SlideShare a Scribd company logo
1 of 50
Multivibrator
BY DR MOHAMMAD RASHTIAN
CIVIL AVIATION TECHNOLOGY COLLEGE
6:34 PM 1
K2A1 K1 A2
Positive Feedback:
If K1 and K2 are:
1- Simple Resistor Networks  Bi-stable
2- One RC network and the other
one a resistor network  Mono-stable ( Timer )
3- Both RC Networks  A-stable ( Pulse generator )
A1A2K1K2 > 1 A1,A2 < 0 A1 and A2 : Amplifies
6:34 PM 2
Bi-stable
Q1 Q2
RC1
RB1
RB2
RC2
VCC
6:34 PM 3
Q2Q1
RC1=2k
RB2=20k
RC2=2k
RB1=20k
C1 C2
VCC=12V
VO1 VO2
VBE(ON) = 0.6V
VCESat = 0.1V
βmin = ?
Bi-stable
6:34 PM 4
Q2Q1
RC1=2k
RB2=20k
RC2=2k
RB1=20k
C1 C2
VCC=12V
VO1 VO2
Assumption : Q1 : Off , Q2: On
VCC
RB2=20k
RC1=2k
RB1=20k
Rc2=2k
c1
e1
b2
VCC
b1
off
e2
VCESAT=0.1V
IB2
IC2
IC2 =
VCC − VCEsat
RC
=
12 − 0.1
2k
= 5.95mA IB2 =
VCC−VBE(ON)
RC+RB
=
12−0.6
2k+20k
= 0.51mA
βmin =
IC
IB
=
5.95
0.51
= 11.66 VC1 = Vcc
RB2
RB2 + RC1
+ VD
RC1
RB2 + RC1
= 10.96
6:34 PM 5
VBE(ON) = 0.6V
VCESat = 0.1V
βmin = ?
VCC=12V
Q2Q1
RC1=2k
RB2=20k
RC2=2k
RB1=20k
C1 C2
VO1 VO2
RB3=100k
RB4=100k
V=-2
`
6:34 PM 6
RB2=20k
RC1=2k
RB1=20k
Rc2=2k
VCC
c1
e1
b2
VCC
b1
off
e2
R=100k
V=-2
VCESAT=0.1V
R=100k
V=-2
Assumption : Q1 : Off , Q2: On
VB1 = −2 ∗
20
120
+ 0.1 ∗
100
120
= −0.25V
IB2 =
12 − 0.6
20k + 2k
−
0.6 − −2
100k
= 0.518mA − 0.026mA = 0.492mA
IC2 =
12 − 0.1
2k
−
0.1 − −2
100k + 20k
= 5.93mA
5.93
0.492
= 12.05βmin =
VCC=12V
Q2Q1
RC1=2k
RB2=20k
RC2=2k
RB1=20k
C1 C2
VO1 VO2
RB3=100k
RB4=100k
V=-2
`
6:34 PM 7
SQ2Q1
RC1
RB2
RC2
RB1
C1 C2
VCC
Q3 Q4
Q Q
R
Bi-Stable Usages: 1- RS Flip Flop
6:34 PM 8
Bi-Stable Usages: 2- T Flip Flop
Q2Q1
RC1
RB2
RC2
RB1
V=0
VCC
V 0
R*
VCC VCC
0
First Assumption : Q1: on , Q2: off
Vcc
Vcc – 0.7
- +
Before
Trigger t
V 0
V = 0.7 V 0
R* has a small value
6:34 PM 9
VCC
Q2Q1
RC1
RB2
RC2
RB1
V=0 - +
V 0
R*
VCC VCC
0
V=0
Vcc – 0.7
t
During
Trigger
V=0
V 0V -Vcc + 0.7
Bi-Stable Usages: 2- T Flip Flop
6:34 PM 10
Bi-Stable Usages: 2- T Flip Flop
VCC
Q2Q1
RC1
RB2
RC2
RB1
V=0
V 0
R*
VCC VCC
0
V 0
t
After
Trigger
Vcc
V = 0.7V 0
Vcc – 0.7
+ -
Trigger result : Q1: off , Q2: on
6:34 PM 11
Bi-Stable Usages: 2- T Flip Flop 2
Q2Q1
RC1
RB2
RC2
RB1
V=0
VCC
D1 D2
D3
RsVCC VCC
0
First Assumption : Q1: on , Q2: off
Before
Trigger t
V 0 Vcc
Vcc – 0.7
- +
V = 0.7 V 0
V 0
6:34 PM 12
Bi-Stable Usages: 2- T Flip Flop 2
VCC VCC
0
During
Trigger
t
Q2Q1
RC1
RB2
RC2
RB1
V=0
VCC
D1 D2
D3
Rs
V 0 0.7
Vcc – 0.7
- +
V 1.4 - Vcc V 0
V 0
6:34 PM 13
VCC VCC
0
After
Trigger
t
Q2Q1
RC1 RB2
RC2
RB1
V=0
VCC
D1 D2
D3
Rs
V = 0.7
V 0
Vcc
+ -
V 0
V 0
Vcc
Trigger result : Q1: off , Q2: on
Bi-Stable Usages: 2- T Flip Flop 2
6:34 PM 14
Bi-Stable Usages: 2- T Flip Flop 3 ( Base Triggered )
Q2Q1
RC1
RB
RC2
RB
V 0
RB2
RB2
-VB
Vcc
RS
RS
D1 D2
CS CS
VCC VCC
0
Before
Trigger
t
First Assumption : Q1: on , Q2: off
_
Vcc
+
V 0
V 0 Vcc
Vcc-0.7
- +
0.7V V 0
6:34 PM 15
Bi-Stable Usages: 2- T Flip Flop 3 ( Base Triggered )
Q2Q1
RC1
RB
RC2
RB
RB2
RB2
-VB
Vcc
RS
RS
D1 D2
CS CS
VCC VCC
0
After
Trigger
t
V 0
V 0
V 0
V 0Vcc
0.7V
Vcc-0.7
+ -
_
Vcc
+
6:34 PM 16
Schmitt trigger
5m
Unideal
Water Level
Ideal Water
Level = 5m
5.05m
4.95m
Unideal
Water Level
6:34 PM 17
Q1 Q2
RC1=2k RC2=2k
RB2=10k
RB1=10k
C=50PF
2mA
Vcc = 15V
Vin
Vout
VBE
IC
0.5 0.7
6:34 PM 18
Assumption : Q1 : Off , Q2: On
Q1 Q2
RC1=2k RC2=2k
RB2=10k
RB1=10k
C=50PF
2mA
Vcc = 15V
Vin
Vout
Q2
RC1=2k
RB2=10k
RB1=10k
RC2=2k
2mA
Q1: off
VE2
Vout
VC1
VE1=VE2
+15+15
VE1 = VE2 Vout = VCC − 2 ∗ IEE = 11V
if Vin = 0.5 + VE1 ⇒ condition change if Vin > 6.61V ⇒ Q1 ∶ On , Q2 ∶ Off
UTP : Upper Threshold Point = 6.61V
⇒ VE2 = 6.81 − 0.7 = 6.11V = VE1VB2 = VCC ∗
RB1
RB1 + RB2 + RC1
= 15 ∗
10
10 + 10 + 2
= 6.81V
6:34 PM 19
New condition : Q1 : On , Q2: Off
2mA
RC1=2k
RB2=10k
RB1=10k
+15
VC1
VB2
15 − VC1
2k
= 2mA +
VC1
20k
⇒ VC1 = 10V
VE2 = VE1 = Vin − 0.7
Question: For which Input Voltage (Vin) Q2 starts to turn on?
Vin = 5 + 0.7 − 0.5 = 5.2 = LTP: Lower Threshold Point
Q1 Q2
RC1=2k RC2=2k
RB2=10k
RB1=10k
C=50PF
2mA
Vcc = 15V
Vin
Vout
VB2 =
𝑅 𝐵1
𝑅 𝐵1 + 𝑅 𝐵2
∗ 𝑉𝐶1
IC2 = 0 ⇒ Vout = 15V = VCC
VB2 = VC1 ∗
RB1
RB1 + RB2
= 10 ∗
1
2
= 5V VE2 = Vin − 0.7
VBE2 = VB2 − VE2 = 5 − Vin − 0.7 if VBE2 = 0.5, Q2 is on threshold
𝑉𝐵2 = 5V & VE2 = 6.11 ⇒ Q2 ∶ Off
6:34 PM 20
11
15
5.2 6.61
Vout
Vin
LTP = 5.2 & UTP = 6.61
6:34 PM 21
Trimming LTP and UTP
2mA
RC1=2k
RB2=10k
RB1=10k
+15
VB2
Q1
RE1
e2
-RE1IEE+
Vin
Q1 Q2
RC1=2k RC2=2k
RB2=10k
RB1=10k
C=50PF
2mA
Vcc = 15V
Vin
Vout
RE1
Vin
Q1 Q2
RC1=2k RC2=2k
RB2=10k
RB1=10k
C=50PF
2mA
Vcc = 15V
Vout
RE2
RE1
6:34 PM 22
Trimming LTP and UTP
2mA
RC1=2k
RB2=10k
RB1=10k
+15
VB2
Q1
RE1
e2
-RE1IEE+
Vin
By Adjusting RE1 , LTP could be trimmed accurately
2mA
RC2=2k
+15
Q2
RE2
e1
-RE2IEE+
VBE1 = 0.5 ⇒ state change
Vin − VB2 − 0.7 − RE2IE2 = 0.5
LTP UTPLTP UTP
VB2 − VE2 = 0.5 ⇒ VB2 − LTP′
− 0.7 − RE1IE1 = 0.5
LTP′ = VB2 + 0.7 − 0.5 + RE1IE1 = LTP + RE1IE1
UTP′ = UTP − RE2IE2
UTP = VB2 − 0.7 + 0.5 = VB2 − 0.2
UTP′
= VB2 − 0.2 − RE2IE2
6:34 PM 23
Using REE instead of Current Source
Q1: off ⇒ VB2 = 15 ∗
10
10 + 10 + 2
= 6.81
⇒ VE2 = 6.11 and IE2 =
6.11
3
= 2.03mA
⇒ UTP = 0.5 + 6.11 = 6.61V
VOUT = Vcc − RC2
Vb2 − 0.7
RE
= 10.94
VE2 = VE1 = Vin − 0.7
𝑉𝑐𝑐 − 𝑉𝐶1
𝑅 𝐶1
= 𝛼
𝑉𝑖𝑛 − 0.7
𝑅 𝐸𝐸
+
𝑉𝐶1
𝑅 𝐵1 + 𝑅 𝐵2
& VB2 = VC1 ∗
10
10 + 10 + 2
LTP: VE2 = 𝑉𝐸1 = 𝑉𝑖𝑛 − 0.7; 𝑉𝐵𝐸2 = 0.5 = 𝑉𝐵2 − 𝑉in − 0.7 ⇒ Vin = LTP
Q1
REE=3k
RC1=2k
RB2=10k
RB1=10k
Vcc = 15V
Vin
Now inspecting the case of Q1: On , Q2: Off
VC1=14.6-0.606Vin; VB2=7.3-0.303Vin;=> 7.3-0.303Vin-(Vin-0.7)=0.5
=> LTP=5.76V
6:34 PM 24
Triangle Pulse Generator
6:34 PM 25
6:34 PM 26
Triangle Wave Generator
Mono-Stable (Timer)
Q2Q1
RC1=2k
RB2=10k
RC2=2k
10uF
VCC=12V
10k
15k
-5
VCC VCC
0
6:34 PM 27
Mono-Stable (Timer)
Q2Q1
RC1=2k
RB2=10k
RC2=2k
10uF
VCC=12V
10k
15k
-5
12V
10k
2k
c1
e1
15k
-5
ic1
B2
2k
12V
10k
12V
- Vc +
iB1
B1
E1
VB2 = −5 ∗
10
10 + 15
= −2V IC1 =
12
2k
−
5
25k
= 5.8mA & IB1 =
12 − 0.7
10k
IB1 = 1.13mA βmin =
5.8
1.13
= 5.13 VC 0−
= 12 − 0.7 = 11.3
6:34 PM 28
In Stable Mode, Q1 Is saturated & Q2 Is Off
Pre requistion for saturating the Q1
Q2Q1
RC1=2k
RB2=10k
RC2=2k
10uF
VCC=12V
10k
15k
-5
Equivalant Circuit just After Trigger:
IC2MAX =
12 − (−11.3)
10k
+
12
2k
= 8.33mA
βmin =
8.33
0.56
= 14.87
VC1 = 12 − 2 ∗
12 − 0.7
12k
= 10.1V
IB2 =
12 − 0.7
12
−
5.7
15
= 0.56mA
10k
2k
2k
12
c1
e1
b2
12
e2
15k
-5
10k
10uF c2
e2
12
iB2
VB1
6:34 PM 29
T
12
0.7
-11.3
-2
0.7
12
0.7
-2
10.1
0.5
0.9
0.4
0.4
RCCB
Recovery
time
VC1
VC2
VB1
VB2
6:34 PM 30
Q2Q1
RC1=2k
RB2=10k
RC2=2k
10uF
VCC=12V
10k
15k
-5
VB1 = ? & VB1 0+
= −VCC + VBE(ON)
VB1 ∞ = VCC
VB1 = VCC + −VCC + VBE ON − VCC e
−
t
RBCB
VB1|t=T = 0.5V = Vγ
−2VCC + VBE ON e
−
T
RBCB = −VCC + Vγ
Calculating period time:
10k
2k
2k
12
c1
e1
b2
12
e2
15k
-5
10k
10uF c2
e2
12
iB1
VB1
e−
T
τ =
−VCC+Vγ
−2VCC+VBE(ON)
=
VCC−Vγ
2VCC−VBE(ON)
⇒ T = −τ ln
VCC−Vγ
2VCC−VBE(ON)
≅ −τ ln
1
2
= τ ln 2
T = 100ms ∗ ln
24 − 0.7
12 − 0.5
≅ 70ms
* Max Reverse VBE is practically about less than 7 Volts
6:34 PM 31
Emitter Coupled Mono-Stable (Timer)
VBE2 ON = 0.7 V , VBE1 ON = 0.6 V , Vγ = 0.5 V , VCEsat = 0.1 V , β = 100
6:34 PM 32
Assuming Q1: Off , Q2:On
−12 + 50IB2 + 0.7 + β + 1 IB2 ∗ 1k = 0
151IB2 = 11.3 ⇒ IB2 = 0.075mA
IC2 = 7.5mA ⇒ VB2 = 12 − 50 ∗ 0.075 = 8.25V
VE = 7.55V; VC = 12 − 1k ∗ 7.5mA = 4.5V
Since VCE < 0 then Q2 must be saturated and we must recalculate
6:34 PM 33
Saturation model for Q2:
1212
0.1V0.7V
1k
1k
50k
VC2
VE2
VE2 = 12 ∗
1
1k + 1k ∥ 50k
− 0.7 ∗
1k ∥ 1k
1k ∥ 1k + 50k
− 0.1 ∗
1k ∥ 50k
1k ∥ 50k + 1k
≅ 6𝑉
VB1 = 12 ∗
4
4 + 8
= +4 ⇒ VBE1 = −2V ⇒ Q1: Off and Q2 ∶ Saturated
, VCap = VC1 − VB2 , VC1 = 12V ; VC2 = 6.1V
VCap = 12 − 6.7 = 5.3V ,
6:34 PM 34
After Trigger: Q1: On , Q2: Off
VB1 = 4V ⇒ VE = 3.4V ⇒ IE1 = 3.4mA ≅ IC1
𝑉𝐶1 0+
=?
Right After Trigger:
12 − VC1
2
+
12 − (VC1 − 5.3)
50k
= 3.4mA ⇒ VC1 0+ = 5.66V
⇒ VB2 0+
= 5.66 − 5.3 = 0.36V ⇒ Q2: Off
VC1SS = 12 − 2 ∗ 3.4 = 5.2V , VB2 ∞ = 12
VC1 t = 5.2 + 5.66 − 5.2 e−
t
τ = 5.2 + 0.46e−
t
τ
VB2 t = 12 + 0.36 − 12 e−
t
τ = 12 − 11.64e−
t
τ
τ = (RB + RC1)∗C = 52k∗1uF = 52mS , VE2 = VE1 = 3.4
if VB2 = 0.5 + VE2 => Due to the positive feedback => Q2: On
VB2|t=t1 = 3.9 , 12 − 11.64e
−
t1
52mS = 3.9 ⇒ t1 = 18.85mS
𝑉𝐶1 𝑡 = 18.85𝑚𝑆−
= 5.2 + 0.46e
−
t1
52 = 5.52𝑉 , 𝑉𝐶𝑎𝑝 𝑡 = 18.85𝑚𝑆−
= 5.52 − 3.9 = 1.62
6:34 PM 35
Recovery phase : t > 18.85mS t = 18.85mS+ Q2: On , Q1: Off
1212
0.1V
0.7V
1k
1k
50k
VC2
VE2
1.62
2k
12
VC1
VB2
12 − 0.1 − VE2
1k
+
12 − 0.7 − VE2
50k
+
12 − 1.62 − 0.7 − VE2
2k
=
VE2
1k
VE2 = 6.73V ⇒ VC2 = 6.83V VB2 = 7.43V , VC1 = 9.05V
τRecovery = C RC1 + (RC2 ∥ RE ∥ RB)
6:34 PM 36
VC1
VB2
VC2
τ2
τ2
τ2
τ1
12
6.7
6.1
12
0.36
5.66 5.52
9.05
12
6.7
6.1
3.9
7.43
6.83
t=0
18.85mS
6:34 PM 37
Trimming the circuit for Decreasing Recovery Time
6:34 PM 38
A-Stable
Such Circuit Would Produce a symmetrical periodic output
6:34 PM 39
e1
12k 1k
- C2 +
+6+6
b1
e2
c2
+6
1k
c1
e1
12k
+6
ic1
B2
+ C1 -
Assumption: Q1: Sat , Q2: Off
VCap1 0+ = VCap2 ∞ = 5.3V
VB2 0+
= −VCap1 0+
= −5.3V
VB2SS = VCC = 6
VB2 t = VCC + −VCC + 0.7 − VCC e−
t
τ
VB2 t = t1 = 0.5 ⇒
VCC − 0.5
2VCC − 0.7
= e−
t
τ
t1 = τ ln
2VCC − 0.7
VCC − 0.5
t1 ≅ τ ln 2 , τ = CRB
τ =12mS , t1=12ms ∗ ln
12 − 0.7
6 − 0.5
= 8.65mS
τ2 = C∗RC = 1uF ∗ 1k = 1ms , VCap2 0+ = Last Voltage of previous state
VCap2 0+
= −0.5V , VC2 = VB1 0+
− 0.5 , VB1 0+
= 0.9 , VC2 0+
= 0.4V
6:34 PM 40
VC1
VC2
VB1
VB2
6 6
0.7 0.7
0.70.7
0.9
0.9
0.9
0.4
0.4
0.4
0.5
0.5
-5.3
-5.3-5.3
6:34 PM 41
What is minimum β?
5.6mA
0.44mA
6.94mA
6.45mA
ic1
ib1
IB1 =
6 − VB1
12k
+ IC
variable
IBmin =
6 − 0.7
12 𝑘
= 0.44 mA
IBMax =
6 − 0.9
12
+
6 − −0.5 − 0.9
1k
= 6.11mA
IC1 0+
=
6 − 0
1k
+
6 − (−5.3)
12k
= 6.94mA
IC1 8.04mS =
6
1k
+
6 − 0.5
12k
= 6.45mA
βmin =
ICMAX
IBmin
=
6.94
0.44
= 15.77
ib1
e1
12k 1k
- C2 +
+6+6
b1
e2
c2
+6
1k
c1
e1
12k
+6
ic1
B2
+ C1 -
6:34 PM 42
Solving the output exponential form
Q2Q1
1k
1k
VCC=6V
12k12k1k 1k
6:34 PM 43
Emitter Coupled Multi-vibrator
VBE ON = 0.7 V , Vγ = 0.5 V , β = 200
Obviously Q1 & Q2 are Current Sources
IC1&C2 =
2.7 − 0.7
4k
= 0.5mA
*Positive Feedback is in place, so Q3 & Q4
cannot be on simultaneously.
6:34 PM 44
Q2Q1
Q4
Q3
10nF
4k 4k
1.2k4k
+12V+10V
2.7V
Vout
+5V
A B
- +
Assumption: Q4: Off , Q3: On
IE4 = 1mA ⇒ VC4 = 12 − 1.2 = 10.8V
IB4 = 50uA ⇒ VB4 = 10 − 4k ∗ 50u ≅ 10V ⇒ VE4 = 9.3V = VB
in this state voltage of node A is linearly decreasing because of the current source Q1, Once VA
reaches 4.5 Volts, Q3 will be at threshold to turn on. Now we consider the state change: Q3:
On , Q4: Off VC3 = 10 − 4 ∗ 0.5 + 0.5 ≅ 6V
in this state voltage of node B will fall until VB Equals 5.5 then Q4 will be at threshold to turn on:
VCap t1−
= VB t1−
− VA t1−
= 5.5 − 4.3 = 1.2
VA t1+
= VB t1+
− VCap t1+
, VCap t1+
= VCap t1−
VA t1+
= 9.3 − 1.2 = 8.1V
VB4 = VC3 = 10 − 4 0.5 + 0.5 = 6V
Q3: Off , Q4: On
+10
Q3
4k
+5
VB4
A B
0.5mA0.5mA
Vout
Q4
1.2k
+10
4k
+10
A B
0.5mA
0.5mA
6:34 PM 45
VCap
4.8V
1.2V
T
C∆V = I∆T ⇒ 10 ∗ 10−9
∗ 4.8 − 1.2 = 0.5 ∗ 10−3
∗
T
2
⇒
T
2
= 72uS ⇒ f =
1
2 ∗ 72uS
f =
1000kHz
2 ∗ 72
= 6.94kHz
6:34 PM 46
Q2Q1
RR
A AC1
I2I1
IXIX
Q4Q3
DD
VCC
VOB VOB
Emitter Coupled Multi-vibrator
Q1 and Q2 cant be turned on
Simultaneously.
Suppose that Q1:off Q2:on
VB3 ≅ VCC
VOB = Ve3 = VCC − VBE on
VE2 = VCC − 2 ∗ VBE(on)
VB4 = VCC − VBE(on)
VOB′ = VCC − 2 ∗ VBE on ⇒
if VE1 == VCC − 3 ∗ VBE on
then the state will change
φ ≡ VBE on
6:34 PM 47
VA -VA
VA
VA
VB
VB
Q2:ON
Q1:ON
VCC-Ψ
VCC-2Ψ
VCC-Ψ
VCC-2Ψ
VCC-3Ψ
VCC-2Ψ
VCC-Ψ
VCC-3Ψ
VCC-2Ψ
VCC-Ψ
-Ψ
Ψ
Q2Q1
RR
A AC1
I2I1
IXIX
Q4Q3
DD
VCC
VOB VOB
Q1 and Q2 cant be turned on
Simultaneously.
VB3 ≅ VCC
VOB = Ve3 = VCC − VBE on
VE2 = VCC − 2 ∗ VBE(on)
VB4 = VCC − VBE(on)
t1 = t2 =
C∆V
I1
=
2CVBE(on)
I1
⇒ f0 =
1
t
=
1
2 ∗ t1
=
I1
4C1VBE(on)
VOB′ = VCC − 2 ∗ VBE on ⇒ if VE1 == VCC − 3 ∗ VBE on
then the state will change
φ ≡ VBE on
The frequency is a function of VBE which itself is
temperature dependent .
6:34 PM 48
𝐾𝑉𝐿: −𝑉𝐶 + 𝑉𝐵𝐸5 + 𝑅1 𝐼1 − 𝑅1 𝐼2 − 𝑉𝐵𝐸7 = 0
∆𝐼 = 𝐼1 − 𝐼2 ≅
𝑉𝐶 − ∆𝑉𝐵𝐸
𝑅1
≅
𝑉𝐶
𝑅1
①
2𝐼1 + 2𝐼2 = 𝐼0 ⇒ 𝐼1 + 𝐼2 =
𝐼0
2
②
①&② ⇒ 𝐼1 =
𝐼0
4
+
𝑉𝐶
2𝑅1
𝐼0 =
𝑉𝐵𝐸10
𝑅2
⇒ 𝐼1 =
𝑉𝐵𝐸10
4𝑅2
+
𝑉𝐶
2𝑅1
𝑓0 =
𝐼1
4𝑉𝐵𝐸 𝐶
=
𝑉𝐵𝐸
4𝑅2
+
𝑉𝐶
2𝑅1
4𝑉𝐵𝐸 𝐶
𝑓0 =
1
16𝐶1 𝑅2
1 +
2𝑅2
𝑅1 𝑉𝐵𝐸(𝑜𝑛)
𝑉𝐶
The circuit’s frequency will
be completely temperature
independent only at VC=0
6:34 PM 49
6:34 PM 50

More Related Content

What's hot

Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Aravinda Koithyar
 
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...AUTHELECTRONIC
 
HA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierHA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierYong Heui Cho
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuitsMangi Lal
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Designimranbashir
 
IS 151 Lecture 11
IS 151 Lecture 11IS 151 Lecture 11
IS 151 Lecture 11wajanga
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)Claudia Sin
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers ls234
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
PA Intermodulation Distortion Measurements Using the PNA
PA Intermodulation Distortion Measurements Using the PNA PA Intermodulation Distortion Measurements Using the PNA
PA Intermodulation Distortion Measurements Using the PNA ls234
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 

What's hot (19)

Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4
 
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...
Original IGBT STGF14NC60KD STGF14NC60 14NC60 14A 600V TO-220 New STmicroelect...
 
HA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierHA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational Amplifier
 
555 timer
555 timer555 timer
555 timer
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuits
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Design
 
IS 151 Lecture 11
IS 151 Lecture 11IS 151 Lecture 11
IS 151 Lecture 11
 
IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)IC Design of Power Management Circuits (IV)
IC Design of Power Management Circuits (IV)
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
3a ee600 lab1_schwappach
3a ee600 lab1_schwappach3a ee600 lab1_schwappach
3a ee600 lab1_schwappach
 
Robotics lec7
Robotics lec7Robotics lec7
Robotics lec7
 
PA Intermodulation Distortion Measurements Using the PNA
PA Intermodulation Distortion Measurements Using the PNA PA Intermodulation Distortion Measurements Using the PNA
PA Intermodulation Distortion Measurements Using the PNA
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
Pdc lab manualnew
Pdc lab manualnewPdc lab manualnew
Pdc lab manualnew
 
Switched capacitor circuits_shish
Switched capacitor circuits_shishSwitched capacitor circuits_shish
Switched capacitor circuits_shish
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
JK flip flops
JK flip flopsJK flip flops
JK flip flops
 

Similar to multivibrator

74hc73 ci-flip-flop-jk-datasheet
74hc73 ci-flip-flop-jk-datasheet74hc73 ci-flip-flop-jk-datasheet
74hc73 ci-flip-flop-jk-datasheetDaniel Fiuza
 
overviev gyrocompass parameters
overviev gyrocompass parametersoverviev gyrocompass parameters
overviev gyrocompass parametersSergey Safronov
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Ciclotron tip5000 2 h ii
Ciclotron   tip5000 2 h iiCiclotron   tip5000 2 h ii
Ciclotron tip5000 2 h iiMuniz Rodrigues
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
Ciclotron tip4000 2 h ii
Ciclotron   tip4000 2 h iiCiclotron   tip4000 2 h ii
Ciclotron tip4000 2 h iiMuniz Rodrigues
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfetMahoneyKadir
 
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewOriginal IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewAUTHELECTRONIC
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 

Similar to multivibrator (20)

74hc73 ci-flip-flop-jk-datasheet
74hc73 ci-flip-flop-jk-datasheet74hc73 ci-flip-flop-jk-datasheet
74hc73 ci-flip-flop-jk-datasheet
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch06s
Ch06sCh06s
Ch06s
 
Multivibrators
MultivibratorsMultivibrators
Multivibrators
 
Ch06p
Ch06pCh06p
Ch06p
 
Ciclotron tip3000 2h ii
Ciclotron   tip3000 2h iiCiclotron   tip3000 2h ii
Ciclotron tip3000 2h ii
 
overviev gyrocompass parameters
overviev gyrocompass parametersoverviev gyrocompass parameters
overviev gyrocompass parameters
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Ciclotron tip5000 2 h ii
Ciclotron   tip5000 2 h iiCiclotron   tip5000 2 h ii
Ciclotron tip5000 2 h ii
 
74HC123.PDF
74HC123.PDF74HC123.PDF
74HC123.PDF
 
Eca unit 2
Eca unit 2Eca unit 2
Eca unit 2
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
Ciclotron tip4000 2 h ii
Ciclotron   tip4000 2 h iiCiclotron   tip4000 2 h ii
Ciclotron tip4000 2 h ii
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewOriginal IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 

Recently uploaded

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 

Recently uploaded (20)

Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

multivibrator

  • 1. Multivibrator BY DR MOHAMMAD RASHTIAN CIVIL AVIATION TECHNOLOGY COLLEGE 6:34 PM 1
  • 2. K2A1 K1 A2 Positive Feedback: If K1 and K2 are: 1- Simple Resistor Networks  Bi-stable 2- One RC network and the other one a resistor network  Mono-stable ( Timer ) 3- Both RC Networks  A-stable ( Pulse generator ) A1A2K1K2 > 1 A1,A2 < 0 A1 and A2 : Amplifies 6:34 PM 2
  • 4. Q2Q1 RC1=2k RB2=20k RC2=2k RB1=20k C1 C2 VCC=12V VO1 VO2 VBE(ON) = 0.6V VCESat = 0.1V βmin = ? Bi-stable 6:34 PM 4
  • 5. Q2Q1 RC1=2k RB2=20k RC2=2k RB1=20k C1 C2 VCC=12V VO1 VO2 Assumption : Q1 : Off , Q2: On VCC RB2=20k RC1=2k RB1=20k Rc2=2k c1 e1 b2 VCC b1 off e2 VCESAT=0.1V IB2 IC2 IC2 = VCC − VCEsat RC = 12 − 0.1 2k = 5.95mA IB2 = VCC−VBE(ON) RC+RB = 12−0.6 2k+20k = 0.51mA βmin = IC IB = 5.95 0.51 = 11.66 VC1 = Vcc RB2 RB2 + RC1 + VD RC1 RB2 + RC1 = 10.96 6:34 PM 5
  • 6. VBE(ON) = 0.6V VCESat = 0.1V βmin = ? VCC=12V Q2Q1 RC1=2k RB2=20k RC2=2k RB1=20k C1 C2 VO1 VO2 RB3=100k RB4=100k V=-2 ` 6:34 PM 6
  • 7. RB2=20k RC1=2k RB1=20k Rc2=2k VCC c1 e1 b2 VCC b1 off e2 R=100k V=-2 VCESAT=0.1V R=100k V=-2 Assumption : Q1 : Off , Q2: On VB1 = −2 ∗ 20 120 + 0.1 ∗ 100 120 = −0.25V IB2 = 12 − 0.6 20k + 2k − 0.6 − −2 100k = 0.518mA − 0.026mA = 0.492mA IC2 = 12 − 0.1 2k − 0.1 − −2 100k + 20k = 5.93mA 5.93 0.492 = 12.05βmin = VCC=12V Q2Q1 RC1=2k RB2=20k RC2=2k RB1=20k C1 C2 VO1 VO2 RB3=100k RB4=100k V=-2 ` 6:34 PM 7
  • 8. SQ2Q1 RC1 RB2 RC2 RB1 C1 C2 VCC Q3 Q4 Q Q R Bi-Stable Usages: 1- RS Flip Flop 6:34 PM 8
  • 9. Bi-Stable Usages: 2- T Flip Flop Q2Q1 RC1 RB2 RC2 RB1 V=0 VCC V 0 R* VCC VCC 0 First Assumption : Q1: on , Q2: off Vcc Vcc – 0.7 - + Before Trigger t V 0 V = 0.7 V 0 R* has a small value 6:34 PM 9
  • 10. VCC Q2Q1 RC1 RB2 RC2 RB1 V=0 - + V 0 R* VCC VCC 0 V=0 Vcc – 0.7 t During Trigger V=0 V 0V -Vcc + 0.7 Bi-Stable Usages: 2- T Flip Flop 6:34 PM 10
  • 11. Bi-Stable Usages: 2- T Flip Flop VCC Q2Q1 RC1 RB2 RC2 RB1 V=0 V 0 R* VCC VCC 0 V 0 t After Trigger Vcc V = 0.7V 0 Vcc – 0.7 + - Trigger result : Q1: off , Q2: on 6:34 PM 11
  • 12. Bi-Stable Usages: 2- T Flip Flop 2 Q2Q1 RC1 RB2 RC2 RB1 V=0 VCC D1 D2 D3 RsVCC VCC 0 First Assumption : Q1: on , Q2: off Before Trigger t V 0 Vcc Vcc – 0.7 - + V = 0.7 V 0 V 0 6:34 PM 12
  • 13. Bi-Stable Usages: 2- T Flip Flop 2 VCC VCC 0 During Trigger t Q2Q1 RC1 RB2 RC2 RB1 V=0 VCC D1 D2 D3 Rs V 0 0.7 Vcc – 0.7 - + V 1.4 - Vcc V 0 V 0 6:34 PM 13
  • 14. VCC VCC 0 After Trigger t Q2Q1 RC1 RB2 RC2 RB1 V=0 VCC D1 D2 D3 Rs V = 0.7 V 0 Vcc + - V 0 V 0 Vcc Trigger result : Q1: off , Q2: on Bi-Stable Usages: 2- T Flip Flop 2 6:34 PM 14
  • 15. Bi-Stable Usages: 2- T Flip Flop 3 ( Base Triggered ) Q2Q1 RC1 RB RC2 RB V 0 RB2 RB2 -VB Vcc RS RS D1 D2 CS CS VCC VCC 0 Before Trigger t First Assumption : Q1: on , Q2: off _ Vcc + V 0 V 0 Vcc Vcc-0.7 - + 0.7V V 0 6:34 PM 15
  • 16. Bi-Stable Usages: 2- T Flip Flop 3 ( Base Triggered ) Q2Q1 RC1 RB RC2 RB RB2 RB2 -VB Vcc RS RS D1 D2 CS CS VCC VCC 0 After Trigger t V 0 V 0 V 0 V 0Vcc 0.7V Vcc-0.7 + - _ Vcc + 6:34 PM 16
  • 17. Schmitt trigger 5m Unideal Water Level Ideal Water Level = 5m 5.05m 4.95m Unideal Water Level 6:34 PM 17
  • 18. Q1 Q2 RC1=2k RC2=2k RB2=10k RB1=10k C=50PF 2mA Vcc = 15V Vin Vout VBE IC 0.5 0.7 6:34 PM 18
  • 19. Assumption : Q1 : Off , Q2: On Q1 Q2 RC1=2k RC2=2k RB2=10k RB1=10k C=50PF 2mA Vcc = 15V Vin Vout Q2 RC1=2k RB2=10k RB1=10k RC2=2k 2mA Q1: off VE2 Vout VC1 VE1=VE2 +15+15 VE1 = VE2 Vout = VCC − 2 ∗ IEE = 11V if Vin = 0.5 + VE1 ⇒ condition change if Vin > 6.61V ⇒ Q1 ∶ On , Q2 ∶ Off UTP : Upper Threshold Point = 6.61V ⇒ VE2 = 6.81 − 0.7 = 6.11V = VE1VB2 = VCC ∗ RB1 RB1 + RB2 + RC1 = 15 ∗ 10 10 + 10 + 2 = 6.81V 6:34 PM 19
  • 20. New condition : Q1 : On , Q2: Off 2mA RC1=2k RB2=10k RB1=10k +15 VC1 VB2 15 − VC1 2k = 2mA + VC1 20k ⇒ VC1 = 10V VE2 = VE1 = Vin − 0.7 Question: For which Input Voltage (Vin) Q2 starts to turn on? Vin = 5 + 0.7 − 0.5 = 5.2 = LTP: Lower Threshold Point Q1 Q2 RC1=2k RC2=2k RB2=10k RB1=10k C=50PF 2mA Vcc = 15V Vin Vout VB2 = 𝑅 𝐵1 𝑅 𝐵1 + 𝑅 𝐵2 ∗ 𝑉𝐶1 IC2 = 0 ⇒ Vout = 15V = VCC VB2 = VC1 ∗ RB1 RB1 + RB2 = 10 ∗ 1 2 = 5V VE2 = Vin − 0.7 VBE2 = VB2 − VE2 = 5 − Vin − 0.7 if VBE2 = 0.5, Q2 is on threshold 𝑉𝐵2 = 5V & VE2 = 6.11 ⇒ Q2 ∶ Off 6:34 PM 20
  • 21. 11 15 5.2 6.61 Vout Vin LTP = 5.2 & UTP = 6.61 6:34 PM 21
  • 22. Trimming LTP and UTP 2mA RC1=2k RB2=10k RB1=10k +15 VB2 Q1 RE1 e2 -RE1IEE+ Vin Q1 Q2 RC1=2k RC2=2k RB2=10k RB1=10k C=50PF 2mA Vcc = 15V Vin Vout RE1 Vin Q1 Q2 RC1=2k RC2=2k RB2=10k RB1=10k C=50PF 2mA Vcc = 15V Vout RE2 RE1 6:34 PM 22
  • 23. Trimming LTP and UTP 2mA RC1=2k RB2=10k RB1=10k +15 VB2 Q1 RE1 e2 -RE1IEE+ Vin By Adjusting RE1 , LTP could be trimmed accurately 2mA RC2=2k +15 Q2 RE2 e1 -RE2IEE+ VBE1 = 0.5 ⇒ state change Vin − VB2 − 0.7 − RE2IE2 = 0.5 LTP UTPLTP UTP VB2 − VE2 = 0.5 ⇒ VB2 − LTP′ − 0.7 − RE1IE1 = 0.5 LTP′ = VB2 + 0.7 − 0.5 + RE1IE1 = LTP + RE1IE1 UTP′ = UTP − RE2IE2 UTP = VB2 − 0.7 + 0.5 = VB2 − 0.2 UTP′ = VB2 − 0.2 − RE2IE2 6:34 PM 23
  • 24. Using REE instead of Current Source Q1: off ⇒ VB2 = 15 ∗ 10 10 + 10 + 2 = 6.81 ⇒ VE2 = 6.11 and IE2 = 6.11 3 = 2.03mA ⇒ UTP = 0.5 + 6.11 = 6.61V VOUT = Vcc − RC2 Vb2 − 0.7 RE = 10.94 VE2 = VE1 = Vin − 0.7 𝑉𝑐𝑐 − 𝑉𝐶1 𝑅 𝐶1 = 𝛼 𝑉𝑖𝑛 − 0.7 𝑅 𝐸𝐸 + 𝑉𝐶1 𝑅 𝐵1 + 𝑅 𝐵2 & VB2 = VC1 ∗ 10 10 + 10 + 2 LTP: VE2 = 𝑉𝐸1 = 𝑉𝑖𝑛 − 0.7; 𝑉𝐵𝐸2 = 0.5 = 𝑉𝐵2 − 𝑉in − 0.7 ⇒ Vin = LTP Q1 REE=3k RC1=2k RB2=10k RB1=10k Vcc = 15V Vin Now inspecting the case of Q1: On , Q2: Off VC1=14.6-0.606Vin; VB2=7.3-0.303Vin;=> 7.3-0.303Vin-(Vin-0.7)=0.5 => LTP=5.76V 6:34 PM 24
  • 26. 6:34 PM 26 Triangle Wave Generator
  • 28. Mono-Stable (Timer) Q2Q1 RC1=2k RB2=10k RC2=2k 10uF VCC=12V 10k 15k -5 12V 10k 2k c1 e1 15k -5 ic1 B2 2k 12V 10k 12V - Vc + iB1 B1 E1 VB2 = −5 ∗ 10 10 + 15 = −2V IC1 = 12 2k − 5 25k = 5.8mA & IB1 = 12 − 0.7 10k IB1 = 1.13mA βmin = 5.8 1.13 = 5.13 VC 0− = 12 − 0.7 = 11.3 6:34 PM 28 In Stable Mode, Q1 Is saturated & Q2 Is Off Pre requistion for saturating the Q1
  • 29. Q2Q1 RC1=2k RB2=10k RC2=2k 10uF VCC=12V 10k 15k -5 Equivalant Circuit just After Trigger: IC2MAX = 12 − (−11.3) 10k + 12 2k = 8.33mA βmin = 8.33 0.56 = 14.87 VC1 = 12 − 2 ∗ 12 − 0.7 12k = 10.1V IB2 = 12 − 0.7 12 − 5.7 15 = 0.56mA 10k 2k 2k 12 c1 e1 b2 12 e2 15k -5 10k 10uF c2 e2 12 iB2 VB1 6:34 PM 29
  • 31. VB1 = ? & VB1 0+ = −VCC + VBE(ON) VB1 ∞ = VCC VB1 = VCC + −VCC + VBE ON − VCC e − t RBCB VB1|t=T = 0.5V = Vγ −2VCC + VBE ON e − T RBCB = −VCC + Vγ Calculating period time: 10k 2k 2k 12 c1 e1 b2 12 e2 15k -5 10k 10uF c2 e2 12 iB1 VB1 e− T τ = −VCC+Vγ −2VCC+VBE(ON) = VCC−Vγ 2VCC−VBE(ON) ⇒ T = −τ ln VCC−Vγ 2VCC−VBE(ON) ≅ −τ ln 1 2 = τ ln 2 T = 100ms ∗ ln 24 − 0.7 12 − 0.5 ≅ 70ms * Max Reverse VBE is practically about less than 7 Volts 6:34 PM 31
  • 32. Emitter Coupled Mono-Stable (Timer) VBE2 ON = 0.7 V , VBE1 ON = 0.6 V , Vγ = 0.5 V , VCEsat = 0.1 V , β = 100 6:34 PM 32
  • 33. Assuming Q1: Off , Q2:On −12 + 50IB2 + 0.7 + β + 1 IB2 ∗ 1k = 0 151IB2 = 11.3 ⇒ IB2 = 0.075mA IC2 = 7.5mA ⇒ VB2 = 12 − 50 ∗ 0.075 = 8.25V VE = 7.55V; VC = 12 − 1k ∗ 7.5mA = 4.5V Since VCE < 0 then Q2 must be saturated and we must recalculate 6:34 PM 33
  • 34. Saturation model for Q2: 1212 0.1V0.7V 1k 1k 50k VC2 VE2 VE2 = 12 ∗ 1 1k + 1k ∥ 50k − 0.7 ∗ 1k ∥ 1k 1k ∥ 1k + 50k − 0.1 ∗ 1k ∥ 50k 1k ∥ 50k + 1k ≅ 6𝑉 VB1 = 12 ∗ 4 4 + 8 = +4 ⇒ VBE1 = −2V ⇒ Q1: Off and Q2 ∶ Saturated , VCap = VC1 − VB2 , VC1 = 12V ; VC2 = 6.1V VCap = 12 − 6.7 = 5.3V , 6:34 PM 34
  • 35. After Trigger: Q1: On , Q2: Off VB1 = 4V ⇒ VE = 3.4V ⇒ IE1 = 3.4mA ≅ IC1 𝑉𝐶1 0+ =? Right After Trigger: 12 − VC1 2 + 12 − (VC1 − 5.3) 50k = 3.4mA ⇒ VC1 0+ = 5.66V ⇒ VB2 0+ = 5.66 − 5.3 = 0.36V ⇒ Q2: Off VC1SS = 12 − 2 ∗ 3.4 = 5.2V , VB2 ∞ = 12 VC1 t = 5.2 + 5.66 − 5.2 e− t τ = 5.2 + 0.46e− t τ VB2 t = 12 + 0.36 − 12 e− t τ = 12 − 11.64e− t τ τ = (RB + RC1)∗C = 52k∗1uF = 52mS , VE2 = VE1 = 3.4 if VB2 = 0.5 + VE2 => Due to the positive feedback => Q2: On VB2|t=t1 = 3.9 , 12 − 11.64e − t1 52mS = 3.9 ⇒ t1 = 18.85mS 𝑉𝐶1 𝑡 = 18.85𝑚𝑆− = 5.2 + 0.46e − t1 52 = 5.52𝑉 , 𝑉𝐶𝑎𝑝 𝑡 = 18.85𝑚𝑆− = 5.52 − 3.9 = 1.62 6:34 PM 35
  • 36. Recovery phase : t > 18.85mS t = 18.85mS+ Q2: On , Q1: Off 1212 0.1V 0.7V 1k 1k 50k VC2 VE2 1.62 2k 12 VC1 VB2 12 − 0.1 − VE2 1k + 12 − 0.7 − VE2 50k + 12 − 1.62 − 0.7 − VE2 2k = VE2 1k VE2 = 6.73V ⇒ VC2 = 6.83V VB2 = 7.43V , VC1 = 9.05V τRecovery = C RC1 + (RC2 ∥ RE ∥ RB) 6:34 PM 36
  • 38. Trimming the circuit for Decreasing Recovery Time 6:34 PM 38
  • 39. A-Stable Such Circuit Would Produce a symmetrical periodic output 6:34 PM 39
  • 40. e1 12k 1k - C2 + +6+6 b1 e2 c2 +6 1k c1 e1 12k +6 ic1 B2 + C1 - Assumption: Q1: Sat , Q2: Off VCap1 0+ = VCap2 ∞ = 5.3V VB2 0+ = −VCap1 0+ = −5.3V VB2SS = VCC = 6 VB2 t = VCC + −VCC + 0.7 − VCC e− t τ VB2 t = t1 = 0.5 ⇒ VCC − 0.5 2VCC − 0.7 = e− t τ t1 = τ ln 2VCC − 0.7 VCC − 0.5 t1 ≅ τ ln 2 , τ = CRB τ =12mS , t1=12ms ∗ ln 12 − 0.7 6 − 0.5 = 8.65mS τ2 = C∗RC = 1uF ∗ 1k = 1ms , VCap2 0+ = Last Voltage of previous state VCap2 0+ = −0.5V , VC2 = VB1 0+ − 0.5 , VB1 0+ = 0.9 , VC2 0+ = 0.4V 6:34 PM 40
  • 42. What is minimum β? 5.6mA 0.44mA 6.94mA 6.45mA ic1 ib1 IB1 = 6 − VB1 12k + IC variable IBmin = 6 − 0.7 12 𝑘 = 0.44 mA IBMax = 6 − 0.9 12 + 6 − −0.5 − 0.9 1k = 6.11mA IC1 0+ = 6 − 0 1k + 6 − (−5.3) 12k = 6.94mA IC1 8.04mS = 6 1k + 6 − 0.5 12k = 6.45mA βmin = ICMAX IBmin = 6.94 0.44 = 15.77 ib1 e1 12k 1k - C2 + +6+6 b1 e2 c2 +6 1k c1 e1 12k +6 ic1 B2 + C1 - 6:34 PM 42
  • 43. Solving the output exponential form Q2Q1 1k 1k VCC=6V 12k12k1k 1k 6:34 PM 43
  • 44. Emitter Coupled Multi-vibrator VBE ON = 0.7 V , Vγ = 0.5 V , β = 200 Obviously Q1 & Q2 are Current Sources IC1&C2 = 2.7 − 0.7 4k = 0.5mA *Positive Feedback is in place, so Q3 & Q4 cannot be on simultaneously. 6:34 PM 44
  • 45. Q2Q1 Q4 Q3 10nF 4k 4k 1.2k4k +12V+10V 2.7V Vout +5V A B - + Assumption: Q4: Off , Q3: On IE4 = 1mA ⇒ VC4 = 12 − 1.2 = 10.8V IB4 = 50uA ⇒ VB4 = 10 − 4k ∗ 50u ≅ 10V ⇒ VE4 = 9.3V = VB in this state voltage of node A is linearly decreasing because of the current source Q1, Once VA reaches 4.5 Volts, Q3 will be at threshold to turn on. Now we consider the state change: Q3: On , Q4: Off VC3 = 10 − 4 ∗ 0.5 + 0.5 ≅ 6V in this state voltage of node B will fall until VB Equals 5.5 then Q4 will be at threshold to turn on: VCap t1− = VB t1− − VA t1− = 5.5 − 4.3 = 1.2 VA t1+ = VB t1+ − VCap t1+ , VCap t1+ = VCap t1− VA t1+ = 9.3 − 1.2 = 8.1V VB4 = VC3 = 10 − 4 0.5 + 0.5 = 6V Q3: Off , Q4: On +10 Q3 4k +5 VB4 A B 0.5mA0.5mA Vout Q4 1.2k +10 4k +10 A B 0.5mA 0.5mA 6:34 PM 45
  • 46. VCap 4.8V 1.2V T C∆V = I∆T ⇒ 10 ∗ 10−9 ∗ 4.8 − 1.2 = 0.5 ∗ 10−3 ∗ T 2 ⇒ T 2 = 72uS ⇒ f = 1 2 ∗ 72uS f = 1000kHz 2 ∗ 72 = 6.94kHz 6:34 PM 46
  • 47. Q2Q1 RR A AC1 I2I1 IXIX Q4Q3 DD VCC VOB VOB Emitter Coupled Multi-vibrator Q1 and Q2 cant be turned on Simultaneously. Suppose that Q1:off Q2:on VB3 ≅ VCC VOB = Ve3 = VCC − VBE on VE2 = VCC − 2 ∗ VBE(on) VB4 = VCC − VBE(on) VOB′ = VCC − 2 ∗ VBE on ⇒ if VE1 == VCC − 3 ∗ VBE on then the state will change φ ≡ VBE on 6:34 PM 47
  • 48. VA -VA VA VA VB VB Q2:ON Q1:ON VCC-Ψ VCC-2Ψ VCC-Ψ VCC-2Ψ VCC-3Ψ VCC-2Ψ VCC-Ψ VCC-3Ψ VCC-2Ψ VCC-Ψ -Ψ Ψ Q2Q1 RR A AC1 I2I1 IXIX Q4Q3 DD VCC VOB VOB Q1 and Q2 cant be turned on Simultaneously. VB3 ≅ VCC VOB = Ve3 = VCC − VBE on VE2 = VCC − 2 ∗ VBE(on) VB4 = VCC − VBE(on) t1 = t2 = C∆V I1 = 2CVBE(on) I1 ⇒ f0 = 1 t = 1 2 ∗ t1 = I1 4C1VBE(on) VOB′ = VCC − 2 ∗ VBE on ⇒ if VE1 == VCC − 3 ∗ VBE on then the state will change φ ≡ VBE on The frequency is a function of VBE which itself is temperature dependent . 6:34 PM 48
  • 49. 𝐾𝑉𝐿: −𝑉𝐶 + 𝑉𝐵𝐸5 + 𝑅1 𝐼1 − 𝑅1 𝐼2 − 𝑉𝐵𝐸7 = 0 ∆𝐼 = 𝐼1 − 𝐼2 ≅ 𝑉𝐶 − ∆𝑉𝐵𝐸 𝑅1 ≅ 𝑉𝐶 𝑅1 ① 2𝐼1 + 2𝐼2 = 𝐼0 ⇒ 𝐼1 + 𝐼2 = 𝐼0 2 ② ①&② ⇒ 𝐼1 = 𝐼0 4 + 𝑉𝐶 2𝑅1 𝐼0 = 𝑉𝐵𝐸10 𝑅2 ⇒ 𝐼1 = 𝑉𝐵𝐸10 4𝑅2 + 𝑉𝐶 2𝑅1 𝑓0 = 𝐼1 4𝑉𝐵𝐸 𝐶 = 𝑉𝐵𝐸 4𝑅2 + 𝑉𝐶 2𝑅1 4𝑉𝐵𝐸 𝐶 𝑓0 = 1 16𝐶1 𝑅2 1 + 2𝑅2 𝑅1 𝑉𝐵𝐸(𝑜𝑛) 𝑉𝐶 The circuit’s frequency will be completely temperature independent only at VC=0 6:34 PM 49