cot−1 x ⇒ cot y = x. Differentiating both sides with respect to x yields −cosec2 y dy dx = 1 ⇒ dy dx = −1 cosec2y = −1 1 + cot2 y = −1 1 + x2 Therefore, . . d dx [ cot−1 x ] = −1 1 + x2 . V Let y = sec−1 x ⇒ sec y = x. Differentiating both sides with respect to x yields sec y tan y dy dx = 1 ⇒ dy dx = 1 sec y tan y = 1 sec y (√ sec2 y − 1 ) = 1 x √ x2 − 1 Therefore, . . d dx [ sec−1 x ] = 1 x √ x2 − 1 . 20
  • 21. 1.7 Inverse trigonometric functions c ⃝Francis Oketch VI Let y = cosec−1x ⇒ cosec y = x. Differentiating both sides with respect to x yields −cosec y cot y dy dx = 1 ⇒ dy dx = −1 cosec y cot y = −1 cosec y (√ cosec2y − 1 ) = −1 x √ x2 − 1 Therefore, . . d dx [ cosec−1 x ] = −1 x √ x2 − 1 . Example(s): (a) Find dy dx if y = sin−1(2x2 + x + 1). Solution Let y = sin−1 u, where u = 2x2 + x + 1. Differentiating yields dy du = 1 √ 1 − u2 and du dx = 4x + 1. Therefore, chain rule yields dy dx = dy du · du dx = ( 1 √ 1 − u2 ) (4x + 1) = 4x + 1 √ 1 − (2x2 + x + 1)2 (b) Find dy dx if y = cos−1(2x + 1). Solution Let y = cos−1 u, where u = 2x+1. Differentiating yields dy du = −1 √ 1 − u2 and du dx = 2. Therefore, chain rule yields dy dx = dy du · du dx = ( −1 √ 1 − u2 ) (2) = −2 √ 1 − (2x + 1)2 (c) Find dy dx if y = tan−1(cos x + x). Solution Let y = tan−1 u, where u = cos x + x. Differentiating yields dy du = 1 1 + u2 and du dx = − sin x + 1. Therefore, chain rule yields dy dx = dy du · du dx = ( 1 1 + u2 ) (− sin x + 1) = − sin x + 1 1 + (cos x + x)2 (d) Differentiate y = x sin−1 x with respect to x. Solution Let y = uv, where u = x and v = sin−1 x. Differentiating yields u′ = 1 and v′ = 1 √ 1 − x2 . Therefore, product rule yields dy dx = uv′ + vu′ = (x) ( 1 √ 1 − x2 ) + (sin−1 x)(1) = x √ 1 − x2 + sin−1 x (e) Find dθ dt when (i) θ = cos−1(1 − 2t2) and (ii) θ = sin−1(2t3 − 1). Solution 21
  • 22. 1.7 Inverse trigonometric functions c ⃝Francis Oketch i) Given that θ = cos−1(1 − 2t2). Let θ = cos−1 u, where u = 1 − 2t2. Differentiating yields dθ du = −1 √ 1 − u2 and du dt = −4t. Therefore, chain rule yields dθ dt = dθ du · du dt = ( −1 √ 1 − u2 ) (−4t) = 4t √ 1 − (1 − 2t2)2 = 4t √ 1 − 1 + 4t2 − 4t4 = 4t √ 4t2(1 − t2) = 4t 2t √ 1 − t2 = 2 √ 1 − t2 ii) Given that θ = sin−1(2t3 − 1). Let θ = sin−1 u, where u = 2t3 − 1. Differentiating yields dθ du = 1 √ 1 − u2 and du dt = 6t2. Therefore, chain rule yields dθ dt = dθ du · du dt = ( 1 √ 1 − u2 ) (6t2 ) = 6t2 √ 1 − (2t3 − 1)2 = 6t2 √ 1 − 4t6 + 4t3 − 1 = 4t √ 4t2(t − t4) = 6t2 2t √ t − t4 = 3t √ t − t4 (f) If y = ( tan−1 x )2 , prove that d dx { (1 + x2) dy dx } = 2 1 + x2 . Proof. Let y = u2, where u = tan−1 x. Differentiating yields dy du = 2u and du dx = 1 1 + x2 . Therefore, chain rule yields dy dx = dy du · du dx = (2u) ( 1 1 + x2 ) = 2 tan−1 x 1 + x2 Now, d dx { (1 + x2 ) dy dx } = d dx { (1 + x2 ) 2 tan−1 x 1 + x2 } = d dx { 2 tan−1 x } = 2 1 + x2 Exercise: (a) i) If y = sin−1(cos x), show that dy dx = −1. ii) If y = sin−1(3x − 4x3), show that √ 1 − x2 dy dx = 3. iii) If u = θ2 + ( sin−1 θ )2 − 2θ √ 1 − θ2 sin−1 θ, show that √ 1 − θ2 du dθ = 4θ2 sin−1 θ. (b) Find the derivative of the following functions: (i) y = x2 ( sin−1)x )2 , (ii) y = √ tan−1 x, and (iii) y = sin ( tan−1 x ) . (c) Find dy dx given that y = sin−1 √ x. [ans: dy dx = 1 2 √ x − x2 ] (d) Find dy dx given: i) y = esin−1(3x) + 1 2x + cos−1(4x) ii) y = 2x + cos−1(4x) iii) y = ln ( x2 + 2x ) iv) y = sin−1(3x) 23x + sin 3x 22
  • 23. 1.8 Parametric differentiation c ⃝Francis Oketch v) y = cosec−1(3x) vi) y = x2cosec−1(4x) vii) y = xx sin−1(2x) (e) Trey knows the following values for f(x) and f′(x): x 5 6 7 8 9 f(x) 8 2 7 9 5 f′(x) -3 1 -8 9 6 i) Let h(x) = ln(5x + 3) tan−1(f(x)). Find h′(8) [ans: h′(8) = 0.5826] ii) Let m(x) = sec−1(f(x)). Find m′(8) [ans: m′(8) = 1.1118] (f) Brendan knows the following values for f(x) and f′(x): x 3 4 5 6 7 f(x) -0.6 0.7 0.7 -0.3 -0.4 f′(x) 10 -9 6 -5 -2 i) Let h(x) = sin−1(f(x)). Find h′(3) [ans: h′(3) = 12.5] ii) Let m(x) = e5x sin−1(f(x)). Find m′(3) [ans: m′(3) = 3.0345 × 107] CAT 1 Lecture 8 1.8 Parametric differentiation If both x and y are defined as functions of another variable (parameter), say t, i.e., x = x(t), y = y(t), then . . dy dx = ( dy dt ) ÷ ( dx dt ) = dy/dt dx/dt Example(s): 1. Find dy dx , in terms of the parameter t, when (a) x = at2, y = 2at, (b) x = (t + 1)2, y = (t2 − 1), and (c) x = cos−1(3t), y = sin−1(3t). Solution (a) dx dt = 2at, dy dt = 2a. Therefore, dy dx = dy/dt dx/dt = 2a 2at = 1 t . (b) dx dt = 2(t + 1), dy dt = 2t. Therefore, dy dx = dy/dt dx/dt = 2t 2(t + 1) = t t + 1 . (c) Rewrite as cos x = 3t, sin y = 3t. Differentiating with respect to t yields − sin x dx dt = 3 and cos y dy dt = 3. Hence, dx dt = − 3 sin x = − 3 √ 1 − 9t2 and dy dt = 3 cos y = 3 √ 1 − 9t2 . Therefore, dy dx = dy/dt dx/dt = ( 3 √ 1 − 9t2 ) ÷ ( − 3 √ 1 − 9t2 ) = −1. Exercise: (a) Find dy dx given: 23
  • 24. 1.9 Higher order derivatives c ⃝Francis Oketch i) x = ln(2t2), y = ln(4 + t2) ii) x = 2t, y = 2−t iii) x = tan−1(2t), y = sec−1(2t) iv) x = t sin(t2), y = t3 cos(t2) v) x = t2 1 + t2 , y = 1 − t2 1 + t2 vi) x = et cos 2t, y = e−t sin 2t vii) x = 2t 1 + 3t , y = t3 − 4t + 8 viii) x = θ − sin 2θ, y = θ + cos 2θ ix) x = a cos3 θ, y = b sin3 θ 1.9 Higher order derivatives Suppose y(x) is an n−times differentiable function of x. Then, First derivative of y(x) is given by dy dx = y′(x) Second derivative of y(x) is given by d dx ( dy dx ) = d2y dx2 = y′′(x) Third derivative of y(x) is given by d dx ( d2y dx2 ) = d3y dx3 = y′′′(x) . . . . . . nth derivative of y(x) is given by d dx ( dn−1y dxn−1 ) = dny dxn = y(n)(x) Example(s): 1. Given that y = 4x3 − 6x2 − 9x + 1, find dy dx , d2y dx2 , d3y dx3 , and d4y dx4 . Solution dy dx = 12x2 − 12x − 9, d2y dx2 = 24x − 12, d3y dx3 = 24, d4y dx4 = 0. 2. Find d2y dx2 and d3y dx3 when (a) y = x10 and (b) y = cos 2x. Solution (a) dy dx = 10x9, d2y dx2 = 90x8, d3y dx3 = 720x7. (b) dy dx = −2 sin 2x, d2y dx2 = −4 cos 2x, d3y dx3 = 8 sin 2x. 3. If y = cos x x , prove that d2y dx2 + 2 x dy dx + y = 0. Proof. Quotient rule yields dy dx = x d dx [cos x] − cos x d dx [x] x2 = −x sin x − cos x x2 . d2y dx2 = x2 d dx [−x sin x − cos x] − (−x sin x − cos x) d dx [x2] x4 = x2(−x cos x − sin x + sin x) + (x sin x + cos x)(2x) x4 = −x3 cos x + 2x2 sin x + 2x cos x x4 = −x2 cos x + 2x sin x + 2 cos x x3 24
  • 25. c ⃝Francis Oketch Now, d2y dx2 + 2 x dy dx + y = −x2 cos x + 2x sin x + 2 cos x x3 + 2 x ( −x sin x − cos x x2 ) + cos x x = −x2 cos x + 2x sin x + 2 cos x − 2x sin x − 2 cos x + x2 cos x x3 = 0 4. Given that u and v are functions of x, show that d3 dx3 (uv) = d3u dx3 v + 3 d2u dx2 dv dx + 3 du dx d2v dx2 + u d3v dx3 . Proof. d3 dx3 (uv) = d dx [ d2 dx2 (uv) ] = d dx [ d dx { d dx (uv) }] = d dx [ d dx { du dx v + u dv dx }] (product rule) = d dx [ d2u dx2 v + 2 du dx dv dx + u d2v dx2 ] = d3u dx3 v + d2u dx2 dv dx + 2 d2u dx2 dv dx + 2 du dx d2v dx2 + du dx d2v dx2 + u d3v dx3 = d3u dx3 v + 3 d2u dx2 dv dx + 3 du dx d2v dx2 + u d3v dx3 Exercise: 1. Find d2y dx2 when (a) y = (1+4x+x2) sin x, (b) y = x tan−1 x, (c) y = x2 1 + x , (d) y = (3x−sin 2x)2, and (e) y = ln(3x3 + 4x − 1) + xex2 . 2. If y = sin x x , find dy dx and d2y dx2 . Hence, prove that x2 d2y dx2 + 4x dy dx + (x2 + 2)y = 0. Lecture 9 2 L’Hôpital’s rule If on direct substitution we get indeterminate forms such as 0 0 or ±∞ ±∞ , then the L’Hôpital’s rule states that . . lim x→a f(x) g(x) = lim x→a f′(x) g′(x) provided the limit exists. Repeat finding derivatives until you get a meaningful result. Example(s): 1. Evaluate the following using L’Hôpital’s rule (a) lim x→2 x2 + x − 6 x − 2 Solution lim x→2 x2 + x − 6 x − 2 D.S = 0 0 (indeterminate) L′H = lim x→2 2x + 1 1 D.S = 5 25
  • 26. c ⃝Francis Oketch (b) lim x→−2 x2 + 3x + 2 2x2 − 8 Solution lim x→−2 x2 + 3x + 2 2x2 − 8 D.S = 0 0 (indeterminate) L′H = lim x→−2 2x + 3 4x D.S = 1 8 (c) lim x→∞ 5x3 − 1 4x3 − 2x − 7 . Solution lim x→∞ 5x3 − 1 4x3 − 2x − 7 D.S = ∞ ∞ (indeterminate) L′H = lim x→∞ 15x2 12x2 − 2 D.S = ∞ ∞ (indeterminate) L′H = lim x→∞ 30x 24x D.S = ∞ ∞ (indeterminate) L′H = lim x→∞ 30 24 = 5 4 (d) lim x→0 x − sin x x3 Solution On direct substitution, we have lim x→0 x − sin x x3 = 0 − sin 0 03 = 0 0 (indeterminate). So, lim x→0 x − sin x x3 L′H = 1 − cos x 3x2 D.S = 0 0 (indeterminate) L′H = lim x→0 sin x 6x D.S = 0 0 (indeterminate) L′H = lim x→0 cos x 6 D.S = 1 6 Exercise: 1. Evaluate (a) lim x→0 2 sin x − sin 2x 2ex − 2 − x2 (b) lim x→∞ 7x − 28 x3 (c) lim x→1 x2 − x − 2 x2 − 1 (d) lim x→0 sin 7x 4x . [ans: = 7/4] (e) lim x→0+ cot x ln x2 . (f) lim y→π 2 ( cos y π 2 − y ) . [ans: = 1] 26
  • 27. c ⃝Francis Oketch (g) lim θ→0 1 − cos θ θ . [ans: = 0] (h) lim θ→0 sin2 θ θ2 . [ans: = 1] 2. Amy knows the following values for f(x) and g(x): f(−6) = 1, g(−6) = 1, f′(−6) = 6 and g′(−6) = −5. Assume all functions are continuous, find the following. (a) lim x→−6 ln(g(x)) [f(x)]2 − 1 . [ans: = − 5 12 ] (b) lim x→−6 [g(x) − 1]2 [f(x) − 1]2 . [ans: = 25 36 ] (c) lim x→−6 g(x)[f(x) − 1] f(x)[g(x) − 1] . [ans: = − 6 5 ] 27