SlideShare a Scribd company logo
1 of 38
Download to read offline
Jian Luo, Naixie Zhou, Zhao Zhang & Mojtaba Samiee
University of California, San Diego & Clemson University
Vikas Tomar, Hongsuk Lee & Niranjan Parab
School of Aeronautics and Astronautics, Purdue University
Program Manager: Dr. Richard Dunst
June 11, 2013
DoE Award Number: DE‐FE0003892
Multiscale Modeling of Grain Boundary Segregation and 
Embrittlement in Tungsten 
for Mechanistic Design of Alloys for Coal Fired Plants
Jian Luo
This UCR Project
Develop multiscale modeling 
strategies to link GB segregation with 
GB embrittlement 
Tomar et al. at Purdue
Develop thermodynamic theories 
and models to predict 
a “new” type of high‐T
(premelting‐like) 
GB segregation
Luo et al. at Clemson/UCSD
Ternary W‐Ni‐X
(X = Zr, Co, Cr, Fe, Nb, Ti) 
GB ‐diagrams
Experimental 
validation
Selected Results from Our Year‐3 Efforts
Using tungsten (W) based binary & ternary alloys as model systems…
Atomistic & 
quantum 
modeling of 
stress‐strain
Continuum
facture modeling
Phonon Dispersion
GB = Grain Boundary
Jian Luo
Background: Grain Boundary (GB) Segregation
The Classical Models vs. New Perspectives
kT
g
C
C
ads
e
X
X






10
McLean-Langmuir: Fowler-Guggenheim:
0
Fowler1
)0(


 zgg adsads
Reprint from Luo, 
J. Am. Ceram. Soc. 95:2358 (2012) 
Jian Luo
Classical GB Embrittlement Models – Built on Langmuir‐McLean Adsorption
Interfacial Disordering
(Liquid‐Like GB “Complexion”)
2 nm2 nm
Mo-Ni W-Ni
Acta Mater. 55, 3131 (2007)APL 94, 251908 (2009)
New Perspective: 
Segregation  GB Transition  Drastic Change in Properties
S segregation  GB “melting” if CS
GB > 15%
 GB Embrittlement
Atomistic Simulation: Chen et al., PRL 2010
Auger: Heuer et al., J. Nuclear Mater. 2002
S induced
GB “melting”
Reduction of cohesion due to:
• Electronic effect (weakening the bonds);
• Atomic size (strain) effect; or
• Changing relative ’s (the Rice-Wang Model)
Background: Grain Boundary (GB) Embrittlement
The Classical Models vs. New Perspectives
“Complexion” Transition
(Bilayer) 
Luo, Cheng, Asl, Kiely & Harmer 
Science 333:1730 (2011)
At High Temperatures & Alloying/Impurity Levels… 
Segregation  GB “Melting” (Interfacial Disordering)  Embrittlement
Cu-Bi
Duscher, Chisholm, Alber & Rühle
Nature Mater. 3, 621 (2004)
Beyond 
“Monolayer”
?
Ni-S
Jian Luo
Thermodynamically stable at
T < Tmelting
Multicomponent?
• Enhanced by segregation
 Sintering  (Prior work)
 Embrittlement  (This study)
 Coble creep? (Next UCR project)
The Phenomenon
Can be stabilized at
T < Tsolidus
Unary Systems:
• Surface Premelting 
• GB Premelting ???
Late 1980’s: Balluffi’s group suggested no
GB premelting up to 0.999Tmelt in Al!
 hGamorph.ZnO ZnO
ZnOVapor
W
W
Ni-enriched
film
T  Teutectic – T = 140C T = 40C T = 95C
Ceramic Systems (Well Known) Ni-doped W
Bi2O3-enriched film
Luo et al, APL 2005Wang & Chiang, JAmCerS 1998Luo et al., Langmuir 2005
1 nm 1 nm 1 nm
Ice Surface (MD simultaion)
Dash et al, Rev. Modern Phys. 2006
GB premelting in a colloidal crystal
Alsayed et al, Science 2005
1400 C
Jian Luo
Thermodynamic Principle and Model
h (undercooled liquid)
A subsolidus quasi-liquid film is
thermodynamically stable if: clgbhG  2)0(
amorph 
forming
undercooled liquid
solidus
interfacial ( )h
amorphG




Define & quantify:
Statistical
Thermodynamic Model
 represents
the thermodynamic tendency to 
stabilize a quasi‐liquid film
Jian Luo
Experimental
Validation:
• HRTEM
• Auger
• Onset Tsinter
for W-X
• DGB(T, X)

W‐Pd W‐Co W‐Fe
W‐Ni
A Prior Successful Example of Predictive Modeling: Extending Bulk CalPhaD Methods to GBs
Computed Lines of Constant : GB -Diagrams
Mo
+ 0.5 % Ni
Jian Luo
Practical Importance:
• Engineering alloys often have many components or impurities
• Co‐alloying to control GB behaviors?
Statistical Thermodynamic Model (using CalPhaD data)
Ternary 
CalPhaD
ABC
CBA
n
j
j
AC
CA
jAC
n
j
j
CB
BC
jCB
n
j
j
BA
AB
jBACCBBAACCBBAABA
f
GXXXXXXXXXXX
XXXXXXXXXXRTGXGXGXXXTG
CABC
AB






00
0
000
)()(
)()lnlnln(),,(
		Max
2
∆
∆
Redlich‐Kister
Expansion
1.9 	
2
/
3
/
One Major 3rd-Year Task of This UCR Project (as proposed)
Computing Ternary GB -Diagrams for W-Ni-X (X = Zr, Co, Cr, Fe, Nb, Ti)
Jian Luo
Construct A Ternary GB -Diagram
(An Example: W‐Ni‐Fe, 1300 C)
Considering ONLY the
W-based BCC phase
(& liquid phase)
Considering All Phases
@ Bulk Equilibria
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Fe(%)
Ni (%)
BCC + FCC + ‐FeW
BCC + 
BCC + FCC
BCC0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Fe(%)
Ni (%)
Jian Luo
Computed W-Ni-X (X = Cr, Zr, Co, Fe, Nb, Ti)
Ternary GB -Diagram
(Considering Only BCC and Liquid Phases)
T = 1300 
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
Nb(%)
Ni (%)W
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Zr(%)
Ni (%)
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
WTi(%) Ni (%)0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Fe(%)
Ni (%)
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Cr(%)
Ni (%) 0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Co(%)
Ni (%)
BCC1 +BCC2
BCC BCC + Liquid
BCC + LiquidBCC + Liquid
BCC + LiquidBCC + LiquidBCC + Liquid
BCC1
+BCC2
BCC
BCC
BCC
BCC BCC
Jian Luo
Computed W-Ni-X (X = Cr, Zr, Co Fe, Nb, Ti)
Ternary GB -Diagram
(Considering All Stable Bulk Phases) T = 1300 C
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Zr(%)
Ni (%)
BCC + ZrW2
BCC 
+ FCC
BCC + FCC 
+ ZrW2
BCC0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Cr(%)
Ni (%)
BCC
BCC + FCC
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Co(%)
Ni (%)
BCC + FCC 
+ Co7W6
BCC + FCC
BCC + Co7W6
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Fe(%)
Ni (%)
BCC + FCC 
+ ‐FeW
BCC + 
BCC + FCC
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Nb(%)
Ni (%)
BCC + Liquid
BCC + FCC
BCC + Ni3Nb
0.1 0.2 0.3 0.4
0.5
1.0
1.5
2.0
2.5
W
Ti(%)
Ni (%)
BCC + Liquid
BCC + Ni3Ti
BCC + FCC
BCC
BCC
BCC
One Prediction: The co‐alloying effect on promoting GB disordering of W‐Ni‐X 
(represented by the increase in ) roughly follows the order: Cr < Zr < Co < Fe < Nb <Ti
Jian Luo
Experimental Model Validation: Co-doping Effects in Ternary Alloys
For W‐Ni‐X (X = Zr, Co, Cr, Fe, Nb, Ti)
0.5Ni 1Ni Cr Zr Co Fe Nb Ti
25
30
35
40
45
50
(nm)
densityincrease(%)
0
2
4
20
A custom‐made furnace
• To remove ramping effects
Increase in Relative Density (%)
X = 
Ternary W‐0.5Ni‐0.5X (at. %)
Binary W‐Ni
Our Approach: 
Density rate  The effect of co‐alloying on promoting GB 
disordering (represented by the increase in computed )
Limitation: Chemical effect on GB diffusion not represented 
The only 
exception in 
rankings
Jian Luo
Estimate Interfacial Width (hEQ) from the Computed -Diagram?
W-Ni
1 nm
W-Ni
Estimating hEQ (& GB)
Ni‐Saturated W
(1400 C)
)()( amorphlinterfaciaamorph
)0(
hfhGhhGG gb
x
 
Interfacial
coefficient 




1)(
0)0(
f
fThe Excess Free Energy: Interfacial (disjoining)
Potential
Continuum approx.
for metals:
)/ln(  EQh
/
1)( h
ehf 

Coherent length
GB -Diagram
Jian Luo
High-T (Liquid-Like) vs. Classic (Solid-Like) GB Segregation
(To Establish a Unified Thermodynamic Framework?)
W-Ni
1 nm
W-Ni
Premelting‐Like Segregation
Interfacial Disordering
Multilayer Segregation on the Lattice
Wynblatt‐Chatain [JMS 2005; 2006, MMA 2006]
Generally, more reduction 
in the GB energies (GB’s) 
for forming liquid‐like 
complexions in W‐Ni and 
most other W‐based alloys 
(due to the high GB
0 of W) 
Jian Luo
Useful Materials Science Tool for Designing:
• Fabrication protocols utilizing appropriate GB
structures to achieve optimal microstructures
• Co-doping strategies and/or heat treatment recipes
to tune the GB structures for desired performance
Applications: To predict useful trends in:
• GB embrittlement
• Sintering
• Grain growth & microstructural involution
• Coble creep
• GB controlled corrosion & oxidation
• …
A Useful Component for the “Materials Genome” Project?
Construct “Grain Boundary (GB) Diagrams”
More Rigorous GB 
Complexion (“Phase”) 
Diagrams ???
Prior work : Straumal et al., Interf. Sci. 2004; Tang et al., PRL 2006; Dillon et al. Acta Mater. 2007 & more
Following the late Dr. R. M. Cannon’s transformative concept 
GB -Diagrams
(To Predict Useful Trends for GBs to Disorder)
A tentative GB 
complexion 
diagram for 
adsorption 
transitions 
(calculated by 
Wynblatt‐Chatain
Model; interfacial 
disordering not 
yet considered) 
Jian Luo
Summary – Thermodynamics Thrust
We have …
• (Years 1 & 2) Derived the basic equations;
• (Years 1 & 2) Developed and tested the algorithms and MATLAB
codes;
• (Years 2) Completed numerical experiments;
• (Year 3) Computed “GB -diagrams” for W-Ni-X (X = Cr, Zr, Co, Fe,
Nb & Ti) systems;
• (Year 3) Conducted experimental validation for ternary W alloys;
• (Year 3) Compared with classical segregation model in an effort to
establish a unified framework; and
• Worked closely with the Purdue team to use our thermodynamic
models and experimental results to support their multiscale
modeling efforts to link GB segregation to mechanical properties.
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
The primary site of embrittlement of Nickel (Ni) – doped Tungsten (W) is
at the grain boundary (GB).
GB is interfacial region between two differently oriented W grains.
Most of the Ni impurities concentrate at the GB region.
GB thickness varies upon the level of saturation. (unsaturated:0.3nm,
saturated:0.6nm)
While the mechanical properties (yield stress, ultimate tensile strength,
etc) of Ni-doped W varies by the change of Ni amount and the level of
saturation, the quantitative relation to predict those mechanical properties
are needed.
PROBLEM DESCRIPTION
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
(100) (210)W+NI
~0.6 nm
PROBLEM DESCRIPTION
Fully saturated tungsten
GB thickness = 0.6nm
Consist of (100) and (210) orientation of
atom array
J. Luo and et al, 2005, APL
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
(a) (c)(b)
(100) (210)W+NI
~0.6 nm
(100) (210)W+NI
~0.3 nm
(100) (210)
Pure W Unsaturated W Saturated W
Setup
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
Setup
0.3nm
0.6nm
8 at.%Ni 17 at.%Ni 25 at.%Ni 33 at.%Ni 42 at.%Ni 50 at.%Ni
25 at.%Ni 33 at.%Ni 41 at.%Ni 50 at.%Ni 58 at.%Ni 66 at.%Ni 75 at.%Ni
<100> <210> <100> <210>
<100> <210>
W Ni
W Ni
x
y
z x
y
z
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
0.2% Offset
RESULT – (1) PURE W
Typical tungsten properties:
Tensile strength : 1.5 ~ 4.2 GPa
Young’s modulus : 360 ~ 420 GPa
Q.Wei and et al, 2006,
Acta Materialia
4.0 Gpa : Ultimate Tensile
Strength
Yield strength : 1.5 GPa at 0.04 strain
(approximated by 0.2% offset)
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
RESULT – (2) UNSATURATED (GB thickness = 0.3 nm)
Yield strength: at strain 0.04
The yield strength has dependent on the
Ni volume fraction.
First peak: at strain 0.12
The first peak’s values has dependent on
the Ni volume fraction.
Second peak: at strain 0.18
The second peak’s values are not depend
on the Ni volume fraction.
Ultimate tensile strength : strain of
0.12~0.18
The maximum tensile strength are not
depend on the Ni volume fraction for the
unsaturated Ni-doped W.
[1] At strain of 0.18
[2] At strain of 0.12
[3] At strain of 0.04
[1]
[2]
[3]
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
RESULT – (3) SATURATED (GB thickness = 0.6 nm)
Yield strength: at strain 0.04
The yield strength has dependent on the
Ni volume fraction.
First peak: at strain 0.16
The first peak’s values has dependent on
the Ni volume fraction.
Second peak: at strain 0.24
The second peak’s values have the largest
dependence on the Ni volume fraction.
Ultimate tensile strength : strain of
0.16~0.24
The maximum tensile strength are depend
on the Ni volume fraction for the
saturated Ni-doped W.
[1]
[2]
[3]
[1] At strain of 0.24
[2] At strain of 0.16
[3] At strain of 0.04
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
MAX. STRESS
DOS
MAX. STRESS
DOS
Comparison of the maximum tensile stress with the density of states (sum in
the range of -1.3 ~ -1.0 eV) for f-orbital of unsaturated case saturated case
RESULT – Electron DOS
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
[ξξ0] [ξ00] [ξξξ] [000][000]
Ν Γ Η Ρ Γ
x
y
Pure W
Unsat.
Sat.
T
L
T
T
L
T
T
L
T
PHONON DISPERSION
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
PHONON DISPERSION
Pure W
Unsaturated
Saturated
Pure W
Saturated
Unsaturated
Γ Η ΝΓ
1st transverse curve for the direction of [ξ00], and [ξξ0].
Note that the pure W is idealistic atomic structure based on no GB assumption.
With existing of GB thickness larger than 0, more saturated form gives higher
frequency which is related to the higher bond strength along the horizontal direction.
Although the atomic structure of pure W provides higher phonon frequency in
overall, the stress-strain curve tells us that the substitution of Ni atoms with W plays
a role of compensating the low frequency of phonon dispersion curve.
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
Cubic polynomial regressions for (a) total values of E-DOS (electron density of states) of unsaturated
and saturated Ni-added W GB, (b) total values of phonon dispersion in direction of (ξ00) and (ξξ0)
(a) (b)
(ξξ0)
(ξ00)
Saturated
Unsaturated
Trend line
Trend line
RELATION
 wgntf
CD
CE
ideal
),(
1max




Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
UNSATURATED SATURATED
RELATION
A comparisons of the GB strength as a function of Ni atomic fraction using the derived
analytical expression and the CPMD results in the case of 0.3 nm thickness GB, and 0.6 nm
thickness GB
CPMD RESULT
ANALYTICAL
RELATION
CPMD RESULT
ANALYTICAL
RELATION
 29910/
max )10(1015.6
1
ww
t
t
e
CD
CE
melt
n
ideal 








Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
400㎛
160㎛
OBTAINING MICROSTRUCTURES
R.W. Margevicius , J. Riedle, P. Gumbsch
(1999). “Fracture toughness of
polycrystalline tungsten under mode I and
mixed mode I/II loading”, Materials
Science and Engineering A, p197-209
-From the tungsten microstructure
morphology in the above paper,
digitalization process has been gone
through to extract grain boundary shape.
-With the assumption that grains are consist
of 3 different orientation and GB to form a
microstructure, grain types are assigned to
grain region.
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
DETERMINISTIC FINITE ELEMENT EQUATIONS
2
:δ δ δ δ ,2
V S S Vextint
dV dS dS dV
t


     
   
u
s F T Δ T u u
• LaGrangian Kinetics Description
• Finite Element Descretization
 M u R
• Solution of Equations (Newmark -Method)
 
 
11
1 1
21
1
2
1
2
n n
n n n n
n
n n n n
n n
t
t t

 


 


    


    
M Ru
u u u u
u u u u

   
 

Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
Type Percentages by Area
GB 7.53 %
Phase1 17.41 %
Phase2 40.43 %
Phase3 34.63 %
For each cases, three different GB properties are applied.
 Maximum Tensile strength that is
1. Larger than that of grains
2. Same as that of grains
3. Smaller than that of grains
PERCENTAGE OF EACH PHASES
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
FRAMEWORK
V
W (1350 µm)
2H (960 µm)
Pre-Crack
V
1.6µm
1.6µm
 All cohesive surfaces serve as potential crack paths.
 FE meshes are uniformly structured with “cross-triangle” elements to give maximum
flexibility for resolving crack extensions and arbitrary fracture patterns.
 Center-cracked tungsten specimens under tensile loading.
Initial crack : 20 µm
 The boundary velocity V (1m/s) is imposed with a linear ramp from zero to V in the
initial phase of loading.
 The specimen is stress free and at rest initially.
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
COMPARISON FOR COHESIVE ENERGY DISSIPATION
When T = 155 nsec
Low Strength GBMedium Strength GBHigh Strength GB
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
COMPARISON FOR CRACK PROPAGATION DIRECTION
When t = 155 nsec
Low Strength GB
Medium Strength GBHigh Strength GB
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
High Strength GB Medium Strength GB
Low Strength GB
Primary crack
Micro crack
Primary crack
Micro crack
Primary crack
Micro crack
COMPARISON OF PRIMARY CRACK AND MICROCRACKS
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
  CD

 2
h
ba
5.21CE
Therefore, can be explained as energy
dissipation per unit crack length or crack density. C is a constant.
  C
h
ba


 2
a
b
CD

In our case of simulation, C = 12.5
By substituting the equation to the above equation,
we obtained a relation of
max
2



  CD
h
ba



 2
max
2
25CE
THE RELATION BETWEEN ENERGY DISSIPATION VS CRACK DENSITY
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
  CD
h
ba



 2
max
2
25CE
THE RELATION BETWEEN ENERGY DISSIPATION VS CRACK DENSITY
Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)
CONCLUSIONS
Analyses demonstrate that the failure of a tungsten involves inter-granular cracks, intra-granular
cracks, and significant microcracking.
By applying different properties of GBs, plots of cohesive energy dissipation display various
patterns of energy release. Property of ductility and brittleness are known as temperature dependent,
however, the findings in this study indicates that the tungsten microstrucutural failure can have
both ductile and brittle pattern of failure decided also by property of GBs. (GBs have 7.53% by
volume)
The level of microcracking goes greater in the interfaces of grains as strength of GBs becomes
lower.
A significant microcracking occurs during failure. Surface energy study in this research indicates
m value to be around 14 for such microstructure with no time dependent. This finding can
contribute to predict the level of microcrack over primary crack at other time frames.
In literature, continuum and analytical fracture mechanics work usually neglects contribution of
GBs to overall microstructural fracture strength. The findings in this work indicate property of GB
act major role in crack propagation pattern as well as crack initiation time.

More Related Content

What's hot

Benchmark 6 Update
Benchmark 6 UpdateBenchmark 6 Update
Benchmark 6 UpdatePFHub PFHub
 
Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...openseesdays
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Pawan Kumar
 
Structural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubesStructural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubesIJRES Journal
 
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Sérgio Sacani
 
Surface Tension in Liquid Nickel
Surface Tension in Liquid NickelSurface Tension in Liquid Nickel
Surface Tension in Liquid Nickelsjenkins
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...PFHub PFHub
 
Gps and ucsd fang peng
Gps and ucsd fang pengGps and ucsd fang peng
Gps and ucsd fang pengguigu85c
 

What's hot (14)

Dr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_TopicDr.Philos._Trial_Lecture_Committee_Given_Topic
Dr.Philos._Trial_Lecture_Committee_Given_Topic
 
Benchmark 6 Update
Benchmark 6 UpdateBenchmark 6 Update
Benchmark 6 Update
 
Integration science and technology of advanced ceramics for energy and enviro...
Integration science and technology of advanced ceramics for energy and enviro...Integration science and technology of advanced ceramics for energy and enviro...
Integration science and technology of advanced ceramics for energy and enviro...
 
Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...Numerical investigation on the seismic behaviour of repaired and retrofitted ...
Numerical investigation on the seismic behaviour of repaired and retrofitted ...
 
How complexity can help: the case of Aluminum-based intermetallics.
How complexity can help: the case of Aluminum-based intermetallics.  How complexity can help: the case of Aluminum-based intermetallics.
How complexity can help: the case of Aluminum-based intermetallics.
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
Le3619061915
Le3619061915Le3619061915
Le3619061915
 
Gravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault DamourGravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault Damour
 
Structural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubesStructural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubes
 
Localized Electrons with Wien2k
Localized Electrons with Wien2kLocalized Electrons with Wien2k
Localized Electrons with Wien2k
 
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
Grb 130606a as_a_probe_of_the_intergalactic_medium_and_the_interstelar_medium...
 
Surface Tension in Liquid Nickel
Surface Tension in Liquid NickelSurface Tension in Liquid Nickel
Surface Tension in Liquid Nickel
 
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...Phase-field modeling of crystal nucleation II: Comparison with simulations an...
Phase-field modeling of crystal nucleation II: Comparison with simulations an...
 
Gps and ucsd fang peng
Gps and ucsd fang pengGps and ucsd fang peng
Gps and ucsd fang peng
 

Viewers also liked

Messaggi Particolari
Messaggi ParticolariMessaggi Particolari
Messaggi Particolariguest049edf
 
Pruebas de logica
Pruebas de logicaPruebas de logica
Pruebas de logicajobu
 
Mayor's Economic Development Commission presentation
Mayor's Economic Development Commission presentationMayor's Economic Development Commission presentation
Mayor's Economic Development Commission presentationMatthew Crane
 
Buzzing crowd #3
Buzzing crowd #3Buzzing crowd #3
Buzzing crowd #3Dhinesh N
 
Commedia
CommediaCommedia
Commediagembu
 
RPI - Patentes 2245 "Vervs Consultoria"
RPI - Patentes 2245 "Vervs Consultoria" RPI - Patentes 2245 "Vervs Consultoria"
RPI - Patentes 2245 "Vervs Consultoria" Paulo Batalhão
 
CGU- controladoria-geral da união
CGU-  controladoria-geral da uniãoCGU-  controladoria-geral da união
CGU- controladoria-geral da uniãoRaquel DA Silva
 
Esofago Corpi Estranei
Esofago   Corpi EstraneiEsofago   Corpi Estranei
Esofago Corpi EstraneiAndrea Scotti
 
Consocial texto base
Consocial texto baseConsocial texto base
Consocial texto baseFlorespi
 
ECOnomic Housing For Angola II
ECOnomic Housing For Angola IIECOnomic Housing For Angola II
ECOnomic Housing For Angola IIrcozijn
 
Ustda presentation
Ustda presentationUstda presentation
Ustda presentationAmChamKenya
 
MTEP rezultatų komercinimo skatinimas
MTEP rezultatų komercinimo skatinimas MTEP rezultatų komercinimo skatinimas
MTEP rezultatų komercinimo skatinimas Aidis Stukas
 
Lithuanian startup ecosystem
Lithuanian startup ecosystemLithuanian startup ecosystem
Lithuanian startup ecosystemToma Kondrate
 

Viewers also liked (20)

Messaggi Particolari
Messaggi ParticolariMessaggi Particolari
Messaggi Particolari
 
Enxeñeiro Junior en Informática ou Telecomunicacións
Enxeñeiro Junior en Informática ou TelecomunicaciónsEnxeñeiro Junior en Informática ou Telecomunicacións
Enxeñeiro Junior en Informática ou Telecomunicacións
 
vvvvReadme
vvvvReadmevvvvReadme
vvvvReadme
 
Pruebas de logica
Pruebas de logicaPruebas de logica
Pruebas de logica
 
The Mobile Tsunami Reloaded
The Mobile Tsunami ReloadedThe Mobile Tsunami Reloaded
The Mobile Tsunami Reloaded
 
Cartilha.bca
Cartilha.bcaCartilha.bca
Cartilha.bca
 
The Draft
The DraftThe Draft
The Draft
 
Mayor's Economic Development Commission presentation
Mayor's Economic Development Commission presentationMayor's Economic Development Commission presentation
Mayor's Economic Development Commission presentation
 
Buzzing crowd #3
Buzzing crowd #3Buzzing crowd #3
Buzzing crowd #3
 
Commedia
CommediaCommedia
Commedia
 
RPI - Patentes 2245 "Vervs Consultoria"
RPI - Patentes 2245 "Vervs Consultoria" RPI - Patentes 2245 "Vervs Consultoria"
RPI - Patentes 2245 "Vervs Consultoria"
 
MISSÃO DA CGU
MISSÃO DA CGUMISSÃO DA CGU
MISSÃO DA CGU
 
CGU- controladoria-geral da união
CGU-  controladoria-geral da uniãoCGU-  controladoria-geral da união
CGU- controladoria-geral da união
 
Esofago Corpi Estranei
Esofago   Corpi EstraneiEsofago   Corpi Estranei
Esofago Corpi Estranei
 
Consocial texto base
Consocial texto baseConsocial texto base
Consocial texto base
 
ECOnomic Housing For Angola II
ECOnomic Housing For Angola IIECOnomic Housing For Angola II
ECOnomic Housing For Angola II
 
Ustda presentation
Ustda presentationUstda presentation
Ustda presentation
 
Abd sunumu
Abd sunumuAbd sunumu
Abd sunumu
 
MTEP rezultatų komercinimo skatinimas
MTEP rezultatų komercinimo skatinimas MTEP rezultatų komercinimo skatinimas
MTEP rezultatų komercinimo skatinimas
 
Lithuanian startup ecosystem
Lithuanian startup ecosystemLithuanian startup ecosystem
Lithuanian startup ecosystem
 

Similar to Multiscale-Modeling_Luo_Tomar

Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...ABDERRAHMANE REGGAD
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Dierk Raabe
 
M.tech project progress seminar i__sohini
M.tech project progress seminar  i__sohiniM.tech project progress seminar  i__sohini
M.tech project progress seminar i__sohiniKrushna Gouda
 
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovElectronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovABDERRAHMANE REGGAD
 
salerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdfsalerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdfSidnei Ferreira
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...aimsnist
 
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...KAMAL CHOUDHARY
 
Science Talk-091102-郭光宇
Science Talk-091102-郭光宇Science Talk-091102-郭光宇
Science Talk-091102-郭光宇nccuscience
 
Phase transformation and volume collapse of sm bi under high pressure
Phase transformation and volume collapse of sm bi under high pressurePhase transformation and volume collapse of sm bi under high pressure
Phase transformation and volume collapse of sm bi under high pressureAlexander Decker
 
Clausthal seminar 030615
Clausthal seminar 030615Clausthal seminar 030615
Clausthal seminar 030615Rob Jackson
 
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...Editor IJCATR
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAstroAtom
 
Writing Sample1- Short Paper
Writing Sample1- Short PaperWriting Sample1- Short Paper
Writing Sample1- Short PaperNicholas Williams
 
Introduction to the Phase Diagrams 16136946.ppt
Introduction to the Phase Diagrams 16136946.pptIntroduction to the Phase Diagrams 16136946.ppt
Introduction to the Phase Diagrams 16136946.pptAbdelrhman Abooda
 
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...Alexander Decker
 
Dierk Raabe Ab Initio Simulations In Metallurgy
Dierk  Raabe Ab Initio Simulations In MetallurgyDierk  Raabe Ab Initio Simulations In Metallurgy
Dierk Raabe Ab Initio Simulations In MetallurgyDierk Raabe
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio PresentationRicardo Vidrio
 

Similar to Multiscale-Modeling_Luo_Tomar (20)

Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
Density Functional and Dynamical Mean-Field Theory (DFT+DMFT) method and its ...
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
 
M.tech project progress seminar i__sohini
M.tech project progress seminar  i__sohiniM.tech project progress seminar  i__sohini
M.tech project progress seminar i__sohini
 
Electronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.AnisimovElectronic structure of strongly correlated materials Part II V.Anisimov
Electronic structure of strongly correlated materials Part II V.Anisimov
 
salerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdfsalerno-2-asus-170124105324_OCR.pdf
salerno-2-asus-170124105324_OCR.pdf
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...Accelerated Materials Discovery & Characterization with Classical, Quantum an...
Accelerated Materials Discovery & Characterization with Classical, Quantum an...
 
Science Talk-091102-郭光宇
Science Talk-091102-郭光宇Science Talk-091102-郭光宇
Science Talk-091102-郭光宇
 
Phase transformation and volume collapse of sm bi under high pressure
Phase transformation and volume collapse of sm bi under high pressurePhase transformation and volume collapse of sm bi under high pressure
Phase transformation and volume collapse of sm bi under high pressure
 
Clausthal seminar 030615
Clausthal seminar 030615Clausthal seminar 030615
Clausthal seminar 030615
 
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
EVALUATING STRUCTURAL, OPTICAL & ELECTRICAL CHARACTERIZATION OF ZINC CHALCOGE...
 
Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.Role of Atomic-Scale Modeling in Materials Design Discovery.
Role of Atomic-Scale Modeling in Materials Design Discovery.
 
Binary sigma phases
Binary sigma phasesBinary sigma phases
Binary sigma phases
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak species
 
Writing Sample1- Short Paper
Writing Sample1- Short PaperWriting Sample1- Short Paper
Writing Sample1- Short Paper
 
Cnt Tm
Cnt TmCnt Tm
Cnt Tm
 
Introduction to the Phase Diagrams 16136946.ppt
Introduction to the Phase Diagrams 16136946.pptIntroduction to the Phase Diagrams 16136946.ppt
Introduction to the Phase Diagrams 16136946.ppt
 
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
Effect of sodium doping on thermal properties of perovskite r mn o3 for poten...
 
Dierk Raabe Ab Initio Simulations In Metallurgy
Dierk  Raabe Ab Initio Simulations In MetallurgyDierk  Raabe Ab Initio Simulations In Metallurgy
Dierk Raabe Ab Initio Simulations In Metallurgy
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio Presentation
 

Multiscale-Modeling_Luo_Tomar

  • 1. Jian Luo, Naixie Zhou, Zhao Zhang & Mojtaba Samiee University of California, San Diego & Clemson University Vikas Tomar, Hongsuk Lee & Niranjan Parab School of Aeronautics and Astronautics, Purdue University Program Manager: Dr. Richard Dunst June 11, 2013 DoE Award Number: DE‐FE0003892 Multiscale Modeling of Grain Boundary Segregation and  Embrittlement in Tungsten  for Mechanistic Design of Alloys for Coal Fired Plants
  • 2. Jian Luo This UCR Project Develop multiscale modeling  strategies to link GB segregation with  GB embrittlement  Tomar et al. at Purdue Develop thermodynamic theories  and models to predict  a “new” type of high‐T (premelting‐like)  GB segregation Luo et al. at Clemson/UCSD Ternary W‐Ni‐X (X = Zr, Co, Cr, Fe, Nb, Ti)  GB ‐diagrams Experimental  validation Selected Results from Our Year‐3 Efforts Using tungsten (W) based binary & ternary alloys as model systems… Atomistic &  quantum  modeling of  stress‐strain Continuum facture modeling Phonon Dispersion GB = Grain Boundary
  • 3. Jian Luo Background: Grain Boundary (GB) Segregation The Classical Models vs. New Perspectives kT g C C ads e X X       10 McLean-Langmuir: Fowler-Guggenheim: 0 Fowler1 )0(    zgg adsads Reprint from Luo,  J. Am. Ceram. Soc. 95:2358 (2012) 
  • 4. Jian Luo Classical GB Embrittlement Models – Built on Langmuir‐McLean Adsorption Interfacial Disordering (Liquid‐Like GB “Complexion”) 2 nm2 nm Mo-Ni W-Ni Acta Mater. 55, 3131 (2007)APL 94, 251908 (2009) New Perspective:  Segregation  GB Transition  Drastic Change in Properties S segregation  GB “melting” if CS GB > 15%  GB Embrittlement Atomistic Simulation: Chen et al., PRL 2010 Auger: Heuer et al., J. Nuclear Mater. 2002 S induced GB “melting” Reduction of cohesion due to: • Electronic effect (weakening the bonds); • Atomic size (strain) effect; or • Changing relative ’s (the Rice-Wang Model) Background: Grain Boundary (GB) Embrittlement The Classical Models vs. New Perspectives “Complexion” Transition (Bilayer)  Luo, Cheng, Asl, Kiely & Harmer  Science 333:1730 (2011) At High Temperatures & Alloying/Impurity Levels…  Segregation  GB “Melting” (Interfacial Disordering)  Embrittlement Cu-Bi Duscher, Chisholm, Alber & Rühle Nature Mater. 3, 621 (2004) Beyond  “Monolayer” ? Ni-S
  • 5. Jian Luo Thermodynamically stable at T < Tmelting Multicomponent? • Enhanced by segregation  Sintering  (Prior work)  Embrittlement  (This study)  Coble creep? (Next UCR project) The Phenomenon Can be stabilized at T < Tsolidus Unary Systems: • Surface Premelting  • GB Premelting ??? Late 1980’s: Balluffi’s group suggested no GB premelting up to 0.999Tmelt in Al!  hGamorph.ZnO ZnO ZnOVapor W W Ni-enriched film T  Teutectic – T = 140C T = 40C T = 95C Ceramic Systems (Well Known) Ni-doped W Bi2O3-enriched film Luo et al, APL 2005Wang & Chiang, JAmCerS 1998Luo et al., Langmuir 2005 1 nm 1 nm 1 nm Ice Surface (MD simultaion) Dash et al, Rev. Modern Phys. 2006 GB premelting in a colloidal crystal Alsayed et al, Science 2005 1400 C
  • 6. Jian Luo Thermodynamic Principle and Model h (undercooled liquid) A subsolidus quasi-liquid film is thermodynamically stable if: clgbhG  2)0( amorph  forming undercooled liquid solidus interfacial ( )h amorphG     Define & quantify: Statistical Thermodynamic Model  represents the thermodynamic tendency to  stabilize a quasi‐liquid film
  • 7. Jian Luo Experimental Validation: • HRTEM • Auger • Onset Tsinter for W-X • DGB(T, X)  W‐Pd W‐Co W‐Fe W‐Ni A Prior Successful Example of Predictive Modeling: Extending Bulk CalPhaD Methods to GBs Computed Lines of Constant : GB -Diagrams Mo + 0.5 % Ni
  • 8. Jian Luo Practical Importance: • Engineering alloys often have many components or impurities • Co‐alloying to control GB behaviors? Statistical Thermodynamic Model (using CalPhaD data) Ternary  CalPhaD ABC CBA n j j AC CA jAC n j j CB BC jCB n j j BA AB jBACCBBAACCBBAABA f GXXXXXXXXXXX XXXXXXXXXXRTGXGXGXXXTG CABC AB       00 0 000 )()( )()lnlnln(),,(  Max 2 ∆ ∆ Redlich‐Kister Expansion 1.9 2 / 3 / One Major 3rd-Year Task of This UCR Project (as proposed) Computing Ternary GB -Diagrams for W-Ni-X (X = Zr, Co, Cr, Fe, Nb, Ti)
  • 9. Jian Luo Construct A Ternary GB -Diagram (An Example: W‐Ni‐Fe, 1300 C) Considering ONLY the W-based BCC phase (& liquid phase) Considering All Phases @ Bulk Equilibria 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Fe(%) Ni (%) BCC + FCC + ‐FeW BCC +  BCC + FCC BCC0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Fe(%) Ni (%)
  • 10. Jian Luo Computed W-Ni-X (X = Cr, Zr, Co, Fe, Nb, Ti) Ternary GB -Diagram (Considering Only BCC and Liquid Phases) T = 1300  0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 Nb(%) Ni (%)W 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Zr(%) Ni (%) 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 WTi(%) Ni (%)0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Fe(%) Ni (%) 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Cr(%) Ni (%) 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Co(%) Ni (%) BCC1 +BCC2 BCC BCC + Liquid BCC + LiquidBCC + Liquid BCC + LiquidBCC + LiquidBCC + Liquid BCC1 +BCC2 BCC BCC BCC BCC BCC
  • 11. Jian Luo Computed W-Ni-X (X = Cr, Zr, Co Fe, Nb, Ti) Ternary GB -Diagram (Considering All Stable Bulk Phases) T = 1300 C 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Zr(%) Ni (%) BCC + ZrW2 BCC  + FCC BCC + FCC  + ZrW2 BCC0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Cr(%) Ni (%) BCC BCC + FCC 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Co(%) Ni (%) BCC + FCC  + Co7W6 BCC + FCC BCC + Co7W6 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Fe(%) Ni (%) BCC + FCC  + ‐FeW BCC +  BCC + FCC 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Nb(%) Ni (%) BCC + Liquid BCC + FCC BCC + Ni3Nb 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 W Ti(%) Ni (%) BCC + Liquid BCC + Ni3Ti BCC + FCC BCC BCC BCC One Prediction: The co‐alloying effect on promoting GB disordering of W‐Ni‐X  (represented by the increase in ) roughly follows the order: Cr < Zr < Co < Fe < Nb <Ti
  • 12. Jian Luo Experimental Model Validation: Co-doping Effects in Ternary Alloys For W‐Ni‐X (X = Zr, Co, Cr, Fe, Nb, Ti) 0.5Ni 1Ni Cr Zr Co Fe Nb Ti 25 30 35 40 45 50 (nm) densityincrease(%) 0 2 4 20 A custom‐made furnace • To remove ramping effects Increase in Relative Density (%) X =  Ternary W‐0.5Ni‐0.5X (at. %) Binary W‐Ni Our Approach:  Density rate  The effect of co‐alloying on promoting GB  disordering (represented by the increase in computed ) Limitation: Chemical effect on GB diffusion not represented  The only  exception in  rankings
  • 13. Jian Luo Estimate Interfacial Width (hEQ) from the Computed -Diagram? W-Ni 1 nm W-Ni Estimating hEQ (& GB) Ni‐Saturated W (1400 C) )()( amorphlinterfaciaamorph )0( hfhGhhGG gb x   Interfacial coefficient      1)( 0)0( f fThe Excess Free Energy: Interfacial (disjoining) Potential Continuum approx. for metals: )/ln(  EQh / 1)( h ehf   Coherent length GB -Diagram
  • 14. Jian Luo High-T (Liquid-Like) vs. Classic (Solid-Like) GB Segregation (To Establish a Unified Thermodynamic Framework?) W-Ni 1 nm W-Ni Premelting‐Like Segregation Interfacial Disordering Multilayer Segregation on the Lattice Wynblatt‐Chatain [JMS 2005; 2006, MMA 2006] Generally, more reduction  in the GB energies (GB’s)  for forming liquid‐like  complexions in W‐Ni and  most other W‐based alloys  (due to the high GB 0 of W) 
  • 15. Jian Luo Useful Materials Science Tool for Designing: • Fabrication protocols utilizing appropriate GB structures to achieve optimal microstructures • Co-doping strategies and/or heat treatment recipes to tune the GB structures for desired performance Applications: To predict useful trends in: • GB embrittlement • Sintering • Grain growth & microstructural involution • Coble creep • GB controlled corrosion & oxidation • … A Useful Component for the “Materials Genome” Project? Construct “Grain Boundary (GB) Diagrams” More Rigorous GB  Complexion (“Phase”)  Diagrams ??? Prior work : Straumal et al., Interf. Sci. 2004; Tang et al., PRL 2006; Dillon et al. Acta Mater. 2007 & more Following the late Dr. R. M. Cannon’s transformative concept  GB -Diagrams (To Predict Useful Trends for GBs to Disorder) A tentative GB  complexion  diagram for  adsorption  transitions  (calculated by  Wynblatt‐Chatain Model; interfacial  disordering not  yet considered) 
  • 16. Jian Luo Summary – Thermodynamics Thrust We have … • (Years 1 & 2) Derived the basic equations; • (Years 1 & 2) Developed and tested the algorithms and MATLAB codes; • (Years 2) Completed numerical experiments; • (Year 3) Computed “GB -diagrams” for W-Ni-X (X = Cr, Zr, Co, Fe, Nb & Ti) systems; • (Year 3) Conducted experimental validation for ternary W alloys; • (Year 3) Compared with classical segregation model in an effort to establish a unified framework; and • Worked closely with the Purdue team to use our thermodynamic models and experimental results to support their multiscale modeling efforts to link GB segregation to mechanical properties.
  • 17. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) The primary site of embrittlement of Nickel (Ni) – doped Tungsten (W) is at the grain boundary (GB). GB is interfacial region between two differently oriented W grains. Most of the Ni impurities concentrate at the GB region. GB thickness varies upon the level of saturation. (unsaturated:0.3nm, saturated:0.6nm) While the mechanical properties (yield stress, ultimate tensile strength, etc) of Ni-doped W varies by the change of Ni amount and the level of saturation, the quantitative relation to predict those mechanical properties are needed. PROBLEM DESCRIPTION
  • 18. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) (100) (210)W+NI ~0.6 nm PROBLEM DESCRIPTION Fully saturated tungsten GB thickness = 0.6nm Consist of (100) and (210) orientation of atom array J. Luo and et al, 2005, APL
  • 19. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) (a) (c)(b) (100) (210)W+NI ~0.6 nm (100) (210)W+NI ~0.3 nm (100) (210) Pure W Unsaturated W Saturated W Setup
  • 20. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) Setup 0.3nm 0.6nm 8 at.%Ni 17 at.%Ni 25 at.%Ni 33 at.%Ni 42 at.%Ni 50 at.%Ni 25 at.%Ni 33 at.%Ni 41 at.%Ni 50 at.%Ni 58 at.%Ni 66 at.%Ni 75 at.%Ni <100> <210> <100> <210> <100> <210> W Ni W Ni x y z x y z
  • 21. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) 0.2% Offset RESULT – (1) PURE W Typical tungsten properties: Tensile strength : 1.5 ~ 4.2 GPa Young’s modulus : 360 ~ 420 GPa Q.Wei and et al, 2006, Acta Materialia 4.0 Gpa : Ultimate Tensile Strength Yield strength : 1.5 GPa at 0.04 strain (approximated by 0.2% offset)
  • 22. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) RESULT – (2) UNSATURATED (GB thickness = 0.3 nm) Yield strength: at strain 0.04 The yield strength has dependent on the Ni volume fraction. First peak: at strain 0.12 The first peak’s values has dependent on the Ni volume fraction. Second peak: at strain 0.18 The second peak’s values are not depend on the Ni volume fraction. Ultimate tensile strength : strain of 0.12~0.18 The maximum tensile strength are not depend on the Ni volume fraction for the unsaturated Ni-doped W. [1] At strain of 0.18 [2] At strain of 0.12 [3] At strain of 0.04 [1] [2] [3]
  • 23. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) RESULT – (3) SATURATED (GB thickness = 0.6 nm) Yield strength: at strain 0.04 The yield strength has dependent on the Ni volume fraction. First peak: at strain 0.16 The first peak’s values has dependent on the Ni volume fraction. Second peak: at strain 0.24 The second peak’s values have the largest dependence on the Ni volume fraction. Ultimate tensile strength : strain of 0.16~0.24 The maximum tensile strength are depend on the Ni volume fraction for the saturated Ni-doped W. [1] [2] [3] [1] At strain of 0.24 [2] At strain of 0.16 [3] At strain of 0.04
  • 24. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) MAX. STRESS DOS MAX. STRESS DOS Comparison of the maximum tensile stress with the density of states (sum in the range of -1.3 ~ -1.0 eV) for f-orbital of unsaturated case saturated case RESULT – Electron DOS
  • 25. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) [ξξ0] [ξ00] [ξξξ] [000][000] Ν Γ Η Ρ Γ x y Pure W Unsat. Sat. T L T T L T T L T PHONON DISPERSION
  • 26. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) PHONON DISPERSION Pure W Unsaturated Saturated Pure W Saturated Unsaturated Γ Η ΝΓ 1st transverse curve for the direction of [ξ00], and [ξξ0]. Note that the pure W is idealistic atomic structure based on no GB assumption. With existing of GB thickness larger than 0, more saturated form gives higher frequency which is related to the higher bond strength along the horizontal direction. Although the atomic structure of pure W provides higher phonon frequency in overall, the stress-strain curve tells us that the substitution of Ni atoms with W plays a role of compensating the low frequency of phonon dispersion curve.
  • 27. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) Cubic polynomial regressions for (a) total values of E-DOS (electron density of states) of unsaturated and saturated Ni-added W GB, (b) total values of phonon dispersion in direction of (ξ00) and (ξξ0) (a) (b) (ξξ0) (ξ00) Saturated Unsaturated Trend line Trend line RELATION  wgntf CD CE ideal ),( 1max    
  • 28. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) UNSATURATED SATURATED RELATION A comparisons of the GB strength as a function of Ni atomic fraction using the derived analytical expression and the CPMD results in the case of 0.3 nm thickness GB, and 0.6 nm thickness GB CPMD RESULT ANALYTICAL RELATION CPMD RESULT ANALYTICAL RELATION  29910/ max )10(1015.6 1 ww t t e CD CE melt n ideal         
  • 29. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) 400㎛ 160㎛ OBTAINING MICROSTRUCTURES R.W. Margevicius , J. Riedle, P. Gumbsch (1999). “Fracture toughness of polycrystalline tungsten under mode I and mixed mode I/II loading”, Materials Science and Engineering A, p197-209 -From the tungsten microstructure morphology in the above paper, digitalization process has been gone through to extract grain boundary shape. -With the assumption that grains are consist of 3 different orientation and GB to form a microstructure, grain types are assigned to grain region.
  • 30. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) DETERMINISTIC FINITE ELEMENT EQUATIONS 2 :δ δ δ δ ,2 V S S Vextint dV dS dS dV t             u s F T Δ T u u • LaGrangian Kinetics Description • Finite Element Descretization  M u R • Solution of Equations (Newmark -Method)     11 1 1 21 1 2 1 2 n n n n n n n n n n n n n t t t                      M Ru u u u u u u u u        
  • 31. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) Type Percentages by Area GB 7.53 % Phase1 17.41 % Phase2 40.43 % Phase3 34.63 % For each cases, three different GB properties are applied.  Maximum Tensile strength that is 1. Larger than that of grains 2. Same as that of grains 3. Smaller than that of grains PERCENTAGE OF EACH PHASES
  • 32. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) FRAMEWORK V W (1350 µm) 2H (960 µm) Pre-Crack V 1.6µm 1.6µm  All cohesive surfaces serve as potential crack paths.  FE meshes are uniformly structured with “cross-triangle” elements to give maximum flexibility for resolving crack extensions and arbitrary fracture patterns.  Center-cracked tungsten specimens under tensile loading. Initial crack : 20 µm  The boundary velocity V (1m/s) is imposed with a linear ramp from zero to V in the initial phase of loading.  The specimen is stress free and at rest initially.
  • 33. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) COMPARISON FOR COHESIVE ENERGY DISSIPATION When T = 155 nsec Low Strength GBMedium Strength GBHigh Strength GB
  • 34. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) COMPARISON FOR CRACK PROPAGATION DIRECTION When t = 155 nsec Low Strength GB Medium Strength GBHigh Strength GB
  • 35. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) High Strength GB Medium Strength GB Low Strength GB Primary crack Micro crack Primary crack Micro crack Primary crack Micro crack COMPARISON OF PRIMARY CRACK AND MICROCRACKS
  • 36. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)   CD   2 h ba 5.21CE Therefore, can be explained as energy dissipation per unit crack length or crack density. C is a constant.   C h ba    2 a b CD  In our case of simulation, C = 12.5 By substituting the equation to the above equation, we obtained a relation of max 2      CD h ba     2 max 2 25CE THE RELATION BETWEEN ENERGY DISSIPATION VS CRACK DENSITY
  • 37. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar)   CD h ba     2 max 2 25CE THE RELATION BETWEEN ENERGY DISSIPATION VS CRACK DENSITY
  • 38. Interfacial Multiphysics Lab (https://engineering.purdue.edu/~tomar) CONCLUSIONS Analyses demonstrate that the failure of a tungsten involves inter-granular cracks, intra-granular cracks, and significant microcracking. By applying different properties of GBs, plots of cohesive energy dissipation display various patterns of energy release. Property of ductility and brittleness are known as temperature dependent, however, the findings in this study indicates that the tungsten microstrucutural failure can have both ductile and brittle pattern of failure decided also by property of GBs. (GBs have 7.53% by volume) The level of microcracking goes greater in the interfaces of grains as strength of GBs becomes lower. A significant microcracking occurs during failure. Surface energy study in this research indicates m value to be around 14 for such microstructure with no time dependent. This finding can contribute to predict the level of microcrack over primary crack at other time frames. In literature, continuum and analytical fracture mechanics work usually neglects contribution of GBs to overall microstructural fracture strength. The findings in this work indicate property of GB act major role in crack propagation pattern as well as crack initiation time.