SlideShare a Scribd company logo
1 of 43
Blade Nomenclature
Blade Nomenclature
Axial and Radial Flow Turbines
Differences between turbine and compressor:
Long Short
Blade 1 Last blade
Compressor Turbine
Work as nozzle
►
Work as diffuser
►
Direction of rotation is same
as
Life
►
Direction of rotation is
opposite
to lift direction
►
Number of stages is small
<3
►
Number of stages are many
►
Temperature is high,
sometimes
blade cooling is required
►
Temperatures are relative
low
►
Axial and Radial Flow Turbines
Differences between Radial and Axial Types.
Axial
Radial
(Centrifugal)
Used for large engines
►
Used for small engines
►
Large mass flow rates
►
Small mass flow rates
►
Better efficiencies
►
Lower efficiencies
►
Expensive
►
Cheap
►
Difficult to manufacture
►
Easy to manufacture
►
Axial Flow Turbines
Most of the gas turbines employ the axial
flow turbines.
The chapter is concerned with axial flow
turbines.
The radial turbine can handle low mass
flows more efficiently than the axial flow
machines.
Axial Flow Turbine
Elementary Theory of Axial Flow Turbine
► Velocity Triangles.
■ The velocity triangles for one axial flow turbine stage and
the nomenclature employed are shown. The gas enters the
row of nozzle blades with a static pressure and temperature
P1, T1, and a velocity C1, is expanded to P2, T2, with an
increased velocity C2 at an angle α2.
■ The rotor blade angle will be chosen to suit the
direction β2 of the gas velocity V2 relative to the blade at
inlet.
■ V2 and β2 are obtained from the velocity diagram of
known C2, α2, and U.
Axial Flow Turbine
• Elementary Theory
 The gas leaves the rotor at β3, T3, with relative velocity
V3 at an angle β3.
 C3 and α3 can be obtained from the velocity diagram.
Axial Flow Turbine
► Single Stage Turbine
■ C1 is axial → α1 = 0, and C1 = Cα1. For
similar stages (same black shapes) C1 = C3, and
α1 = α3, called repeating stage.
■ Due to change of U with radius, velocity
triangles vary from root to tip of the blade.
Axial Flow Turbine
► Assumptions
■ Consider conditions at the mean diameter of the
annulus will represent the average picture of what
happen to total mass flow.
■ This is valid for low ratio of tip radius to root radius.
■ For high radii ratio, 3-D effects have to be
considered.
■ The change of tangential (whirl) mass is . This
amount produces useful torque.
■ The change in axial component produces the axial
thrust on the rotor.
■ Also there is an axial thrust due to P2 – P3.
■ These forces (net thrust on turbine rotor) are
normally balanced by the thrust on the compressor rotor.
Axial Flow Turbine
Axial Flow Turbine
► Calculation of Work
Assume Ca= constant
2 3
Ca Ca
Ca


2 2
3 3
tan tan
tan tan
U
Ca
 
 

  


  
2 2 3
tan tan tan tan
e
   
   
2 2
tan tan
U Ca Ca
 
 
(1)
Axial Flow Turbine
Applying principle of angular momentum
 
2 3
2 3
(
( )(tan tan )
s
W U C C
U Ca
 
 
 
 
From Equation (1)
2 3
(tan tan )
s
W U Ca  
 
Steady-state energy equation: s
p o
W C T
 
Thus:
2 3
(tan tan )/
1.148, 1.333 and 4
1
s
o p
p
T U Ca C
C
 



  
  

Axial Flow Turbine
Elementary theory of axial flow turbine
 
 
1 3,
3,
1
1
1
1 3
1
1
1
1
/
s isent
isent
isent
o s o
s o o
o
s o
o
s o
o o
T T
T T
T
T
T
T
P P







  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Axial Flow Turbine
ηs is the isentropic stage efficiency based on
stagnation (total) temperature.
1 3
1 3
o o
s
o o
T T
T T





1 3
1 3
( )
o o
s
o
T T
total to static
T T





(used for land-based gas turbines).
Defining
ψ = blade loading coefficient (temperature drop
coefficient)
2
2 s
p o
C T
U



Axial Flow Turbine
Thus,
2 3
2 (tan tan )/
a
C U
  
 
Degree of reaction: 0 ≤ Λ ≤ 1


2,3 2,3 2 3
1,3 1 3
1,3
rotor
total
h T T T
T T T
h
  
   
 

For, Ca = const. and C3 = C1
 
1 3
1 3
2 3
( )
(tan tan )
p p o o
a
C T T C T T
U C  
  
 
and relative to rotor blades no work, thus
(a)
Axial Flow Turbine
 
 
 
2 2
2 3 3 2
2 2 2
3 2
2 2 2
3 2
1
( )
2
1
sec sec
2
1
tan tan
2
p
a
a
C T T V V
C
C
 
 
  
 
 
 
2 2
1
3 2
2
2 3
1 3 2 3
tan tan
(tan tan
a
a
C
T T
T T U C
 
 



 
1
3 2
(tan tan )
2
C
U
 
  
Substitute in (a):

Axial Flow Turbine
   
   
3 2
3 2
2 2
2 2 2 2
3 2
2 2
2 2 2 2
3 2
tan tan
a w a w
w w
a a
V V C C u C C u
C u C u
C C
 
   
      
 
   
 
   
 
2 3 3 2
and
   
 
3 2 3 2
and
V V  
 
3 2 3 2
,
C C  
 
a
C
U
 
Λ = 0.5 → Symm. velocity triangles
● Λ = 0 : Impulse turbine
● Λ = 1 :
Defining flow coefficient:
Axial Flow Turbine
2 1
3 2
2 (tan tan )
(tan tan )
2
   

 
 
  
Adding:
3
1 1
tan 2
2 2
 

 
  
 
 
2
1 1
tan 2
2 2
 

 
  
 
 
From:
2 2
3 3
3 3
2 2
(tan tan )
(tan tan )
1
tan tan
1
tan tan
a
a
U C
U C
 
 
 

 

 
 
 
 
Axial Flow Turbine
If , Λ, and  are assumed, blade angles can be determined.
● For aircraft applications:
3 < ψ < s, 0.8 <  < 1
● For industrial applications:
 is less (more stages)
 is less (larger engine size)
α3 < 20 (to min. losses in nozzle)
● Loss coefficient:

1 2
1
2 2
2
( )
2
2
/ 2
n nozzle stator
p
o o
N
o
T T
C C
P P
Y
P P







Λ and Y: The proportion of the leaving energy
which is degraded by friction.
Axial Flow Turbine
Example (Mean diameter design)
Given:
1
1 3
1 3
1
Single-stage turbine
= 20 kg/s
= 0.9
= 1100 K
Temperature drop, = 145 K
Pressure ratio, / = 1.873
Inlet pressure, = 4 bar
t
o
o o
o o
o
m
T
T T
P P
P


Assumptions:
Rotational speed fixed by compressor: N = 250 rps
Mean blade speed: 340 m/s
Nozzle loss coefficient:
2 2
2
2 / 2
N
p
T T
C C




Axial Flow Turbine
/
t r
r r
2 3 1 3
1
,
0
a a
C C C C

 

Calculation:
a)Λ degree of reaction at mean radius
b)Plot velocity diagrams
c)Blade height h, tip/root radius,
Assume:
3
2 2
2 2 1.148 145 10
2.88
340
s
p o
C T
U

   
  
flow coefficient 0.8
a
C
U
   
The temperature drop coefficient:
Assume (try):
Axial Flow Turbine
3 3
1
tan tan
 

  3
tan 1.25

 
3
1 1
tan 2
2 2
0.28
 

 
  
 
 
  
■ To get Λ use
This is low as a mean radius value because Λ will
be low or negative at the root.
This introduce a value for α3.
Take α3 = 10°
* To calculate degree of reaction Λ:
■ Get β3:
α3 = 0
Axial Flow Turbine
3 3 3
3
1
tan tan tan 1.426
1 1
tan 2
2 2
0.421 (Acceptable)
  

 

   
 
  
 
 
  
Reaction at root should be checked.
Thus α3 = 10°, β3 = tan-1 1.426 = 54.96
2
2
1 1
tan 2 0.374
2 2
0.421
2.88
0.8
20.49
 




 
   
 
 
 


 
Axial Flow Turbine
2 2
2
1
tan tan 1.624
58.38
 


  
  
3 3 2 2
, , , , U
   
/
t r
r r
1
1 :axial a
C C

With knowledge of
plot velocity diagrams.
* Determine blade height h and tip/root radius ratio,
.
Assumption:
Calculation of area at Section 2 (exit of nozzle)
Axial Flow Turbine
2
2
2 1
2
2 2 2
2
2
2 2
340 0.8 272 m/s
cos 519 m/s
1100 K
5.9 K
2
a
a
o o
o
p
C U
C C C
T T
C
T T T
C


   
  
 
   
2
2
2 2
2
0.05 117.3 5.9 K
2
976.8 K
N
p
C
T T
C
T


    

 
1 1 1
2
/ 1
4
2
2
2.49 bar
o
P
o o
o
P T
P
P T
  

 
 
 
 

 
Axial Flow Turbine
For the nozzle:
1
1
2
1 2
1 1
1
1
/(2 ) 1 1
1
2 2
1 4
2.16
2 1.853
o p
o
c
c
M
T T C C
M
T T
P
P
P


 
 

  
  

 
   
 
 
P2 > Pc, the nozzle is not choked. 2
, 2.49
throat
Thus P P
 
3
2
2 2
2
2
2 2 2 2
2
2
2 2
2
2 2 2 2 2 2 2
0.833 /
, , m , 0.0833
throat area of nozzles; A
, m 0.0437 , also A cos
a
a
P
kg m
RT
m
A or C A A m
C
m
N
C
or C A N A N m A N
 



 
  
  

   
Axial Flow Turbine
Calculate areas at section (1) inlet nozzle and (3) exit rotor.
3
1 1
1
1 1
1
1 1 3 3
3
2
1
1 1
1
1 1
1
3
1
1 1
1
2
1 1 1
, but C C , 276.4 /
cos
1067
2
3.54
1.155 /
0.626
a
a a
o
p
o o
a
C
C C C and C m s
C
T T T K
c
P T
P bar
P T
P
kg m
RT
m C A A m



 


    
   
 
  
 
 
 
  
  
Axial Flow Turbine
3 1 5
3
3 3
o
2
3
3 3
1
3 3
3
3
3
3 5
5
Similarly at outlet of stage ( rotor)
T 1100 145 955 ,
922
2
1.856
0.702 /
o o
o
p
o o
T T K given
C
T T T K
c
P T
P bar
P T
P
kg m
RT


 

     
   
 
  
 
 
 
  
3
2
3 5 5
2
3 3 3
3/ 0.702 /
0.1047
Blade height and annulus radius ratio
a
P RT kg m
m C A A m
 

  
  
Axial Flow Turbine
Mean radius
m
340
2 0.216
2 (250)
for known (A); A 2 r
m m m
u Nr r m
also h



   

t
r ,
2 2 2
m r m
m
A h h
h then r r r
r

     
using areas at stations 1,2,3 thus
2
1m
A
m
h1
/
t r
r r
3
2
1
Location
0.1047
0.0833
0.0626
0.077
0.0612
0.04
1.43
1.33
1.24
Axial Flow Turbine
Blade with width W
Normally taken as W=h/3
Spacing s between axial blades
t
r
a t
space
0.25, should not be less than 0.2 W
width
r
* should be 1.2 1.4
r
unsatisfactory values such as 0.43 can be reduced by
changing axial velocity through .
increasing C reduce r check has to
s
w
will

 

v
be made for mach number M .
Axial Flow Turbine
Vortex Theory
The blade speed ( u=r) changes from root to tip, thus
velocity triangles must vary from root to tip.
Free Vortex design
axial velocity is constant over the annulus.
Whirl velocity is inversely proportional to annulus.
,
C
,
tan
tan
C
,
tan
3
3
2
2
const
r
t
cons
C
t
cons
r
t
cons
C
a
a






Along the radius.
 
2 3 2 3
( ) tan
s
W u C C C r C r cons t
   

    
Axial Flow Turbine
For variable density, m is given by



t
r
r
r
a
a
rdr
C
m
C
r
r
m
2
2
2
2
2
)
2
(






   
2 2
2
2
a 2
2 2
2
3 3
3
tan tan
C cosntant, thus changes as
tan tan (a)
tan tan (b)
a
m
m
m
m
C r cons t r C
but is
r
r
similarly
r
r
 

 
 
 
 
  
 
 
  
 
Axial Flow Turbine
2 2
2
2
s 3
3
2 2 2 2
m
2
2
a 3 3
3 3
3 3
tan tan , , tan tan
r
tan (c)
r
for exit of rotor u C tan tan
tan tan (d)
a a
a
m
m a
a
m
m
m a
u
u C C thus
C
u
r
m
r C
C
r r u
thus
r r C
   

 
 
   
 
 
  
 
   
 
 
 
  
 
   
Ex: Free vortex
Results from mean diameter calculations
2 2m 3
3 2
3
58.38, 20.49, 10 ,
54.96, 0.0612, 0.216,
0.077,
2
o
m m
m m
r m
h r
h
h r r
  

  
  
  
Axial Flow Turbine
58.33
8.52
0
54.93
Tip
51.13
12.12
39.32
62.15
Root
54.96
10
20.49
58.38
mean
3
 3

2 3
2
3
2 3
m
a
1.164,( ) 0.877, 1.217, 0.849
u 1
also 1.25, Results are
C
m m m m
t t r t
m
a
r r r r
r r r r
u
C

   
 
   
   
 
 
   
  
2

2

Axial Flow Turbine
'
3
o
1
o
3
o
1
o
s
)
1
/(
1
o
3
o
1
o
s
1
o
'
3
o
1
o
s
3
o
1
o
os
1
2
a
1
2
a
3
2
a
3
2
a
3
o
1
o
p
os
p
3
3
2
2
a
T
T
T
T
where
)
)
p
p
(
1
(
T
)
T
T
1
(
T
T
T
T
)
tan
(tan
UC
m
)
tan
(tan
UC
m
)
tan
(tan
UC
m
)
tan
(tan
UC
m
)
T
T
(
c
m
T
c
m
W
tan
tan
tan
tan
C
U


















































EES Design Calculations of Axial Flow Turbine
Known Information
To1 = 1100 [K]
Pratio = 1.873
DelTs = 145
Ettaturbine = 0.9
Assumptions
U = 340 [m/s]
Nrps = 250
= 0.8
3 = 10
Loss nozzle = 0.05
EES Design Calculations of Axial Flow Turbine
cp = 1148 R = 0.287 = 1.333
DelTs = To1 – To3
Pratio =
Po1
Po3
Ca = C2 · cos ( 2 )
=
Ca
U
Gamr =
– 1
Epsi = 2 · cp ·
DelTs
U
2
Epsi = 2 · · ( tan ( 2 ) + tan ( 3 ) )
Reaction =
2
· ( tan ( 3 ) – tan ( 2 ) )
U = Ca · ( tan ( 2 ) – tan ( 2 ) )
U = Ca · ( tan ( 3 ) – tan ( 3 ) )
EES Design Calculations of Axial Flow Turbine
Calculate A2
Loss nozzle =
T2 – T2dash
C2
2
2 · cp
To2 = To1
To2 – T2 =
C2
2
2 · cp
Po1
P2
=
To1
T2dash
Gamr
Po1
Pc
=
+ 1
2
Gamr
Pth = P2
Rho2 =
Pth
R · T2
A2 =
m
Rho2 · Ca
A2 · cos ( 2 ) = A2N
EES Design Calculations of Axial Flow Turbine
Calculate A1
To1 – T1 =
C1
2
2 · cp
Po1
P1
=
To1
T1
Gamr
Rho1 =
P1
R · T1
C1 = Ca
A1 =
m
Rho1 · Ca
Calculate A3
To3 – T3 =
C3
2
2 · cp
Po3
P3
=
To3
T3
Gamr
Rho3 =
P3
R · T3
C3 = Ca
A3 =
m
Rho3 · Ca
EES Design Calculations of Axial Flow Turbine
Blade height
U = 2 · · Nrps · rm
Blade height at section 1
A1 = 2 · · rm · h1
rt1 = rm +
h1
2
rr1 = rm –
h1
2
rratio1 =
rt1
rr1
Blade height at section 2
A2 = 2 · · rm · h2
rt2 = rm +
h2
2
rr2 = rm –
h2
2
rratio2 =
rt2
rr2
Blade height at section 3
A3 = 2 · · rm · h3
rt3 = rm +
h3
2
rr3 = rm –
h3
2
rratio3 =
rt3
rr3
EES Design Calculations of Axial Flow Turbine
A1 = 0.06345 A2 = 0.08336 A2N = 0.04372 A3 = 0.1046 2 = 58.37
3 = 10 2 = 20.49 3 = 54.97 C1 = 272 C2 = 518.7
C3 = 272 Ca = 272 cp = 1148 [J/kgK] DelTs = 145 Epsi = 2.88
Ettaturbine = 0.9 = 1.333 Gamr = 4.003 h1 = 0.04666 h2 = 0.06129
h3 = 0.07692 Lossnozzle = 0.05 m = 20 [kg/s] Nrps = 250 [rev per sec] P1 = 355.1
P2 = 248.8 P3 = 186.1 Pc = 215.9 = 0.8 Po1 = 400 [kPa]
Po3 = 213.6 Pth = 248.8 Pratio = 1.873 R = 0.287 [kJ/kgK] Reaction = 0.4211
Rho1 = 1.159 Rho2 = 0.8821 Rho3 = 0.7029 rratio1 = 1.242 rratio2 = 1.33
rratio3 = 1.432 rm = 0.2165 rr1 = 0.1931 rr2 = 0.1858 rr3 = 0.178
rt1 = 0.2398 rt2 = 0.2471 rt3 = 0.2549 T1 = 1068 T2 = 982.8
T2dash = 977 T3 = 922.8 To1 = 1100 [K] To2 = 1100 [K] To3 = 955
U = 340 [m/s]
Axial Flow Turbine
Axial Flow Turbine

More Related Content

What's hot

Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
Combustion chambers-and-performance
Combustion chambers-and-performanceCombustion chambers-and-performance
Combustion chambers-and-performancemanojg1990
 
Classification of Turbines
Classification of TurbinesClassification of Turbines
Classification of TurbinesSatish Taji
 
Types of Wind tunnels
Types of Wind tunnelsTypes of Wind tunnels
Types of Wind tunnelsJim Alex
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantS.Vijaya Bhaskar
 
Gas Turbine and Jet propulsion
Gas Turbine and Jet propulsionGas Turbine and Jet propulsion
Gas Turbine and Jet propulsionSLA1987
 
Centrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratoryCentrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratorySaif al-din ali
 
Centrifugal Compressor
Centrifugal CompressorCentrifugal Compressor
Centrifugal CompressorAnkit Singh
 
Testing and performance of IC engine
Testing and performance of IC engineTesting and performance of IC engine
Testing and performance of IC engineMustafa Bzu
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Jay Patel
 
Shaft subjected to bending moment only
Shaft subjected to bending moment onlyShaft subjected to bending moment only
Shaft subjected to bending moment onlyabdul ahad noohani
 
[PPT] on Steam Turbine
[PPT] on Steam Turbine[PPT] on Steam Turbine
[PPT] on Steam TurbineSumit Sharma
 
236407565 gas-turbine-notes
236407565 gas-turbine-notes236407565 gas-turbine-notes
236407565 gas-turbine-notesmanojg1990
 

What's hot (20)

Aircraft propulsion system
Aircraft propulsion systemAircraft propulsion system
Aircraft propulsion system
 
Air compressor
Air compressorAir compressor
Air compressor
 
Combustion chambers-and-performance
Combustion chambers-and-performanceCombustion chambers-and-performance
Combustion chambers-and-performance
 
Classification of Turbines
Classification of TurbinesClassification of Turbines
Classification of Turbines
 
Types of Wind tunnels
Types of Wind tunnelsTypes of Wind tunnels
Types of Wind tunnels
 
Flywheel.ppt
Flywheel.pptFlywheel.ppt
Flywheel.ppt
 
Compressor
CompressorCompressor
Compressor
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power Plant
 
Gas Turbine and Jet propulsion
Gas Turbine and Jet propulsionGas Turbine and Jet propulsion
Gas Turbine and Jet propulsion
 
Centrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid LaboratoryCentrifugal pump | Fluid Laboratory
Centrifugal pump | Fluid Laboratory
 
Flywheel
Flywheel  Flywheel
Flywheel
 
Steam turbine and its types
Steam turbine and its typesSteam turbine and its types
Steam turbine and its types
 
Rotary compressors ppt
Rotary compressors pptRotary compressors ppt
Rotary compressors ppt
 
Centrifugal Compressor
Centrifugal CompressorCentrifugal Compressor
Centrifugal Compressor
 
Testing and performance of IC engine
Testing and performance of IC engineTesting and performance of IC engine
Testing and performance of IC engine
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
 
Shaft subjected to bending moment only
Shaft subjected to bending moment onlyShaft subjected to bending moment only
Shaft subjected to bending moment only
 
Thermodynamic cycles
Thermodynamic cyclesThermodynamic cycles
Thermodynamic cycles
 
[PPT] on Steam Turbine
[PPT] on Steam Turbine[PPT] on Steam Turbine
[PPT] on Steam Turbine
 
236407565 gas-turbine-notes
236407565 gas-turbine-notes236407565 gas-turbine-notes
236407565 gas-turbine-notes
 

Similar to Axial Flow Turbine.ppt

5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors modMetaabAltaher
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notesAghilesh V
 
7-gassteam-medium.pptx
7-gassteam-medium.pptx7-gassteam-medium.pptx
7-gassteam-medium.pptxsenyab06
 
DESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSDESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSPreet_patel
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.pptsomnathmahapatra6
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Chemical engineering department
Chemical engineering departmentChemical engineering department
Chemical engineering departmentMujeeb UR Rahman
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 dAnurak Atthasit
 
Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbinesfilmonzgreat
 
pengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalpengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalToroi Aritonang
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Design of transonic axial compressor
Design of transonic axial compressorDesign of transonic axial compressor
Design of transonic axial compressorSai Goud
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 dAnurak Atthasit
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتیObeid Aghaei
 
Design of transonic axial compressor
Design of transonic axial compressorDesign of transonic axial compressor
Design of transonic axial compressorSai Goud
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfLiewChiaPing
 

Similar to Axial Flow Turbine.ppt (20)

5 axial flow compressors mod
5 axial flow compressors mod5 axial flow compressors mod
5 axial flow compressors mod
 
4-Turbines.pptx
4-Turbines.pptx4-Turbines.pptx
4-Turbines.pptx
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notes
 
7-gassteam-medium.pptx
7-gassteam-medium.pptx7-gassteam-medium.pptx
7-gassteam-medium.pptx
 
DESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORSDESIGN OF TURBO ALTERNATORS
DESIGN OF TURBO ALTERNATORS
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Chemical engineering department
Chemical engineering departmentChemical engineering department
Chemical engineering department
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
Hydraulic Turbines
Hydraulic TurbinesHydraulic Turbines
Hydraulic Turbines
 
pengetahuan tentang sentrifugal
pengetahuan tentang sentrifugalpengetahuan tentang sentrifugal
pengetahuan tentang sentrifugal
 
Flywheel.pptx
Flywheel.pptxFlywheel.pptx
Flywheel.pptx
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Design of transonic axial compressor
Design of transonic axial compressorDesign of transonic axial compressor
Design of transonic axial compressor
 
Thermodynamics, part 6
Thermodynamics, part 6Thermodynamics, part 6
Thermodynamics, part 6
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتی
 
Design of transonic axial compressor
Design of transonic axial compressorDesign of transonic axial compressor
Design of transonic axial compressor
 
Chapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdfChapter 3 Controlled Rectifier.pdf
Chapter 3 Controlled Rectifier.pdf
 

Recently uploaded

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 

Recently uploaded (20)

POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 

Axial Flow Turbine.ppt

  • 3. Axial and Radial Flow Turbines Differences between turbine and compressor: Long Short Blade 1 Last blade Compressor Turbine Work as nozzle ► Work as diffuser ► Direction of rotation is same as Life ► Direction of rotation is opposite to lift direction ► Number of stages is small <3 ► Number of stages are many ► Temperature is high, sometimes blade cooling is required ► Temperatures are relative low ►
  • 4. Axial and Radial Flow Turbines Differences between Radial and Axial Types. Axial Radial (Centrifugal) Used for large engines ► Used for small engines ► Large mass flow rates ► Small mass flow rates ► Better efficiencies ► Lower efficiencies ► Expensive ► Cheap ► Difficult to manufacture ► Easy to manufacture ►
  • 5. Axial Flow Turbines Most of the gas turbines employ the axial flow turbines. The chapter is concerned with axial flow turbines. The radial turbine can handle low mass flows more efficiently than the axial flow machines.
  • 6. Axial Flow Turbine Elementary Theory of Axial Flow Turbine ► Velocity Triangles. ■ The velocity triangles for one axial flow turbine stage and the nomenclature employed are shown. The gas enters the row of nozzle blades with a static pressure and temperature P1, T1, and a velocity C1, is expanded to P2, T2, with an increased velocity C2 at an angle α2. ■ The rotor blade angle will be chosen to suit the direction β2 of the gas velocity V2 relative to the blade at inlet. ■ V2 and β2 are obtained from the velocity diagram of known C2, α2, and U.
  • 7. Axial Flow Turbine • Elementary Theory  The gas leaves the rotor at β3, T3, with relative velocity V3 at an angle β3.  C3 and α3 can be obtained from the velocity diagram.
  • 8. Axial Flow Turbine ► Single Stage Turbine ■ C1 is axial → α1 = 0, and C1 = Cα1. For similar stages (same black shapes) C1 = C3, and α1 = α3, called repeating stage. ■ Due to change of U with radius, velocity triangles vary from root to tip of the blade.
  • 9. Axial Flow Turbine ► Assumptions ■ Consider conditions at the mean diameter of the annulus will represent the average picture of what happen to total mass flow. ■ This is valid for low ratio of tip radius to root radius. ■ For high radii ratio, 3-D effects have to be considered. ■ The change of tangential (whirl) mass is . This amount produces useful torque. ■ The change in axial component produces the axial thrust on the rotor. ■ Also there is an axial thrust due to P2 – P3. ■ These forces (net thrust on turbine rotor) are normally balanced by the thrust on the compressor rotor.
  • 11. Axial Flow Turbine ► Calculation of Work Assume Ca= constant 2 3 Ca Ca Ca   2 2 3 3 tan tan tan tan U Ca              2 2 3 tan tan tan tan e         2 2 tan tan U Ca Ca     (1)
  • 12. Axial Flow Turbine Applying principle of angular momentum   2 3 2 3 ( ( )(tan tan ) s W U C C U Ca         From Equation (1) 2 3 (tan tan ) s W U Ca     Steady-state energy equation: s p o W C T   Thus: 2 3 (tan tan )/ 1.148, 1.333 and 4 1 s o p p T U Ca C C            
  • 13. Axial Flow Turbine Elementary theory of axial flow turbine     1 3, 3, 1 1 1 1 3 1 1 1 1 / s isent isent isent o s o s o o o s o o s o o o T T T T T T T T P P                                            
  • 14. Axial Flow Turbine ηs is the isentropic stage efficiency based on stagnation (total) temperature. 1 3 1 3 o o s o o T T T T      1 3 1 3 ( ) o o s o T T total to static T T      (used for land-based gas turbines). Defining ψ = blade loading coefficient (temperature drop coefficient) 2 2 s p o C T U   
  • 15. Axial Flow Turbine Thus, 2 3 2 (tan tan )/ a C U      Degree of reaction: 0 ≤ Λ ≤ 1   2,3 2,3 2 3 1,3 1 3 1,3 rotor total h T T T T T T h           For, Ca = const. and C3 = C1   1 3 1 3 2 3 ( ) (tan tan ) p p o o a C T T C T T U C        and relative to rotor blades no work, thus (a)
  • 16. Axial Flow Turbine       2 2 2 3 3 2 2 2 2 3 2 2 2 2 3 2 1 ( ) 2 1 sec sec 2 1 tan tan 2 p a a C T T V V C C              2 2 1 3 2 2 2 3 1 3 2 3 tan tan (tan tan a a C T T T T U C          1 3 2 (tan tan ) 2 C U      Substitute in (a): 
  • 17. Axial Flow Turbine         3 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 tan tan a w a w w w a a V V C C u C C u C u C u C C                            2 3 3 2 and       3 2 3 2 and V V     3 2 3 2 , C C     a C U   Λ = 0.5 → Symm. velocity triangles ● Λ = 0 : Impulse turbine ● Λ = 1 : Defining flow coefficient:
  • 18. Axial Flow Turbine 2 1 3 2 2 (tan tan ) (tan tan ) 2             Adding: 3 1 1 tan 2 2 2             2 1 1 tan 2 2 2             From: 2 2 3 3 3 3 2 2 (tan tan ) (tan tan ) 1 tan tan 1 tan tan a a U C U C                  
  • 19. Axial Flow Turbine If , Λ, and  are assumed, blade angles can be determined. ● For aircraft applications: 3 < ψ < s, 0.8 <  < 1 ● For industrial applications:  is less (more stages)  is less (larger engine size) α3 < 20 (to min. losses in nozzle) ● Loss coefficient:  1 2 1 2 2 2 ( ) 2 2 / 2 n nozzle stator p o o N o T T C C P P Y P P        Λ and Y: The proportion of the leaving energy which is degraded by friction.
  • 20. Axial Flow Turbine Example (Mean diameter design) Given: 1 1 3 1 3 1 Single-stage turbine = 20 kg/s = 0.9 = 1100 K Temperature drop, = 145 K Pressure ratio, / = 1.873 Inlet pressure, = 4 bar t o o o o o o m T T T P P P   Assumptions: Rotational speed fixed by compressor: N = 250 rps Mean blade speed: 340 m/s Nozzle loss coefficient: 2 2 2 2 / 2 N p T T C C    
  • 21. Axial Flow Turbine / t r r r 2 3 1 3 1 , 0 a a C C C C     Calculation: a)Λ degree of reaction at mean radius b)Plot velocity diagrams c)Blade height h, tip/root radius, Assume: 3 2 2 2 2 1.148 145 10 2.88 340 s p o C T U         flow coefficient 0.8 a C U     The temperature drop coefficient: Assume (try):
  • 22. Axial Flow Turbine 3 3 1 tan tan      3 tan 1.25    3 1 1 tan 2 2 2 0.28                ■ To get Λ use This is low as a mean radius value because Λ will be low or negative at the root. This introduce a value for α3. Take α3 = 10° * To calculate degree of reaction Λ: ■ Get β3: α3 = 0
  • 23. Axial Flow Turbine 3 3 3 3 1 tan tan tan 1.426 1 1 tan 2 2 2 0.421 (Acceptable)                        Reaction at root should be checked. Thus α3 = 10°, β3 = tan-1 1.426 = 54.96 2 2 1 1 tan 2 0.374 2 2 0.421 2.88 0.8 20.49                      
  • 24. Axial Flow Turbine 2 2 2 1 tan tan 1.624 58.38           3 3 2 2 , , , , U     / t r r r 1 1 :axial a C C  With knowledge of plot velocity diagrams. * Determine blade height h and tip/root radius ratio, . Assumption: Calculation of area at Section 2 (exit of nozzle)
  • 25. Axial Flow Turbine 2 2 2 1 2 2 2 2 2 2 2 2 340 0.8 272 m/s cos 519 m/s 1100 K 5.9 K 2 a a o o o p C U C C C T T C T T T C                2 2 2 2 2 0.05 117.3 5.9 K 2 976.8 K N p C T T C T           1 1 1 2 / 1 4 2 2 2.49 bar o P o o o P T P P T               
  • 26. Axial Flow Turbine For the nozzle: 1 1 2 1 2 1 1 1 1 /(2 ) 1 1 1 2 2 1 4 2.16 2 1.853 o p o c c M T T C C M T T P P P                         P2 > Pc, the nozzle is not choked. 2 , 2.49 throat Thus P P   3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.833 / , , m , 0.0833 throat area of nozzles; A , m 0.0437 , also A cos a a P kg m RT m A or C A A m C m N C or C A N A N m A N                  
  • 27. Axial Flow Turbine Calculate areas at section (1) inlet nozzle and (3) exit rotor. 3 1 1 1 1 1 1 1 1 3 3 3 2 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 , but C C , 276.4 / cos 1067 2 3.54 1.155 / 0.626 a a a o p o o a C C C C and C m s C T T T K c P T P bar P T P kg m RT m C A A m                                 
  • 28. Axial Flow Turbine 3 1 5 3 3 3 o 2 3 3 3 1 3 3 3 3 3 3 5 5 Similarly at outlet of stage ( rotor) T 1100 145 955 , 922 2 1.856 0.702 / o o o p o o T T K given C T T T K c P T P bar P T P kg m RT                              3 2 3 5 5 2 3 3 3 3/ 0.702 / 0.1047 Blade height and annulus radius ratio a P RT kg m m C A A m         
  • 29. Axial Flow Turbine Mean radius m 340 2 0.216 2 (250) for known (A); A 2 r m m m u Nr r m also h         t r , 2 2 2 m r m m A h h h then r r r r        using areas at stations 1,2,3 thus 2 1m A m h1 / t r r r 3 2 1 Location 0.1047 0.0833 0.0626 0.077 0.0612 0.04 1.43 1.33 1.24
  • 30. Axial Flow Turbine Blade with width W Normally taken as W=h/3 Spacing s between axial blades t r a t space 0.25, should not be less than 0.2 W width r * should be 1.2 1.4 r unsatisfactory values such as 0.43 can be reduced by changing axial velocity through . increasing C reduce r check has to s w will     v be made for mach number M .
  • 31. Axial Flow Turbine Vortex Theory The blade speed ( u=r) changes from root to tip, thus velocity triangles must vary from root to tip. Free Vortex design axial velocity is constant over the annulus. Whirl velocity is inversely proportional to annulus. , C , tan tan C , tan 3 3 2 2 const r t cons C t cons r t cons C a a       Along the radius.   2 3 2 3 ( ) tan s W u C C C r C r cons t          
  • 32. Axial Flow Turbine For variable density, m is given by    t r r r a a rdr C m C r r m 2 2 2 2 2 ) 2 (           2 2 2 2 a 2 2 2 2 3 3 3 tan tan C cosntant, thus changes as tan tan (a) tan tan (b) a m m m m C r cons t r C but is r r similarly r r                       
  • 33. Axial Flow Turbine 2 2 2 2 s 3 3 2 2 2 2 m 2 2 a 3 3 3 3 3 3 tan tan , , tan tan r tan (c) r for exit of rotor u C tan tan tan tan (d) a a a m m a a m m m a u u C C thus C u r m r C C r r u thus r r C                                          Ex: Free vortex Results from mean diameter calculations 2 2m 3 3 2 3 58.38, 20.49, 10 , 54.96, 0.0612, 0.216, 0.077, 2 o m m m m r m h r h h r r             
  • 34. Axial Flow Turbine 58.33 8.52 0 54.93 Tip 51.13 12.12 39.32 62.15 Root 54.96 10 20.49 58.38 mean 3  3  2 3 2 3 2 3 m a 1.164,( ) 0.877, 1.217, 0.849 u 1 also 1.25, Results are C m m m m t t r t m a r r r r r r r r u C                           2  2 
  • 36. EES Design Calculations of Axial Flow Turbine Known Information To1 = 1100 [K] Pratio = 1.873 DelTs = 145 Ettaturbine = 0.9 Assumptions U = 340 [m/s] Nrps = 250 = 0.8 3 = 10 Loss nozzle = 0.05
  • 37. EES Design Calculations of Axial Flow Turbine cp = 1148 R = 0.287 = 1.333 DelTs = To1 – To3 Pratio = Po1 Po3 Ca = C2 · cos ( 2 ) = Ca U Gamr = – 1 Epsi = 2 · cp · DelTs U 2 Epsi = 2 · · ( tan ( 2 ) + tan ( 3 ) ) Reaction = 2 · ( tan ( 3 ) – tan ( 2 ) ) U = Ca · ( tan ( 2 ) – tan ( 2 ) ) U = Ca · ( tan ( 3 ) – tan ( 3 ) )
  • 38. EES Design Calculations of Axial Flow Turbine Calculate A2 Loss nozzle = T2 – T2dash C2 2 2 · cp To2 = To1 To2 – T2 = C2 2 2 · cp Po1 P2 = To1 T2dash Gamr Po1 Pc = + 1 2 Gamr Pth = P2 Rho2 = Pth R · T2 A2 = m Rho2 · Ca A2 · cos ( 2 ) = A2N
  • 39. EES Design Calculations of Axial Flow Turbine Calculate A1 To1 – T1 = C1 2 2 · cp Po1 P1 = To1 T1 Gamr Rho1 = P1 R · T1 C1 = Ca A1 = m Rho1 · Ca Calculate A3 To3 – T3 = C3 2 2 · cp Po3 P3 = To3 T3 Gamr Rho3 = P3 R · T3 C3 = Ca A3 = m Rho3 · Ca
  • 40. EES Design Calculations of Axial Flow Turbine Blade height U = 2 · · Nrps · rm Blade height at section 1 A1 = 2 · · rm · h1 rt1 = rm + h1 2 rr1 = rm – h1 2 rratio1 = rt1 rr1 Blade height at section 2 A2 = 2 · · rm · h2 rt2 = rm + h2 2 rr2 = rm – h2 2 rratio2 = rt2 rr2 Blade height at section 3 A3 = 2 · · rm · h3 rt3 = rm + h3 2 rr3 = rm – h3 2 rratio3 = rt3 rr3
  • 41. EES Design Calculations of Axial Flow Turbine A1 = 0.06345 A2 = 0.08336 A2N = 0.04372 A3 = 0.1046 2 = 58.37 3 = 10 2 = 20.49 3 = 54.97 C1 = 272 C2 = 518.7 C3 = 272 Ca = 272 cp = 1148 [J/kgK] DelTs = 145 Epsi = 2.88 Ettaturbine = 0.9 = 1.333 Gamr = 4.003 h1 = 0.04666 h2 = 0.06129 h3 = 0.07692 Lossnozzle = 0.05 m = 20 [kg/s] Nrps = 250 [rev per sec] P1 = 355.1 P2 = 248.8 P3 = 186.1 Pc = 215.9 = 0.8 Po1 = 400 [kPa] Po3 = 213.6 Pth = 248.8 Pratio = 1.873 R = 0.287 [kJ/kgK] Reaction = 0.4211 Rho1 = 1.159 Rho2 = 0.8821 Rho3 = 0.7029 rratio1 = 1.242 rratio2 = 1.33 rratio3 = 1.432 rm = 0.2165 rr1 = 0.1931 rr2 = 0.1858 rr3 = 0.178 rt1 = 0.2398 rt2 = 0.2471 rt3 = 0.2549 T1 = 1068 T2 = 982.8 T2dash = 977 T3 = 922.8 To1 = 1100 [K] To2 = 1100 [K] To3 = 955 U = 340 [m/s]