SlideShare a Scribd company logo
1 of 26
Analysis of SeasonalAnalysis of Seasonal
Signals in GPS PositionSignals in GPS Position
Time SeriesTime Series
Peng FangPeng Fang
Scripps Institution of OceanographyScripps Institution of Oceanography
University of California, San Diego, USAUniversity of California, San Diego, USA
Toulouse Workshop, Sept. 2002
CGPS@TG Working Group
CreditCredit
Anatomy of apparent seasonal variations
from GPS-derived site position time series,
JGR Vol. 107, No. B4, ETG 9-1, 2002
D. Dong, JPL, California Inst. of Technology, Pasadena, USA
P. Fang, IGPP, SIO, Univ. of Calif. San Diego, La Jolla, USA
Y. Bock, IGPP, SIO, Univ. of Calif. San Diego, La Jolla, USA
M. K. Cheng, CSR, Univ. of Texas Austin, Austin, USA
S. Miyazaki, Earthquake Res. Inst., Univ. of Tokyo, Tokyo, Japan
OUTLINEOUTLINE
 Signal CategorizationSignal Categorization
 DataData
 ProcessingProcessing
 AnalysisAnalysis
 VerificationVerification
 Discussion and SummaryDiscussion and Summary
I. Gravitational excitationI. Gravitational excitation
 Rotational displacements due toRotational displacements due to
seasonal polar motionseasonal polar motion
 Universal time corrected for polarUniversal time corrected for polar
motion (UT1) variationmotion (UT1) variation
 Loading induced displacement due toLoading induced displacement due to
solid Earth tides, ocean tides, andsolid Earth tides, ocean tides, and
atmospheric tidesatmospheric tides
 Pole tidePole tide
II. Thermal origin coupled withII. Thermal origin coupled with
hydrodynamicshydrodynamics
 Atmospheric pressure, non-tidal seaAtmospheric pressure, non-tidal sea
surface fluctuations, and groundsurface fluctuations, and ground
water (liquid and solid)water (liquid and solid)
 Thermal expansion of bedrock, andThermal expansion of bedrock, and
wind shearwind shear
III. Various errorsIII. Various errors
 Satellite orbital models, atmosphericSatellite orbital models, atmospheric
models, water vapor distributionmodels, water vapor distribution
models, phase center variationmodels, phase center variation
models, thermal noise of themodels, thermal noise of the
antenna, local multi-path, and snowantenna, local multi-path, and snow
cover on the antennacover on the antenna
DataData
 Long observation history (>4.5 yearLong observation history (>4.5 year
time span starting from 1996)time span starting from 1996)
 Good geographical distributionGood geographical distribution
128 (out of 429 total) high quality sites
are selected for the final analysis
ProcessingProcessing
 Orbit/EOP tightly constrainedOrbit/EOP tightly constrained
 ITRF reference frame usedITRF reference frame used
 Distributed mode (subnetworks)Distributed mode (subnetworks)
 Tropospheric delay estimatedTropospheric delay estimated
 Antenna phase center correctedAntenna phase center corrected
 Solid Earth tide removedSolid Earth tide removed
 GAMIT/Globk softwareGAMIT/Globk software
AnalysisAnalysis
 Parameters for each componentParameters for each component
at each site with tat each site with t00 = 1996.0:= 1996.0:
• BiasBias
• VelocityVelocity
• AAannualannualsin(sin(ωω(t-t(t-t00) +) + φφannualannual))
• AAsemiannualsemiannualsin(sin(ωω(t-t(t-t00) +) + φφsemiannualsemiannual))
Offsets due to earthquake or instrument
setup change are treated separately
Resulting Time SeriesResulting Time Series
 Vertical:Vertical: 4-10mm4-10mm formal errorformal error
1mm1mm
 Horizontal:Horizontal: 1-3mm1-3mm formal errorformal error
0.5mm0.5mm

Annual phase (Vertical):Annual phase (Vertical): 5-105-10οο

Annual phase (Horizontal):Annual phase (Horizontal): 7-157-15οο
These are typical signal range
Phases are counted counterclockwise from east
Ellipses represent 95% confidence level
Seasonal TermsSeasonal Terms
 Pole TidePole Tide
McCarthy, 1996McCarthy, 1996
ddλ = 9.0λ = 9.0 coscos θ (θ (xp sinxp sin λ +λ + yp cosyp cos λ)λ)
ddθ = −9.0θ = −9.0 coscos 2θ (2θ (xp cosxp cos λ −λ − yp sinyp sin λ)λ)
drdr = −32.0= −32.0 sinsin 2θ (2θ (xp cosxp cos λ −λ − ypyp
sinsin λ)λ)
Be very careful with the sign
of ddθθ,, positive forpositive for SOUTHSOUTH
θθ is colatitude
Seasonal Terms (Cont.)Seasonal Terms (Cont.)
 Ocean tideOcean tide
Scherneck, 1991Scherneck, 1991
Coefficients ofCoefficients of 11 tides (amp. &11 tides (amp. &
phases):phases):
M2, S2, N2, K2, K1, O1, P1, Q1, MF,M2, S2, N2, K2, K1, O1, P1, Q1, MF,
MM, SSAMM, SSA
Mostly vertical, typically in mm range
After pole tide and ocean tide terms corrected
Seasonal Terms (Cont.)Seasonal Terms (Cont.)
 Atmospheric mass loadingAtmospheric mass loading
Farrell, 1972, vanDam and Wahr, 1987Farrell, 1972, vanDam and Wahr, 1987
Green function approachGreen function approach
Re-analysis of surface pressure byRe-analysis of surface pressure by
National Center for EnvironmentNational Center for Environment
Prediction (NCEP), 6 hour samplingPrediction (NCEP), 6 hour sampling
Inverted barometer (IB) modelInverted barometer (IB) model
ECMWF land-ocean mask modelECMWF land-ocean mask model
Horizontal < 0.5mm Vertical < 1.0 mm typical
Eurasian, Arabian Peninsula ~ 4.0 mm
Seasonal Terms (Cont.)Seasonal Terms (Cont.)
 Non-tidal ocean mass loadingNon-tidal ocean mass loading
Interaction of surface wind, atmosphericInteraction of surface wind, atmospheric
pressure, heat and moisture exchange,pressure, heat and moisture exchange,
hydrodynamicshydrodynamics
Time-varying ocean topography fromTime-varying ocean topography from
TOPEX/Poseidon altimeter, 1x1TOPEX/Poseidon altimeter, 1x1oo
10 days,10 days,
Tapley, 1994Tapley, 1994
Correction term: seasonal steric variation due to salinityCorrection term: seasonal steric variation due to salinity
and temperature variations above thermocline (noand temperature variations above thermocline (no
contribution to mass variation). Dynamic Height <-contribution to mass variation). Dynamic Height <-
Specific volume anomaly (Gill, 1982) <- WOA-94 modelSpecific volume anomaly (Gill, 1982) <- WOA-94 model
(Levitus and Boyer, 1994) with 19 depths.(Levitus and Boyer, 1994) with 19 depths.
Vertical: Typical 1mm, low latitude islands/coasts 2-3mm
Seasonal Terms (Cont.)Seasonal Terms (Cont.)
 Snow/soil moisture mass loadingSnow/soil moisture mass loading
Snow cover/soil moisture modelSnow cover/soil moisture model
NCEP/DOE reanalysis (Kanamitsu et al,NCEP/DOE reanalysis (Kanamitsu et al,
1999, Roads et al, 1999) <- Climate1999, Roads et al, 1999) <- Climate
Data Assimilation System-1 reanalysisData Assimilation System-1 reanalysis
NCEP/NCAR + adjusted soil moistureNCEP/NCAR + adjusted soil moisture
from Climate Prediction Center Mergedfrom Climate Prediction Center Merged
Analysis of Precipitation (CMAP)Analysis of Precipitation (CMAP)
Ice/snow capped reg. treated separatelyIce/snow capped reg. treated separately
Vertical: BRAZ 7mm, most 2-3mm, island sites
submm (underestimated due to model problem)
After all mass loading terms corrected
Terms not counted forTerms not counted for
 Atmospheric modelingAtmospheric modeling
• Imperfect, separate studiesImperfect, separate studies
 Bedrock thermal expansionBedrock thermal expansion
• Appendix B, 0.5mm, 45Appendix B, 0.5mm, 45οο
behindbehind
 Phase center & environmental factorPhase center & environmental factor
• HOLP example,HOLP example, Hatanaka, 2001Hatanaka, 2001
 Glacier surge & internal ice flowGlacier surge & internal ice flow
• Alaska region,Alaska region, Sauber et al, 2000Sauber et al, 2000
• AntarcticaAntarctica, Cazenave et al, 2000, Cazenave et al, 2000
Note: Signal may not be sinusoidal
VerificationVerification
 JPL solution (GIPSY)JPL solution (GIPSY)
 GEONET solution (Bernese)GEONET solution (Bernese)
Different data
processing methods
JPL solution with all mass loading terms corrected
Annual vertical term at USUD relative to TSKB
Solution Amplitude (mm) Phase (degree)
GEONET 8.5 237.5
JPL 8.7 225.1
SOPAC 10.9 229.7
The amplitude A and phase f are defined as
Asin[ω(t-t0
)+φ], where t0
is 1996.0, ω is the
annual angular frequency.
*GEONET solution is the average of three local
Usuda sites relative to three local Tsukuba
sites.
Mean annual vertical amplitude and power explained
SOPAC * JPL *
Mean amplitude without
pole tide correction
5.47 (5.49) mm
Mean amplitude after
pole tide correction
4.19 (4.19) mm 3.49 (3.44) mm
Mean amplitude after mass
loading correction
3.19 (3.08) mm 2.89 (2.74) mm
Ratio of site numbers & 90/128 (90/123) 81/121 (79/116)
Power explained (pole tide
and mass loading together)+
66% (67%)
Power explained (mass
loading only)+
42% (46%) 31% (37%)
*
The values in parentheses represent the results without 5 abnormal sites (FAIR,
STJO, TSKB, MDVO, XIAN for SOPAC, and FAIR, STJO, TSKB, ZWEN, KIT3 for
JPL)
+
Power explained is defined as 1 – (A2
/A1
)2
, where A1
is the mean amplitude
before correction, A2
is the mean amplitude after correction.
&
The numerator is the site number with reduced annual amplitudes after mass
loading correction. The denominator is the total site number.
SummarySummary
 The modeled loading and nonloadingThe modeled loading and nonloading
terms can explain 66% (if pole tide isterms can explain 66% (if pole tide is
included) or 42% (pole tideincluded) or 42% (pole tide
excluded) the observed power (meanexcluded) the observed power (mean
amplitude squared).amplitude squared).
 Some candidate terms for theSome candidate terms for the
residual signal are proposed.residual signal are proposed.
 Impact on other related geodetic andImpact on other related geodetic and
geophysical problems are discussed.geophysical problems are discussed.
Contributions of geophysical sources and model errors to
the observed annual vertical variations in site positions
Sources Range of effects
Pole tide ~4 mm
Ocean tide ~0.1 mm
Atmospheric mass ~4 mm
Non-tidal ocean mass 2-3 mm
Snow mass 3-5 mm
Soil moisture 2-7 mm
Bedrock thermal expansion ~0.5 mm
Errors in orbit, phase
center and troposphere
models
No quantitative
results yet
Error in network
adjustment*
~0.7 mm
Differences from different
software
~2-3 mm, at
some sites 5-7 mm
*The value is network-dependent.
Atmosphere (purple arrow), non-tidal ocean (red arrow), snow
(green arrow) and soil wetness (blue arrow) caused vertical
annual variations of site coordinates.

More Related Content

What's hot

ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...adrianocamps
 
Purpose driven study assessment of effects of sedimentation on the capacity...
Purpose driven study   assessment of effects of sedimentation on the capacity...Purpose driven study   assessment of effects of sedimentation on the capacity...
Purpose driven study assessment of effects of sedimentation on the capacity...hydrologywebsite1
 
WesternGeco presentation - Seismic Data Processing
WesternGeco presentation - Seismic Data ProcessingWesternGeco presentation - Seismic Data Processing
WesternGeco presentation - Seismic Data ProcessingHatem Radwan
 
Multicomponent Seismic - A Measure_of_Full-wave_Motion
Multicomponent Seismic - A Measure_of_Full-wave_MotionMulticomponent Seismic - A Measure_of_Full-wave_Motion
Multicomponent Seismic - A Measure_of_Full-wave_MotionRobert Stewart
 
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...Integrated Carbon Observation System (ICOS)
 
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONSTU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONSgrssieee
 
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...grssieee
 
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...Ayres Associates (Anthony Alvarado)
 
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filter
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman FilterHurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filter
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filterahmad bassiouny
 
Variability of solar eruptions during cycle 23
Variability of solar eruptions during cycle 23Variability of solar eruptions during cycle 23
Variability of solar eruptions during cycle 23Carlos Bella
 
Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Matteo Ravasi
 
20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptxgrssieee
 
Seismic refractionsurveying r4a
Seismic refractionsurveying r4aSeismic refractionsurveying r4a
Seismic refractionsurveying r4aAlina Arshad
 
WARRP Seismology: Better Imaging Under Earth
WARRP Seismology: Better Imaging Under EarthWARRP Seismology: Better Imaging Under Earth
WARRP Seismology: Better Imaging Under EarthAli Osman Öncel
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxgrssieee
 
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptTH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptgrssieee
 
MO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.pptMO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.pptgrssieee
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reductionceriuniroma
 
Vegetation monitoring using gpm data over mongolia
Vegetation  monitoring using gpm data over mongoliaVegetation  monitoring using gpm data over mongolia
Vegetation monitoring using gpm data over mongoliaGeoMedeelel
 

What's hot (19)

ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
 
Purpose driven study assessment of effects of sedimentation on the capacity...
Purpose driven study   assessment of effects of sedimentation on the capacity...Purpose driven study   assessment of effects of sedimentation on the capacity...
Purpose driven study assessment of effects of sedimentation on the capacity...
 
WesternGeco presentation - Seismic Data Processing
WesternGeco presentation - Seismic Data ProcessingWesternGeco presentation - Seismic Data Processing
WesternGeco presentation - Seismic Data Processing
 
Multicomponent Seismic - A Measure_of_Full-wave_Motion
Multicomponent Seismic - A Measure_of_Full-wave_MotionMulticomponent Seismic - A Measure_of_Full-wave_Motion
Multicomponent Seismic - A Measure_of_Full-wave_Motion
 
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...
Chen, Huilin: Comparisons of AirCore vertical profiles of greenhouse gases fr...
 
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONSTU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
 
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...
FR4.L09 - QUANTITATIVE ASSESSMENT ON THE REQUIREMENTS OF DESDYNI MISSION FOR ...
 
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...
Mapping Piedmont Landforms in Arizona Using ArcGIS and the Trimble GeoXT Hand...
 
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filter
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman FilterHurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filter
Hurricane Synoptic Surveillance Using The Ensemble Transform Kalman Filter
 
Variability of solar eruptions during cycle 23
Variability of solar eruptions during cycle 23Variability of solar eruptions during cycle 23
Variability of solar eruptions during cycle 23
 
Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014
 
20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx20110728_IGARSS_GDPS(ryu)fin1.pptx
20110728_IGARSS_GDPS(ryu)fin1.pptx
 
Seismic refractionsurveying r4a
Seismic refractionsurveying r4aSeismic refractionsurveying r4a
Seismic refractionsurveying r4a
 
WARRP Seismology: Better Imaging Under Earth
WARRP Seismology: Better Imaging Under EarthWARRP Seismology: Better Imaging Under Earth
WARRP Seismology: Better Imaging Under Earth
 
Atmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptxAtmospheric Correction Algorithm_IGARSS.pptx
Atmospheric Correction Algorithm_IGARSS.pptx
 
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptTH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
 
MO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.pptMO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.ppt
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction
 
Vegetation monitoring using gpm data over mongolia
Vegetation  monitoring using gpm data over mongoliaVegetation  monitoring using gpm data over mongolia
Vegetation monitoring using gpm data over mongolia
 

Similar to Gps and ucsd fang peng

Probing the Hurricane Boundary Layer using NOAA's Research Aircraft
Probing the Hurricane Boundary Layer using NOAA's Research AircraftProbing the Hurricane Boundary Layer using NOAA's Research Aircraft
Probing the Hurricane Boundary Layer using NOAA's Research AircraftJun Zhang
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.pptgrssieee
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptgrssieee
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptgrssieee
 
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...grssieee
 
TU2.T10.2.ppt
TU2.T10.2.pptTU2.T10.2.ppt
TU2.T10.2.pptgrssieee
 
Seismic geometric corrections
Seismic geometric correctionsSeismic geometric corrections
Seismic geometric correctionsAli Ahmad Saddat
 
3178_IGARSS11.ppt
3178_IGARSS11.ppt3178_IGARSS11.ppt
3178_IGARSS11.pptgrssieee
 
Kim_WE3_T05_2.pptx
Kim_WE3_T05_2.pptxKim_WE3_T05_2.pptx
Kim_WE3_T05_2.pptxgrssieee
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataSiri Jodha Singh Khalsa
 
IGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxIGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxgrssieee
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptgrssieee
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptgrssieee
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptgrssieee
 
IGARSS2011_eguchi.ppt
IGARSS2011_eguchi.pptIGARSS2011_eguchi.ppt
IGARSS2011_eguchi.pptgrssieee
 
NEON Airborne Operations
NEON Airborne OperationsNEON Airborne Operations
NEON Airborne Operationsjjparnell
 
IGARSS 2011_Priestley.ppt
IGARSS 2011_Priestley.pptIGARSS 2011_Priestley.ppt
IGARSS 2011_Priestley.pptgrssieee
 

Similar to Gps and ucsd fang peng (20)

Probing the Hurricane Boundary Layer using NOAA's Research Aircraft
Probing the Hurricane Boundary Layer using NOAA's Research AircraftProbing the Hurricane Boundary Layer using NOAA's Research Aircraft
Probing the Hurricane Boundary Layer using NOAA's Research Aircraft
 
5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt5_IGARSS2011-McDonald-v1-.ppt
5_IGARSS2011-McDonald-v1-.ppt
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.ppt
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.ppt
 
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
 
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...
Wenhui_Wang.LowerTroposphericTemperatureClimateDataRecordUsingNOAANESDISSTARR...
 
TU2.T10.2.ppt
TU2.T10.2.pptTU2.T10.2.ppt
TU2.T10.2.ppt
 
Seismic geometric corrections
Seismic geometric correctionsSeismic geometric corrections
Seismic geometric corrections
 
3178_IGARSS11.ppt
3178_IGARSS11.ppt3178_IGARSS11.ppt
3178_IGARSS11.ppt
 
Yang tga2013
Yang tga2013Yang tga2013
Yang tga2013
 
Kim_WE3_T05_2.pptx
Kim_WE3_T05_2.pptxKim_WE3_T05_2.pptx
Kim_WE3_T05_2.pptx
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
 
IGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptxIGARSS_Brown_Aquarius_2011.pptx
IGARSS_Brown_Aquarius_2011.pptx
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
 
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.pptSPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
SPACEBORNE_MICROWAVE_OBSERVATIONS_OF_RAIN 1972-1997.ppt
 
IGARSS2011_eguchi.ppt
IGARSS2011_eguchi.pptIGARSS2011_eguchi.ppt
IGARSS2011_eguchi.ppt
 
NEON Airborne Operations
NEON Airborne OperationsNEON Airborne Operations
NEON Airborne Operations
 
IGARSS 2011_Priestley.ppt
IGARSS 2011_Priestley.pptIGARSS 2011_Priestley.ppt
IGARSS 2011_Priestley.ppt
 
Presentation
PresentationPresentation
Presentation
 

Recently uploaded

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 

Recently uploaded (20)

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 

Gps and ucsd fang peng

  • 1. Analysis of SeasonalAnalysis of Seasonal Signals in GPS PositionSignals in GPS Position Time SeriesTime Series Peng FangPeng Fang Scripps Institution of OceanographyScripps Institution of Oceanography University of California, San Diego, USAUniversity of California, San Diego, USA Toulouse Workshop, Sept. 2002 CGPS@TG Working Group
  • 2. CreditCredit Anatomy of apparent seasonal variations from GPS-derived site position time series, JGR Vol. 107, No. B4, ETG 9-1, 2002 D. Dong, JPL, California Inst. of Technology, Pasadena, USA P. Fang, IGPP, SIO, Univ. of Calif. San Diego, La Jolla, USA Y. Bock, IGPP, SIO, Univ. of Calif. San Diego, La Jolla, USA M. K. Cheng, CSR, Univ. of Texas Austin, Austin, USA S. Miyazaki, Earthquake Res. Inst., Univ. of Tokyo, Tokyo, Japan
  • 3. OUTLINEOUTLINE  Signal CategorizationSignal Categorization  DataData  ProcessingProcessing  AnalysisAnalysis  VerificationVerification  Discussion and SummaryDiscussion and Summary
  • 4. I. Gravitational excitationI. Gravitational excitation  Rotational displacements due toRotational displacements due to seasonal polar motionseasonal polar motion  Universal time corrected for polarUniversal time corrected for polar motion (UT1) variationmotion (UT1) variation  Loading induced displacement due toLoading induced displacement due to solid Earth tides, ocean tides, andsolid Earth tides, ocean tides, and atmospheric tidesatmospheric tides  Pole tidePole tide
  • 5. II. Thermal origin coupled withII. Thermal origin coupled with hydrodynamicshydrodynamics  Atmospheric pressure, non-tidal seaAtmospheric pressure, non-tidal sea surface fluctuations, and groundsurface fluctuations, and ground water (liquid and solid)water (liquid and solid)  Thermal expansion of bedrock, andThermal expansion of bedrock, and wind shearwind shear
  • 6. III. Various errorsIII. Various errors  Satellite orbital models, atmosphericSatellite orbital models, atmospheric models, water vapor distributionmodels, water vapor distribution models, phase center variationmodels, phase center variation models, thermal noise of themodels, thermal noise of the antenna, local multi-path, and snowantenna, local multi-path, and snow cover on the antennacover on the antenna
  • 7. DataData  Long observation history (>4.5 yearLong observation history (>4.5 year time span starting from 1996)time span starting from 1996)  Good geographical distributionGood geographical distribution 128 (out of 429 total) high quality sites are selected for the final analysis
  • 8. ProcessingProcessing  Orbit/EOP tightly constrainedOrbit/EOP tightly constrained  ITRF reference frame usedITRF reference frame used  Distributed mode (subnetworks)Distributed mode (subnetworks)  Tropospheric delay estimatedTropospheric delay estimated  Antenna phase center correctedAntenna phase center corrected  Solid Earth tide removedSolid Earth tide removed  GAMIT/Globk softwareGAMIT/Globk software
  • 9. AnalysisAnalysis  Parameters for each componentParameters for each component at each site with tat each site with t00 = 1996.0:= 1996.0: • BiasBias • VelocityVelocity • AAannualannualsin(sin(ωω(t-t(t-t00) +) + φφannualannual)) • AAsemiannualsemiannualsin(sin(ωω(t-t(t-t00) +) + φφsemiannualsemiannual)) Offsets due to earthquake or instrument setup change are treated separately
  • 10. Resulting Time SeriesResulting Time Series  Vertical:Vertical: 4-10mm4-10mm formal errorformal error 1mm1mm  Horizontal:Horizontal: 1-3mm1-3mm formal errorformal error 0.5mm0.5mm  Annual phase (Vertical):Annual phase (Vertical): 5-105-10οο  Annual phase (Horizontal):Annual phase (Horizontal): 7-157-15οο These are typical signal range
  • 11. Phases are counted counterclockwise from east Ellipses represent 95% confidence level
  • 12. Seasonal TermsSeasonal Terms  Pole TidePole Tide McCarthy, 1996McCarthy, 1996 ddλ = 9.0λ = 9.0 coscos θ (θ (xp sinxp sin λ +λ + yp cosyp cos λ)λ) ddθ = −9.0θ = −9.0 coscos 2θ (2θ (xp cosxp cos λ −λ − yp sinyp sin λ)λ) drdr = −32.0= −32.0 sinsin 2θ (2θ (xp cosxp cos λ −λ − ypyp sinsin λ)λ) Be very careful with the sign of ddθθ,, positive forpositive for SOUTHSOUTH θθ is colatitude
  • 13. Seasonal Terms (Cont.)Seasonal Terms (Cont.)  Ocean tideOcean tide Scherneck, 1991Scherneck, 1991 Coefficients ofCoefficients of 11 tides (amp. &11 tides (amp. & phases):phases): M2, S2, N2, K2, K1, O1, P1, Q1, MF,M2, S2, N2, K2, K1, O1, P1, Q1, MF, MM, SSAMM, SSA Mostly vertical, typically in mm range
  • 14. After pole tide and ocean tide terms corrected
  • 15. Seasonal Terms (Cont.)Seasonal Terms (Cont.)  Atmospheric mass loadingAtmospheric mass loading Farrell, 1972, vanDam and Wahr, 1987Farrell, 1972, vanDam and Wahr, 1987 Green function approachGreen function approach Re-analysis of surface pressure byRe-analysis of surface pressure by National Center for EnvironmentNational Center for Environment Prediction (NCEP), 6 hour samplingPrediction (NCEP), 6 hour sampling Inverted barometer (IB) modelInverted barometer (IB) model ECMWF land-ocean mask modelECMWF land-ocean mask model Horizontal < 0.5mm Vertical < 1.0 mm typical Eurasian, Arabian Peninsula ~ 4.0 mm
  • 16. Seasonal Terms (Cont.)Seasonal Terms (Cont.)  Non-tidal ocean mass loadingNon-tidal ocean mass loading Interaction of surface wind, atmosphericInteraction of surface wind, atmospheric pressure, heat and moisture exchange,pressure, heat and moisture exchange, hydrodynamicshydrodynamics Time-varying ocean topography fromTime-varying ocean topography from TOPEX/Poseidon altimeter, 1x1TOPEX/Poseidon altimeter, 1x1oo 10 days,10 days, Tapley, 1994Tapley, 1994 Correction term: seasonal steric variation due to salinityCorrection term: seasonal steric variation due to salinity and temperature variations above thermocline (noand temperature variations above thermocline (no contribution to mass variation). Dynamic Height <-contribution to mass variation). Dynamic Height <- Specific volume anomaly (Gill, 1982) <- WOA-94 modelSpecific volume anomaly (Gill, 1982) <- WOA-94 model (Levitus and Boyer, 1994) with 19 depths.(Levitus and Boyer, 1994) with 19 depths. Vertical: Typical 1mm, low latitude islands/coasts 2-3mm
  • 17. Seasonal Terms (Cont.)Seasonal Terms (Cont.)  Snow/soil moisture mass loadingSnow/soil moisture mass loading Snow cover/soil moisture modelSnow cover/soil moisture model NCEP/DOE reanalysis (Kanamitsu et al,NCEP/DOE reanalysis (Kanamitsu et al, 1999, Roads et al, 1999) <- Climate1999, Roads et al, 1999) <- Climate Data Assimilation System-1 reanalysisData Assimilation System-1 reanalysis NCEP/NCAR + adjusted soil moistureNCEP/NCAR + adjusted soil moisture from Climate Prediction Center Mergedfrom Climate Prediction Center Merged Analysis of Precipitation (CMAP)Analysis of Precipitation (CMAP) Ice/snow capped reg. treated separatelyIce/snow capped reg. treated separately Vertical: BRAZ 7mm, most 2-3mm, island sites submm (underestimated due to model problem)
  • 18. After all mass loading terms corrected
  • 19. Terms not counted forTerms not counted for  Atmospheric modelingAtmospheric modeling • Imperfect, separate studiesImperfect, separate studies  Bedrock thermal expansionBedrock thermal expansion • Appendix B, 0.5mm, 45Appendix B, 0.5mm, 45οο behindbehind  Phase center & environmental factorPhase center & environmental factor • HOLP example,HOLP example, Hatanaka, 2001Hatanaka, 2001  Glacier surge & internal ice flowGlacier surge & internal ice flow • Alaska region,Alaska region, Sauber et al, 2000Sauber et al, 2000 • AntarcticaAntarctica, Cazenave et al, 2000, Cazenave et al, 2000 Note: Signal may not be sinusoidal
  • 20. VerificationVerification  JPL solution (GIPSY)JPL solution (GIPSY)  GEONET solution (Bernese)GEONET solution (Bernese) Different data processing methods
  • 21. JPL solution with all mass loading terms corrected
  • 22. Annual vertical term at USUD relative to TSKB Solution Amplitude (mm) Phase (degree) GEONET 8.5 237.5 JPL 8.7 225.1 SOPAC 10.9 229.7 The amplitude A and phase f are defined as Asin[ω(t-t0 )+φ], where t0 is 1996.0, ω is the annual angular frequency. *GEONET solution is the average of three local Usuda sites relative to three local Tsukuba sites.
  • 23. Mean annual vertical amplitude and power explained SOPAC * JPL * Mean amplitude without pole tide correction 5.47 (5.49) mm Mean amplitude after pole tide correction 4.19 (4.19) mm 3.49 (3.44) mm Mean amplitude after mass loading correction 3.19 (3.08) mm 2.89 (2.74) mm Ratio of site numbers & 90/128 (90/123) 81/121 (79/116) Power explained (pole tide and mass loading together)+ 66% (67%) Power explained (mass loading only)+ 42% (46%) 31% (37%) * The values in parentheses represent the results without 5 abnormal sites (FAIR, STJO, TSKB, MDVO, XIAN for SOPAC, and FAIR, STJO, TSKB, ZWEN, KIT3 for JPL) + Power explained is defined as 1 – (A2 /A1 )2 , where A1 is the mean amplitude before correction, A2 is the mean amplitude after correction. & The numerator is the site number with reduced annual amplitudes after mass loading correction. The denominator is the total site number.
  • 24. SummarySummary  The modeled loading and nonloadingThe modeled loading and nonloading terms can explain 66% (if pole tide isterms can explain 66% (if pole tide is included) or 42% (pole tideincluded) or 42% (pole tide excluded) the observed power (meanexcluded) the observed power (mean amplitude squared).amplitude squared).  Some candidate terms for theSome candidate terms for the residual signal are proposed.residual signal are proposed.  Impact on other related geodetic andImpact on other related geodetic and geophysical problems are discussed.geophysical problems are discussed.
  • 25. Contributions of geophysical sources and model errors to the observed annual vertical variations in site positions Sources Range of effects Pole tide ~4 mm Ocean tide ~0.1 mm Atmospheric mass ~4 mm Non-tidal ocean mass 2-3 mm Snow mass 3-5 mm Soil moisture 2-7 mm Bedrock thermal expansion ~0.5 mm Errors in orbit, phase center and troposphere models No quantitative results yet Error in network adjustment* ~0.7 mm Differences from different software ~2-3 mm, at some sites 5-7 mm *The value is network-dependent.
  • 26. Atmosphere (purple arrow), non-tidal ocean (red arrow), snow (green arrow) and soil wetness (blue arrow) caused vertical annual variations of site coordinates.