SlideShare a Scribd company logo
1 of 28
Download to read offline
Manganese	
  Exposure	
  
	
  
1	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Neurodevelopmental	
  impacts	
  of	
  prenatal	
  drinking	
  water	
  exposure	
  to	
  manganese	
  
and	
  other	
  metals	
  on	
  children	
  
Jeronda	
  Scott	
  and	
  Melissa	
  Miller	
  
Clark	
  University	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Manganese	
  Exposure	
  
	
  
2	
  
	
  
Neurodevelopmental	
  impacts	
  of	
  prenatal	
  drinking	
  water	
  exposure	
  to	
  manganese	
  
and	
  other	
  metals	
  on	
  children	
  
	
  
Jeronda	
  Scott	
  and	
  Melissa	
  Miller	
  
Abstract	
  
The	
  aim	
  of	
  this	
  paper	
  was	
  to	
  review	
  the	
  scientific	
  research	
  published	
  to	
  date	
  on	
  the	
  
potential	
  effects	
  on	
  neurodevelopment	
  and	
  behavioral	
  disorders	
  in	
  children	
  
exposed	
  to	
  manganese	
  and	
  other	
  metals	
  via	
  drinking	
  water	
  and	
  optimum	
  
biomarkers	
  to	
  measure	
  exposure.	
  This	
  was	
  done	
  by	
  using	
  online	
  research	
  databases	
  
such	
  as	
  Google	
  Scholar	
  and	
  PubMed,	
  etc.	
  It	
  was	
  found	
  that	
  there	
  is	
  an	
  association	
  
between	
  exposure	
  to	
  manganese	
  and	
  neurodevelopmental	
  deficits	
  in	
  young	
  
children,	
  and	
  that	
  there	
  are	
  large	
  gaps	
  in	
  the	
  body	
  of	
  research	
  that	
  must	
  be	
  done	
  to	
  
better	
  understand	
  these	
  issues.	
  Improvements	
  to	
  exposure	
  limits	
  must	
  be	
  made.	
  We	
  
hope	
  that	
  further	
  research	
  on	
  optimal	
  biomarkers,	
  such	
  as	
  dentine,	
  will	
  help	
  to	
  
contribute	
  to	
  the	
  knowledge	
  of	
  negative	
  neurological	
  impacts	
  from	
  manganese	
  
exposure.	
  
1.	
  Introduction	
  
Manganese	
  (Mn)	
  is	
  an	
  essential	
  nutrient	
  found	
  in	
  all	
  living	
  organisms	
  and	
  is	
  
naturally	
  present	
  in	
  rocks,	
  soil,	
  water,	
  and	
  food	
  making	
  it	
  abundant	
  in	
  the	
  
environment.	
  It	
  is	
  important	
  to	
  understand	
  its	
  potential	
  impacts	
  not	
  only	
  because	
  of	
  
its	
  natural	
  abundance	
  but	
  also	
  because	
  it	
  is	
  a	
  recent	
  gasoline	
  additive	
  and	
  may	
  be	
  
even	
  more	
  widespread	
  in	
  the	
  environment	
  in	
  the	
  future	
  (Schettler,	
  Solomon,	
  &	
  
Manganese	
  Exposure	
  
	
  
3	
  
Valenti,	
  2000).	
  Mn	
  is	
  required	
  for	
  normal	
  amino	
  acid,	
  lipid,	
  protein,	
  and	
  
carbohydrate	
  metabolism	
  (Erikson,Thompson,	
  &	
  Aschner,	
  2007)).	
  However,	
  
overexposure	
  to	
  Mn	
  can	
  have	
  significant	
  neurotoxic	
  effects,	
  and	
  it	
  is	
  likely	
  that	
  there	
  
is	
  a	
  greater	
  effect	
  on	
  fetuses,	
  newborns,	
  and	
  young	
  children.	
  Due	
  to	
  lack	
  of	
  research,	
  
Mn	
  concentrations	
  in	
  drinking	
  water	
  are	
  not	
  currently	
  regulated	
  in	
  the	
  United	
  
States.	
  Health	
  based	
  guidelines	
  for	
  the	
  maximum	
  level	
  of	
  Mn	
  in	
  drinking	
  water	
  have	
  
been	
  established	
  by	
  the	
  EPA,	
  and	
  are	
  currently	
  set	
  at	
  300	
  µg/L	
  (U.S.	
  EPA	
  2004).	
  
While	
  there	
  is	
  a	
  healthy	
  amount	
  of	
  research	
  analyzing	
  the	
  effects	
  of	
  postnatal	
  and	
  
occupational	
  exposure	
  to	
  Mn,	
  there	
  is	
  a	
  lack	
  of	
  research	
  and	
  evidence	
  of	
  the	
  effects	
  
of	
  Mn	
  exposure	
  on	
  a	
  more	
  vulnerable	
  group,	
  babies	
  in	
  utero	
  and	
  young	
  children.	
  
The	
  Holliston	
  Health	
  Project	
  is	
  a	
  collaborative	
  initiative	
  to	
  examine	
  if	
  
children	
  in	
  the	
  town	
  of	
  Holliston,	
  Massachusetts	
  are	
  being	
  exposed	
  to	
  detrimental	
  
levels	
  of	
  chemicals,	
  and	
  if	
  this	
  exposure	
  is	
  leading	
  to	
  any	
  adverse	
  health	
  effects.	
  In	
  
this	
  literature	
  review	
  we	
  closely	
  examine	
  Mn	
  and	
  other	
  heavy	
  metals	
  and	
  their	
  
effects	
  on	
  children	
  from	
  in	
  utero	
  to	
  age	
  10.	
  The	
  purpose	
  of	
  this	
  literature	
  review	
  is	
  to	
  
support	
  the	
  Holliston	
  Health	
  Project	
  by	
  providing	
  an	
  in-­‐depth	
  look	
  at	
  the	
  state	
  of	
  
research	
  for	
  a	
  variety	
  of	
  chemicals	
  and	
  their	
  potential	
  impact	
  on	
  
neurodevelopmental-­‐cognitive-­‐behavioral	
  outcomes	
  from	
  exposure	
  during	
  
pregnancy,	
  and	
  biomarkers	
  that	
  can	
  be	
  used	
  to	
  measure	
  those	
  exposures.	
  	
  
	
  
2.	
  Background	
  
2.1	
  Manganese	
  Metabolism	
  in	
  Children	
  
Manganese	
  Exposure	
  
	
  
4	
  
Mn	
  is	
  crucial	
  to	
  bone	
  and	
  tissue	
  development	
  as	
  well	
  as	
  the	
  immune	
  system.	
  
However,	
  there	
  are	
  many	
  correlations	
  between	
  excessive	
  postnatal	
  exposure	
  to	
  Mn	
  
and	
  interference	
  with	
  normal	
  brain	
  development	
  (Wasserman	
  et	
  al.	
  2006,	
  Bouchart	
  
et	
  al.	
  2010,	
  Khan	
  et	
  al.	
  2011).	
  Too	
  much	
  exposure	
  can	
  cause	
  Mn	
  to	
  accumulate	
  in	
  the	
  
brain,	
  particularly	
  the	
  central	
  nervous	
  system,	
  leading	
  to	
  neurological	
  damage.	
  Since	
  
Mn	
  is	
  an	
  essential	
  element,	
  it	
  stands	
  that	
  there	
  should	
  be	
  a	
  level	
  above	
  which	
  
negative	
  impacts	
  will	
  occur.	
  	
  
Infants	
  and	
  young	
  children	
  face	
  higher	
  risks	
  from	
  exposure	
  to	
  metals	
  than	
  
adults	
  because	
  adults	
  have	
  fully	
  developed	
  homeostatic	
  mechanisms	
  which	
  limit	
  
absorption	
  of	
  ingested	
  metals.	
  Because	
  infants	
  and	
  young	
  children	
  have	
  not	
  
completely	
  developed	
  these	
  mechanisms,	
  their	
  bodies	
  are	
  unable	
  to	
  correctly	
  
process	
  these	
  metals,	
  and	
  retention	
  of	
  metals	
  is	
  higher	
  in	
  infants	
  than	
  in	
  adults.	
  
According	
  to	
  Lönnerdal	
  (1994)	
  bile	
  flow	
  is	
  low	
  in	
  infants,	
  which	
  may	
  result	
  in	
  a	
  
lower	
  excretion	
  of	
  Mn	
  via	
  bile,	
  causing	
  higher	
  retention	
  of	
  Mn	
  in	
  tissue.	
  Moreover,	
  
certain	
  tissue	
  sites	
  have	
  a	
  high	
  affinity	
  for	
  Mn,	
  and	
  although	
  these	
  sites	
  are	
  saturated	
  
in	
  adults,	
  they	
  strongly	
  retain	
  Mn	
  in	
  infants	
  (Ljung	
  &	
  Vahter,	
  2007).	
  
There	
  is	
  an	
  increasing	
  body	
  of	
  evidence	
  that	
  internal	
  and	
  external	
  exposures	
  
to	
  chemicals	
  and	
  metals	
  cause	
  a	
  variety	
  of	
  physiological	
  impacts	
  at	
  different	
  
developmental	
  stages.	
  As	
  a	
  consequence,	
  windows	
  of	
  vulnerability	
  open	
  when	
  
susceptibility	
  to	
  environmental	
  chemicals	
  is	
  heightened.	
  Therefore	
  it	
  is	
  crucial	
  to	
  
look	
  at	
  the	
  timing	
  of	
  exposures	
  in	
  addition	
  to	
  levels	
  of	
  exposure.	
  The	
  prenatal	
  period	
  
is	
  specifically	
  important	
  when	
  examining	
  critical	
  windows	
  of	
  exposure.	
  During	
  in	
  
utero	
  development	
  and	
  early	
  childhood,	
  the	
  tissues	
  and	
  organs	
  of	
  the	
  body	
  undergo	
  
Manganese	
  Exposure	
  
	
  
5	
  
stages	
  of	
  rapid	
  development,	
  during	
  which	
  toxic	
  exposure	
  or	
  nutrient	
  deficiency	
  can	
  
lead	
  to	
  long-­‐term	
  effects.	
  (Andra,	
  Austin,	
  Wright,	
  &	
  Arora,	
  2015).	
  
There	
  are	
  two	
  instances	
  of	
  rapid	
  brain	
  development	
  for	
  infants.	
  The	
  first	
  is	
  
during	
  pregnancy,	
  and	
  the	
  second	
  occurs	
  several	
  months	
  after	
  birth.	
  The	
  fetus	
  is	
  
especially	
  vulnerable	
  to	
  Mn	
  during	
  the	
  development	
  period	
  in	
  utero;	
  Mn	
  easily	
  
crosses	
  the	
  placenta	
  through	
  active	
  transport	
  mechanisms,	
  where	
  it	
  results	
  in	
  
increased	
  levels	
  in	
  fetal	
  circulation	
  (Andra	
  et	
  al.	
  2015).	
  Thus,	
  fetal	
  life	
  can	
  be	
  
regarded	
  as	
  a	
  period	
  of	
  great	
  vulnerability	
  to	
  Mn,	
  even	
  at	
  low	
  environmental	
  levels.	
  
Mn	
  specifically	
  targets	
  the	
  nervous	
  system,	
  and	
  for	
  a	
  developing	
  child,	
  this	
  can	
  mean	
  
interruption	
  of	
  crucial	
  development	
  of	
  the	
  nervous	
  system	
  (Yu,	
  Zhang,	
  Yan,	
  &	
  Shen,	
  
2014).	
  
Since	
  the	
  central	
  nervous	
  system	
  develops	
  sequentially	
  and	
  are	
  
interdependent,	
  any	
  interruption	
  in	
  the	
  fetal	
  development	
  may	
  lead	
  to	
  deficiencies	
  
in	
  later	
  stages	
  of	
  development	
  (Rodríguez-­‐Barranco,	
  et	
  al.	
  2013).	
  Beginning	
  as	
  soon	
  
as	
  the	
  second	
  week	
  of	
  gestation,	
  the	
  outer	
  layer	
  of	
  the	
  embryo	
  begins	
  to	
  fold	
  to	
  
develop	
  the	
  neural	
  tube,	
  the	
  early	
  beginnings	
  of	
  the	
  brain.	
  After,	
  the	
  central	
  nervous	
  
system	
  begins	
  to	
  develop,	
  creating	
  100	
  billion	
  nerve	
  cells	
  and	
  1	
  trillion	
  glial	
  cells,	
  
which	
  must	
  undergo	
  a	
  slew	
  of	
  changes	
  and	
  formations	
  during	
  the	
  process	
  of	
  
development	
  (Sanders	
  et	
  al.	
  2015).	
  Because	
  these	
  developments	
  are	
  successive,	
  a	
  
reliable	
  and	
  effective	
  biomarker	
  provides	
  the	
  possibility	
  of	
  determining	
  when	
  
exposure	
  occurred,	
  and	
  what	
  interruptions	
  took	
  place,	
  which	
  can	
  then	
  determine	
  
how	
  these	
  interruptions	
  affect	
  neurological	
  development.	
  The	
  timing	
  of	
  
environmental	
  exposures	
  is	
  incredibly	
  important;	
  the	
  time	
  at	
  which	
  the	
  child	
  is	
  
Manganese	
  Exposure	
  
	
  
6	
  
exposed	
  to	
  the	
  metal	
  is	
  equally	
  important	
  as	
  the	
  level	
  of	
  exposure.	
  (Andra	
  et	
  al.	
  
2015)	
  
	
  
2.2	
  Manganese	
  Guidelines	
  for	
  Drinking	
  Water	
  Quality	
  
The	
  current	
  United	
  States	
  health-­‐based	
  guideline	
  for	
  Mn	
  in	
  drinking	
  water	
  is	
  
partly	
  based	
  on	
  debatable	
  assumptions,	
  without	
  deeper	
  research.	
  The	
  previous	
  
guideline	
  value	
  of	
  500	
  µg/L	
  was	
  set	
  originally	
  in	
  1958	
  and	
  was	
  based	
  on	
  the	
  distinct	
  
impairment	
  of	
  water	
  potability	
  by	
  excessive	
  Mn	
  concentrations	
  (WHO	
  2004).	
  Due	
  to	
  
the	
  staining	
  properties	
  of	
  Mn,	
  the	
  guideline	
  value	
  was	
  lowered	
  to	
  100	
  µg/	
  in	
  the	
  
World	
  Health	
  Organization’s	
  (WHO)	
  first	
  edition	
  guidelines	
  for	
  drinking	
  water	
  
quality	
  (Ljung	
  et	
  al.	
  2007).	
  Various	
  countries	
  have	
  set	
  standards	
  for	
  Mn	
  of	
  0.05	
  
mg/liter,	
  to	
  prevent	
  problems	
  with	
  discoloration	
  (WHO	
  2011).	
  At	
  concentrations	
  
above	
  0.1mg/liter,Mn	
  gives	
  water	
  an	
  undesirable	
  taste	
  and	
  stains	
  plumbing	
  fixtures	
  
and	
  laundry,	
  and	
  at	
  concentrations	
  as	
  low	
  as	
  0.02	
  mg/litre,	
  Mn	
  can	
  form	
  coatings	
  on	
  
water	
  pipes	
  that	
  may	
  later	
  slough	
  off	
  as	
  a	
  black	
  precipitate	
  (U.S.	
  EPA.	
  2004).	
  Based	
  
on	
  health	
  motives,	
  the	
  guideline	
  value	
  was	
  raised	
  to	
  500	
  µg/L	
  in	
  the	
  1993	
  second	
  
edition	
  (WHO	
  2004).	
  
Currently,	
  the	
  health-­‐based	
  guideline	
  value	
  for	
  Mn	
  in	
  water	
  is	
  in	
  the	
  United	
  
States	
  400	
  µg/L.	
  It	
  is	
  based	
  on	
  an	
  estimated	
  no	
  observed	
  adverse	
  effect	
  level	
  
(NOAEL)	
  for	
  Mn	
  in	
  food.	
  The	
  NOAEL	
  of	
  11	
  mg	
  of	
  Mn	
  a	
  day,	
  is	
  partly	
  based	
  on	
  a	
  
review	
  by	
  Greger	
  (1998),	
  who	
  studied	
  adults	
  with	
  Western	
  diets.	
  The	
  current	
  
guideline	
  value	
  for	
  drinking	
  water	
  is	
  likely	
  low	
  enough	
  to	
  protect	
  adolescents	
  and	
  
adults	
  but	
  not	
  younger	
  children.	
  Mn	
  is	
  often	
  considered	
  one	
  of	
  the	
  least	
  toxic	
  metals	
  
Manganese	
  Exposure	
  
	
  
7	
  
via	
  the	
  oral	
  route	
  due	
  to	
  homeostasis	
  mechanisms	
  in	
  the	
  body	
  that	
  limit	
  
gastrointestinal	
  absorption.	
  However,	
  with	
  the	
  growing	
  evidence	
  of	
  neurotoxicity	
  
through	
  oral	
  routes,	
  especially	
  in	
  infants	
  and	
  young	
  children,	
  the	
  guideline	
  needs	
  to	
  
be	
  reevaluated.	
  Infant	
  formula	
  already	
  contains	
  high	
  levels	
  of	
  Mn	
  (300	
  µg/L	
  on	
  
average,	
  but	
  ranging	
  between	
  66	
  and	
  856	
  µg/L,	
  depending	
  on	
  the	
  brand).	
  If	
  formula	
  
is	
  prepared	
  with	
  water	
  containing	
  acceptable	
  levels	
  of	
  Mn	
  based	
  on	
  WHO	
  guidelines,	
  
it	
  is	
  highly	
  possible	
  that	
  infants	
  will	
  receive	
  an	
  unacceptable	
  dose	
  of	
  Mn.(Ljung	
  et	
  al.	
  
2007).	
  
3.	
  Methods	
  	
  
	
   To	
  understand	
  the	
  state	
  of	
  the	
  research,	
  papers	
  were	
  found	
  from	
  a	
  wide	
  
variety	
  of	
  subjects	
  and	
  compared.	
  Research	
  was	
  compiled	
  from	
  PubMed	
  and	
  Google	
  
Scholar	
  using	
  combinations	
  of	
  search	
  terms	
  such	
  as	
  “manganese”,	
  “in	
  utero	
  
exposure”,	
  “prenatal	
  exposure”,	
  “drinking	
  water”,	
  “neurodevelopment”,	
  
“neurotoxin”,	
  “co-­‐exposure”	
  and	
  so	
  on.	
  Additional	
  papers	
  were	
  also	
  found	
  through	
  
citations	
  from	
  particularly	
  relevant	
  papers.	
  
	
   When	
  using	
  PubMed,	
  MeSH	
  terms	
  were	
  used	
  to	
  find	
  similar	
  papers	
  listed	
  
under	
  the	
  same	
  topic.	
  MeSH	
  terms	
  that	
  were	
  particularly	
  useful	
  included	
  
“pregnancy”	
  “manganese”	
  “drinking	
  water”	
  “neurodevelopment”	
  and	
  
“women’s/children’s	
  health”.	
  	
  
	
   Papers	
  that	
  were	
  selected	
  contained	
  material	
  that	
  demonstrated	
  relevance	
  to	
  
our	
  research	
  question,	
  or	
  that	
  demonstrated	
  holes	
  in	
  the	
  current	
  state	
  of	
  research.	
  	
  
4.	
  Results	
  
4.1	
  Biomarkers	
  	
  
Manganese	
  Exposure	
  
	
  
8	
  
A	
  biomarker	
  is	
  any	
  substance	
  or	
  metabolite	
  that	
  may	
  be	
  measured	
  in	
  the	
  
body	
  to	
  estimate	
  external	
  exposure	
  levels	
  or	
  to	
  predict	
  the	
  potential	
  for	
  adverse	
  
health	
  effects	
  or	
  disease.	
  There	
  is	
  a	
  great	
  need	
  for	
  an	
  effective	
  biomarker	
  to	
  analyze	
  
health	
  impacts	
  from	
  prenatal	
  exposures,	
  but	
  they	
  are	
  often	
  difficult	
  to	
  find,	
  and	
  are	
  
not	
  always	
  accurate;	
  no	
  specific	
  accurate	
  biomarker	
  for	
  Mn	
  has	
  been	
  determined.	
  
Research	
  has	
  so	
  far	
  relied	
  on	
  urine,	
  umbilical	
  cord	
  blood	
  and	
  serum,	
  and	
  hair.	
  There	
  
is	
  new	
  research	
  analyzing	
  the	
  usefulness	
  of	
  tooth	
  dentine,	
  which	
  shows	
  promise.	
  
(Santamaria	
  2008,	
  Arora	
  et	
  al.	
  2015),	
  
4.1.1Hair	
  
Hair	
  is	
  a	
  common	
  biomarker	
  used	
  to	
  study	
  the	
  neurological	
  effects	
  of	
  Mn	
  
contamination	
  on	
  young	
  children.	
  Using	
  hair,	
  Rodríguez-­‐Barranco	
  et	
  al.	
  (2013),	
  
found	
  that,in	
  relation	
  to	
  Mn,	
  results	
  of	
  a	
  meta-­‐analysis	
  suggest	
  that	
  a	
  50%	
  increase	
  
in	
  hair	
  levels	
  would	
  be	
  associated	
  with	
  a	
  0.7	
  IQ	
  decrease	
  of	
  children	
  aged	
  6-­‐13.	
  
There	
  are	
  other	
  studies	
  that	
  have	
  found	
  an	
  association	
  with	
  adverse	
  health	
  effects	
  
on	
  children	
  using	
  hair.	
  However,	
  hair	
  reflects	
  past	
  exposure	
  and	
  exposure	
  over	
  the	
  
past	
  few	
  months,	
  and	
  with	
  age,	
  Mn	
  concentrations	
  decrease	
  in	
  hair.	
  Researchers	
  
(Sanders,	
  Henn,	
  &	
  Wright	
  2015)	
  suggested	
  that	
  hair	
  is	
  not	
  a	
  reliable	
  biomarker	
  due	
  
to	
  the	
  potential	
  for	
  external	
  Mn	
  exposures	
  that	
  may	
  affect	
  Mn	
  levels	
  in	
  hair,	
  limiting	
  
its	
  use	
  as	
  an	
  indicator	
  of	
  internal	
  dose,	
  and	
  that	
  it	
  also	
  may	
  be	
  affected	
  by	
  the	
  degree	
  
of	
  pigmentation.	
  
4.1.2	
  Urine	
  and	
  Blood	
  
A	
  large	
  portion	
  of	
  the	
  research	
  on	
  Mn	
  exposure	
  and	
  its	
  neurological	
  and	
  
behavioral	
  effects	
  have	
  measured	
  Mn	
  in	
  blood	
  or	
  urine.	
  There	
  are	
  several	
  tests	
  
Manganese	
  Exposure	
  
	
  
9	
  
available	
  that	
  can	
  measure	
  Mn	
  levels	
  in	
  whole	
  blood,	
  serum,	
  or	
  urine.	
  However,	
  Mn	
  
is	
  naturally	
  present	
  in	
  the	
  body,	
  thus	
  some	
  Mn	
  is	
  always	
  found	
  in	
  these	
  fluids	
  
(Santamaria	
  2008).	
  Both	
  blood	
  and	
  urine	
  have	
  relatively	
  short	
  half-­‐lives,	
  which	
  
makes	
  them	
  more	
  indicative	
  of	
  recent	
  exposure,	
  rather	
  than	
  serving	
  as	
  a	
  marker	
  or	
  
long-­‐term	
  or	
  chronic	
  exposure.	
  Due	
  to	
  high	
  variability	
  of	
  the	
  results,	
  they	
  cannot	
  be	
  
considered	
  as	
  suitable	
  biomarkers	
  of	
  exposure	
  (Apostoli	
  2000).	
  This	
  is	
  in	
  agreement	
  
with	
  Droz	
  (1993)	
  who,	
  on	
  the	
  basis	
  of	
  pharmacokinetic	
  modeling,	
  stated	
  that	
  for	
  
half-­‐lives	
  below	
  10	
  h,	
  there	
  is	
  no	
  statistical	
  advantage	
  in	
  using	
  biological	
  monitoring.	
  
According	
  to	
  Santamaria	
  (2008)	
  urinary	
  Mn	
  is	
  not	
  a	
  less	
  suitable	
  biomarker	
  
because	
  it	
  is	
  primarily	
  excreted	
  in	
  the	
  bile,	
  and	
  only	
  approximately	
  1%	
  is	
  excreted	
  in	
  
the	
  urine.	
  Blood	
  Mn	
  has	
  been	
  the	
  most	
  commonly	
  used	
  biomarker	
  of	
  exposure,	
  but	
  
the	
  short	
  half-­‐life	
  of	
  Mn	
  in	
  blood	
  may	
  miss	
  periods	
  of	
  peak	
  exposure	
  and	
  Mn	
  is	
  also	
  
not	
  reliable	
  in	
  blood	
  due	
  to	
  well-­‐regulated	
  by	
  homeostatic	
  mechanisms	
  in	
  adults	
  
(Gunier	
  2013).	
  Change	
  in	
  dietary	
  intake	
  may	
  also	
  influence	
  blood	
  Mn	
  levels	
  which	
  
may	
  invalidate	
  study	
  results	
  (Santamaria	
  2008).	
  
Despite	
  urine	
  and	
  blood	
  not	
  being	
  ideal	
  biomarkers,	
  they	
  have	
  still	
  been	
  
useful	
  in	
  contributing	
  to	
  the	
  increase	
  of	
  knowledge	
  of	
  Mn	
  exposure.	
  Many	
  studies	
  
have	
  found	
  associations	
  using	
  urine	
  and	
  blood	
  as	
  biomarkers.	
  Yu	
  et	
  al.	
  (2014)	
  
compared	
  levels	
  of	
  Mn	
  in	
  serum	
  from	
  umbilical	
  cord	
  blood	
  with	
  results	
  from	
  
neonatal	
  behavioral	
  neurological	
  assessment	
  (NBNA).	
  They	
  found	
  that	
  high	
  Mn	
  
levels	
  in	
  umbilical	
  cord	
  serum	
  were	
  correlated	
  with	
  poor	
  NBNA	
  performance.	
  Based	
  
on	
  their	
  results,	
  they	
  determined	
  that	
  any	
  Mn	
  concentration	
  in	
  blood	
  over	
  50	
  ug/L	
  is	
  
Manganese	
  Exposure	
  
	
  
10	
  
unsafe.	
  This	
  study	
  showed	
  that	
  prenatal	
  exposure	
  to	
  Mn	
  at	
  environmentally	
  relevant	
  
level	
  was	
  significantly	
  and	
  negatively	
  associated	
  with	
  fetal	
  neurodevelopment.	
  	
  
4.1.3.	
  Dentine	
  
It	
  is	
  widely	
  regarded	
  (Arora	
  et	
  al.,	
  Andra	
  et	
  al.,	
  Gunier	
  et	
  al.,	
  Hare	
  et	
  al.)	
  that,	
  
despite	
  the	
  usefulness	
  of	
  urine,	
  umbilical	
  cord	
  blood,	
  and	
  hair,	
  there	
  is	
  a	
  need	
  to	
  find	
  
a	
  more	
  effective	
  biomarker	
  for	
  Mn	
  exposure,	
  particularly	
  one	
  that	
  can	
  be	
  used	
  
retrospectively.	
  In	
  determining	
  the	
  effects	
  of	
  Mn	
  exposure	
  in	
  utero,	
  it	
  is	
  important	
  to	
  
find	
  a	
  reliable,	
  retrospective	
  biomarker	
  in	
  order	
  to	
  demonstrate	
  the	
  levels	
  of	
  Mn	
  
exposure	
  during	
  development.	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  biomarkers	
  that	
  have	
  been	
  extensively	
  used	
  thus	
  far	
  (hair,	
  blood,	
  and	
  
urine)	
  tend	
  to	
  be	
  unreliable	
  and	
  variable,	
  and	
  their	
  accuracy	
  is	
  limited	
  (kasperson).	
  
They	
  fail	
  to	
  provide	
  exposure	
  timing,	
  levels	
  of	
  cumulative	
  exposure,	
  and	
  lack	
  the	
  
potential	
  to	
  provide	
  information	
  on	
  the	
  specific	
  source	
  (Andra	
  et	
  al.	
  2015).	
  Blood	
  
has	
  been	
  used	
  quite	
  frequently,	
  but	
  may	
  not	
  be	
  the	
  most	
  reliable	
  measurement	
  tool	
  
because	
  fully	
  matured	
  bodies	
  regulate	
  Mn	
  concentrations	
  effectively	
  and	
  the	
  half-­‐
life	
  of	
  Mn	
  is	
  brief.	
  Hair	
  has	
  also	
  been	
  useful,	
  but	
  can	
  easily	
  be	
  contaminated	
  by	
  
external	
  environmental	
  factors.	
  For	
  these	
  reasons,	
  commonly	
  used	
  biomarkers	
  are	
  
not	
  the	
  most	
  effective	
  measure	
  of	
  exposure.	
  (Gunier	
  et	
  al.	
  2013).	
  
Dentine	
  in	
  baby	
  teeth	
  may	
  be	
  an	
  ideal	
  way	
  to	
  measure	
  in	
  utero	
  exposure	
  to	
  metals.	
  
Unlike	
  other	
  the	
  biomarkers,	
  dentine	
  provides	
  exposure	
  data	
  that	
  is	
  comparable	
  to	
  
data	
  from	
  a	
  longitudinal	
  study,	
  but	
  can	
  be	
  obtained	
  retroactively.	
  Dentine,	
  a	
  tissue	
  in	
  
the	
  teeth,	
  begins	
  to	
  develop	
  as	
  early	
  as	
  the	
  second	
  trimester	
  (between	
  the	
  13th	
  and	
  
19th	
  weeks	
  of	
  gestation),	
  and	
  then	
  enamel	
  and	
  dentine	
  begin	
  to	
  form	
  outward,	
  
Manganese	
  Exposure	
  
	
  
11	
  
similarly	
  to	
  the	
  formation	
  of	
  growth	
  rings	
  on	
  trees	
  (Gunier	
  et	
  al.	
  2013).	
  Mn	
  is	
  
absorbed	
  by	
  the	
  tissue	
  as	
  the	
  teeth	
  form.	
  Due	
  to	
  disturbances	
  caused	
  by	
  protein	
  
matrix	
  deposition	
  during	
  birth,	
  the	
  teeth	
  form	
  a	
  neonatal	
  line,	
  and	
  that	
  line	
  can	
  be	
  
used	
  to	
  distinguish	
  between	
  prenatal	
  and	
  postnatal	
  exposures.	
  Afterwards,	
  the	
  teeth	
  
develop	
  daily	
  growth	
  lines,	
  which	
  create	
  an	
  image	
  of	
  daily	
  exposures	
  after	
  birth.	
  
Measurements	
  of	
  Mn	
  exposures	
  from	
  this	
  point	
  until	
  almost	
  a	
  year	
  after	
  birth	
  can	
  be	
  
taken,	
  which	
  can	
  be	
  used	
  to	
  characterize	
  both	
  prenatal	
  and	
  postnatal	
  exposures.	
  
Analytical	
  technology	
  can	
  pinpoint	
  when	
  the	
  exposure	
  occurred,	
  and	
  how	
  much	
  of	
  
the	
  exposure	
  was	
  incorporated	
  into	
  the	
  teeth	
  (Gunier	
  et	
  al.	
  2013,	
  Andra	
  et	
  al.	
  2015).	
  
Both	
  Gunier	
  et	
  al.	
  and	
  Arora	
  et	
  al.	
  analyzed	
  the	
  usefulness	
  of	
  dentine	
  as	
  a	
  biomarker.	
  
In	
  a	
  study	
  analyzing	
  the	
  distribution	
  of	
  Mn	
  in	
  primary	
  teeth,	
  Arora	
  et	
  al.	
  found	
  not	
  
only	
  that	
  Mn	
  is	
  distributed	
  in	
  a	
  distinct	
  and	
  consistent	
  pattern,	
  but	
  also	
  that	
  Mn	
  
leaves	
  a	
  distinct	
  high	
  concentration	
  area	
  in	
  the	
  prenatally	
  formed	
  dentine.	
  This	
  
finding	
  suggests	
  that	
  deciduous	
  teeth	
  have	
  great	
  potential	
  as	
  a	
  useful	
  biomarker	
  for	
  
prenatal	
  Mn	
  exposures	
  (Arora	
  et	
  al	
  2011).	
  Both	
  groups	
  used	
  laser-­‐ablation-­‐
inductively	
  coupled	
  plasma-­‐mass	
  spectrometry	
  (LA-­‐ICP-­‐MS)	
  to	
  analyze	
  Mn	
  
exposures	
  through	
  deciduous	
  teeth.	
  Gunier	
  et	
  al.	
  found	
  that	
  their	
  findings	
  using	
  LA-­‐
ICP-­‐MS	
  were	
  correlated	
  with	
  their	
  estimates	
  of	
  prenatal	
  environmental	
  exposures	
  to	
  
Mn.	
  LA-­‐ICP-­‐MS	
  allowed	
  them	
  to	
  retroactively	
  gain	
  a	
  characterization	
  of	
  exposure	
  as	
  
it	
  occurred	
  	
   	
  
In	
  the	
  study	
  conducted	
  by	
  Gunier	
  et	
  al.,	
  it	
  was	
  found	
  that	
  Mn	
  levels	
  in	
  teeth	
  
were	
  higher	
  during	
  the	
  second	
  trimester	
  than	
  the	
  third,	
  which	
  conflicts	
  with	
  
findings	
  from	
  previous	
  studies	
  using	
  cord	
  blood	
  as	
  a	
  biomarker	
  that	
  found	
  highest	
  
Manganese	
  Exposure	
  
	
  
12	
  
levels	
  near	
  the	
  end	
  of	
  pregnancy.	
  Dentine	
  reflects	
  direct	
  exposure	
  to	
  Mn,	
  and	
  while	
  
there	
  are	
  fluctuations	
  in	
  Mn	
  concentrations	
  in	
  blood	
  during	
  pregnancy,	
  there	
  is	
  no	
  
known	
  instability	
  in	
  tooth	
  mineralization.	
  This	
  pattern	
  found	
  by	
  Gunier	
  et	
  al.	
  
suggests	
  that	
  fetal	
  uptake	
  of	
  Mn	
  in	
  the	
  second	
  trimester	
  is	
  higher	
  than	
  in	
  later	
  stages	
  
of	
  pregnancy,	
  and	
  that	
  dentine	
  is	
  a	
  more	
  effective	
  measure	
  of	
  this	
  uptake.	
  	
  	
  
Arora	
  et	
  al.	
  found	
  similar	
  results;	
  they	
  found	
  that	
  the	
  cord	
  blood	
  levels	
  of	
  Mn	
  were	
  
significantly	
  positively	
  correlated	
  with	
  the	
  Mn	
  concentrations	
  in	
  dentine	
  adjacent	
  to	
  
the	
  neonatal	
  line,	
  suggesting	
  that	
  dentine	
  is	
  an	
  effective	
  biomarker.	
  At	
  other	
  points	
  
in	
  the	
  neonatal	
  line,	
  however,	
  there	
  is	
  not	
  an	
  association.	
  This	
  is	
  not	
  surprising;	
  
deposits	
  of	
  Mn	
  in	
  dentine	
  are	
  a	
  direct	
  reflection	
  of	
  the	
  exposure,	
  while	
  cord	
  blood	
  is	
  
only	
  a	
  direct	
  reflection	
  of	
  Mn	
  levels	
  in	
  the	
  fetus	
  at	
  the	
  time	
  of	
  birth.	
  Blood	
  Mn	
  can	
  
vary	
  during	
  pregnancy,	
  and	
  has	
  a	
  half-­‐life	
  of	
  approximately	
  four	
  days.	
  (Arora	
  et	
  al.	
  
2013).	
  
Gunier	
  et	
  al.	
  also	
  argues	
  that	
  previous	
  studies	
  measuring	
  Mn	
  exposures	
  with	
  
enamel	
  instead	
  of	
  dentine	
  (Ericson	
  et	
  al.	
  2007)	
  are	
  less	
  effective	
  at	
  determining	
  the	
  
timing	
  of	
  exposure	
  than	
  dentine	
  because	
  of	
  differences	
  in	
  formation;	
  dentine	
  is	
  
mineralized	
  immediately	
  to	
  its	
  almost	
  final	
  stage,	
  while	
  enamel	
  is	
  mineralized	
  
slowly	
  throughout	
  development	
  (Arora	
  et	
  al.	
  2013).	
  Arora	
  et	
  al.	
  agrees,	
  because	
  
most	
  metals	
  being	
  incorporated	
  into	
  the	
  tooth	
  are	
  absorbed	
  after	
  all	
  of	
  the	
  enamel	
  
matrix	
  is	
  formed	
  in	
  the	
  tooth,	
  and	
  therefore,	
  enamel	
  cannot	
  be	
  used	
  to	
  determine	
  
the	
  timing	
  of	
  exposure.	
  More	
  research	
  should	
  be	
  conducted	
  to	
  analyze	
  the	
  
differences	
  and	
  advantages	
  in	
  these	
  two	
  tissues	
  as	
  biomarkers	
  
	
  
Manganese	
  Exposure	
  
	
  
13	
  
	
  
4.2	
  Effects	
  from	
  Exposure	
  through	
  Drinking	
  Water	
  
	
  	
  	
  	
  	
  	
  Approximately	
  20%	
  of	
  drinking	
  water,	
  both	
  public	
  and	
  individual,	
  is	
  sourced	
  
from	
  groundwater,	
  and	
  50%	
  of	
  United	
  States	
  citizens	
  receive	
  their	
  drinking	
  water	
  
from	
  a	
  groundwater	
  source.	
  It	
  has	
  recently	
  been	
  recognized	
  that	
  groundwater	
  is	
  
susceptible	
  to	
  contamination,	
  particularly	
  from	
  organic	
  chemicals	
  that	
  result	
  from	
  
agricultural	
  activities	
  (Safe	
  Drinking	
  Water).	
  Mn	
  is	
  also	
  commonly	
  found	
  in	
  
groundwater	
  because	
  of	
  the	
  weathering	
  and	
  leaching	
  of	
  rocks	
  or	
  minerals,	
  which	
  
release	
  Mn	
  into	
  aquifers.	
  Although	
  there	
  is	
  currently	
  no	
  public	
  policy	
  regulating	
  
drinking	
  water	
  concentrations	
  of	
  Mn,	
  the	
  EPA	
  has	
  released	
  a	
  health	
  advisory	
  for	
  its	
  
adverse	
  neurological	
  effects	
  associated	
  with	
  oral	
  ingestion	
  and	
  has	
  set	
  a	
  health-­‐
based	
  guideline	
  of	
  300	
  µg/L	
  (EPA	
  2004).	
  The	
  World	
  Health	
  Organization	
  has	
  set	
  its	
  
own	
  guideline	
  as	
  400	
  µg/L,	
  slightly	
  higher	
  than	
  the	
  EPA	
  (WHO	
  2008).	
  
Approximately	
  45%	
  of	
  wells	
  for	
  public	
  use	
  in	
  New	
  England	
  have	
  drinking	
  water	
  
concentrations	
  of	
  Mn	
  greater	
  than	
  30	
  µg/L,	
  and	
  nationally,	
  and	
  close	
  to	
  5%	
  of	
  
household	
  wells	
  in	
  the	
  United	
  States	
  have	
  concentrations	
  of	
  Mn	
  greater	
  than	
  300	
  
µg/L	
  (Groschen	
  et	
  al.	
  2009,	
  U.S.	
  Geological	
  Survey	
  2009).	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  neurodevelopmental	
  and	
  behavioral	
  effects	
  of	
  children’s	
  exposure	
  to	
  Mn	
  
in	
  drinking	
  water	
  are	
  varied,	
  but	
  well	
  established.	
  Water	
  Mn	
  has	
  been	
  significantly	
  
negatively	
  associated	
  with	
  academic	
  performance	
  in	
  several	
  studies;	
  Zhang	
  et	
  al.	
  
(1995)	
  found	
  children	
  with	
  elevated	
  hair	
  concentrations	
  of	
  Mn	
  had	
  poorer	
  school	
  
records	
  than	
  their	
  peers,	
  and	
  performed	
  more	
  poorly	
  on	
  mathematics	
  and	
  language	
  
tests,	
  while	
  Khan	
  et	
  al.	
  (2011)	
  found	
  that	
  concentrations	
  of	
  Mn	
  over	
  400	
  µg/L	
  were	
  
Manganese	
  Exposure	
  
	
  
14	
  
significantly	
  negatively	
  associated	
  with	
  poor	
  performance	
  on	
  math	
  exams,	
  but	
  not	
  
on	
  language	
  exams.	
  In	
  another	
  study,	
  it	
  was	
  found	
  that	
  children	
  exposed	
  to	
  water	
  
with	
  high	
  Mn	
  concentrations	
  had	
  a	
  6.2	
  full	
  scale	
  IQ	
  point	
  difference	
  than	
  other	
  
children	
  who	
  had	
  not	
  been	
  exposed	
  (Bouchard	
  et	
  al.	
  2010)3.	
  Wasserman	
  et	
  al.	
  
(2006)	
  studied	
  an	
  area	
  in	
  which	
  80%	
  of	
  the	
  wells	
  in	
  the	
  study	
  area	
  had	
  Mn	
  levels	
  
over	
  400	
  µg/L,	
  with	
  the	
  average	
  concentration	
  being	
  795	
  µg/L.	
  Children	
  exposed	
  to	
  
the	
  contaminated	
  drinking	
  water	
  in	
  this	
  area	
  had	
  significantly	
  lower	
  Full-­‐Scale,	
  
Performance,	
  and	
  Verbal	
  raw	
  scores	
  on	
  the	
  Wechsler	
  Intelligence	
  Scale	
  for	
  Children.	
  
A	
  separate	
  study	
  analyzing	
  the	
  effects	
  on	
  IQ	
  found	
  that,	
  with	
  a	
  median	
  water	
  
concentration	
  of	
  Mn	
  of	
  34	
  µg/L,	
  there	
  was	
  a	
  significant	
  negative	
  association	
  
between	
  IQ	
  and	
  exposure	
  to	
  Mn	
  (Bouchard	
  et	
  al.	
  2011).	
  
	
  	
  	
  	
  	
  	
  	
  	
   He	
  et	
  al.	
  (1994)	
  tested	
  neurobehavioral	
  behaviors	
  of	
  92	
  children	
  aged	
  11-­‐13	
  
who	
  lived	
  in	
  an	
  area	
  with	
  high	
  levels	
  of	
  Mn	
  in	
  sewage	
  irrigation	
  and	
  a	
  control	
  area.	
  
The	
  area	
  with	
  sewage	
  irrigation	
  had	
  significantly	
  higher	
  levels	
  of	
  Mn	
  in	
  the	
  drinking	
  
water	
  during	
  the	
  study	
  period,	
  and	
  the	
  children	
  in	
  that	
  area	
  had	
  significantly	
  higher	
  
concentrations	
  of	
  Mn	
  in	
  their	
  hair.	
  Mn	
  levels	
  in	
  hair	
  correlated	
  negatively	
  with	
  
performance	
  on	
  a	
  number	
  of	
  neurobehavioral	
  tests.	
  The	
  concentrations	
  of	
  Mn	
  in	
  the	
  
drinking	
  water	
  in	
  the	
  control	
  group	
  were	
  30-­‐40	
  ug/L,	
  while	
  the	
  sewage	
  irrigation	
  
group	
  had	
  levels	
  between	
  240-­‐350	
  ug/L.	
  
	
  	
  	
  	
  	
  	
  	
  	
   It	
  is	
  also	
  suggested	
  that	
  Mn	
  exposure	
  has	
  an	
  inverted	
  U-­‐shaped	
  association	
  
with	
  Mn	
  levels	
  and	
  blood	
  and	
  neurodevelopment,	
  suggesting	
  that	
  both	
  low	
  and	
  high	
  
levels	
  can	
  be	
  detrimental	
  to	
  development	
  (Claus	
  Henn	
  et	
  al.	
  2010).	
  
Manganese	
  Exposure	
  
	
  
15	
  
	
  	
  	
  	
  	
  	
  	
  	
   There	
  is	
  a	
  small	
  but	
  notable	
  body	
  of	
  literature	
  studying	
  the	
  effects	
  of	
  prenatal	
  
exposure	
  to	
  Mn	
  in	
  drinking	
  water,	
  and	
  the	
  consequential	
  effects	
  on	
  the	
  
neurodevelopment	
  of	
  the	
  child	
  through	
  early	
  childhood.	
  Gunier	
  et	
  al.	
  (2015)	
  and	
  
Chung	
  et	
  al.	
  (2011)	
  enlisted	
  a	
  cohort	
  of	
  pregnant	
  women,	
  and	
  followed	
  their	
  
children	
  as	
  they	
  grew	
  older	
  to	
  study	
  neurodevelopmental	
  effects.	
  Both	
  Gunier	
  et	
  al.	
  
and	
  Chung	
  et	
  al.	
  found	
  that	
  there	
  were	
  significant	
  deficiencies	
  in	
  motor	
  development	
  
related	
  to	
  exposure	
  to	
  water	
  Mn,,	
  and	
  while	
  Gunier	
  et	
  al.	
  found	
  additional	
  
deficiencies	
  in	
  mental	
  development,	
  Chung	
  et	
  al.	
  did	
  not.	
  Also,	
  Gunier	
  et	
  al.	
  found	
  
that	
  there	
  was	
  a	
  significant	
  relationship	
  between	
  prenatal	
  Mn	
  levels	
  and	
  6-­‐month	
  
mental	
  and	
  motor	
  development	
  for	
  children	
  born	
  to	
  mothers	
  with	
  low	
  
concentrations	
  of	
  hemoglobin,	
  and	
  therefore	
  lower	
  iron	
  levels,	
  during	
  pregnancy.	
  
	
  	
  	
  	
  	
  	
  	
  	
   Children	
  in	
  a	
  study	
  in	
  Bangladesh	
  were	
  found	
  to	
  be	
  significantly	
  more	
  likely	
  
to	
  display	
  aggressive	
  behaviors	
  at	
  age	
  10	
  after	
  prenatal	
  Mn	
  exposure	
  from	
  drinking	
  
water.	
  As	
  with	
  Gunier	
  et	
  al.’s	
  findings,	
  results	
  from	
  this	
  study	
  also	
  showed	
  that	
  there	
  
was	
  a	
  tendency	
  for	
  lower	
  IQ	
  in	
  girls	
  who	
  were	
  born	
  to	
  mothers	
  with	
  low	
  iron	
  levels.	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  finding	
  that	
  prenatal	
  Mn	
  exposure	
  can	
  lead	
  to	
  behavioral	
  effects	
  in	
  
childhood	
  is	
  supported	
  by	
  Ericson	
  et	
  al.	
  (2007)	
  who,	
  although	
  the	
  source	
  of	
  Mn	
  is	
  
unknown,	
  found	
  that	
  there	
  is	
  an	
  association	
  between	
  Mn	
  deposits	
  in	
  tooth	
  enamel	
  
and	
  behavioral	
  outcomes	
  in	
  childhood.	
  Levels	
  of	
  Mn	
  from	
  the	
  20th	
  week	
  of	
  pregnancy	
  
were	
  significantly	
  and	
  positively	
  associated	
  with	
  measures	
  of	
  behavioral	
  
disinhibition.	
  	
  	
  	
  
	
  
4.3	
  Risks	
  from	
  Metals	
  
Manganese	
  Exposure	
  
	
  
16	
  
4.3.1	
  Lead	
  
Lead	
  can	
  be	
  present	
  in	
  drinking	
  water	
  delivered	
  through	
  lead	
  pipes	
  or	
  pipes	
  
joined	
  with	
  lead	
  solder	
  may	
  contain	
  lead.	
  Unlike	
  other	
  heavy	
  metals,	
  there	
  is	
  
extensive	
  research	
  that	
  address	
  leads	
  adverse	
  health	
  effects	
  in	
  humans	
  and	
  early	
  
life.	
  In	
  utero	
  exposure	
  to	
  lead	
  was	
  adversely	
  associated	
  with	
  cognitive	
  and	
  social	
  
development	
  (Kim	
  2009,	
  Claus	
  Henn	
  2011,	
  WHO	
  2014).	
  There	
  is	
  no	
  known	
  level	
  of	
  
lead	
  exposure	
  that	
  is	
  considered	
  safe	
  
Young	
  children	
  in	
  particular	
  are	
  vulnerable	
  to	
  the	
  toxic	
  effects	
  of	
  lead	
  and	
  
can	
  suffer	
  profound,	
  permanent	
  adverse	
  health	
  effects,	
  mainly	
  affecting	
  the	
  
development	
  of	
  the	
  brain	
  and	
  nervous	
  system.	
  Pregnant	
  women	
  exposed	
  to	
  high	
  
levels	
  of	
  lead	
  can	
  be	
  subject	
  to	
  miscarriage,	
  stillbirth,	
  premature	
  birth	
  and	
  low	
  birth	
  
weight,	
  as	
  well	
  as	
  minor	
  malformations.	
  Young	
  children	
  are	
  specifically	
  vulnerable	
  
because	
  they	
  absorb	
  4	
  -­‐	
  5	
  times	
  as	
  much	
  ingested	
  lead	
  as	
  adults	
  from	
  a	
  given	
  source	
  
(WHO,	
  2004).	
  Strong	
  evidence	
  suggests	
  that	
  lead	
  exposure	
  also	
  leads	
  to	
  subtle	
  
neurological	
  effects,	
  developmental	
  delays,	
  and	
  behavioral	
  abnormalities	
  in	
  
otherwise	
  normal-­‐appearing	
  children.	
  (Schettler	
  et	
  al.	
  2000).	
  In	
  addition,	
  Wright	
  &	
  
Baccarelli	
  (2009)	
  establish	
  that	
  co-­‐exposure	
  to	
  Mn	
  and	
  lead	
  may	
  decrease	
  
spontaneous	
  motor	
  activity	
  and	
  learning	
  ability	
  in	
  rats	
  as	
  compared	
  with	
  exposure	
  
to	
  only	
  one	
  of	
  these	
  metals,	
  which	
  may	
  cause	
  damage	
  to	
  brain	
  development	
  during	
  
pre-­‐	
  and	
  post-­‐natal	
  life.	
  
4.3.2.	
  Arsenic	
  
Arsenic	
  is	
  naturally	
  present	
  at	
  high	
  levels	
  in	
  groundwater	
  of	
  numerous	
  
countries.	
  There	
  has	
  been	
  a	
  number	
  of	
  research	
  done	
  on	
  Arsenic	
  showing	
  that,	
  
Manganese	
  Exposure	
  
	
  
17	
  
water	
  contaminated	
  with	
  high	
  levels	
  of	
  Arsenic	
  and	
  used	
  for	
  drinking,	
  food	
  
preparation	
  and	
  irrigation	
  of	
  food	
  crops	
  poses	
  a	
  great	
  threat	
  to	
  public	
  health.	
  
Arsenic	
  exposure	
  affects	
  almost	
  every	
  organ	
  system	
  in	
  the	
  body	
  including	
  the	
  brain.	
  
Still,	
  there	
  is	
  limited	
  studies	
  on	
  the	
  effect	
  of	
  exposure	
  in	
  early	
  life.	
  
In	
  lab	
  animals,	
  it	
  has	
  been	
  found	
  that	
  high	
  exposure	
  of	
  Arsenic	
  causes	
  
malformations.	
  In	
  addition,	
  some	
  studies	
  suggest	
  that	
  arsenic	
  exposure	
  may	
  lead	
  to	
  
spontaneous	
  abortion	
  and	
  stillbirth	
  and	
  may	
  affect	
  neurological	
  development,	
  
particularly	
  the	
  development	
  of	
  hearing	
  (Schettler	
  et	
  al.	
  2000).	
  Drinking	
  water	
  is	
  
one	
  of	
  the	
  main	
  pathways	
  of	
  arsenic	
  ingestion.	
  It	
  has	
  been	
  well	
  established	
  that	
  
arsenic	
  exposure	
  negatively	
  correlates	
  with	
  neurodevelopment.	
  Studies	
  have	
  found	
  
that	
  lowered	
  IQ	
  is	
  one	
  of	
  the	
  most	
  commonly	
  reported	
  significant	
  effect	
  (Tyler	
  &	
  
Allan,	
  2014).	
  Results	
  of	
  meta-­‐analysis	
  show	
  that	
  for	
  every	
  50%	
  increase	
  in	
  arsenic	
  
levels,	
  there	
  could	
  be	
  a	
  0.5	
  decrease	
  in	
  the	
  IQ	
  of	
  children	
  aged	
  5-­‐15	
  years	
  
(Rodríguez-­‐Barranco	
  et	
  al.	
  2013).	
  
4.3.3.Trichloroethylene	
  (TCE)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  There	
  is	
  a	
  wide	
  body	
  of	
  evidence	
  suggesting	
  connections	
  between	
  exposure	
  to	
  
TCE	
  contamination	
  of	
  drinking	
  water	
  during	
  pregnancy	
  and	
  the	
  development	
  of	
  
congenital	
  heart	
  defects	
  (Forand	
  et	
  al.	
  2011,	
  Watson	
  et	
  al.	
  2005).	
  In	
  a	
  study	
  in	
  
Endicott,	
  New	
  York,	
  which	
  experienced	
  a	
  massive	
  chemical	
  spill	
  in	
  1979,	
  that	
  
contaminated	
  the	
  drinking	
  water	
  supply	
  with	
  TCE,	
  44	
  children	
  that	
  lived	
  in	
  the	
  area	
  
of	
  analysis	
  were	
  born	
  with	
  at	
  least	
  one	
  birth	
  defect	
  between	
  1983	
  and	
  2000,	
  
including	
  cardiac	
  birth	
  defects.	
  The	
  increase	
  in	
  cardiac	
  defects	
  in	
  children	
  was	
  
significant.	
  (Forand	
  et	
  al.	
  2011).	
  
Manganese	
  Exposure	
  
	
  
18	
  
	
  	
  	
  	
  	
  	
  	
  	
   Additionally,	
  there	
  is	
  a	
  building	
  body	
  of	
  evidence	
  that	
  prenatal	
  exposure	
  to	
  
TCE	
  impairs	
  neurodevelopment,	
  and	
  it	
  has	
  been	
  studied	
  well	
  in	
  rodents.	
  Noland-­‐
Gerbec	
  et	
  al.	
  described	
  altered	
  brain	
  chemistry	
  in	
  the	
  offspring	
  of	
  rats	
  exposed	
  to	
  
TCE	
  during	
  pregnancy,	
  and	
  another	
  study	
  found	
  that	
  prenatal	
  exposure	
  to	
  TCE	
  
caused	
  increased	
  exploratory	
  and	
  locomotive	
  behaviors	
  in	
  rats	
  (Taylor,	
  et	
  al.	
  1985).	
  
A	
  similar	
  study	
  found	
  that	
  maternal	
  ingestion	
  of	
  TCE	
  through	
  drinking	
  water	
  during	
  
pregnancy	
  resulted	
  in	
  altered	
  social	
  behaviors,	
  particularly	
  autism-­‐like	
  social	
  
behaviors	
  and	
  increased	
  aggression	
  in	
  male	
  mice	
  (Blossom	
  2008).	
  
	
  	
  	
  	
  	
  	
  	
  	
   In	
  humans,	
  exposures	
  to	
  TCE	
  in	
  water	
  during	
  pregnancy	
  have	
  been	
  linked	
  to	
  
developmental	
  impacts	
  in	
  children.	
  In	
  1979,	
  4,100	
  gallons	
  of	
  1,1,1,-­‐TCE	
  spilled	
  at	
  a	
  
manufacturing	
  facility	
  in	
  Endicott,	
  New	
  York.	
  The	
  next	
  year,	
  groundwater	
  samples	
  
revealed	
  a	
  large	
  amount	
  of	
  contamination	
  of	
  both	
  TCE	
  and	
  tetrachloroethylene,	
  
along	
  with	
  a	
  number	
  of	
  other	
  volatile	
  organic	
  contaminants	
  in	
  addition	
  to	
  
contaminants	
  from	
  previous	
  spills	
  and	
  incidents.	
  	
  Populations	
  were	
  exposed	
  to	
  the	
  
contamination	
  through	
  soil	
  vapor	
  intrusion	
  (SVI),	
  where	
  volatized	
  contaminants	
  
rose	
  through	
  air	
  pockets	
  in	
  soil	
  into	
  nearby	
  building	
  structures.	
  It	
  was	
  found	
  that	
  
women	
  living	
  in	
  areas	
  with	
  risk	
  of	
  exposure	
  to	
  TCE	
  from	
  SVI	
  experienced	
  low	
  birth	
  
weight	
  (LBW)	
  or	
  were	
  small	
  for	
  gestational	
  age	
  (SGA),	
  possibly	
  as	
  a	
  result	
  of	
  growth	
  
restriction	
  in	
  utero.	
  Similar	
  results	
  of	
  LBW	
  were	
  found	
  in	
  northern	
  New	
  Jersey	
  and	
  
Tuscon,	
  Arizona,	
  both	
  of	
  which	
  also	
  had	
  groundwater	
  contaminated	
  with	
  TCE	
  (Bove	
  
et	
  al.	
  1995,	
  Rodenbeck	
  et	
  al.	
  2000).	
  In	
  addition,	
  SGA	
  was	
  significantly	
  more	
  
prevalent	
  in	
  a	
  retrospective	
  study	
  of	
  Woburn,	
  Massachusetts,	
  when	
  mothers	
  had	
  
been	
  exposed	
  to	
  TCE	
  contaminated	
  drinking	
  water	
  (MDPH,	
  CDC,	
  and	
  MHRI	
  1996).	
  
Manganese	
  Exposure	
  
	
  
19	
  
	
  	
  	
  	
  	
  	
  	
  	
   Analysis	
  of	
  the	
  public	
  drinking	
  water	
  contamination	
  in	
  New	
  Jersey	
  also	
  
correlated	
  prenatal	
  trichloroethylene	
  exposure	
  with	
  a	
  number	
  of	
  adverse	
  effects	
  
including	
  defects	
  in	
  the	
  central	
  nervous	
  system	
  and	
  neural	
  tube	
  development,	
  and	
  
oral	
  clefts	
  (Bove	
  et	
  al.	
  1995).	
  
	
  	
  	
  	
  	
  	
  	
  	
   There	
  is	
  still	
  limited	
  information	
  on	
  the	
  effects	
  of	
  TCE	
  exposure	
  during	
  
pregnancy	
  on	
  neurological	
  development.	
  	
  
4.3.4Cadmium	
  	
  
Cadmium	
  is	
  a	
  scarce	
  element,	
  but	
  is	
  seventh	
  in	
  the	
  Agency	
  for	
  Toxic	
  
Substances	
  and	
  Disease	
  Registry’s	
  list	
  of	
  elements	
  that	
  create	
  the	
  most	
  significant	
  
risks	
  for	
  human	
  health	
  and	
  the	
  environment.	
  In	
  addition	
  to	
  its	
  neurological	
  
impairment,	
  cadmium	
  is	
  toxic	
  to	
  the	
  digestive	
  system,	
  kidneys,	
  lungs	
  and	
  liver.	
  Only	
  
four	
  studies	
  have	
  been	
  undertaken	
  to	
  study	
  the	
  neurodevelopmental	
  effects	
  of	
  
cadmium	
  exposure	
  in	
  utero	
  (Cao	
  et	
  al.	
  2009,	
  Tian	
  et	
  al.	
  2009,	
  Wright	
  et	
  al.	
  2006,	
  
Torrente	
  et	
  al.	
  2005).	
  Only	
  one	
  of	
  the	
  studies	
  (Tian	
  et	
  al.	
  2009)	
  found	
  significant	
  
results;	
  they	
  found	
  that	
  children	
  with	
  higher	
  blood	
  levels	
  of	
  cadmium	
  at	
  birth	
  scored	
  
lower	
  on	
  Full-­‐Score	
  and	
  Performance	
  IQ	
  tests	
  at	
  four	
  years	
  of	
  age.	
  Both	
  Bao	
  et	
  al.	
  
(2009)	
  and	
  Yousef	
  et	
  al.	
  (2011)	
  studied	
  the	
  behavioral	
  effects	
  of	
  prenatal	
  exposure,	
  
but	
  only	
  Bao	
  et	
  al.	
  found	
  that	
  children	
  with	
  higher	
  levels	
  of	
  cadmium	
  in	
  their	
  hair	
  
experienced	
  more	
  social	
  and	
  attention	
  problems.	
  Yousef	
  et	
  al.	
  found	
  that	
  there	
  was	
  
no	
  significant	
  relationship	
  between	
  cadmium	
  exposure	
  and	
  ADHD.	
  The	
  information	
  
on	
  cadmium	
  exposure	
  and	
  its	
  neurological	
  effects	
  is	
  conflicting	
  and	
  extremely	
  
limited,	
  leaving	
  a	
  wide	
  gap	
  in	
  the	
  knowledge	
  of	
  understanding	
  the	
  effects	
  of	
  metals	
  
on	
  neurological	
  development.	
  	
  
Manganese	
  Exposure	
  
	
  
20	
  
	
  
4.3.5.	
  Co	
  exposure	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Co-­‐exposure	
  to	
  multiple	
  neurotoxins	
  may	
  increase	
  their	
  toxicity,	
  but	
  few	
  
studies	
  have	
  investigated	
  the	
  interactions	
  between	
  multiple	
  metals.	
  There	
  have	
  
been	
  a	
  handful	
  of	
  studies	
  analyzing	
  the	
  interactions	
  between	
  lead	
  and	
  Mn,	
  all	
  of	
  
which	
  conclude	
  that	
  the	
  combined	
  neurological	
  effects	
  are	
  greater	
  than	
  the	
  effects	
  a	
  
single	
  exposure	
  would	
  cause.	
  It	
  is	
  important	
  to	
  acknowledge	
  the	
  potential	
  for	
  
adverse	
  outcomes	
  from	
  co-­‐exposure	
  during	
  early	
  childhood	
  because	
  of	
  the	
  
particularly	
  vulnerable	
  developmental	
  periods.	
  Lead	
  and	
  Mn	
  co-­‐exposure	
  may	
  cause	
  
a	
  significant	
  risk	
  as	
  increased	
  levels	
  of	
  Mn	
  in	
  the	
  brain	
  may	
  cause	
  the	
  brain	
  to	
  
produce	
  lead-­‐binding	
  proteins,	
  increasing	
  the	
  exposure	
  to	
  lead.	
  Animal	
  studies	
  have	
  
shown	
  that	
  co-­‐exposure	
  to	
  Mn	
  and	
  lead	
  may	
  decrease	
  spontaneous	
  motor	
  activity	
  
and	
  learning	
  ability	
  more	
  compared	
  with	
  exposure	
  to	
  only	
  one	
  of	
  these	
  metals,	
  
which	
  may	
  impair	
  both	
  pre-­‐	
  and	
  post-­‐natal	
  neurodevelopment.	
  (Wright	
  2009)	
  
	
  	
  	
  	
  	
  	
  	
  	
   Kim	
  et	
  al.	
  (2009)	
  found	
  an	
  association	
  between	
  co-­‐exposure	
  to	
  lead	
  and	
  Mn	
  
and	
  intelligence	
  in	
  school-­‐aged	
  children.	
  Findings	
  indicated	
  that	
  in	
  utero	
  co-­‐
exposure	
  to	
  environmental	
  Mn	
  and	
  lead	
  were	
  adversely	
  related	
  to	
  
neurodevelopment	
  in	
  2	
  year-­‐old	
  children,	
  and	
  reported	
  significant	
  negative	
  
associations	
  between	
  lead	
  and	
  Mn	
  levels	
  and	
  full-­‐scale	
  and	
  verbal	
  IQ.	
  These	
  results	
  
are	
  similar	
  to	
  those	
  found	
  by	
  Henn	
  et	
  al.	
  (2008),	
  who	
  observed	
  that	
  joint	
  exposure	
  
to	
  both	
  lead	
  and	
  Mn	
  were	
  correlated	
  with	
  mental	
  and	
  psychomotor	
  deficits.	
  These	
  
were	
  higher	
  than	
  the	
  estimated	
  deficits	
  for	
  individual	
  lead	
  or	
  Mn	
  exposure.	
  	
  
5.	
  Discussion	
  
Manganese	
  Exposure	
  
	
  
21	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  body	
  of	
  literature	
  on	
  Mn	
  exposure	
  through	
  drinking	
  water	
  reveals	
  many	
  
things	
  about	
  what	
  we	
  do	
  and	
  do	
  not	
  know.	
  We	
  know	
  that	
  there	
  are	
  associated	
  
neurological	
  deficiencies	
  and	
  behavioral	
  changes	
  that	
  can	
  arise	
  from	
  possibly	
  even	
  
low	
  level	
  exposures.	
  While	
  these	
  findings	
  are	
  important,	
  and	
  can	
  be	
  applied	
  to	
  
public	
  policy	
  to	
  better	
  protect	
  pregnant	
  women	
  and	
  young	
  children,	
  they	
  also	
  shine	
  
a	
  light	
  on	
  the	
  gaping	
  holes	
  in	
  the	
  research	
  that	
  need	
  to	
  be	
  addressed	
  for	
  us	
  to	
  better	
  
understand	
  the	
  true	
  neurodevelopmental	
  impacts	
  associated	
  with	
  Mn	
  exposure.	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  results	
  from	
  these	
  studies	
  found	
  negative	
  impacts	
  associated	
  with	
  the	
  
exposure	
  of	
  children	
  to	
  Mn,	
  but	
  they	
  all	
  had	
  different	
  methods	
  of	
  doing	
  so.	
  Different	
  
neurological	
  tests	
  were	
  administered,	
  different	
  levels	
  of	
  exposures	
  were	
  measured,	
  
and	
  different	
  biomarkers	
  were	
  used.	
  Consequently,	
  these	
  studies	
  have	
  found	
  a	
  slew	
  
of	
  different	
  impacts,	
  ranging	
  in	
  type	
  and	
  severity.	
  
	
  	
  	
  	
  	
  	
  	
  	
   The	
  lack	
  of	
  a	
  consistent	
  biomarker	
  is	
  another	
  factor	
  that	
  needs	
  to	
  be	
  
addressed	
  to	
  better	
  understand	
  the	
  complex	
  issue	
  of	
  Mn	
  exposure.	
  Many	
  studies	
  
that	
  have	
  been	
  conducted,	
  and	
  that	
  are	
  discussed	
  here,	
  use	
  hair	
  or	
  blood	
  to	
  measure	
  
exposures.	
  These	
  biomarkers	
  are	
  highly	
  variable	
  and,	
  ultimately,	
  may	
  not	
  be	
  an	
  
accurate	
  reflection	
  of	
  Mn	
  exposures.	
  Tooth	
  dentine	
  shows	
  a	
  great	
  amount	
  of	
  
promise	
  to	
  overcome	
  the	
  shortcomings	
  of	
  biomarkers,	
  but	
  the	
  evidence	
  of	
  its	
  use	
  
and	
  effectiveness	
  is	
  extremely	
  limited.	
  The	
  lack	
  of	
  a	
  consistent	
  and	
  accurate	
  
biomarker	
  is	
  a	
  possible	
  contributor	
  to	
  why	
  there	
  are	
  still	
  no	
  concrete	
  answers	
  to	
  the	
  
effects	
  of	
  prenatal	
  Mn	
  exposure.	
  
	
  	
  	
  	
  	
  	
  	
  	
   There	
  is	
  an	
  incredibly	
  limited	
  amount	
  of	
  research	
  done	
  on	
  the	
  effects	
  of	
  
drinking	
  water	
  Mn	
  concentrations	
  on	
  prenatal	
  and	
  early	
  childhood	
  
Manganese	
  Exposure	
  
	
  
22	
  
neurodevelopment.	
  The	
  scientific	
  community	
  has,	
  in	
  multiple	
  papers,	
  acknowledged	
  
that	
  this	
  is	
  an	
  extremely	
  vulnerable	
  population	
  and	
  an	
  area	
  of	
  research	
  that	
  needs	
  to	
  
be	
  addressed.	
  Based	
  on	
  the	
  conclusions	
  that	
  children	
  are	
  incredibly	
  vulnerable	
  
during	
  rapid	
  stages	
  of	
  prenatal	
  development,	
  and	
  that	
  Mn	
  is	
  a	
  commonly	
  known	
  
toxicant	
  that	
  is	
  known	
  to	
  have	
  significant	
  negative	
  effects	
  in	
  school-­‐age	
  children,	
  it	
  
leads	
  one	
  to	
  believe	
  that	
  there	
  is	
  a	
  notable	
  risk	
  for	
  prenatal	
  Mn	
  exposure,	
  
particularly	
  through	
  drinking	
  water.	
  Despite	
  this,	
  there	
  is	
  not	
  a	
  significant	
  body	
  of	
  
research	
  to	
  support	
  this	
  line	
  of	
  thinking.	
  
	
  	
  	
  	
  	
  	
  	
  	
   It	
  was	
  also	
  found	
  that	
  there	
  are	
  significant	
  negative	
  effects	
  associated	
  with	
  
prenatal	
  exposures	
  to	
  other	
  metals.	
  Lead	
  is	
  well	
  established	
  in	
  this	
  sense,	
  and	
  there	
  
is	
  a	
  lot	
  of	
  evidence	
  finding	
  that	
  there	
  are	
  significant	
  and	
  extremely	
  harmful	
  effects	
  
from	
  prenatal	
  exposures	
  to	
  lead.	
  Arsenic,	
  Cadmium,	
  and	
  Trichloroethylene	
  are	
  all	
  
also	
  acknowledged	
  as	
  being	
  extremely	
  toxic,	
  but	
  their	
  effects	
  on	
  prenatal	
  
development	
  are	
  less	
  established.	
  Cadmium	
  is	
  best	
  associated	
  with	
  attention	
  
disorders,	
  and	
  Arsenic	
  has	
  been	
  found	
  to	
  produce	
  lower	
  IQ,	
  and	
  TCE	
  is	
  linked	
  to	
  
congenital	
  heart	
  defects	
  and	
  low	
  birth	
  weight.	
  Coexposures	
  can	
  cause	
  an	
  even	
  more	
  
significant	
  effect	
  than	
  individual	
  exposures,	
  and	
  draws	
  attention	
  to	
  the	
  fact	
  that	
  
there	
  are	
  a	
  large	
  amount	
  of	
  metals	
  and	
  chemicals	
  that	
  likely	
  have	
  negative	
  impacts	
  
on	
  prenatal	
  or	
  early	
  childhood	
  development,	
  but	
  are	
  not	
  yet	
  understood.	
  
	
  	
  	
  	
  	
  	
  	
  	
   Based	
  on	
  these	
  findings,	
  and	
  on	
  the	
  fact	
  that	
  neurodevelopmental	
  deficits	
  can	
  
occur	
  from	
  such	
  low	
  exposures	
  to	
  metals,	
  particularly	
  Mn,	
  it	
  is	
  clear	
  that	
  the	
  
measures	
  set	
  out	
  by	
  the	
  United	
  States	
  government	
  are	
  not	
  enough	
  to	
  adequately	
  
protect	
  the	
  public.	
  Although	
  there	
  is	
  a	
  health	
  advisory	
  for	
  Mn,	
  it	
  is	
  not	
  considered	
  to	
  
Manganese	
  Exposure	
  
	
  
23	
  
be	
  enough	
  of	
  a	
  risk	
  for	
  the	
  EPA	
  to	
  make	
  an	
  enforceable	
  limit	
  on	
  it.	
  The	
  WHO	
  has	
  a	
  
tighter	
  guideline	
  for	
  an	
  acceptable	
  level	
  of	
  exposure	
  to	
  Mn	
  from	
  drinking	
  water	
  than	
  
the	
  EPA	
  does,	
  and	
  the	
  exposures	
  in	
  a	
  number	
  of	
  the	
  studies	
  that	
  caused	
  significant	
  
negative	
  cognitive	
  defects	
  in	
  children	
  occurred	
  from	
  exposures	
  that	
  were	
  even	
  
lower	
  than	
  either	
  of	
  these	
  guidelines.	
  The	
  guidelines	
  for	
  Mn	
  have	
  not	
  been	
  updated	
  
since	
  2004,	
  and	
  need	
  to	
  be	
  re-­‐evaluated,	
  taking	
  into	
  account	
  this	
  new	
  research,	
  and	
  
initiating	
  further	
  research	
  to	
  more	
  fully	
  understand	
  the	
  health	
  risks	
  that	
  are	
  faced	
  
by	
  children	
  through	
  such	
  high	
  exposures	
  to	
  Mn.	
  	
  
	
  
6.	
  Conclusions	
  
In	
  the	
  United	
  States,	
  approximately	
  6%	
  of	
  domestic	
  household	
  wells	
  have	
  Mn	
  
concentrations	
  exceeding	
  300	
  µg	
  Mn/L,	
  which	
  is	
  the	
  current	
  EPA	
  lifetime	
  health	
  
advisory	
  level	
  (Wasserman	
  et	
  al.	
  2006).	
  In	
  New	
  England,	
  45%	
  of	
  wells	
  for	
  public	
  use	
  
have	
  Mn	
  concentrations	
  greater	
  than	
  30	
  µg/L.	
  According	
  to	
  a	
  2009	
  report	
  by	
  the	
  U.S.	
  
Geological	
  Survey,	
  approximately	
  5%	
  of	
  domestic	
  household	
  wells	
  in	
  the	
  United	
  
States	
  have	
  Mn	
  concentrations	
  greater	
  than	
  300	
  µg/L.	
  (U.S.	
  Geological	
  Survey	
  2009).	
  
This	
  indicates	
  that	
  some	
  children	
  in	
  the	
  U.S.	
  are	
  at	
  risk	
  for	
  Mn-­‐induced	
  neurotoxicity	
  
due	
  to	
  drinking	
  water	
  exposure.	
  
Too	
  much	
  exposure	
  can	
  cause	
  Mn	
  to	
  accumulate	
  in	
  the	
  brain,	
  in	
  particular	
  
the	
  central	
  nervous	
  system,	
  leading	
  to	
  neurological	
  damage	
  and	
  long-­‐term	
  effects.	
  
Mn	
  retention	
  is	
  higher	
  in	
  infants	
  than	
  in	
  adults	
  meaning	
  Infants	
  and	
  young	
  children	
  
face	
  higher	
  risks	
  from	
  exposure	
  to	
  heavy	
  metals	
  than	
  adults	
  due	
  to	
  underdeveloped	
  
homeostasis	
  system	
  that	
  limit	
  the	
  absorption	
  of	
  Mn	
  ingested.	
  The	
  time	
  at	
  which	
  the	
  
Manganese	
  Exposure	
  
	
  
24	
  
child	
  is	
  exposed	
  to	
  the	
  metal	
  has	
  been	
  shown	
  to	
  be	
  equally	
  important	
  as	
  the	
  level	
  of	
  
exposure	
  (Andra	
  et	
  al.	
  2015).	
  Our	
  current	
  health-­‐based	
  guideline	
  value	
  for	
  Mn	
  of	
  
400	
  µg/L	
  in	
  drinking	
  water	
  is	
  based	
  partly	
  on	
  debatable	
  assumptions.	
  This	
  value	
  for	
  
drinking	
  water	
  may	
  be	
  low	
  enough	
  to	
  protect	
  adolescents	
  and	
  adults,	
  but	
  not	
  
younger	
  children.	
  
Biomarkers	
  are	
  used	
  to	
  measure	
  to	
  estimate	
  external	
  exposure	
  levels	
  in	
  the	
  
body,	
  to	
  date,	
  blood,	
  hair,	
  urine,	
  and	
  dentine	
  from	
  primary	
  teeth	
  have	
  been	
  used.	
  
They’ve	
  contributed	
  to	
  our	
  increasing	
  body	
  of	
  knowledge	
  about	
  Mn	
  neurotoxicity.	
  
However,	
  blood,	
  urine,	
  and	
  hair	
  have	
  been	
  found	
  to	
  be	
  unreliable	
  or	
  not	
  ideal	
  
biomarkers.	
  They	
  fail	
  to	
  provide	
  exposure	
  timing,	
  levels	
  of	
  cumulative	
  exposure,	
  and	
  
lack	
  the	
  potential	
  to	
  provide	
  information	
  on	
  the	
  specific	
  source	
  (Andra	
  et	
  al.	
  2015).	
  
New	
  research	
  is	
  emerging	
  using	
  dentine	
  as	
  an	
  ideal	
  biomarker	
  to	
  measure	
  Mn	
  
exposure,	
  and	
  it	
  is	
  showing	
  great	
  promise.	
  Dentine	
  reflects	
  direct	
  exposure	
  to	
  Mn	
  
and	
  there	
  is	
  no	
  known	
  instability	
  in	
  tooth	
  mineralization.	
  There	
  is	
  a	
  growing	
  body	
  of	
  
research	
  showing	
  an	
  association	
  between	
  Mn	
  exposure	
  and	
  its	
  neurological	
  effects	
  
on	
  children.	
  Further	
  research	
  needs	
  to	
  be	
  done	
  on	
  optimum	
  biomarker	
  such	
  as	
  
dentine,	
  measuring	
  exposure	
  limits	
  to	
  set	
  new	
  guidelines	
  to	
  protect	
  the	
  public	
  and	
  
children	
  from	
  the	
  long	
  terms	
  effects	
  of	
  Mn	
  exposure.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
Manganese	
  Exposure	
  
	
  
25	
  
References	
  
Andra,	
  S.	
  S.,	
  Austin,	
  C.,	
  Wright,	
  R.	
  O.,	
  &	
  Arora,	
  M.	
  (2015).	
  Reconstructing	
  pre-­‐natal	
  and	
  early	
  
childhood	
  exposure	
  to	
  multi-­‐class	
  organic	
  chemicals	
  using	
  teeth:	
  Towards	
  a	
  
retrospective	
  temporal	
  exposome.	
  Environment	
  international,	
  83,	
  137-­‐145.	
  
	
  
Apostoli,	
  P.,	
  Lucchini,	
  R.,	
  &	
  Alessio,	
  L.	
  (2000).	
  Are	
  current	
  biomarkers	
  suitable	
  for	
  the	
  
assessment	
  of	
  manganese	
  exposure	
  in	
  individual	
  workers?.	
  American	
  journal	
  of	
  
industrial	
  medicine,	
  37(3),	
  283-­‐290.	
  
	
  
Arora,	
  M.,	
  Hare,	
  D.,	
  Austin,	
  C.,	
  Smith,	
  D.	
  R.,	
  &	
  Doble,	
  P.	
  (2011).	
  Spatial	
  distribution	
  of	
  
manganese	
  in	
  enamel	
  and	
  coronal	
  dentine	
  of	
  human	
  primary	
  teeth.	
  Science	
  of	
  the	
  
Total	
  Environment,	
  409(7),	
  1315-­‐1319.	
  
	
  
Bao,	
  Q.	
  S.,	
  Lu,	
  C.	
  Y.,	
  Song,	
  H.,	
  Wang,	
  M.,	
  Ling,	
  W.,	
  Chen,	
  W.	
  Q.,	
  ...	
  &	
  Rao,	
  S.	
  (2009).	
  Behavioural	
  
development	
  of	
  school-­‐aged	
  children	
  who	
  live	
  around	
  a	
  multi-­‐metal	
  sulphide	
  mine	
  
in	
  Guangdong	
  province,	
  China:	
  a	
  cross-­‐sectional	
  study.	
  BMC	
  Public	
  Health,	
  9(1),	
  217.	
  
	
  
Bouchard,	
  M.	
  F.,	
  Sauvé,	
  S.,	
  Barbeau,	
  B.,	
  Legrand,	
  M.,	
  Brodeur,	
  M.	
  È.,	
  Bouffard,	
  T.,	
  ...	
  &	
  Mergler,	
  
D.	
  (2010).	
  Intellectual	
  impairment	
  in	
  school-­‐age	
  children	
  exposed	
  to	
  manganese	
  
from	
  drinking	
  water.	
  Environmental	
  health	
  perspectives,	
  119(1),	
  138-­‐143.	
  
	
  
Blossom,	
  S.	
  J.,	
  Doss,	
  J.	
  C.,	
  Hennings,	
  L.	
  J.,	
  Jernigan,	
  S.,	
  Melnyk,	
  S.,	
  &	
  James,	
  S.	
  J.	
  (2008).	
  
Developmental	
  exposure	
  to	
  trichloroethylene	
  promotes	
  CD4+	
  T	
  cell	
  differentiation	
  
and	
  hyperactivity	
  in	
  association	
  with	
  oxidative	
  stress	
  and	
  neurobehavioral	
  deficits	
  
in	
  MRL+/+	
  mice.	
  Toxicology	
  and	
  applied	
  pharmacology,	
  231(3),	
  344-­‐353.	
  
	
  
Bove,	
  F.	
  J.,	
  Fulcomer,	
  M.	
  C.,	
  Klotz,	
  J.	
  B.,	
  Esmart,	
  J.,	
  Dufficy,	
  E.	
  M.,	
  &	
  Savrin,	
  J.	
  E.	
  (1995).	
  Public	
  
drinking	
  water	
  contamination	
  and	
  birth	
  outcomes.American	
  Journal	
  of	
  Epidemiology,	
  
141(9),	
  850-­‐862.	
  	
  
Cao,	
  Y.,	
  Chen,	
  A.,	
  Radcliffe,	
  J.,	
  Dietrich,	
  K.	
  N.,	
  Jones,	
  R.	
  L.,	
  Caldwell,	
  K.,	
  &	
  Rogan,	
  W.	
  J.	
  (2009).	
  
Postnatal	
  cadmium	
  exposure,	
  neurodevelopment,	
  and	
  blood	
  pressure	
  in	
  children	
  at	
  
2,	
  5,	
  and	
  7	
  years	
  of	
  age.	
  Environ	
  Health	
  Perspect,	
  117(10),	
  1580-­‐1586.	
  
Chung,	
  S.	
  E.,	
  Park,	
  H.,	
  Chang,	
  N.	
  S.,	
  Oh,	
  S.	
  Y.,	
  Cheong,	
  H.	
  K.,	
  Ha,	
  E.	
  H.,	
  ...	
  &	
  Hong,	
  Y.	
  C.	
  (2011).	
  
Effect	
  of	
  in	
  utero	
  exposure	
  to	
  manganese	
  on	
  the	
  neurodevelopment	
  of	
  the	
  infant.	
  
Epidemiology,	
  22(1),	
  S70.	
  
Droz	
  P.	
  1993.	
  Pharmacokinetic	
  modeling	
  as	
  a	
  tool	
  for	
  biological	
  monitoring.	
  Int	
  Arch	
  Occup	
  
Environ	
  Health	
  65:S53±S59.	
  
Ericson,	
  J.	
  E.,	
  Crinella,	
  F.	
  M.,	
  Clarke-­‐Stewart,	
  K.	
  A.,	
  Allhusen,	
  V.	
  D.,	
  Chan,	
  T.,	
  &	
  Robertson,	
  R.	
  T.	
  
(2007).	
  Prenatal	
  manganese	
  levels	
  linked	
  to	
  childhood	
  behavioral	
  disinhibition.	
  
Neurotoxicology	
  and	
  teratology,	
  29(2),	
  181-­‐187.	
  
Manganese	
  Exposure	
  
	
  
26	
  
Erikson, K. M., Thompson, K., Aschner, J., & Aschner, M. (2007). Manganese
neurotoxicity: a focus on the neonate. Pharmacology & therapeutics, 113(2), 369-
377.
	
  
Forand,	
  S.	
  P.,	
  Lewis-­‐Michl,	
  E.	
  L.,	
  &	
  Gomez,	
  M.	
  I.	
  (2011).	
  Adverse	
  birth	
  outcomes	
  and	
  
maternal	
  exposure	
  to	
  trichloroethylene	
  and	
  tetrachloroethylene	
  through	
  soil	
  vapor	
  
intrusion	
  in	
  New	
  York	
  State.	
  Environmental	
  health	
  perspectives,	
  120(4),	
  616-­‐621.	
  
	
  
Gunier,	
  R.	
  B.,	
  Bradman,	
  A.,	
  Jerrett,	
  M.,	
  Smith,	
  D.	
  R.,	
  Harley,	
  K.	
  G.,	
  Austin,	
  C.,	
  ...	
  &	
  Eskenazi,	
  B.	
  
(2013).	
  Determinants	
  of	
  manganese	
  in	
  prenatal	
  dentin	
  of	
  shed	
  teeth	
  from	
  
CHAMACOS	
  children	
  living	
  in	
  an	
  agricultural	
  community.	
  Environmental	
  science	
  &	
  
technology,	
  47(19),	
  11249-­‐11257	
  
	
  
Greger,	
  J.	
  L.	
  (1998).	
  Nutrition	
  versus	
  toxicology	
  of	
  manganese	
  in	
  humans:	
  evaluation	
  of	
  
potential	
  biomarkers.	
  Neurotoxicology,	
  20(2-­‐3),	
  205-­‐212.	
  
	
  
He,	
  P.,	
  Liu,	
  D.	
  H.,	
  &	
  Zhang,	
  G.	
  Q.	
  (1994).	
  [Effects	
  of	
  high-­‐level-­‐manganese	
  sewage	
  irrigation	
  
on	
  children's	
  neurobehavior].	
  Zhonghua	
  yu	
  fang	
  yi	
  xue	
  za	
  zhi	
  [Chinese	
  journal	
  of	
  
preventive	
  medicine],	
  28(4),	
  216-­‐218.	
  
	
  
Henn,	
  B.	
  C.,	
  Ettinger,	
  A.	
  S.,	
  Schwartz,	
  J.,	
  Téllez-­‐Rojo,	
  M.	
  M.,	
  Lamadrid-­‐Figueroa,	
  H.,	
  
Hernández-­‐Avila,	
  M.,	
  ...	
  &	
  Wright,	
  R.	
  O.	
  (2010).	
  Early	
  postnatal	
  blood	
  manganese	
  
levels	
  and	
  children’s	
  neurodevelopment.	
  Epidemiology	
  (Cambridge,	
  Mass.),	
  21(4),	
  
433.	
  
	
  
Henn,	
  B.	
  C.,	
  Schnaas,	
  L.,	
  Lamadrid-­‐Figueroa,	
  H.,	
  Hernández-­‐Avila,	
  M.,	
  Hu,	
  H.,	
  Téllez-­‐Rojo,	
  M.	
  
M.,	
  ...	
  &	
  Wright,	
  R.	
  O.	
  (2011).	
  Associations	
  of	
  early	
  childhood	
  manganese	
  and	
  lead	
  
coexposure	
  with	
  neurodevelopment.	
  
	
  
Kim,	
  Y.,	
  Kim,	
  B.	
  N.,	
  Hong,	
  Y.	
  C.,	
  Shin,	
  M.	
  S.,	
  Yoo,	
  H.	
  J.,	
  Kim,	
  J.	
  W.,	
  ...	
  &	
  Cho,	
  S.	
  C.	
  (2009).	
  Co-­‐
exposure	
  to	
  environmental	
  lead	
  and	
  manganese	
  affects	
  the	
  intelligence	
  of	
  school-­‐
aged	
  children.	
  Neurotoxicology,	
  30(4),	
  564-­‐571.	
  
	
  
Ljung,	
  K.,	
  &	
  Vahter,	
  M.	
  (2007).	
  Time	
  to	
  re-­‐evaluate	
  the	
  guideline	
  value	
  for	
  manganese	
  in	
  
drinking	
  water?.	
  Environmental	
  health	
  perspectives,	
  1533-­‐1538.	
  
	
  
Lönnerdal B. (1994). Manganese nutrition of infants. In: Klimis-Tavantzis DJ, editor.
Manganese in Health and Disease. Boca Raton, FL: CRC Press. pp. 176–191.	
  
	
  
MDPH	
  (Massachusetts	
  Department	
  of	
  Public	
  Health),	
  CDC	
  (Centers	
  for	
  Disease	
  Control	
  and	
  
Prevention),	
  and	
  MHRI	
  (Massachusetts	
  Health	
  Research	
  Institute).	
  1996.	
  Final	
  
Report	
  of	
  the	
  Woburn	
  Environmental	
  and	
  Birth	
  Study.	
  Cambridge,	
  
MA:Massachusetts	
  Department	
  of	
  Public	
  Health.	
  	
  
Noland-­‐Gerbec,	
  E.	
  A.,	
  Pfohl,	
  R.	
  J.,	
  Taylor,	
  D.	
  H.,	
  &	
  Bull,	
  R.	
  J.	
  (1985).	
  2-­‐Deoxyglucose	
  uptake	
  in	
  
the	
  developing	
  rat	
  brain	
  upon	
  pre-­‐and	
  postnatal	
  exposure	
  to	
  trichloroethylene.	
  
Neurotoxicology,	
  7(3),	
  157-­‐164.	
  
	
  
Manganese	
  Exposure	
  
	
  
27	
  
Rahman,	
  S.	
  M.	
  (2015).	
  Elevated	
  drinking	
  water	
  manganese	
  and	
  fetal	
  and	
  child	
  health	
  and	
  
development.	
  
	
  
Rodenbeck	
  SE,	
  Sanderson	
  LM,	
  Rene	
  A.	
  2000.	
  Maternal	
  expo-­‐	
  sure	
  to	
  trichloroethylene	
  in	
  
drinking	
  water	
  and	
  birth-­‐	
  weight	
  outcomes.	
  Arch	
  Environ	
  Health	
  55(3):188–194.	
  	
  
Rodríguez-­‐Barranco,	
  M.,	
  Lacasaña,	
  M.,	
  Aguilar-­‐Garduño,	
  C.,	
  Alguacil,	
  J.,	
  Gil,	
  F.,	
  González-­‐
Alzaga,	
  B.,	
  &	
  Rojas-­‐García,	
  A.	
  (2013).	
  Association	
  of	
  arsenic,	
  cadmium	
  and	
  
manganese	
  exposure	
  with	
  neurodevelopment	
  and	
  behavioural	
  disorders	
  in	
  
children:	
  a	
  systematic	
  review	
  and	
  meta-­‐analysis.Science	
  of	
  the	
  total	
  environment,	
  
454,	
  562-­‐577.	
  
	
  
Sanders,	
  A.	
  P.,	
  Henn,	
  B.	
  C.,	
  &	
  Wright,	
  R.	
  O.	
  (2015).	
  Perinatal	
  and	
  Childhood	
  Exposure	
  to	
  
Cadmium,	
  Manganese,	
  and	
  Metal	
  Mixtures	
  and	
  Effects	
  on	
  Cognition	
  and	
  Behavior:	
  A	
  
Review	
  of	
  Recent	
  Literature.	
  Current	
  environmental	
  health	
  reports,	
  2(3),	
  284-­‐294.	
  
	
  
Santamaria,	
  A.	
  B.	
  (2008).	
  Manganese	
  exposure,	
  essentiality	
  &	
  toxicity.	
  Indian	
  Journal	
  of	
  
Medical	
  Research,	
  128(4),	
  484.	
  
	
  
Schettler,	
  T.,	
  Solomon,	
  G.,	
  &	
  Valenti,	
  M.	
  (2000).	
  Generations	
  at	
  risk:	
  reproductive	
  health	
  and	
  
the	
  environment.	
  MIT	
  Press.	
  Pg.	
  51-­‐52	
  
	
  
Taylor,	
  D.	
  H.,	
  Lagory,	
  K.	
  E.,	
  Zaccaro,	
  D.	
  J.,	
  Pfohl,	
  R.	
  J.,	
  &	
  Laurie,	
  R.	
  D.	
  (1985).	
  Effect	
  of	
  
trichloroethylene	
  on	
  the	
  exploratory	
  and	
  locomotor	
  activity	
  of	
  rats	
  exposed	
  during	
  
development.	
  Science	
  of	
  the	
  Total	
  Environment,	
  47,	
  415-­‐420.	
  
	
  
Tian,	
  L.	
  L.,	
  Zhao,	
  Y.	
  C.,	
  Wang,	
  X.	
  C.,	
  Gu,	
  J.	
  L.,	
  Sun,	
  Z.	
  J.,	
  Zhang,	
  Y.	
  L.,	
  &	
  Wang,	
  J.	
  X.	
  (2009).	
  Effects	
  
of	
  gestational	
  cadmium	
  exposure	
  on	
  pregnancy	
  outcome	
  and	
  development	
  in	
  the	
  
offspring	
  at	
  age	
  4.5	
  years.	
  Biological	
  trace	
  element	
  research,	
  132(1-­‐3),	
  51-­‐59.	
  
	
  
Torrente,	
  M.,	
  Colomina,	
  M.	
  T.,	
  &	
  Domingo,	
  J.	
  L.	
  (2005).	
  Metal	
  concentrations	
  in	
  hair	
  and	
  
cognitive	
  assessment	
  in	
  an	
  adolescent	
  population.Biological	
  trace	
  element	
  research,	
  
104(3),	
  215-­‐221.	
  
	
  
Tyler,	
  C.	
  R.,	
  &	
  Allan,	
  A.	
  M.	
  (2014).	
  The	
  effects	
  of	
  arsenic	
  exposure	
  on	
  neurological	
  and	
  
cognitive	
  dysfunction	
  in	
  human	
  and	
  rodent	
  studies:	
  a	
  review.	
  Current	
  environmental	
  
health	
  reports,	
  1(2),	
  132-­‐147.	
  
	
  
	
  
U.S.	
  EPA.	
  2004.	
  Drinking	
  Water	
  Health	
  Advisory	
  for	
  Manganese.	
  U.S.	
  Environmental	
  
Protection	
  Agency,	
  Office	
  of	
  Water,	
  Washington,	
  DC.	
  January,	
  2004	
  (EPA-­‐822-­‐R-­‐04-­‐
003).	
  
	
  
Wasserman,	
  G.	
  A.,	
  Liu,	
  X.,	
  Parvez,	
  F.,	
  Ahsan,	
  H.,	
  Levy,	
  D.,	
  Factor-­‐Litvak,	
  P.,	
  ...	
  &	
  Cheng,	
  Z.	
  
(2006).	
  Water	
  manganese	
  exposure	
  and	
  children's	
  intellectual	
  function	
  in	
  Araihazar,	
  
Bangladesh.	
  Environmental	
  health	
  perspectives,	
  124-­‐129.	
  
	
  
Manganese	
  Exposure	
  
	
  
28	
  
WHO.	
  2004.	
  Manganese	
  in	
  Drinking	
  Water	
  -­‐	
  Background	
  Document	
  for	
  Development	
  of	
  
WHO	
  Guidelines	
  for	
  Drinking	
  Water	
  Quality.	
  In	
  World	
  Health	
  Organization:	
  Geneva.	
  
	
  
WHO.	
  2011.	
  Manganese	
  in	
  Drinking	
  Water	
  -­‐	
  Background	
  Document	
  for	
  Development	
  of	
  
WHO	
  Guidelines	
  for	
  Drinking	
  Water	
  Quality,	
  In	
  World	
  Health	
  Organization:	
  Geneva.	
  
	
  
World	
  Health	
  Organization	
  (WHO),	
  Lead	
  poisoning	
  and	
  health,	
  Fact	
  sheet	
  N°379,	
  (October	
  
2014),	
  available	
  at:	
  http://www.who.int/mediacentre/factsheets/fs379/en/	
  
	
  
Wright,	
  R.	
  O.,	
  Amarasiriwardena,	
  C.,	
  Woolf,	
  A.	
  D.,	
  Jim,	
  R.,	
  &	
  Bellinger,	
  D.	
  C.	
  (2006).	
  
Neuropsychological	
  correlates	
  of	
  hair	
  arsenic,	
  manganese,	
  and	
  cadmium	
  levels	
  in	
  
school-­‐age	
  children	
  residing	
  near	
  a	
  hazardous	
  waste	
  site.Neurotoxicology,	
  27(2),	
  
210-­‐216.	
  
	
  
Wright,	
  R.	
  O.,	
  &	
  Baccarelli,	
  A.	
  (2007).	
  Metals	
  and	
  neurotoxicology.	
  The	
  Journal	
  of	
  nutrition,	
  
137(12),	
  2809-­‐2813.	
  
	
  
Yousef,	
  S.,	
  Adem,	
  A.,	
  Zoubeidi,	
  T.,	
  Kosanovic,	
  M.,	
  Mabrouk,	
  A.	
  A.,	
  &	
  Eapen,	
  V.	
  (2011).	
  
Attention	
  deficit	
  hyperactivity	
  disorder	
  and	
  environmental	
  toxic	
  metal	
  exposure	
  in	
  
the	
  United	
  Arab	
  Emirates.	
  Journal	
  of	
  tropical	
  pediatrics,	
  57(6),	
  457-­‐460.	
  
	
  
Yu,	
  X.	
  D.,	
  Zhang,	
  J.,	
  Yan,	
  C.	
  H.,	
  &	
  Shen,	
  X.	
  M.	
  (2014).	
  Prenatal	
  exposure	
  to	
  manganese	
  at	
  
environment	
  relevant	
  level	
  and	
  neonatal	
  neurobehavioral	
  development.	
  
Environmental	
  research,	
  133,	
  232-­‐238.	
  	
  
	
  
Zhang,	
  G.,	
  Liu,	
  D.,	
  &	
  He,	
  P.	
  (1995).	
  [Effects	
  of	
  manganese	
  on	
  learning	
  abilities	
  in	
  school	
  
children].	
  Zhonghua	
  yu	
  fang	
  yi	
  xue	
  za	
  zhi	
  [Chinese	
  journal	
  of	
  preventive	
  medicine],	
  
29(3),	
  156-­‐158.	
  
	
  
	
  

More Related Content

Similar to Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Mercury: The Quintessential Anti-Nutrient
Mercury: The Quintessential Anti-NutrientMercury: The Quintessential Anti-Nutrient
Mercury: The Quintessential Anti-NutrientAlexander Borsuk
 
1. intro pediatrics 1
1. intro pediatrics 11. intro pediatrics 1
1. intro pediatrics 1Francis Joshi
 
Senior Thesis 2016 By Pavel Stupakov-FINAL
Senior Thesis 2016 By Pavel Stupakov-FINALSenior Thesis 2016 By Pavel Stupakov-FINAL
Senior Thesis 2016 By Pavel Stupakov-FINALPavel Stupakov
 
54th annual meeting of TS in Seattle
54th annual meeting of TS in Seattle54th annual meeting of TS in Seattle
54th annual meeting of TS in Seattlemothersafe
 
Gene–environment interactions in development and disease lovely - 2016 - wi...
Gene–environment interactions in development and disease   lovely - 2016 - wi...Gene–environment interactions in development and disease   lovely - 2016 - wi...
Gene–environment interactions in development and disease lovely - 2016 - wi...BARRY STANLEY 2 fasd
 
Gene–environment interactions in development and disease lovely - 2016 - wi...
Gene–environment interactions in development and disease   lovely - 2016 - wi...Gene–environment interactions in development and disease   lovely - 2016 - wi...
Gene–environment interactions in development and disease lovely - 2016 - wi...BARRY STANLEY 2 fasd
 
Conway yakultfoundation2015
Conway yakultfoundation2015Conway yakultfoundation2015
Conway yakultfoundation2015neerjayakult
 
2009 08 15 Vaccines, Adverse Reactions, and the Florida Law
2009 08 15 Vaccines, Adverse Reactions, and the Florida Law2009 08 15 Vaccines, Adverse Reactions, and the Florida Law
2009 08 15 Vaccines, Adverse Reactions, and the Florida Lawdrdavid999
 
Handbook of growth and growth monitoring in health and disease
Handbook of growth and growth monitoring in health and diseaseHandbook of growth and growth monitoring in health and disease
Handbook of growth and growth monitoring in health and diseaseSpringer
 
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdf
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdfexploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdf
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdfNisanur Dağ
 
Prenatal exposure to recreational drugs affects global motion perception in p...
Prenatal exposure to recreational drugs affects global motion perception in p...Prenatal exposure to recreational drugs affects global motion perception in p...
Prenatal exposure to recreational drugs affects global motion perception in p...BARRY STANLEY 2 fasd
 
Protocol Presentation on how to write a review paper
Protocol Presentation on how to write a review paperProtocol Presentation on how to write a review paper
Protocol Presentation on how to write a review paperDanchadi
 
Fatal attraction: A case of multiple magnet ingestion in an infant
Fatal attraction: A case of multiple magnet ingestion in an infantFatal attraction: A case of multiple magnet ingestion in an infant
Fatal attraction: A case of multiple magnet ingestion in an infantkomalicarol
 
2010-07 HCC Vaccine lecture
2010-07 HCC Vaccine lecture2010-07 HCC Vaccine lecture
2010-07 HCC Vaccine lecturedrdavid999
 
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수mothersafe
 

Similar to Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children (20)

Mercury: The Quintessential Anti-Nutrient
Mercury: The Quintessential Anti-NutrientMercury: The Quintessential Anti-Nutrient
Mercury: The Quintessential Anti-Nutrient
 
1. intro pediatrics 1
1. intro pediatrics 11. intro pediatrics 1
1. intro pediatrics 1
 
Senior Thesis 2016 By Pavel Stupakov-FINAL
Senior Thesis 2016 By Pavel Stupakov-FINALSenior Thesis 2016 By Pavel Stupakov-FINAL
Senior Thesis 2016 By Pavel Stupakov-FINAL
 
Teratogenesis
TeratogenesisTeratogenesis
Teratogenesis
 
54th annual meeting of TS in Seattle
54th annual meeting of TS in Seattle54th annual meeting of TS in Seattle
54th annual meeting of TS in Seattle
 
Gene–environment interactions in development and disease lovely - 2016 - wi...
Gene–environment interactions in development and disease   lovely - 2016 - wi...Gene–environment interactions in development and disease   lovely - 2016 - wi...
Gene–environment interactions in development and disease lovely - 2016 - wi...
 
Gene–environment interactions in development and disease lovely - 2016 - wi...
Gene–environment interactions in development and disease   lovely - 2016 - wi...Gene–environment interactions in development and disease   lovely - 2016 - wi...
Gene–environment interactions in development and disease lovely - 2016 - wi...
 
Conway yakultfoundation2015
Conway yakultfoundation2015Conway yakultfoundation2015
Conway yakultfoundation2015
 
Environmental Toxicants and Maternal and Child Health
Environmental Toxicants and Maternal and Child HealthEnvironmental Toxicants and Maternal and Child Health
Environmental Toxicants and Maternal and Child Health
 
Edited Proof DROJ-2-e006
Edited Proof DROJ-2-e006Edited Proof DROJ-2-e006
Edited Proof DROJ-2-e006
 
2009 08 15 Vaccines, Adverse Reactions, and the Florida Law
2009 08 15 Vaccines, Adverse Reactions, and the Florida Law2009 08 15 Vaccines, Adverse Reactions, and the Florida Law
2009 08 15 Vaccines, Adverse Reactions, and the Florida Law
 
AutismOne Conference 2017
AutismOne Conference 2017 AutismOne Conference 2017
AutismOne Conference 2017
 
Handbook of growth and growth monitoring in health and disease
Handbook of growth and growth monitoring in health and diseaseHandbook of growth and growth monitoring in health and disease
Handbook of growth and growth monitoring in health and disease
 
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdf
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdfexploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdf
exploring-the-intricacies-of-norobiology-an-in-depth-analysis.pdf
 
Prenatal exposure to recreational drugs affects global motion perception in p...
Prenatal exposure to recreational drugs affects global motion perception in p...Prenatal exposure to recreational drugs affects global motion perception in p...
Prenatal exposure to recreational drugs affects global motion perception in p...
 
Developmental potential
Developmental potentialDevelopmental potential
Developmental potential
 
Protocol Presentation on how to write a review paper
Protocol Presentation on how to write a review paperProtocol Presentation on how to write a review paper
Protocol Presentation on how to write a review paper
 
Fatal attraction: A case of multiple magnet ingestion in an infant
Fatal attraction: A case of multiple magnet ingestion in an infantFatal attraction: A case of multiple magnet ingestion in an infant
Fatal attraction: A case of multiple magnet ingestion in an infant
 
2010-07 HCC Vaccine lecture
2010-07 HCC Vaccine lecture2010-07 HCC Vaccine lecture
2010-07 HCC Vaccine lecture
 
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수
Diclectin in NVP, 44th 유럽기형학회보고 / 한정열 교수
 

Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

  • 1. Manganese  Exposure     1                         Neurodevelopmental  impacts  of  prenatal  drinking  water  exposure  to  manganese   and  other  metals  on  children   Jeronda  Scott  and  Melissa  Miller   Clark  University                  
  • 2. Manganese  Exposure     2     Neurodevelopmental  impacts  of  prenatal  drinking  water  exposure  to  manganese   and  other  metals  on  children     Jeronda  Scott  and  Melissa  Miller   Abstract   The  aim  of  this  paper  was  to  review  the  scientific  research  published  to  date  on  the   potential  effects  on  neurodevelopment  and  behavioral  disorders  in  children   exposed  to  manganese  and  other  metals  via  drinking  water  and  optimum   biomarkers  to  measure  exposure.  This  was  done  by  using  online  research  databases   such  as  Google  Scholar  and  PubMed,  etc.  It  was  found  that  there  is  an  association   between  exposure  to  manganese  and  neurodevelopmental  deficits  in  young   children,  and  that  there  are  large  gaps  in  the  body  of  research  that  must  be  done  to   better  understand  these  issues.  Improvements  to  exposure  limits  must  be  made.  We   hope  that  further  research  on  optimal  biomarkers,  such  as  dentine,  will  help  to   contribute  to  the  knowledge  of  negative  neurological  impacts  from  manganese   exposure.   1.  Introduction   Manganese  (Mn)  is  an  essential  nutrient  found  in  all  living  organisms  and  is   naturally  present  in  rocks,  soil,  water,  and  food  making  it  abundant  in  the   environment.  It  is  important  to  understand  its  potential  impacts  not  only  because  of   its  natural  abundance  but  also  because  it  is  a  recent  gasoline  additive  and  may  be   even  more  widespread  in  the  environment  in  the  future  (Schettler,  Solomon,  &  
  • 3. Manganese  Exposure     3   Valenti,  2000).  Mn  is  required  for  normal  amino  acid,  lipid,  protein,  and   carbohydrate  metabolism  (Erikson,Thompson,  &  Aschner,  2007)).  However,   overexposure  to  Mn  can  have  significant  neurotoxic  effects,  and  it  is  likely  that  there   is  a  greater  effect  on  fetuses,  newborns,  and  young  children.  Due  to  lack  of  research,   Mn  concentrations  in  drinking  water  are  not  currently  regulated  in  the  United   States.  Health  based  guidelines  for  the  maximum  level  of  Mn  in  drinking  water  have   been  established  by  the  EPA,  and  are  currently  set  at  300  µg/L  (U.S.  EPA  2004).   While  there  is  a  healthy  amount  of  research  analyzing  the  effects  of  postnatal  and   occupational  exposure  to  Mn,  there  is  a  lack  of  research  and  evidence  of  the  effects   of  Mn  exposure  on  a  more  vulnerable  group,  babies  in  utero  and  young  children.   The  Holliston  Health  Project  is  a  collaborative  initiative  to  examine  if   children  in  the  town  of  Holliston,  Massachusetts  are  being  exposed  to  detrimental   levels  of  chemicals,  and  if  this  exposure  is  leading  to  any  adverse  health  effects.  In   this  literature  review  we  closely  examine  Mn  and  other  heavy  metals  and  their   effects  on  children  from  in  utero  to  age  10.  The  purpose  of  this  literature  review  is  to   support  the  Holliston  Health  Project  by  providing  an  in-­‐depth  look  at  the  state  of   research  for  a  variety  of  chemicals  and  their  potential  impact  on   neurodevelopmental-­‐cognitive-­‐behavioral  outcomes  from  exposure  during   pregnancy,  and  biomarkers  that  can  be  used  to  measure  those  exposures.       2.  Background   2.1  Manganese  Metabolism  in  Children  
  • 4. Manganese  Exposure     4   Mn  is  crucial  to  bone  and  tissue  development  as  well  as  the  immune  system.   However,  there  are  many  correlations  between  excessive  postnatal  exposure  to  Mn   and  interference  with  normal  brain  development  (Wasserman  et  al.  2006,  Bouchart   et  al.  2010,  Khan  et  al.  2011).  Too  much  exposure  can  cause  Mn  to  accumulate  in  the   brain,  particularly  the  central  nervous  system,  leading  to  neurological  damage.  Since   Mn  is  an  essential  element,  it  stands  that  there  should  be  a  level  above  which   negative  impacts  will  occur.     Infants  and  young  children  face  higher  risks  from  exposure  to  metals  than   adults  because  adults  have  fully  developed  homeostatic  mechanisms  which  limit   absorption  of  ingested  metals.  Because  infants  and  young  children  have  not   completely  developed  these  mechanisms,  their  bodies  are  unable  to  correctly   process  these  metals,  and  retention  of  metals  is  higher  in  infants  than  in  adults.   According  to  Lönnerdal  (1994)  bile  flow  is  low  in  infants,  which  may  result  in  a   lower  excretion  of  Mn  via  bile,  causing  higher  retention  of  Mn  in  tissue.  Moreover,   certain  tissue  sites  have  a  high  affinity  for  Mn,  and  although  these  sites  are  saturated   in  adults,  they  strongly  retain  Mn  in  infants  (Ljung  &  Vahter,  2007).   There  is  an  increasing  body  of  evidence  that  internal  and  external  exposures   to  chemicals  and  metals  cause  a  variety  of  physiological  impacts  at  different   developmental  stages.  As  a  consequence,  windows  of  vulnerability  open  when   susceptibility  to  environmental  chemicals  is  heightened.  Therefore  it  is  crucial  to   look  at  the  timing  of  exposures  in  addition  to  levels  of  exposure.  The  prenatal  period   is  specifically  important  when  examining  critical  windows  of  exposure.  During  in   utero  development  and  early  childhood,  the  tissues  and  organs  of  the  body  undergo  
  • 5. Manganese  Exposure     5   stages  of  rapid  development,  during  which  toxic  exposure  or  nutrient  deficiency  can   lead  to  long-­‐term  effects.  (Andra,  Austin,  Wright,  &  Arora,  2015).   There  are  two  instances  of  rapid  brain  development  for  infants.  The  first  is   during  pregnancy,  and  the  second  occurs  several  months  after  birth.  The  fetus  is   especially  vulnerable  to  Mn  during  the  development  period  in  utero;  Mn  easily   crosses  the  placenta  through  active  transport  mechanisms,  where  it  results  in   increased  levels  in  fetal  circulation  (Andra  et  al.  2015).  Thus,  fetal  life  can  be   regarded  as  a  period  of  great  vulnerability  to  Mn,  even  at  low  environmental  levels.   Mn  specifically  targets  the  nervous  system,  and  for  a  developing  child,  this  can  mean   interruption  of  crucial  development  of  the  nervous  system  (Yu,  Zhang,  Yan,  &  Shen,   2014).   Since  the  central  nervous  system  develops  sequentially  and  are   interdependent,  any  interruption  in  the  fetal  development  may  lead  to  deficiencies   in  later  stages  of  development  (Rodríguez-­‐Barranco,  et  al.  2013).  Beginning  as  soon   as  the  second  week  of  gestation,  the  outer  layer  of  the  embryo  begins  to  fold  to   develop  the  neural  tube,  the  early  beginnings  of  the  brain.  After,  the  central  nervous   system  begins  to  develop,  creating  100  billion  nerve  cells  and  1  trillion  glial  cells,   which  must  undergo  a  slew  of  changes  and  formations  during  the  process  of   development  (Sanders  et  al.  2015).  Because  these  developments  are  successive,  a   reliable  and  effective  biomarker  provides  the  possibility  of  determining  when   exposure  occurred,  and  what  interruptions  took  place,  which  can  then  determine   how  these  interruptions  affect  neurological  development.  The  timing  of   environmental  exposures  is  incredibly  important;  the  time  at  which  the  child  is  
  • 6. Manganese  Exposure     6   exposed  to  the  metal  is  equally  important  as  the  level  of  exposure.  (Andra  et  al.   2015)     2.2  Manganese  Guidelines  for  Drinking  Water  Quality   The  current  United  States  health-­‐based  guideline  for  Mn  in  drinking  water  is   partly  based  on  debatable  assumptions,  without  deeper  research.  The  previous   guideline  value  of  500  µg/L  was  set  originally  in  1958  and  was  based  on  the  distinct   impairment  of  water  potability  by  excessive  Mn  concentrations  (WHO  2004).  Due  to   the  staining  properties  of  Mn,  the  guideline  value  was  lowered  to  100  µg/  in  the   World  Health  Organization’s  (WHO)  first  edition  guidelines  for  drinking  water   quality  (Ljung  et  al.  2007).  Various  countries  have  set  standards  for  Mn  of  0.05   mg/liter,  to  prevent  problems  with  discoloration  (WHO  2011).  At  concentrations   above  0.1mg/liter,Mn  gives  water  an  undesirable  taste  and  stains  plumbing  fixtures   and  laundry,  and  at  concentrations  as  low  as  0.02  mg/litre,  Mn  can  form  coatings  on   water  pipes  that  may  later  slough  off  as  a  black  precipitate  (U.S.  EPA.  2004).  Based   on  health  motives,  the  guideline  value  was  raised  to  500  µg/L  in  the  1993  second   edition  (WHO  2004).   Currently,  the  health-­‐based  guideline  value  for  Mn  in  water  is  in  the  United   States  400  µg/L.  It  is  based  on  an  estimated  no  observed  adverse  effect  level   (NOAEL)  for  Mn  in  food.  The  NOAEL  of  11  mg  of  Mn  a  day,  is  partly  based  on  a   review  by  Greger  (1998),  who  studied  adults  with  Western  diets.  The  current   guideline  value  for  drinking  water  is  likely  low  enough  to  protect  adolescents  and   adults  but  not  younger  children.  Mn  is  often  considered  one  of  the  least  toxic  metals  
  • 7. Manganese  Exposure     7   via  the  oral  route  due  to  homeostasis  mechanisms  in  the  body  that  limit   gastrointestinal  absorption.  However,  with  the  growing  evidence  of  neurotoxicity   through  oral  routes,  especially  in  infants  and  young  children,  the  guideline  needs  to   be  reevaluated.  Infant  formula  already  contains  high  levels  of  Mn  (300  µg/L  on   average,  but  ranging  between  66  and  856  µg/L,  depending  on  the  brand).  If  formula   is  prepared  with  water  containing  acceptable  levels  of  Mn  based  on  WHO  guidelines,   it  is  highly  possible  that  infants  will  receive  an  unacceptable  dose  of  Mn.(Ljung  et  al.   2007).   3.  Methods       To  understand  the  state  of  the  research,  papers  were  found  from  a  wide   variety  of  subjects  and  compared.  Research  was  compiled  from  PubMed  and  Google   Scholar  using  combinations  of  search  terms  such  as  “manganese”,  “in  utero   exposure”,  “prenatal  exposure”,  “drinking  water”,  “neurodevelopment”,   “neurotoxin”,  “co-­‐exposure”  and  so  on.  Additional  papers  were  also  found  through   citations  from  particularly  relevant  papers.     When  using  PubMed,  MeSH  terms  were  used  to  find  similar  papers  listed   under  the  same  topic.  MeSH  terms  that  were  particularly  useful  included   “pregnancy”  “manganese”  “drinking  water”  “neurodevelopment”  and   “women’s/children’s  health”.       Papers  that  were  selected  contained  material  that  demonstrated  relevance  to   our  research  question,  or  that  demonstrated  holes  in  the  current  state  of  research.     4.  Results   4.1  Biomarkers    
  • 8. Manganese  Exposure     8   A  biomarker  is  any  substance  or  metabolite  that  may  be  measured  in  the   body  to  estimate  external  exposure  levels  or  to  predict  the  potential  for  adverse   health  effects  or  disease.  There  is  a  great  need  for  an  effective  biomarker  to  analyze   health  impacts  from  prenatal  exposures,  but  they  are  often  difficult  to  find,  and  are   not  always  accurate;  no  specific  accurate  biomarker  for  Mn  has  been  determined.   Research  has  so  far  relied  on  urine,  umbilical  cord  blood  and  serum,  and  hair.  There   is  new  research  analyzing  the  usefulness  of  tooth  dentine,  which  shows  promise.   (Santamaria  2008,  Arora  et  al.  2015),   4.1.1Hair   Hair  is  a  common  biomarker  used  to  study  the  neurological  effects  of  Mn   contamination  on  young  children.  Using  hair,  Rodríguez-­‐Barranco  et  al.  (2013),   found  that,in  relation  to  Mn,  results  of  a  meta-­‐analysis  suggest  that  a  50%  increase   in  hair  levels  would  be  associated  with  a  0.7  IQ  decrease  of  children  aged  6-­‐13.   There  are  other  studies  that  have  found  an  association  with  adverse  health  effects   on  children  using  hair.  However,  hair  reflects  past  exposure  and  exposure  over  the   past  few  months,  and  with  age,  Mn  concentrations  decrease  in  hair.  Researchers   (Sanders,  Henn,  &  Wright  2015)  suggested  that  hair  is  not  a  reliable  biomarker  due   to  the  potential  for  external  Mn  exposures  that  may  affect  Mn  levels  in  hair,  limiting   its  use  as  an  indicator  of  internal  dose,  and  that  it  also  may  be  affected  by  the  degree   of  pigmentation.   4.1.2  Urine  and  Blood   A  large  portion  of  the  research  on  Mn  exposure  and  its  neurological  and   behavioral  effects  have  measured  Mn  in  blood  or  urine.  There  are  several  tests  
  • 9. Manganese  Exposure     9   available  that  can  measure  Mn  levels  in  whole  blood,  serum,  or  urine.  However,  Mn   is  naturally  present  in  the  body,  thus  some  Mn  is  always  found  in  these  fluids   (Santamaria  2008).  Both  blood  and  urine  have  relatively  short  half-­‐lives,  which   makes  them  more  indicative  of  recent  exposure,  rather  than  serving  as  a  marker  or   long-­‐term  or  chronic  exposure.  Due  to  high  variability  of  the  results,  they  cannot  be   considered  as  suitable  biomarkers  of  exposure  (Apostoli  2000).  This  is  in  agreement   with  Droz  (1993)  who,  on  the  basis  of  pharmacokinetic  modeling,  stated  that  for   half-­‐lives  below  10  h,  there  is  no  statistical  advantage  in  using  biological  monitoring.   According  to  Santamaria  (2008)  urinary  Mn  is  not  a  less  suitable  biomarker   because  it  is  primarily  excreted  in  the  bile,  and  only  approximately  1%  is  excreted  in   the  urine.  Blood  Mn  has  been  the  most  commonly  used  biomarker  of  exposure,  but   the  short  half-­‐life  of  Mn  in  blood  may  miss  periods  of  peak  exposure  and  Mn  is  also   not  reliable  in  blood  due  to  well-­‐regulated  by  homeostatic  mechanisms  in  adults   (Gunier  2013).  Change  in  dietary  intake  may  also  influence  blood  Mn  levels  which   may  invalidate  study  results  (Santamaria  2008).   Despite  urine  and  blood  not  being  ideal  biomarkers,  they  have  still  been   useful  in  contributing  to  the  increase  of  knowledge  of  Mn  exposure.  Many  studies   have  found  associations  using  urine  and  blood  as  biomarkers.  Yu  et  al.  (2014)   compared  levels  of  Mn  in  serum  from  umbilical  cord  blood  with  results  from   neonatal  behavioral  neurological  assessment  (NBNA).  They  found  that  high  Mn   levels  in  umbilical  cord  serum  were  correlated  with  poor  NBNA  performance.  Based   on  their  results,  they  determined  that  any  Mn  concentration  in  blood  over  50  ug/L  is  
  • 10. Manganese  Exposure     10   unsafe.  This  study  showed  that  prenatal  exposure  to  Mn  at  environmentally  relevant   level  was  significantly  and  negatively  associated  with  fetal  neurodevelopment.     4.1.3.  Dentine   It  is  widely  regarded  (Arora  et  al.,  Andra  et  al.,  Gunier  et  al.,  Hare  et  al.)  that,   despite  the  usefulness  of  urine,  umbilical  cord  blood,  and  hair,  there  is  a  need  to  find   a  more  effective  biomarker  for  Mn  exposure,  particularly  one  that  can  be  used   retrospectively.  In  determining  the  effects  of  Mn  exposure  in  utero,  it  is  important  to   find  a  reliable,  retrospective  biomarker  in  order  to  demonstrate  the  levels  of  Mn   exposure  during  development.                   The  biomarkers  that  have  been  extensively  used  thus  far  (hair,  blood,  and   urine)  tend  to  be  unreliable  and  variable,  and  their  accuracy  is  limited  (kasperson).   They  fail  to  provide  exposure  timing,  levels  of  cumulative  exposure,  and  lack  the   potential  to  provide  information  on  the  specific  source  (Andra  et  al.  2015).  Blood   has  been  used  quite  frequently,  but  may  not  be  the  most  reliable  measurement  tool   because  fully  matured  bodies  regulate  Mn  concentrations  effectively  and  the  half-­‐ life  of  Mn  is  brief.  Hair  has  also  been  useful,  but  can  easily  be  contaminated  by   external  environmental  factors.  For  these  reasons,  commonly  used  biomarkers  are   not  the  most  effective  measure  of  exposure.  (Gunier  et  al.  2013).   Dentine  in  baby  teeth  may  be  an  ideal  way  to  measure  in  utero  exposure  to  metals.   Unlike  other  the  biomarkers,  dentine  provides  exposure  data  that  is  comparable  to   data  from  a  longitudinal  study,  but  can  be  obtained  retroactively.  Dentine,  a  tissue  in   the  teeth,  begins  to  develop  as  early  as  the  second  trimester  (between  the  13th  and   19th  weeks  of  gestation),  and  then  enamel  and  dentine  begin  to  form  outward,  
  • 11. Manganese  Exposure     11   similarly  to  the  formation  of  growth  rings  on  trees  (Gunier  et  al.  2013).  Mn  is   absorbed  by  the  tissue  as  the  teeth  form.  Due  to  disturbances  caused  by  protein   matrix  deposition  during  birth,  the  teeth  form  a  neonatal  line,  and  that  line  can  be   used  to  distinguish  between  prenatal  and  postnatal  exposures.  Afterwards,  the  teeth   develop  daily  growth  lines,  which  create  an  image  of  daily  exposures  after  birth.   Measurements  of  Mn  exposures  from  this  point  until  almost  a  year  after  birth  can  be   taken,  which  can  be  used  to  characterize  both  prenatal  and  postnatal  exposures.   Analytical  technology  can  pinpoint  when  the  exposure  occurred,  and  how  much  of   the  exposure  was  incorporated  into  the  teeth  (Gunier  et  al.  2013,  Andra  et  al.  2015).   Both  Gunier  et  al.  and  Arora  et  al.  analyzed  the  usefulness  of  dentine  as  a  biomarker.   In  a  study  analyzing  the  distribution  of  Mn  in  primary  teeth,  Arora  et  al.  found  not   only  that  Mn  is  distributed  in  a  distinct  and  consistent  pattern,  but  also  that  Mn   leaves  a  distinct  high  concentration  area  in  the  prenatally  formed  dentine.  This   finding  suggests  that  deciduous  teeth  have  great  potential  as  a  useful  biomarker  for   prenatal  Mn  exposures  (Arora  et  al  2011).  Both  groups  used  laser-­‐ablation-­‐ inductively  coupled  plasma-­‐mass  spectrometry  (LA-­‐ICP-­‐MS)  to  analyze  Mn   exposures  through  deciduous  teeth.  Gunier  et  al.  found  that  their  findings  using  LA-­‐ ICP-­‐MS  were  correlated  with  their  estimates  of  prenatal  environmental  exposures  to   Mn.  LA-­‐ICP-­‐MS  allowed  them  to  retroactively  gain  a  characterization  of  exposure  as   it  occurred       In  the  study  conducted  by  Gunier  et  al.,  it  was  found  that  Mn  levels  in  teeth   were  higher  during  the  second  trimester  than  the  third,  which  conflicts  with   findings  from  previous  studies  using  cord  blood  as  a  biomarker  that  found  highest  
  • 12. Manganese  Exposure     12   levels  near  the  end  of  pregnancy.  Dentine  reflects  direct  exposure  to  Mn,  and  while   there  are  fluctuations  in  Mn  concentrations  in  blood  during  pregnancy,  there  is  no   known  instability  in  tooth  mineralization.  This  pattern  found  by  Gunier  et  al.   suggests  that  fetal  uptake  of  Mn  in  the  second  trimester  is  higher  than  in  later  stages   of  pregnancy,  and  that  dentine  is  a  more  effective  measure  of  this  uptake.       Arora  et  al.  found  similar  results;  they  found  that  the  cord  blood  levels  of  Mn  were   significantly  positively  correlated  with  the  Mn  concentrations  in  dentine  adjacent  to   the  neonatal  line,  suggesting  that  dentine  is  an  effective  biomarker.  At  other  points   in  the  neonatal  line,  however,  there  is  not  an  association.  This  is  not  surprising;   deposits  of  Mn  in  dentine  are  a  direct  reflection  of  the  exposure,  while  cord  blood  is   only  a  direct  reflection  of  Mn  levels  in  the  fetus  at  the  time  of  birth.  Blood  Mn  can   vary  during  pregnancy,  and  has  a  half-­‐life  of  approximately  four  days.  (Arora  et  al.   2013).   Gunier  et  al.  also  argues  that  previous  studies  measuring  Mn  exposures  with   enamel  instead  of  dentine  (Ericson  et  al.  2007)  are  less  effective  at  determining  the   timing  of  exposure  than  dentine  because  of  differences  in  formation;  dentine  is   mineralized  immediately  to  its  almost  final  stage,  while  enamel  is  mineralized   slowly  throughout  development  (Arora  et  al.  2013).  Arora  et  al.  agrees,  because   most  metals  being  incorporated  into  the  tooth  are  absorbed  after  all  of  the  enamel   matrix  is  formed  in  the  tooth,  and  therefore,  enamel  cannot  be  used  to  determine   the  timing  of  exposure.  More  research  should  be  conducted  to  analyze  the   differences  and  advantages  in  these  two  tissues  as  biomarkers    
  • 13. Manganese  Exposure     13     4.2  Effects  from  Exposure  through  Drinking  Water              Approximately  20%  of  drinking  water,  both  public  and  individual,  is  sourced   from  groundwater,  and  50%  of  United  States  citizens  receive  their  drinking  water   from  a  groundwater  source.  It  has  recently  been  recognized  that  groundwater  is   susceptible  to  contamination,  particularly  from  organic  chemicals  that  result  from   agricultural  activities  (Safe  Drinking  Water).  Mn  is  also  commonly  found  in   groundwater  because  of  the  weathering  and  leaching  of  rocks  or  minerals,  which   release  Mn  into  aquifers.  Although  there  is  currently  no  public  policy  regulating   drinking  water  concentrations  of  Mn,  the  EPA  has  released  a  health  advisory  for  its   adverse  neurological  effects  associated  with  oral  ingestion  and  has  set  a  health-­‐ based  guideline  of  300  µg/L  (EPA  2004).  The  World  Health  Organization  has  set  its   own  guideline  as  400  µg/L,  slightly  higher  than  the  EPA  (WHO  2008).   Approximately  45%  of  wells  for  public  use  in  New  England  have  drinking  water   concentrations  of  Mn  greater  than  30  µg/L,  and  nationally,  and  close  to  5%  of   household  wells  in  the  United  States  have  concentrations  of  Mn  greater  than  300   µg/L  (Groschen  et  al.  2009,  U.S.  Geological  Survey  2009).                   The  neurodevelopmental  and  behavioral  effects  of  children’s  exposure  to  Mn   in  drinking  water  are  varied,  but  well  established.  Water  Mn  has  been  significantly   negatively  associated  with  academic  performance  in  several  studies;  Zhang  et  al.   (1995)  found  children  with  elevated  hair  concentrations  of  Mn  had  poorer  school   records  than  their  peers,  and  performed  more  poorly  on  mathematics  and  language   tests,  while  Khan  et  al.  (2011)  found  that  concentrations  of  Mn  over  400  µg/L  were  
  • 14. Manganese  Exposure     14   significantly  negatively  associated  with  poor  performance  on  math  exams,  but  not   on  language  exams.  In  another  study,  it  was  found  that  children  exposed  to  water   with  high  Mn  concentrations  had  a  6.2  full  scale  IQ  point  difference  than  other   children  who  had  not  been  exposed  (Bouchard  et  al.  2010)3.  Wasserman  et  al.   (2006)  studied  an  area  in  which  80%  of  the  wells  in  the  study  area  had  Mn  levels   over  400  µg/L,  with  the  average  concentration  being  795  µg/L.  Children  exposed  to   the  contaminated  drinking  water  in  this  area  had  significantly  lower  Full-­‐Scale,   Performance,  and  Verbal  raw  scores  on  the  Wechsler  Intelligence  Scale  for  Children.   A  separate  study  analyzing  the  effects  on  IQ  found  that,  with  a  median  water   concentration  of  Mn  of  34  µg/L,  there  was  a  significant  negative  association   between  IQ  and  exposure  to  Mn  (Bouchard  et  al.  2011).                   He  et  al.  (1994)  tested  neurobehavioral  behaviors  of  92  children  aged  11-­‐13   who  lived  in  an  area  with  high  levels  of  Mn  in  sewage  irrigation  and  a  control  area.   The  area  with  sewage  irrigation  had  significantly  higher  levels  of  Mn  in  the  drinking   water  during  the  study  period,  and  the  children  in  that  area  had  significantly  higher   concentrations  of  Mn  in  their  hair.  Mn  levels  in  hair  correlated  negatively  with   performance  on  a  number  of  neurobehavioral  tests.  The  concentrations  of  Mn  in  the   drinking  water  in  the  control  group  were  30-­‐40  ug/L,  while  the  sewage  irrigation   group  had  levels  between  240-­‐350  ug/L.                   It  is  also  suggested  that  Mn  exposure  has  an  inverted  U-­‐shaped  association   with  Mn  levels  and  blood  and  neurodevelopment,  suggesting  that  both  low  and  high   levels  can  be  detrimental  to  development  (Claus  Henn  et  al.  2010).  
  • 15. Manganese  Exposure     15                   There  is  a  small  but  notable  body  of  literature  studying  the  effects  of  prenatal   exposure  to  Mn  in  drinking  water,  and  the  consequential  effects  on  the   neurodevelopment  of  the  child  through  early  childhood.  Gunier  et  al.  (2015)  and   Chung  et  al.  (2011)  enlisted  a  cohort  of  pregnant  women,  and  followed  their   children  as  they  grew  older  to  study  neurodevelopmental  effects.  Both  Gunier  et  al.   and  Chung  et  al.  found  that  there  were  significant  deficiencies  in  motor  development   related  to  exposure  to  water  Mn,,  and  while  Gunier  et  al.  found  additional   deficiencies  in  mental  development,  Chung  et  al.  did  not.  Also,  Gunier  et  al.  found   that  there  was  a  significant  relationship  between  prenatal  Mn  levels  and  6-­‐month   mental  and  motor  development  for  children  born  to  mothers  with  low   concentrations  of  hemoglobin,  and  therefore  lower  iron  levels,  during  pregnancy.                   Children  in  a  study  in  Bangladesh  were  found  to  be  significantly  more  likely   to  display  aggressive  behaviors  at  age  10  after  prenatal  Mn  exposure  from  drinking   water.  As  with  Gunier  et  al.’s  findings,  results  from  this  study  also  showed  that  there   was  a  tendency  for  lower  IQ  in  girls  who  were  born  to  mothers  with  low  iron  levels.                   The  finding  that  prenatal  Mn  exposure  can  lead  to  behavioral  effects  in   childhood  is  supported  by  Ericson  et  al.  (2007)  who,  although  the  source  of  Mn  is   unknown,  found  that  there  is  an  association  between  Mn  deposits  in  tooth  enamel   and  behavioral  outcomes  in  childhood.  Levels  of  Mn  from  the  20th  week  of  pregnancy   were  significantly  and  positively  associated  with  measures  of  behavioral   disinhibition.           4.3  Risks  from  Metals  
  • 16. Manganese  Exposure     16   4.3.1  Lead   Lead  can  be  present  in  drinking  water  delivered  through  lead  pipes  or  pipes   joined  with  lead  solder  may  contain  lead.  Unlike  other  heavy  metals,  there  is   extensive  research  that  address  leads  adverse  health  effects  in  humans  and  early   life.  In  utero  exposure  to  lead  was  adversely  associated  with  cognitive  and  social   development  (Kim  2009,  Claus  Henn  2011,  WHO  2014).  There  is  no  known  level  of   lead  exposure  that  is  considered  safe   Young  children  in  particular  are  vulnerable  to  the  toxic  effects  of  lead  and   can  suffer  profound,  permanent  adverse  health  effects,  mainly  affecting  the   development  of  the  brain  and  nervous  system.  Pregnant  women  exposed  to  high   levels  of  lead  can  be  subject  to  miscarriage,  stillbirth,  premature  birth  and  low  birth   weight,  as  well  as  minor  malformations.  Young  children  are  specifically  vulnerable   because  they  absorb  4  -­‐  5  times  as  much  ingested  lead  as  adults  from  a  given  source   (WHO,  2004).  Strong  evidence  suggests  that  lead  exposure  also  leads  to  subtle   neurological  effects,  developmental  delays,  and  behavioral  abnormalities  in   otherwise  normal-­‐appearing  children.  (Schettler  et  al.  2000).  In  addition,  Wright  &   Baccarelli  (2009)  establish  that  co-­‐exposure  to  Mn  and  lead  may  decrease   spontaneous  motor  activity  and  learning  ability  in  rats  as  compared  with  exposure   to  only  one  of  these  metals,  which  may  cause  damage  to  brain  development  during   pre-­‐  and  post-­‐natal  life.   4.3.2.  Arsenic   Arsenic  is  naturally  present  at  high  levels  in  groundwater  of  numerous   countries.  There  has  been  a  number  of  research  done  on  Arsenic  showing  that,  
  • 17. Manganese  Exposure     17   water  contaminated  with  high  levels  of  Arsenic  and  used  for  drinking,  food   preparation  and  irrigation  of  food  crops  poses  a  great  threat  to  public  health.   Arsenic  exposure  affects  almost  every  organ  system  in  the  body  including  the  brain.   Still,  there  is  limited  studies  on  the  effect  of  exposure  in  early  life.   In  lab  animals,  it  has  been  found  that  high  exposure  of  Arsenic  causes   malformations.  In  addition,  some  studies  suggest  that  arsenic  exposure  may  lead  to   spontaneous  abortion  and  stillbirth  and  may  affect  neurological  development,   particularly  the  development  of  hearing  (Schettler  et  al.  2000).  Drinking  water  is   one  of  the  main  pathways  of  arsenic  ingestion.  It  has  been  well  established  that   arsenic  exposure  negatively  correlates  with  neurodevelopment.  Studies  have  found   that  lowered  IQ  is  one  of  the  most  commonly  reported  significant  effect  (Tyler  &   Allan,  2014).  Results  of  meta-­‐analysis  show  that  for  every  50%  increase  in  arsenic   levels,  there  could  be  a  0.5  decrease  in  the  IQ  of  children  aged  5-­‐15  years   (Rodríguez-­‐Barranco  et  al.  2013).   4.3.3.Trichloroethylene  (TCE)                        There  is  a  wide  body  of  evidence  suggesting  connections  between  exposure  to   TCE  contamination  of  drinking  water  during  pregnancy  and  the  development  of   congenital  heart  defects  (Forand  et  al.  2011,  Watson  et  al.  2005).  In  a  study  in   Endicott,  New  York,  which  experienced  a  massive  chemical  spill  in  1979,  that   contaminated  the  drinking  water  supply  with  TCE,  44  children  that  lived  in  the  area   of  analysis  were  born  with  at  least  one  birth  defect  between  1983  and  2000,   including  cardiac  birth  defects.  The  increase  in  cardiac  defects  in  children  was   significant.  (Forand  et  al.  2011).  
  • 18. Manganese  Exposure     18                   Additionally,  there  is  a  building  body  of  evidence  that  prenatal  exposure  to   TCE  impairs  neurodevelopment,  and  it  has  been  studied  well  in  rodents.  Noland-­‐ Gerbec  et  al.  described  altered  brain  chemistry  in  the  offspring  of  rats  exposed  to   TCE  during  pregnancy,  and  another  study  found  that  prenatal  exposure  to  TCE   caused  increased  exploratory  and  locomotive  behaviors  in  rats  (Taylor,  et  al.  1985).   A  similar  study  found  that  maternal  ingestion  of  TCE  through  drinking  water  during   pregnancy  resulted  in  altered  social  behaviors,  particularly  autism-­‐like  social   behaviors  and  increased  aggression  in  male  mice  (Blossom  2008).                   In  humans,  exposures  to  TCE  in  water  during  pregnancy  have  been  linked  to   developmental  impacts  in  children.  In  1979,  4,100  gallons  of  1,1,1,-­‐TCE  spilled  at  a   manufacturing  facility  in  Endicott,  New  York.  The  next  year,  groundwater  samples   revealed  a  large  amount  of  contamination  of  both  TCE  and  tetrachloroethylene,   along  with  a  number  of  other  volatile  organic  contaminants  in  addition  to   contaminants  from  previous  spills  and  incidents.    Populations  were  exposed  to  the   contamination  through  soil  vapor  intrusion  (SVI),  where  volatized  contaminants   rose  through  air  pockets  in  soil  into  nearby  building  structures.  It  was  found  that   women  living  in  areas  with  risk  of  exposure  to  TCE  from  SVI  experienced  low  birth   weight  (LBW)  or  were  small  for  gestational  age  (SGA),  possibly  as  a  result  of  growth   restriction  in  utero.  Similar  results  of  LBW  were  found  in  northern  New  Jersey  and   Tuscon,  Arizona,  both  of  which  also  had  groundwater  contaminated  with  TCE  (Bove   et  al.  1995,  Rodenbeck  et  al.  2000).  In  addition,  SGA  was  significantly  more   prevalent  in  a  retrospective  study  of  Woburn,  Massachusetts,  when  mothers  had   been  exposed  to  TCE  contaminated  drinking  water  (MDPH,  CDC,  and  MHRI  1996).  
  • 19. Manganese  Exposure     19                   Analysis  of  the  public  drinking  water  contamination  in  New  Jersey  also   correlated  prenatal  trichloroethylene  exposure  with  a  number  of  adverse  effects   including  defects  in  the  central  nervous  system  and  neural  tube  development,  and   oral  clefts  (Bove  et  al.  1995).                   There  is  still  limited  information  on  the  effects  of  TCE  exposure  during   pregnancy  on  neurological  development.     4.3.4Cadmium     Cadmium  is  a  scarce  element,  but  is  seventh  in  the  Agency  for  Toxic   Substances  and  Disease  Registry’s  list  of  elements  that  create  the  most  significant   risks  for  human  health  and  the  environment.  In  addition  to  its  neurological   impairment,  cadmium  is  toxic  to  the  digestive  system,  kidneys,  lungs  and  liver.  Only   four  studies  have  been  undertaken  to  study  the  neurodevelopmental  effects  of   cadmium  exposure  in  utero  (Cao  et  al.  2009,  Tian  et  al.  2009,  Wright  et  al.  2006,   Torrente  et  al.  2005).  Only  one  of  the  studies  (Tian  et  al.  2009)  found  significant   results;  they  found  that  children  with  higher  blood  levels  of  cadmium  at  birth  scored   lower  on  Full-­‐Score  and  Performance  IQ  tests  at  four  years  of  age.  Both  Bao  et  al.   (2009)  and  Yousef  et  al.  (2011)  studied  the  behavioral  effects  of  prenatal  exposure,   but  only  Bao  et  al.  found  that  children  with  higher  levels  of  cadmium  in  their  hair   experienced  more  social  and  attention  problems.  Yousef  et  al.  found  that  there  was   no  significant  relationship  between  cadmium  exposure  and  ADHD.  The  information   on  cadmium  exposure  and  its  neurological  effects  is  conflicting  and  extremely   limited,  leaving  a  wide  gap  in  the  knowledge  of  understanding  the  effects  of  metals   on  neurological  development.    
  • 20. Manganese  Exposure     20     4.3.5.  Co  exposure                        Co-­‐exposure  to  multiple  neurotoxins  may  increase  their  toxicity,  but  few   studies  have  investigated  the  interactions  between  multiple  metals.  There  have   been  a  handful  of  studies  analyzing  the  interactions  between  lead  and  Mn,  all  of   which  conclude  that  the  combined  neurological  effects  are  greater  than  the  effects  a   single  exposure  would  cause.  It  is  important  to  acknowledge  the  potential  for   adverse  outcomes  from  co-­‐exposure  during  early  childhood  because  of  the   particularly  vulnerable  developmental  periods.  Lead  and  Mn  co-­‐exposure  may  cause   a  significant  risk  as  increased  levels  of  Mn  in  the  brain  may  cause  the  brain  to   produce  lead-­‐binding  proteins,  increasing  the  exposure  to  lead.  Animal  studies  have   shown  that  co-­‐exposure  to  Mn  and  lead  may  decrease  spontaneous  motor  activity   and  learning  ability  more  compared  with  exposure  to  only  one  of  these  metals,   which  may  impair  both  pre-­‐  and  post-­‐natal  neurodevelopment.  (Wright  2009)                   Kim  et  al.  (2009)  found  an  association  between  co-­‐exposure  to  lead  and  Mn   and  intelligence  in  school-­‐aged  children.  Findings  indicated  that  in  utero  co-­‐ exposure  to  environmental  Mn  and  lead  were  adversely  related  to   neurodevelopment  in  2  year-­‐old  children,  and  reported  significant  negative   associations  between  lead  and  Mn  levels  and  full-­‐scale  and  verbal  IQ.  These  results   are  similar  to  those  found  by  Henn  et  al.  (2008),  who  observed  that  joint  exposure   to  both  lead  and  Mn  were  correlated  with  mental  and  psychomotor  deficits.  These   were  higher  than  the  estimated  deficits  for  individual  lead  or  Mn  exposure.     5.  Discussion  
  • 21. Manganese  Exposure     21                   The  body  of  literature  on  Mn  exposure  through  drinking  water  reveals  many   things  about  what  we  do  and  do  not  know.  We  know  that  there  are  associated   neurological  deficiencies  and  behavioral  changes  that  can  arise  from  possibly  even   low  level  exposures.  While  these  findings  are  important,  and  can  be  applied  to   public  policy  to  better  protect  pregnant  women  and  young  children,  they  also  shine   a  light  on  the  gaping  holes  in  the  research  that  need  to  be  addressed  for  us  to  better   understand  the  true  neurodevelopmental  impacts  associated  with  Mn  exposure.                   The  results  from  these  studies  found  negative  impacts  associated  with  the   exposure  of  children  to  Mn,  but  they  all  had  different  methods  of  doing  so.  Different   neurological  tests  were  administered,  different  levels  of  exposures  were  measured,   and  different  biomarkers  were  used.  Consequently,  these  studies  have  found  a  slew   of  different  impacts,  ranging  in  type  and  severity.                   The  lack  of  a  consistent  biomarker  is  another  factor  that  needs  to  be   addressed  to  better  understand  the  complex  issue  of  Mn  exposure.  Many  studies   that  have  been  conducted,  and  that  are  discussed  here,  use  hair  or  blood  to  measure   exposures.  These  biomarkers  are  highly  variable  and,  ultimately,  may  not  be  an   accurate  reflection  of  Mn  exposures.  Tooth  dentine  shows  a  great  amount  of   promise  to  overcome  the  shortcomings  of  biomarkers,  but  the  evidence  of  its  use   and  effectiveness  is  extremely  limited.  The  lack  of  a  consistent  and  accurate   biomarker  is  a  possible  contributor  to  why  there  are  still  no  concrete  answers  to  the   effects  of  prenatal  Mn  exposure.                   There  is  an  incredibly  limited  amount  of  research  done  on  the  effects  of   drinking  water  Mn  concentrations  on  prenatal  and  early  childhood  
  • 22. Manganese  Exposure     22   neurodevelopment.  The  scientific  community  has,  in  multiple  papers,  acknowledged   that  this  is  an  extremely  vulnerable  population  and  an  area  of  research  that  needs  to   be  addressed.  Based  on  the  conclusions  that  children  are  incredibly  vulnerable   during  rapid  stages  of  prenatal  development,  and  that  Mn  is  a  commonly  known   toxicant  that  is  known  to  have  significant  negative  effects  in  school-­‐age  children,  it   leads  one  to  believe  that  there  is  a  notable  risk  for  prenatal  Mn  exposure,   particularly  through  drinking  water.  Despite  this,  there  is  not  a  significant  body  of   research  to  support  this  line  of  thinking.                   It  was  also  found  that  there  are  significant  negative  effects  associated  with   prenatal  exposures  to  other  metals.  Lead  is  well  established  in  this  sense,  and  there   is  a  lot  of  evidence  finding  that  there  are  significant  and  extremely  harmful  effects   from  prenatal  exposures  to  lead.  Arsenic,  Cadmium,  and  Trichloroethylene  are  all   also  acknowledged  as  being  extremely  toxic,  but  their  effects  on  prenatal   development  are  less  established.  Cadmium  is  best  associated  with  attention   disorders,  and  Arsenic  has  been  found  to  produce  lower  IQ,  and  TCE  is  linked  to   congenital  heart  defects  and  low  birth  weight.  Coexposures  can  cause  an  even  more   significant  effect  than  individual  exposures,  and  draws  attention  to  the  fact  that   there  are  a  large  amount  of  metals  and  chemicals  that  likely  have  negative  impacts   on  prenatal  or  early  childhood  development,  but  are  not  yet  understood.                   Based  on  these  findings,  and  on  the  fact  that  neurodevelopmental  deficits  can   occur  from  such  low  exposures  to  metals,  particularly  Mn,  it  is  clear  that  the   measures  set  out  by  the  United  States  government  are  not  enough  to  adequately   protect  the  public.  Although  there  is  a  health  advisory  for  Mn,  it  is  not  considered  to  
  • 23. Manganese  Exposure     23   be  enough  of  a  risk  for  the  EPA  to  make  an  enforceable  limit  on  it.  The  WHO  has  a   tighter  guideline  for  an  acceptable  level  of  exposure  to  Mn  from  drinking  water  than   the  EPA  does,  and  the  exposures  in  a  number  of  the  studies  that  caused  significant   negative  cognitive  defects  in  children  occurred  from  exposures  that  were  even   lower  than  either  of  these  guidelines.  The  guidelines  for  Mn  have  not  been  updated   since  2004,  and  need  to  be  re-­‐evaluated,  taking  into  account  this  new  research,  and   initiating  further  research  to  more  fully  understand  the  health  risks  that  are  faced   by  children  through  such  high  exposures  to  Mn.       6.  Conclusions   In  the  United  States,  approximately  6%  of  domestic  household  wells  have  Mn   concentrations  exceeding  300  µg  Mn/L,  which  is  the  current  EPA  lifetime  health   advisory  level  (Wasserman  et  al.  2006).  In  New  England,  45%  of  wells  for  public  use   have  Mn  concentrations  greater  than  30  µg/L.  According  to  a  2009  report  by  the  U.S.   Geological  Survey,  approximately  5%  of  domestic  household  wells  in  the  United   States  have  Mn  concentrations  greater  than  300  µg/L.  (U.S.  Geological  Survey  2009).   This  indicates  that  some  children  in  the  U.S.  are  at  risk  for  Mn-­‐induced  neurotoxicity   due  to  drinking  water  exposure.   Too  much  exposure  can  cause  Mn  to  accumulate  in  the  brain,  in  particular   the  central  nervous  system,  leading  to  neurological  damage  and  long-­‐term  effects.   Mn  retention  is  higher  in  infants  than  in  adults  meaning  Infants  and  young  children   face  higher  risks  from  exposure  to  heavy  metals  than  adults  due  to  underdeveloped   homeostasis  system  that  limit  the  absorption  of  Mn  ingested.  The  time  at  which  the  
  • 24. Manganese  Exposure     24   child  is  exposed  to  the  metal  has  been  shown  to  be  equally  important  as  the  level  of   exposure  (Andra  et  al.  2015).  Our  current  health-­‐based  guideline  value  for  Mn  of   400  µg/L  in  drinking  water  is  based  partly  on  debatable  assumptions.  This  value  for   drinking  water  may  be  low  enough  to  protect  adolescents  and  adults,  but  not   younger  children.   Biomarkers  are  used  to  measure  to  estimate  external  exposure  levels  in  the   body,  to  date,  blood,  hair,  urine,  and  dentine  from  primary  teeth  have  been  used.   They’ve  contributed  to  our  increasing  body  of  knowledge  about  Mn  neurotoxicity.   However,  blood,  urine,  and  hair  have  been  found  to  be  unreliable  or  not  ideal   biomarkers.  They  fail  to  provide  exposure  timing,  levels  of  cumulative  exposure,  and   lack  the  potential  to  provide  information  on  the  specific  source  (Andra  et  al.  2015).   New  research  is  emerging  using  dentine  as  an  ideal  biomarker  to  measure  Mn   exposure,  and  it  is  showing  great  promise.  Dentine  reflects  direct  exposure  to  Mn   and  there  is  no  known  instability  in  tooth  mineralization.  There  is  a  growing  body  of   research  showing  an  association  between  Mn  exposure  and  its  neurological  effects   on  children.  Further  research  needs  to  be  done  on  optimum  biomarker  such  as   dentine,  measuring  exposure  limits  to  set  new  guidelines  to  protect  the  public  and   children  from  the  long  terms  effects  of  Mn  exposure.                  
  • 25. Manganese  Exposure     25   References   Andra,  S.  S.,  Austin,  C.,  Wright,  R.  O.,  &  Arora,  M.  (2015).  Reconstructing  pre-­‐natal  and  early   childhood  exposure  to  multi-­‐class  organic  chemicals  using  teeth:  Towards  a   retrospective  temporal  exposome.  Environment  international,  83,  137-­‐145.     Apostoli,  P.,  Lucchini,  R.,  &  Alessio,  L.  (2000).  Are  current  biomarkers  suitable  for  the   assessment  of  manganese  exposure  in  individual  workers?.  American  journal  of   industrial  medicine,  37(3),  283-­‐290.     Arora,  M.,  Hare,  D.,  Austin,  C.,  Smith,  D.  R.,  &  Doble,  P.  (2011).  Spatial  distribution  of   manganese  in  enamel  and  coronal  dentine  of  human  primary  teeth.  Science  of  the   Total  Environment,  409(7),  1315-­‐1319.     Bao,  Q.  S.,  Lu,  C.  Y.,  Song,  H.,  Wang,  M.,  Ling,  W.,  Chen,  W.  Q.,  ...  &  Rao,  S.  (2009).  Behavioural   development  of  school-­‐aged  children  who  live  around  a  multi-­‐metal  sulphide  mine   in  Guangdong  province,  China:  a  cross-­‐sectional  study.  BMC  Public  Health,  9(1),  217.     Bouchard,  M.  F.,  Sauvé,  S.,  Barbeau,  B.,  Legrand,  M.,  Brodeur,  M.  È.,  Bouffard,  T.,  ...  &  Mergler,   D.  (2010).  Intellectual  impairment  in  school-­‐age  children  exposed  to  manganese   from  drinking  water.  Environmental  health  perspectives,  119(1),  138-­‐143.     Blossom,  S.  J.,  Doss,  J.  C.,  Hennings,  L.  J.,  Jernigan,  S.,  Melnyk,  S.,  &  James,  S.  J.  (2008).   Developmental  exposure  to  trichloroethylene  promotes  CD4+  T  cell  differentiation   and  hyperactivity  in  association  with  oxidative  stress  and  neurobehavioral  deficits   in  MRL+/+  mice.  Toxicology  and  applied  pharmacology,  231(3),  344-­‐353.     Bove,  F.  J.,  Fulcomer,  M.  C.,  Klotz,  J.  B.,  Esmart,  J.,  Dufficy,  E.  M.,  &  Savrin,  J.  E.  (1995).  Public   drinking  water  contamination  and  birth  outcomes.American  Journal  of  Epidemiology,   141(9),  850-­‐862.     Cao,  Y.,  Chen,  A.,  Radcliffe,  J.,  Dietrich,  K.  N.,  Jones,  R.  L.,  Caldwell,  K.,  &  Rogan,  W.  J.  (2009).   Postnatal  cadmium  exposure,  neurodevelopment,  and  blood  pressure  in  children  at   2,  5,  and  7  years  of  age.  Environ  Health  Perspect,  117(10),  1580-­‐1586.   Chung,  S.  E.,  Park,  H.,  Chang,  N.  S.,  Oh,  S.  Y.,  Cheong,  H.  K.,  Ha,  E.  H.,  ...  &  Hong,  Y.  C.  (2011).   Effect  of  in  utero  exposure  to  manganese  on  the  neurodevelopment  of  the  infant.   Epidemiology,  22(1),  S70.   Droz  P.  1993.  Pharmacokinetic  modeling  as  a  tool  for  biological  monitoring.  Int  Arch  Occup   Environ  Health  65:S53±S59.   Ericson,  J.  E.,  Crinella,  F.  M.,  Clarke-­‐Stewart,  K.  A.,  Allhusen,  V.  D.,  Chan,  T.,  &  Robertson,  R.  T.   (2007).  Prenatal  manganese  levels  linked  to  childhood  behavioral  disinhibition.   Neurotoxicology  and  teratology,  29(2),  181-­‐187.  
  • 26. Manganese  Exposure     26   Erikson, K. M., Thompson, K., Aschner, J., & Aschner, M. (2007). Manganese neurotoxicity: a focus on the neonate. Pharmacology & therapeutics, 113(2), 369- 377.   Forand,  S.  P.,  Lewis-­‐Michl,  E.  L.,  &  Gomez,  M.  I.  (2011).  Adverse  birth  outcomes  and   maternal  exposure  to  trichloroethylene  and  tetrachloroethylene  through  soil  vapor   intrusion  in  New  York  State.  Environmental  health  perspectives,  120(4),  616-­‐621.     Gunier,  R.  B.,  Bradman,  A.,  Jerrett,  M.,  Smith,  D.  R.,  Harley,  K.  G.,  Austin,  C.,  ...  &  Eskenazi,  B.   (2013).  Determinants  of  manganese  in  prenatal  dentin  of  shed  teeth  from   CHAMACOS  children  living  in  an  agricultural  community.  Environmental  science  &   technology,  47(19),  11249-­‐11257     Greger,  J.  L.  (1998).  Nutrition  versus  toxicology  of  manganese  in  humans:  evaluation  of   potential  biomarkers.  Neurotoxicology,  20(2-­‐3),  205-­‐212.     He,  P.,  Liu,  D.  H.,  &  Zhang,  G.  Q.  (1994).  [Effects  of  high-­‐level-­‐manganese  sewage  irrigation   on  children's  neurobehavior].  Zhonghua  yu  fang  yi  xue  za  zhi  [Chinese  journal  of   preventive  medicine],  28(4),  216-­‐218.     Henn,  B.  C.,  Ettinger,  A.  S.,  Schwartz,  J.,  Téllez-­‐Rojo,  M.  M.,  Lamadrid-­‐Figueroa,  H.,   Hernández-­‐Avila,  M.,  ...  &  Wright,  R.  O.  (2010).  Early  postnatal  blood  manganese   levels  and  children’s  neurodevelopment.  Epidemiology  (Cambridge,  Mass.),  21(4),   433.     Henn,  B.  C.,  Schnaas,  L.,  Lamadrid-­‐Figueroa,  H.,  Hernández-­‐Avila,  M.,  Hu,  H.,  Téllez-­‐Rojo,  M.   M.,  ...  &  Wright,  R.  O.  (2011).  Associations  of  early  childhood  manganese  and  lead   coexposure  with  neurodevelopment.     Kim,  Y.,  Kim,  B.  N.,  Hong,  Y.  C.,  Shin,  M.  S.,  Yoo,  H.  J.,  Kim,  J.  W.,  ...  &  Cho,  S.  C.  (2009).  Co-­‐ exposure  to  environmental  lead  and  manganese  affects  the  intelligence  of  school-­‐ aged  children.  Neurotoxicology,  30(4),  564-­‐571.     Ljung,  K.,  &  Vahter,  M.  (2007).  Time  to  re-­‐evaluate  the  guideline  value  for  manganese  in   drinking  water?.  Environmental  health  perspectives,  1533-­‐1538.     Lönnerdal B. (1994). Manganese nutrition of infants. In: Klimis-Tavantzis DJ, editor. Manganese in Health and Disease. Boca Raton, FL: CRC Press. pp. 176–191.     MDPH  (Massachusetts  Department  of  Public  Health),  CDC  (Centers  for  Disease  Control  and   Prevention),  and  MHRI  (Massachusetts  Health  Research  Institute).  1996.  Final   Report  of  the  Woburn  Environmental  and  Birth  Study.  Cambridge,   MA:Massachusetts  Department  of  Public  Health.     Noland-­‐Gerbec,  E.  A.,  Pfohl,  R.  J.,  Taylor,  D.  H.,  &  Bull,  R.  J.  (1985).  2-­‐Deoxyglucose  uptake  in   the  developing  rat  brain  upon  pre-­‐and  postnatal  exposure  to  trichloroethylene.   Neurotoxicology,  7(3),  157-­‐164.    
  • 27. Manganese  Exposure     27   Rahman,  S.  M.  (2015).  Elevated  drinking  water  manganese  and  fetal  and  child  health  and   development.     Rodenbeck  SE,  Sanderson  LM,  Rene  A.  2000.  Maternal  expo-­‐  sure  to  trichloroethylene  in   drinking  water  and  birth-­‐  weight  outcomes.  Arch  Environ  Health  55(3):188–194.     Rodríguez-­‐Barranco,  M.,  Lacasaña,  M.,  Aguilar-­‐Garduño,  C.,  Alguacil,  J.,  Gil,  F.,  González-­‐ Alzaga,  B.,  &  Rojas-­‐García,  A.  (2013).  Association  of  arsenic,  cadmium  and   manganese  exposure  with  neurodevelopment  and  behavioural  disorders  in   children:  a  systematic  review  and  meta-­‐analysis.Science  of  the  total  environment,   454,  562-­‐577.     Sanders,  A.  P.,  Henn,  B.  C.,  &  Wright,  R.  O.  (2015).  Perinatal  and  Childhood  Exposure  to   Cadmium,  Manganese,  and  Metal  Mixtures  and  Effects  on  Cognition  and  Behavior:  A   Review  of  Recent  Literature.  Current  environmental  health  reports,  2(3),  284-­‐294.     Santamaria,  A.  B.  (2008).  Manganese  exposure,  essentiality  &  toxicity.  Indian  Journal  of   Medical  Research,  128(4),  484.     Schettler,  T.,  Solomon,  G.,  &  Valenti,  M.  (2000).  Generations  at  risk:  reproductive  health  and   the  environment.  MIT  Press.  Pg.  51-­‐52     Taylor,  D.  H.,  Lagory,  K.  E.,  Zaccaro,  D.  J.,  Pfohl,  R.  J.,  &  Laurie,  R.  D.  (1985).  Effect  of   trichloroethylene  on  the  exploratory  and  locomotor  activity  of  rats  exposed  during   development.  Science  of  the  Total  Environment,  47,  415-­‐420.     Tian,  L.  L.,  Zhao,  Y.  C.,  Wang,  X.  C.,  Gu,  J.  L.,  Sun,  Z.  J.,  Zhang,  Y.  L.,  &  Wang,  J.  X.  (2009).  Effects   of  gestational  cadmium  exposure  on  pregnancy  outcome  and  development  in  the   offspring  at  age  4.5  years.  Biological  trace  element  research,  132(1-­‐3),  51-­‐59.     Torrente,  M.,  Colomina,  M.  T.,  &  Domingo,  J.  L.  (2005).  Metal  concentrations  in  hair  and   cognitive  assessment  in  an  adolescent  population.Biological  trace  element  research,   104(3),  215-­‐221.     Tyler,  C.  R.,  &  Allan,  A.  M.  (2014).  The  effects  of  arsenic  exposure  on  neurological  and   cognitive  dysfunction  in  human  and  rodent  studies:  a  review.  Current  environmental   health  reports,  1(2),  132-­‐147.       U.S.  EPA.  2004.  Drinking  Water  Health  Advisory  for  Manganese.  U.S.  Environmental   Protection  Agency,  Office  of  Water,  Washington,  DC.  January,  2004  (EPA-­‐822-­‐R-­‐04-­‐ 003).     Wasserman,  G.  A.,  Liu,  X.,  Parvez,  F.,  Ahsan,  H.,  Levy,  D.,  Factor-­‐Litvak,  P.,  ...  &  Cheng,  Z.   (2006).  Water  manganese  exposure  and  children's  intellectual  function  in  Araihazar,   Bangladesh.  Environmental  health  perspectives,  124-­‐129.    
  • 28. Manganese  Exposure     28   WHO.  2004.  Manganese  in  Drinking  Water  -­‐  Background  Document  for  Development  of   WHO  Guidelines  for  Drinking  Water  Quality.  In  World  Health  Organization:  Geneva.     WHO.  2011.  Manganese  in  Drinking  Water  -­‐  Background  Document  for  Development  of   WHO  Guidelines  for  Drinking  Water  Quality,  In  World  Health  Organization:  Geneva.     World  Health  Organization  (WHO),  Lead  poisoning  and  health,  Fact  sheet  N°379,  (October   2014),  available  at:  http://www.who.int/mediacentre/factsheets/fs379/en/     Wright,  R.  O.,  Amarasiriwardena,  C.,  Woolf,  A.  D.,  Jim,  R.,  &  Bellinger,  D.  C.  (2006).   Neuropsychological  correlates  of  hair  arsenic,  manganese,  and  cadmium  levels  in   school-­‐age  children  residing  near  a  hazardous  waste  site.Neurotoxicology,  27(2),   210-­‐216.     Wright,  R.  O.,  &  Baccarelli,  A.  (2007).  Metals  and  neurotoxicology.  The  Journal  of  nutrition,   137(12),  2809-­‐2813.     Yousef,  S.,  Adem,  A.,  Zoubeidi,  T.,  Kosanovic,  M.,  Mabrouk,  A.  A.,  &  Eapen,  V.  (2011).   Attention  deficit  hyperactivity  disorder  and  environmental  toxic  metal  exposure  in   the  United  Arab  Emirates.  Journal  of  tropical  pediatrics,  57(6),  457-­‐460.     Yu,  X.  D.,  Zhang,  J.,  Yan,  C.  H.,  &  Shen,  X.  M.  (2014).  Prenatal  exposure  to  manganese  at   environment  relevant  level  and  neonatal  neurobehavioral  development.   Environmental  research,  133,  232-­‐238.       Zhang,  G.,  Liu,  D.,  &  He,  P.  (1995).  [Effects  of  manganese  on  learning  abilities  in  school   children].  Zhonghua  yu  fang  yi  xue  za  zhi  [Chinese  journal  of  preventive  medicine],   29(3),  156-­‐158.