SlideShare a Scribd company logo
1 of 7
Download to read offline
Low temperature resistance
Meirin Evans
9214122
School of Physics and Astronomy
The University of Manchester
Second Year Laboratory Report
Feb 2016
This experiment was performed in collaboration with John Cobbledick.
Abstract
Through measurements with a Digital Multi Meter, the voltage-current characteristics at
different temperatures for copper, constantan, germanium and a diode were compared.
The measured resistance of copper increased with temperature, constantan was nearly uni-
form but increased slightly whereas germanium decreased. The diode was found to have
exponential voltage-current characteristics. These measurements led to a diode energy
gap of 1334 ± 2 meV. The accuracy of the result was limited by not being able to keep
the temperature exactly constant during measurements.

1. Introduction
Materials such as copper (Cu), constantan (Const) and germanium (Ge) have different
voltage-current characteristics to diodes. The former materials follow Ohm’s law (a linear
law), usually written as
! ,
where V is voltage, I is current and R is resistance. Semiconductors, however, follow ex-
ponential voltage-current relationships such as
! ,
where e is the charge of an electron (1.602x10-19C), Eg is the energy gap, k is Boltzmann’s
constant (1.381x10-23JK-1), T is temperature and I0 is a constant current.
It is useful to observe any change in these relationships as a function of temperature.
Cooling samples to low temperatures may lead to superconductivity, which has implica-
tions for a number of areas, such as transport [1]. Research into higher temperatures su-
perconductors is ongoing [2].
2. Theory
From Equation 1, linear materials have constant resistance for constant temperature. Re-
sistance can be found by taking the gradient of a voltage-current graph. Resistance in-
creases with temperature due to the charge carriers’ extra energy causing more collisions,
as illustrated in Figure 1. More collisions mean charge carriers do not move along the
material as fast, meaning less current and therefore higher resistance for the same voltage.
The opposite holds for decreasing temperature. Resistance against temperature is plotted
to verify this.
IRV =
)1(0 −=
−
kT
eV
kT
eE
eeII
g
!2
Fig 1. A simple diagram contrasting electrical resistance at lower temperature (left) with higher temperature
(right). The smaller circles are charge carriers and are moving left. The larger circles are usually metal ions.
The diagram shows the ions vibrating more at higher temperature, therefore causing more collisions with the
charge carriers which leads to higher resistance.
(1)
(2)
For semiconductors to conduct, a charge carrier has to be excited from the valence band
to the conductance band, separated by an energy gap. If voltage is insufficient to excite
many charge carriers, current is low. However, since the charge carriers’ energies follow
Maxwell-Boltzmann distributions, some will be able to move along the material [3]. With
higher voltage, more charge carriers will be excited into the conductance band, leading to
the material conducting more, as shown in Figure 2.
With the values of voltage and temperature in this experiment, eV/kT was about 20, allow-
ing eV/kT - 1 to be approximated as eV/kT. Equation 2 thus linearises to give
! .
Plotting T on the x-axis and V on the y-axis for constant I gives Eg as the intercept.
3. Experimental method
The apparatus used was a vacuum system with a number of valves, as shown in Figure 3.
A rotary pump was maintained to evacuate the outer skin of a specimen chamber, where
the samples were held. Separately, a vacuum pump was turned on to evacuate the space
between the samples and liquid nitrogen which was used to cool the samples; or helium,
used to conduct heat to or from the samples. A thermocouple was used to measure the
samples’ temperature, which in turn was connected to a digital multi meter (DMM) to
display temperature. The DMM also displayed the samples’ voltage when using the ap-
propriate setting, and was accurate to 0.016%, as indicated on the DMM. The thermo-
couple was connected to ice for calibration. Pressure gauges measured pressure at differ-
ent points. Inside the specimen chamber there was a heater whose current was adjustable
and resistors of 0.1, 1, 10 and 100 kΩ in a circuit.
gET
I
I
e
k
V += )ln(
0
!3
(3)
Eg Eg
Fig 2. A diagram contrasting electrical conduction in semiconductors at low temperature (left) with high
temperature (right). The circles are charge carriers and move left when in the higher energy level
(conductance band), but do not conduct when in the lower level (valence band). The higher the
temperature the more charge carriers will be in the conductance band. The energy difference between
levels is Eg. The arrows show the relative size of currents in both situations.
The voltage-current characteristics of each sample were first measured at room tempera-
ture. In doing so, each resistor was used and the input voltage to the circuit varied. For
the diode, a range of input currents were used to determine Eg by plotting the data and us-
ing Equation 3.
These measurements were repeated for temperature ~ 30 to 800C, in 100C intervals. To
raise temperature the heater current was increased and helium was allowed into the spec-
imen chamber to conduct heat to the samples. To stabilise temperature the pressure was
adjusted by allowing for more or less helium.
The same measurements were repeated for -120, -70 and -200C. Liquid nitrogen was
poured into the specimen chamber for the samples to reach the lowest temperature possi-
ble. Raising temperature depended on heater use, as any helium would conduct heat from
the samples. Temperature stabilisation was performed as before. For Ge, measurements
were repeated at finer 100C intervals from -500C to 200C as resistance varied considerably
in this range.
!4
Fig 3. A simple schematic diagram of the vacuum system used.
Ice
Helium
Specimen
chamber
Copper
container
Digital Multi Meter
Thermocouple
Rotary
pump
Valve
Vacuum
pump
Pressure
gauge
4. Results
The lowest temperature achieved was -120.27 ± 0.03 0C, as recorded on the thermocou-
ple.
Figure 4 from MATLAB’s [4] lsfr fit shows the measured resistance for Cu. Resistance is
seen to increase with temperature, as expected.
From Figure 5, the measured resistance for Const is more uniform compared to Cu, with
gradients of 2.54 ± 0.01 and 223.25 ± 0.01 mΩK-1 respectively, hence the name constan-
tan.
The measured resistance for Ge decreases with temperature, as seen in Figure 6. A large
variation in resistance is evident between 200 and 300K, which is why extra measure-
ments for this range were made.
!5
Fig 4. A plot of T in K against R in Ω for Cu. The gradient of the plot is 223.25 ± 0.01 mΩK-1. The
temperature is measured using the thermocouple.
Fig 5. As Figure 4 but for Const. The gradient of the plot is 2.54 ± 0.01 mΩK-1.
Plotting lnI against V in Figure 7 shows exponential voltage-current characteristics for the
diode, as expected from Equation 2. A weighted average on the intercepts from constant
current plots, as illustrated in Figure 8, led to an eEg of 1334 ± 2 meV through Equation 3.
!6
Fig 6. As Figures 4 and 5 but for Ge.
Fig 7. An example of a plot of lnI against V in mV for constant T for the diode. This particular plot is
from measurements at 700C.
Fig 8. An example of a plot of T in K against V in mV for constant I for the diode. This particular plot is
from measurements at 10µA. This plot has an intercept of 1487 ± 7 mV.
5. Discussion
The resistances used in the resistance-temperature plots for Cu, Const and Ge were ob-
tained by plotting voltage-current graphs for constant temperature then taking the gradi-
ent. Linearity was verified before plotting temperature against resistance. For this, uncer-
tainties in voltage were estimated as the quadrature sum of the amount by which the read-
ing fluctuated, the DMM accuracy and the smallest reading possible.
Since the resistance of Cu spanned a larger range than that of Const, Cu had a lower resis-
tance than Const at lower temperatures, but the opposite was true for higher temperatures.
For all temperature the resistance of Ge was higher than both Cu and Const. It seems that
Ge is ohmic until a threshold temperature (peak of Figure 6), then it shows semiconductor
behaviour. This might be explained by the valence & conductance bands overlapping at
lower temperatures, then a band gap is present at higher temperatures. The diode was
found to obey exponential voltage-current characteristics well.
6. Summary
The voltage-current characteristics of different materials can differ from each other, some
are linear and others exponential. Additionally, the behaviour of resistance with increas-
ing temperature varies between materials, some increase, some decrease whilst others stay
nearly constant.
References
[1] Cooper, E., “Maglev: The Newest Cog in the Nation’s Transportation In-
frastructure”, Quest, Volume 6, Issue 1, 2013.
[2] Cartlidge, E., “Superconductivity record sparks wave of follow up
physics”, Nature, Volume 524, Issue 277, 2015.
[3] Eisberg, R. & Resnick, R., Quantum Physics of Atoms, Molecules, Solids,
Nuclei and Particles, Wiley, Second Edition, 1985, page 467.
[4] MATLAB, Version 5, The Math Works Inc, Natick, Mass 01760.
The number of words in this document is 1500.
This document was last saved on 21/2/2016 at 13:33.
!7

More Related Content

What's hot

Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
Mohamed Alsalihi
 
Thermal conductivity of copper
Thermal conductivity of copperThermal conductivity of copper
Thermal conductivity of copper
MidoOoz
 
AP Physics - Chapter 13 Powerpoint
AP Physics - Chapter 13 PowerpointAP Physics - Chapter 13 Powerpoint
AP Physics - Chapter 13 Powerpoint
Mrreynon
 
Thermal and electrical conductivity of metals
Thermal and electrical conductivity of metalsThermal and electrical conductivity of metals
Thermal and electrical conductivity of metals
krsuhas
 
Capter 10 for 9th grade Physics
Capter 10 for 9th grade PhysicsCapter 10 for 9th grade Physics
Capter 10 for 9th grade Physics
Physics Amal Sweis
 
Tp 13 specific heat capacity (shared)
Tp 13 specific heat capacity (shared)Tp 13 specific heat capacity (shared)
Tp 13 specific heat capacity (shared)
LThistlewood
 

What's hot (20)

Heat transfer & heat exchangers
Heat transfer & heat exchangersHeat transfer & heat exchangers
Heat transfer & heat exchangers
 
Heat transfer By Ankita Yagnik
Heat transfer By Ankita YagnikHeat transfer By Ankita Yagnik
Heat transfer By Ankita Yagnik
 
Thermal conductivity of copper
Thermal conductivity of copperThermal conductivity of copper
Thermal conductivity of copper
 
determination of thermal conductivity
determination of thermal conductivitydetermination of thermal conductivity
determination of thermal conductivity
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
 
2151909 heat transfer e-note (thefreestudy.com) (1)
2151909   heat transfer e-note (thefreestudy.com) (1)2151909   heat transfer e-note (thefreestudy.com) (1)
2151909 heat transfer e-note (thefreestudy.com) (1)
 
AP Physics - Chapter 13 Powerpoint
AP Physics - Chapter 13 PowerpointAP Physics - Chapter 13 Powerpoint
AP Physics - Chapter 13 Powerpoint
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
EE145 Lab5 Guillemaud
EE145 Lab5 GuillemaudEE145 Lab5 Guillemaud
EE145 Lab5 Guillemaud
 
Thermal and electrical conductivity of metals
Thermal and electrical conductivity of metalsThermal and electrical conductivity of metals
Thermal and electrical conductivity of metals
 
Capter 10 for 9th grade Physics
Capter 10 for 9th grade PhysicsCapter 10 for 9th grade Physics
Capter 10 for 9th grade Physics
 
Lec03
Lec03Lec03
Lec03
 
Tp 13 specific heat capacity (shared)
Tp 13 specific heat capacity (shared)Tp 13 specific heat capacity (shared)
Tp 13 specific heat capacity (shared)
 
THERMAL CONDUCTIVITY ANALYSIS IN VARIOUS MATERIALS USING COMPOSITE WALL APPAR...
THERMAL CONDUCTIVITY ANALYSIS IN VARIOUS MATERIALS USING COMPOSITE WALL APPAR...THERMAL CONDUCTIVITY ANALYSIS IN VARIOUS MATERIALS USING COMPOSITE WALL APPAR...
THERMAL CONDUCTIVITY ANALYSIS IN VARIOUS MATERIALS USING COMPOSITE WALL APPAR...
 
HMT
HMTHMT
HMT
 
Analytical Thermal Circuit Fastwarm Cathodes
Analytical Thermal Circuit Fastwarm CathodesAnalytical Thermal Circuit Fastwarm Cathodes
Analytical Thermal Circuit Fastwarm Cathodes
 
Thermal physics
Thermal physicsThermal physics
Thermal physics
 
267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture267258402 heat-4e-chap03-lecture
267258402 heat-4e-chap03-lecture
 
two dimensional steady state heat conduction
two dimensional steady state heat conduction two dimensional steady state heat conduction
two dimensional steady state heat conduction
 
GATE Mechanical Engineering notes on Heat Transfer
GATE Mechanical Engineering notes on Heat TransferGATE Mechanical Engineering notes on Heat Transfer
GATE Mechanical Engineering notes on Heat Transfer
 

Similar to Low_temperature_resistance

New Mexico State University .docx
New Mexico State University                                   .docxNew Mexico State University                                   .docx
New Mexico State University .docx
henrymartin15260
 
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Daniel Bulhosa Solórzano
 
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
AliFeiz3
 
Heat Transfer Pool Simulation
Heat Transfer Pool SimulationHeat Transfer Pool Simulation
Heat Transfer Pool Simulation
jwong024
 
Elect principles -_resistance
Elect principles -_resistanceElect principles -_resistance
Elect principles -_resistance
sdacey
 

Similar to Low_temperature_resistance (20)

New Mexico State University .docx
New Mexico State University                                   .docxNew Mexico State University                                   .docx
New Mexico State University .docx
 
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
 
exp3 battery
exp3 batteryexp3 battery
exp3 battery
 
Electricity Generation using Thermoelectric System from Waste Heat of Flue Gases
Electricity Generation using Thermoelectric System from Waste Heat of Flue GasesElectricity Generation using Thermoelectric System from Waste Heat of Flue Gases
Electricity Generation using Thermoelectric System from Waste Heat of Flue Gases
 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
 
Course of mesurement
Course of mesurementCourse of mesurement
Course of mesurement
 
thermocouple,peltier effect,seabeck effect
thermocouple,peltier effect,seabeck effectthermocouple,peltier effect,seabeck effect
thermocouple,peltier effect,seabeck effect
 
energy band gap-corrected MK - Copy.pptx
energy band gap-corrected MK - Copy.pptxenergy band gap-corrected MK - Copy.pptx
energy band gap-corrected MK - Copy.pptx
 
HEAT TRANSFER
HEAT TRANSFER HEAT TRANSFER
HEAT TRANSFER
 
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 ...
 
Voltaic cells
Voltaic cellsVoltaic cells
Voltaic cells
 
Physics-lab-presentation.ppt
Physics-lab-presentation.pptPhysics-lab-presentation.ppt
Physics-lab-presentation.ppt
 
TEMPERATURE MEASUREMENTS.pptx .
TEMPERATURE MEASUREMENTS.pptx              .TEMPERATURE MEASUREMENTS.pptx              .
TEMPERATURE MEASUREMENTS.pptx .
 
RESEARCH ON INDUCTION HEATING - A REVIEW
RESEARCH ON INDUCTION HEATING - A REVIEWRESEARCH ON INDUCTION HEATING - A REVIEW
RESEARCH ON INDUCTION HEATING - A REVIEW
 
Instrumentation Lab. Experiment #8 Report: Thermocouples
Instrumentation Lab. Experiment #8 Report: ThermocouplesInstrumentation Lab. Experiment #8 Report: Thermocouples
Instrumentation Lab. Experiment #8 Report: Thermocouples
 
Cobra 3
Cobra 3Cobra 3
Cobra 3
 
Heat Transfer Pool Simulation
Heat Transfer Pool SimulationHeat Transfer Pool Simulation
Heat Transfer Pool Simulation
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
 
Elect principles -_resistance
Elect principles -_resistanceElect principles -_resistance
Elect principles -_resistance
 
Transducers : Thermal Sensors
Transducers : Thermal SensorsTransducers : Thermal Sensors
Transducers : Thermal Sensors
 

More from Meirin Evans

Group 14 Special Topics
Group 14 Special TopicsGroup 14 Special Topics
Group 14 Special Topics
Meirin Evans
 
Analysis of neutron penetration through shielding using Monte Carlo techniques
Analysis of neutron penetration through shielding using Monte Carlo techniquesAnalysis of neutron penetration through shielding using Monte Carlo techniques
Analysis of neutron penetration through shielding using Monte Carlo techniques
Meirin Evans
 
Rotation-vibration transitions in ethyne
Rotation-vibration transitions in ethyneRotation-vibration transitions in ethyne
Rotation-vibration transitions in ethyne
Meirin Evans
 
Heights_of_lunar_mountains
Heights_of_lunar_mountainsHeights_of_lunar_mountains
Heights_of_lunar_mountains
Meirin Evans
 
Thermal_diffusivity_of_plastic
Thermal_diffusivity_of_plasticThermal_diffusivity_of_plastic
Thermal_diffusivity_of_plastic
Meirin Evans
 

More from Meirin Evans (9)

Group 14 Special Topics
Group 14 Special TopicsGroup 14 Special Topics
Group 14 Special Topics
 
Momentwm
MomentwmMomentwm
Momentwm
 
Ymchwiliad Unigol
Ymchwiliad UnigolYmchwiliad Unigol
Ymchwiliad Unigol
 
Analysis of neutron penetration through shielding using Monte Carlo techniques
Analysis of neutron penetration through shielding using Monte Carlo techniquesAnalysis of neutron penetration through shielding using Monte Carlo techniques
Analysis of neutron penetration through shielding using Monte Carlo techniques
 
Report2
Report2Report2
Report2
 
Rotation-vibration transitions in ethyne
Rotation-vibration transitions in ethyneRotation-vibration transitions in ethyne
Rotation-vibration transitions in ethyne
 
Microcontrollers
MicrocontrollersMicrocontrollers
Microcontrollers
 
Heights_of_lunar_mountains
Heights_of_lunar_mountainsHeights_of_lunar_mountains
Heights_of_lunar_mountains
 
Thermal_diffusivity_of_plastic
Thermal_diffusivity_of_plasticThermal_diffusivity_of_plastic
Thermal_diffusivity_of_plastic
 

Low_temperature_resistance

  • 1. Low temperature resistance Meirin Evans 9214122 School of Physics and Astronomy The University of Manchester Second Year Laboratory Report Feb 2016 This experiment was performed in collaboration with John Cobbledick. Abstract Through measurements with a Digital Multi Meter, the voltage-current characteristics at different temperatures for copper, constantan, germanium and a diode were compared. The measured resistance of copper increased with temperature, constantan was nearly uni- form but increased slightly whereas germanium decreased. The diode was found to have exponential voltage-current characteristics. These measurements led to a diode energy gap of 1334 ± 2 meV. The accuracy of the result was limited by not being able to keep the temperature exactly constant during measurements.

  • 2. 1. Introduction Materials such as copper (Cu), constantan (Const) and germanium (Ge) have different voltage-current characteristics to diodes. The former materials follow Ohm’s law (a linear law), usually written as ! , where V is voltage, I is current and R is resistance. Semiconductors, however, follow ex- ponential voltage-current relationships such as ! , where e is the charge of an electron (1.602x10-19C), Eg is the energy gap, k is Boltzmann’s constant (1.381x10-23JK-1), T is temperature and I0 is a constant current. It is useful to observe any change in these relationships as a function of temperature. Cooling samples to low temperatures may lead to superconductivity, which has implica- tions for a number of areas, such as transport [1]. Research into higher temperatures su- perconductors is ongoing [2]. 2. Theory From Equation 1, linear materials have constant resistance for constant temperature. Re- sistance can be found by taking the gradient of a voltage-current graph. Resistance in- creases with temperature due to the charge carriers’ extra energy causing more collisions, as illustrated in Figure 1. More collisions mean charge carriers do not move along the material as fast, meaning less current and therefore higher resistance for the same voltage. The opposite holds for decreasing temperature. Resistance against temperature is plotted to verify this. IRV = )1(0 −= − kT eV kT eE eeII g !2 Fig 1. A simple diagram contrasting electrical resistance at lower temperature (left) with higher temperature (right). The smaller circles are charge carriers and are moving left. The larger circles are usually metal ions. The diagram shows the ions vibrating more at higher temperature, therefore causing more collisions with the charge carriers which leads to higher resistance. (1) (2)
  • 3. For semiconductors to conduct, a charge carrier has to be excited from the valence band to the conductance band, separated by an energy gap. If voltage is insufficient to excite many charge carriers, current is low. However, since the charge carriers’ energies follow Maxwell-Boltzmann distributions, some will be able to move along the material [3]. With higher voltage, more charge carriers will be excited into the conductance band, leading to the material conducting more, as shown in Figure 2. With the values of voltage and temperature in this experiment, eV/kT was about 20, allow- ing eV/kT - 1 to be approximated as eV/kT. Equation 2 thus linearises to give ! . Plotting T on the x-axis and V on the y-axis for constant I gives Eg as the intercept. 3. Experimental method The apparatus used was a vacuum system with a number of valves, as shown in Figure 3. A rotary pump was maintained to evacuate the outer skin of a specimen chamber, where the samples were held. Separately, a vacuum pump was turned on to evacuate the space between the samples and liquid nitrogen which was used to cool the samples; or helium, used to conduct heat to or from the samples. A thermocouple was used to measure the samples’ temperature, which in turn was connected to a digital multi meter (DMM) to display temperature. The DMM also displayed the samples’ voltage when using the ap- propriate setting, and was accurate to 0.016%, as indicated on the DMM. The thermo- couple was connected to ice for calibration. Pressure gauges measured pressure at differ- ent points. Inside the specimen chamber there was a heater whose current was adjustable and resistors of 0.1, 1, 10 and 100 kΩ in a circuit. gET I I e k V += )ln( 0 !3 (3) Eg Eg Fig 2. A diagram contrasting electrical conduction in semiconductors at low temperature (left) with high temperature (right). The circles are charge carriers and move left when in the higher energy level (conductance band), but do not conduct when in the lower level (valence band). The higher the temperature the more charge carriers will be in the conductance band. The energy difference between levels is Eg. The arrows show the relative size of currents in both situations.
  • 4. The voltage-current characteristics of each sample were first measured at room tempera- ture. In doing so, each resistor was used and the input voltage to the circuit varied. For the diode, a range of input currents were used to determine Eg by plotting the data and us- ing Equation 3. These measurements were repeated for temperature ~ 30 to 800C, in 100C intervals. To raise temperature the heater current was increased and helium was allowed into the spec- imen chamber to conduct heat to the samples. To stabilise temperature the pressure was adjusted by allowing for more or less helium. The same measurements were repeated for -120, -70 and -200C. Liquid nitrogen was poured into the specimen chamber for the samples to reach the lowest temperature possi- ble. Raising temperature depended on heater use, as any helium would conduct heat from the samples. Temperature stabilisation was performed as before. For Ge, measurements were repeated at finer 100C intervals from -500C to 200C as resistance varied considerably in this range. !4 Fig 3. A simple schematic diagram of the vacuum system used. Ice Helium Specimen chamber Copper container Digital Multi Meter Thermocouple Rotary pump Valve Vacuum pump Pressure gauge
  • 5. 4. Results The lowest temperature achieved was -120.27 ± 0.03 0C, as recorded on the thermocou- ple. Figure 4 from MATLAB’s [4] lsfr fit shows the measured resistance for Cu. Resistance is seen to increase with temperature, as expected. From Figure 5, the measured resistance for Const is more uniform compared to Cu, with gradients of 2.54 ± 0.01 and 223.25 ± 0.01 mΩK-1 respectively, hence the name constan- tan. The measured resistance for Ge decreases with temperature, as seen in Figure 6. A large variation in resistance is evident between 200 and 300K, which is why extra measure- ments for this range were made. !5 Fig 4. A plot of T in K against R in Ω for Cu. The gradient of the plot is 223.25 ± 0.01 mΩK-1. The temperature is measured using the thermocouple. Fig 5. As Figure 4 but for Const. The gradient of the plot is 2.54 ± 0.01 mΩK-1.
  • 6. Plotting lnI against V in Figure 7 shows exponential voltage-current characteristics for the diode, as expected from Equation 2. A weighted average on the intercepts from constant current plots, as illustrated in Figure 8, led to an eEg of 1334 ± 2 meV through Equation 3. !6 Fig 6. As Figures 4 and 5 but for Ge. Fig 7. An example of a plot of lnI against V in mV for constant T for the diode. This particular plot is from measurements at 700C. Fig 8. An example of a plot of T in K against V in mV for constant I for the diode. This particular plot is from measurements at 10µA. This plot has an intercept of 1487 ± 7 mV.
  • 7. 5. Discussion The resistances used in the resistance-temperature plots for Cu, Const and Ge were ob- tained by plotting voltage-current graphs for constant temperature then taking the gradi- ent. Linearity was verified before plotting temperature against resistance. For this, uncer- tainties in voltage were estimated as the quadrature sum of the amount by which the read- ing fluctuated, the DMM accuracy and the smallest reading possible. Since the resistance of Cu spanned a larger range than that of Const, Cu had a lower resis- tance than Const at lower temperatures, but the opposite was true for higher temperatures. For all temperature the resistance of Ge was higher than both Cu and Const. It seems that Ge is ohmic until a threshold temperature (peak of Figure 6), then it shows semiconductor behaviour. This might be explained by the valence & conductance bands overlapping at lower temperatures, then a band gap is present at higher temperatures. The diode was found to obey exponential voltage-current characteristics well. 6. Summary The voltage-current characteristics of different materials can differ from each other, some are linear and others exponential. Additionally, the behaviour of resistance with increas- ing temperature varies between materials, some increase, some decrease whilst others stay nearly constant. References [1] Cooper, E., “Maglev: The Newest Cog in the Nation’s Transportation In- frastructure”, Quest, Volume 6, Issue 1, 2013. [2] Cartlidge, E., “Superconductivity record sparks wave of follow up physics”, Nature, Volume 524, Issue 277, 2015. [3] Eisberg, R. & Resnick, R., Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley, Second Edition, 1985, page 467. [4] MATLAB, Version 5, The Math Works Inc, Natick, Mass 01760. The number of words in this document is 1500. This document was last saved on 21/2/2016 at 13:33. !7