SlideShare a Scribd company logo
1 of 30
7.2 
Matrix Algebra 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 Matrices 
 Matrix Addition and Subtraction 
 Matrix Multiplication 
 Identity and Inverse Matrices 
 Determinant of a Square Matrix 
 Applications 
… and why 
Matrix algebra provides a powerful technique to 
manipulate large data sets and solve the related 
problems that are modeled by the matrices. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 2
Matrix 
Let m and n be positive integers. An m  n matrix 
(read "m by n matrix") is a rectangular array of 
m rows and n columns of real numbers. 
a11 a12 L a1n 
a21 a22 L a2n 
M M M 
am1 am2 L amn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also use the shorthand notation aij 
 
for this matrix. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 3
Matrix Vocabulary 
Each element, or entry, aij, of the matrix uses 
double subscript notation. The row subscript is 
the first subscript i, and the column subscript is 
j. The element aij is the ith row and the jth 
column. In general, the order of an m  n 
matrix is m  n. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 4
Example Determining the Order of a 
Matrix 
What is the order of the following matrix? 
 
1 4 5 
3 5 6 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 5
Example Determining the Order of a 
Matrix 
What is the order of the following matrix? 
1 4 5 
 
3 5 6 
 
 
The matrix has 2 rows and 3 columns 
so it has order 2  3. 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 6
Matrix Addition and Matrix 
Subtraction 
 
 
Let A  aij 
and  
B   
 
 bij 
 
 be matrices of order m n. 
1. The sum A+ B is the m n matrix 
 
 
A B  aij  bij 
 
. 
2. The difference A B is the m n matrix 
 
 
A B  aij  bij 
 
. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 7
Example Matrix Addition 
1 2 3 
4 5 6 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 8 
 
 
 
 
 
 
2 3 4 
5 6 7 
 
 
 
 
 

Example Matrix Addition 
1 2 3 
4 5 6 
A B  
2 1 2  3 3 4 
4  5 5 6 6  7 
 
 
 
 
 
 
 
3 5 7 
9 11 13 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 9 
 
 
 
 
 
 
2 3 4 
5 6 7 
 
 
 
 
 

Example Using Scalar Multiplication 
3 
1 2 3 
4 5 6 
 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 10
Example Using Scalar Multiplication 
1 2 3 
4 5 6 
 
 
 
 
31 32 33 
34 35 36 
 
 
 
 
 
 
 
3 6 9 
12 15 18 
 
 
 
 
 
3 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 11
The Zero Matrix 
The m n matrix 0  [0] consisting entirely of 
zeros is the zero matrix. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 12
Additive Inverse 
 
Let A  aij 
 
be any m n matrix. 
  
The m n matrix B  aij 
consisting of the additive 
inverses of the entries of A is the additive inverse of A 
because A B  0. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 13
Matrix Multiplication 
 
 
Let A  aij 
be  
any m r matrix and B   
 
 bij 
 
 
be any r  n matrix. 
The product AB  cij 
 
 
 
 is the m n matrix where 
cij  ai1b1 j +ai2b2 j  ...  airbrj . 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 14
Example Matrix Multiplication 
Find the product AB if possible. 
A  
 
1 2 3 
0 1 1 
 
 
 
 
 and B  
 
1 0 
2 1 
0 1 
 
 
 
 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 15
Example Matrix Multiplication 
A  
 
1 2 3 
0 1 1 
 
 
 
 
 and B  
 
1 0 
2 1 
0 1 
 
 
 
 
 
 
 
 
 
The number of columns of A is 3 and the number of 
rows of B is 3, so the product is defined. 
The product AB  cij 
 
 
is a 2  2 matrix where 
c11  1 2 3  
 
1 
2 
0 
 
 
 
 
 
 
 
 
 
 
 11 2  2  30  5, 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 16
Example Matrix Multiplication 
A  
 
1 2 3 
0 1 1 
 
 
 
 
 and B  
 
1 0 
2 1 
0 1 
 
 
 
 
 
 
 
 
 
 
 0 
c12  1 2 3  
 
 
 
 
1 
1 
 
 
 
 
 
 10  2 1 3 1  1, 
c21  0 1 1  
 
1 
2 
0 
 
 
 
 
 
 
 
 
 
 
 011 2  10  2, 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 17
Example Matrix Multiplication 
A  
 
1 2 3 
0 1 1 
 
 
 
 
 and B  
 
1 0 
2 1 
0 1 
 
 
 
 
 
 
 
 
 
c22  0 1 1   
 
0 
1 
1 
 
 
 
 
 
 
 
 
 
 0 0 11 1 1  2. 
Thus AB  
 
5 1 
2 2 
 
 
 
 
. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 18
Identity Matrix 
The n  n matrix In with 1's on the main diagonal and 
0's elsewhere is the identity matrix of order n  n. 
In  
1 0 0 L 0 
0 1 0 L 0 
0 0 1 L 0 
M M M 0 
0 0 0 0 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 19
Inverse of a Square Matrix 
 
Let A  aij 
 
be an n  n matrix. 
If there is a matrix B such that 
AB  BA  In , 
then B is the inverse of A. We write B  A1. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 20
Inverse of a 2 × 2 Matrix 
If ad  bc  0, then 
a b 
c d 
 
  
  1 
 
 
1 
ad  bc 
d b 
c a 
 
  
 
  
. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 21
Determinant of a Square Matrix 
 
 
Let A  aij 
 
 be a matrix of order n  n (n  2). 
The determinant of A, denoted by det A or | A | , 
is the sum of the entries in any row or any column 
multiplied by their respective cofactors. For 
example, expanding by the ith row gives 
det A | A | ai1Ai1  ai2Ai2  ...  ainAin . 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 22
Inverses of n  n Matrices 
An n  n matrix A has an inverse if and only if 
det A ≠ 0. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 23
Example Finding Inverse Matrices 
Determine whether the matrix has an inverse. 
If so, find its inverse matrix. 
A  
 
5 1 
8 3 
 
 
 
 
 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 24
Example Finding Inverse Matrices 
A  
 
5 1 
8 3 
 
 
 
 
 
Since det A  ad  bc  5318  7  0, 
we conclude that A has an inverse. 
Use the formula A1  
1 
ad  bc 
d b 
c a 
 
  
 
  
 
1 
7 
 
3 1 
8 5 
 
  
  
 
3 
7 
 
1 
7 
 
8 
7 
5 
7 
 
 
 
 
 
 
 
 
 
 
 
 
. 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 25
Example Finding Inverse Matrices 
A  
 
5 1 
8 3 
 
 
 
Check: 
A1A  
 
 
3 
7 
 
1 
7 
 
8 
7 
5 
7 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 1 
8 3 
 
 
 
 
 
3 
7 
 
8 
7 
3 
7 
 
3 
7 
 
40 
7 
 
40 
7 
 
8 
7 
 
15 
7 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 
0 1 
 
 
 
 
 
 I2 
Similarly, A1A  I2 . 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 26
Properties of Matrices 
Let A, B, and C be matrices whose orders are such that 
the following sums, differences, and products are 
defined. 
1. Community property 
Addition: A + B = B + A 
Multiplication: Does not hold in general 
2. Associative property 
Addition: (A + B) + C = A + (B + C) 
Multiplication: (AB)C = A(BC) 
3. Identity property 
Addition: A + 0 = A 
Multiplication: A·In = In·A = A 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 27
Properties of Matrices 
Let A, B, and C be matrices whose orders are such that 
the following sums, differences, and products are 
defined. 
4. Inverse property 
Addition: A + (-A) = 0 
Multiplication: AA-1 = A-1A = In |A|≠0 
5. Distributive property 
Multiplication over addition: 
A(B + C) = AB + AC (A + B)C = AC + BC 
Multiplication over subtraction: 
A(B – C) = AB – AC (A – B)C = AC – BC 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 28
Quick Review 
The points (a) (1,  3) and (b) (x, y) are reflected 
across the given line. 
Find the coordinates of the reflected points. 
1. The x-axis 
2. The line y  x 
3. The line y  x 
Expand the expression, 
4. sin(x  y) 
5. cos(x  y) 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 29
Quick Review Solutions 
The points (a) (1,  3) and (b) (x, y) are reflected 
across the given line. 
Find the coordinates of the reflected points. 
1. The x-axis (a) (1,3) (b) (x,  y) 
2. The line y  x (a) (  3,1) (b) ( y, x) 
3. The line y  x (a) (  3, 1) (b) ( y, x) 
Expand the expression, 
4. sin(x  y) sin x cos y  sin y cos x 
5. cos(x  y) cos x cos y  sin x sin y 
Copyright © 2011 Pearson, Inc. Slide 7.2 - 30

More Related Content

What's hot (20)

Unit 1.7
Unit 1.7Unit 1.7
Unit 1.7
 
Unit 3.1
Unit 3.1Unit 3.1
Unit 3.1
 
Unit 2.8
Unit 2.8Unit 2.8
Unit 2.8
 
P
PP
P
 
Unit 2.6
Unit 2.6Unit 2.6
Unit 2.6
 
Unit 1.6
Unit 1.6Unit 1.6
Unit 1.6
 
Unit 1.5
Unit 1.5Unit 1.5
Unit 1.5
 
Unit 3.3
Unit 3.3Unit 3.3
Unit 3.3
 
Unit 1.2
Unit 1.2Unit 1.2
Unit 1.2
 
Unit 1.3
Unit 1.3Unit 1.3
Unit 1.3
 
Unit .5
Unit .5Unit .5
Unit .5
 
Unit 3.5
Unit 3.5Unit 3.5
Unit 3.5
 
Unit 1.1
Unit 1.1Unit 1.1
Unit 1.1
 
Unit .7
Unit .7Unit .7
Unit .7
 
Unit 2.4
Unit 2.4Unit 2.4
Unit 2.4
 
Unit .4
Unit .4Unit .4
Unit .4
 
Unit 1.4
Unit 1.4Unit 1.4
Unit 1.4
 
Unit 2.2
Unit 2.2Unit 2.2
Unit 2.2
 
Unit .6
Unit .6Unit .6
Unit .6
 
Unit .3
Unit .3Unit .3
Unit .3
 

Viewers also liked

Sulpcegu5e ppt 11_5
Sulpcegu5e ppt 11_5Sulpcegu5e ppt 11_5
Sulpcegu5e ppt 11_5silvia
 
Partial Fractions Linear Term To A Power
Partial Fractions Linear Term To A PowerPartial Fractions Linear Term To A Power
Partial Fractions Linear Term To A Poweracoach
 
Partial Fractions Linear Term
Partial Fractions Linear TermPartial Fractions Linear Term
Partial Fractions Linear Termacoach
 
Sulpcegu5e ppt 14_3
Sulpcegu5e ppt 14_3Sulpcegu5e ppt 14_3
Sulpcegu5e ppt 14_3silvia
 
5 3 Partial Fractions
5 3 Partial Fractions5 3 Partial Fractions
5 3 Partial Fractionssilvia
 

Viewers also liked (6)

Sulpcegu5e ppt 11_5
Sulpcegu5e ppt 11_5Sulpcegu5e ppt 11_5
Sulpcegu5e ppt 11_5
 
Partial Fractions Linear Term To A Power
Partial Fractions Linear Term To A PowerPartial Fractions Linear Term To A Power
Partial Fractions Linear Term To A Power
 
Partial Fraction
Partial FractionPartial Fraction
Partial Fraction
 
Partial Fractions Linear Term
Partial Fractions Linear TermPartial Fractions Linear Term
Partial Fractions Linear Term
 
Sulpcegu5e ppt 14_3
Sulpcegu5e ppt 14_3Sulpcegu5e ppt 14_3
Sulpcegu5e ppt 14_3
 
5 3 Partial Fractions
5 3 Partial Fractions5 3 Partial Fractions
5 3 Partial Fractions
 

Similar to Unit 7.2

Fin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.pptFin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.pptAMNA487167
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1njit-ronbrown
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1njit-ronbrown
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptadonyasdd
 
Modules Linear Algebra Drills
Modules Linear Algebra DrillsModules Linear Algebra Drills
Modules Linear Algebra DrillsDaniel Bragais
 
Module 2 logic gates
Module 2  logic gatesModule 2  logic gates
Module 2 logic gatesDeepak John
 
Data 0001-fdbffe8330ad52c00130b749e01e4bea
Data 0001-fdbffe8330ad52c00130b749e01e4beaData 0001-fdbffe8330ad52c00130b749e01e4bea
Data 0001-fdbffe8330ad52c00130b749e01e4beaRahul Shah
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Rai University
 
Chapter2 (1).pptx
Chapter2 (1).pptxChapter2 (1).pptx
Chapter2 (1).pptxMitKumar2
 
Ee2 chapter8 applicationsof_booleanalgebra
Ee2 chapter8 applicationsof_booleanalgebraEe2 chapter8 applicationsof_booleanalgebra
Ee2 chapter8 applicationsof_booleanalgebraCK Yang
 
Solving electric circuits using graph theory
Solving  electric circuits using graph theorySolving  electric circuits using graph theory
Solving electric circuits using graph theoryCheku Dojee
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docxgilbertkpeters11344
 
CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matricesallyn joy calcaben
 
Dee2034 chapter 2 boolean algebra part b
Dee2034 chapter 2 boolean algebra part bDee2034 chapter 2 boolean algebra part b
Dee2034 chapter 2 boolean algebra part bSITI SABARIAH SALIHIN
 

Similar to Unit 7.2 (20)

Fin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.pptFin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.ppt
 
Matrix Algebra
Matrix Algebra Matrix Algebra
Matrix Algebra
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1
 
Matrixprop
MatrixpropMatrixprop
Matrixprop
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.ppt
 
Modules Linear Algebra Drills
Modules Linear Algebra DrillsModules Linear Algebra Drills
Modules Linear Algebra Drills
 
Module 2 logic gates
Module 2  logic gatesModule 2  logic gates
Module 2 logic gates
 
Data 0001-fdbffe8330ad52c00130b749e01e4bea
Data 0001-fdbffe8330ad52c00130b749e01e4beaData 0001-fdbffe8330ad52c00130b749e01e4bea
Data 0001-fdbffe8330ad52c00130b749e01e4bea
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Chapter2 (1).pptx
Chapter2 (1).pptxChapter2 (1).pptx
Chapter2 (1).pptx
 
Ee2 chapter8 applicationsof_booleanalgebra
Ee2 chapter8 applicationsof_booleanalgebraEe2 chapter8 applicationsof_booleanalgebra
Ee2 chapter8 applicationsof_booleanalgebra
 
Chapter 2 part b boolean soppos
Chapter 2 part b boolean sopposChapter 2 part b boolean soppos
Chapter 2 part b boolean soppos
 
Matrices
MatricesMatrices
Matrices
 
Solving electric circuits using graph theory
Solving  electric circuits using graph theorySolving  electric circuits using graph theory
Solving electric circuits using graph theory
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
 
CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matrices
 
Dee2034 chapter 2 boolean algebra part b
Dee2034 chapter 2 boolean algebra part bDee2034 chapter 2 boolean algebra part b
Dee2034 chapter 2 boolean algebra part b
 

More from Mark Ryder

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Mark Ryder
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4Mark Ryder
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6Mark Ryder
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7Mark Ryder
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5Mark Ryder
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4Mark Ryder
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3Mark Ryder
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2Mark Ryder
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutationsMark Ryder
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsMark Ryder
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probabilityMark Ryder
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probabilityMark Ryder
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutationsMark Ryder
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7Mark Ryder
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5Mark Ryder
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4Mark Ryder
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3Mark Ryder
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7Mark Ryder
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4Mark Ryder
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3Mark Ryder
 

More from Mark Ryder (20)

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutations
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple events
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probability
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probability
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutations
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3
 

Recently uploaded

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 

Recently uploaded (20)

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 

Unit 7.2

  • 1. 7.2 Matrix Algebra Copyright © 2011 Pearson, Inc.
  • 2. What you’ll learn about  Matrices  Matrix Addition and Subtraction  Matrix Multiplication  Identity and Inverse Matrices  Determinant of a Square Matrix  Applications … and why Matrix algebra provides a powerful technique to manipulate large data sets and solve the related problems that are modeled by the matrices. Copyright © 2011 Pearson, Inc. Slide 7.2 - 2
  • 3. Matrix Let m and n be positive integers. An m  n matrix (read "m by n matrix") is a rectangular array of m rows and n columns of real numbers. a11 a12 L a1n a21 a22 L a2n M M M am1 am2 L amn                We also use the shorthand notation aij  for this matrix. Copyright © 2011 Pearson, Inc. Slide 7.2 - 3
  • 4. Matrix Vocabulary Each element, or entry, aij, of the matrix uses double subscript notation. The row subscript is the first subscript i, and the column subscript is j. The element aij is the ith row and the jth column. In general, the order of an m  n matrix is m  n. Copyright © 2011 Pearson, Inc. Slide 7.2 - 4
  • 5. Example Determining the Order of a Matrix What is the order of the following matrix?  1 4 5 3 5 6      Copyright © 2011 Pearson, Inc. Slide 7.2 - 5
  • 6. Example Determining the Order of a Matrix What is the order of the following matrix? 1 4 5  3 5 6   The matrix has 2 rows and 3 columns so it has order 2  3.    Copyright © 2011 Pearson, Inc. Slide 7.2 - 6
  • 7. Matrix Addition and Matrix Subtraction   Let A  aij and  B     bij   be matrices of order m n. 1. The sum A+ B is the m n matrix   A B  aij  bij  . 2. The difference A B is the m n matrix   A B  aij  bij  . Copyright © 2011 Pearson, Inc. Slide 7.2 - 7
  • 8. Example Matrix Addition 1 2 3 4 5 6 Copyright © 2011 Pearson, Inc. Slide 7.2 - 8       2 3 4 5 6 7      
  • 9. Example Matrix Addition 1 2 3 4 5 6 A B  2 1 2  3 3 4 4  5 5 6 6  7        3 5 7 9 11 13      Copyright © 2011 Pearson, Inc. Slide 7.2 - 9       2 3 4 5 6 7      
  • 10. Example Using Scalar Multiplication 3 1 2 3 4 5 6       Copyright © 2011 Pearson, Inc. Slide 7.2 - 10
  • 11. Example Using Scalar Multiplication 1 2 3 4 5 6     31 32 33 34 35 36        3 6 9 12 15 18      3    Copyright © 2011 Pearson, Inc. Slide 7.2 - 11
  • 12. The Zero Matrix The m n matrix 0  [0] consisting entirely of zeros is the zero matrix. Copyright © 2011 Pearson, Inc. Slide 7.2 - 12
  • 13. Additive Inverse  Let A  aij  be any m n matrix.   The m n matrix B  aij consisting of the additive inverses of the entries of A is the additive inverse of A because A B  0. Copyright © 2011 Pearson, Inc. Slide 7.2 - 13
  • 14. Matrix Multiplication   Let A  aij be  any m r matrix and B     bij   be any r  n matrix. The product AB  cij     is the m n matrix where cij  ai1b1 j +ai2b2 j  ...  airbrj . Copyright © 2011 Pearson, Inc. Slide 7.2 - 14
  • 15. Example Matrix Multiplication Find the product AB if possible. A   1 2 3 0 1 1      and B   1 0 2 1 0 1          Copyright © 2011 Pearson, Inc. Slide 7.2 - 15
  • 16. Example Matrix Multiplication A   1 2 3 0 1 1      and B   1 0 2 1 0 1          The number of columns of A is 3 and the number of rows of B is 3, so the product is defined. The product AB  cij   is a 2  2 matrix where c11  1 2 3   1 2 0            11 2  2  30  5, Copyright © 2011 Pearson, Inc. Slide 7.2 - 16
  • 17. Example Matrix Multiplication A   1 2 3 0 1 1      and B   1 0 2 1 0 1            0 c12  1 2 3      1 1       10  2 1 3 1  1, c21  0 1 1   1 2 0            011 2  10  2, Copyright © 2011 Pearson, Inc. Slide 7.2 - 17
  • 18. Example Matrix Multiplication A   1 2 3 0 1 1      and B   1 0 2 1 0 1          c22  0 1 1    0 1 1           0 0 11 1 1  2. Thus AB   5 1 2 2     . Copyright © 2011 Pearson, Inc. Slide 7.2 - 18
  • 19. Identity Matrix The n  n matrix In with 1's on the main diagonal and 0's elsewhere is the identity matrix of order n  n. In  1 0 0 L 0 0 1 0 L 0 0 0 1 L 0 M M M 0 0 0 0 0 1                 Copyright © 2011 Pearson, Inc. Slide 7.2 - 19
  • 20. Inverse of a Square Matrix  Let A  aij  be an n  n matrix. If there is a matrix B such that AB  BA  In , then B is the inverse of A. We write B  A1. Copyright © 2011 Pearson, Inc. Slide 7.2 - 20
  • 21. Inverse of a 2 × 2 Matrix If ad  bc  0, then a b c d      1   1 ad  bc d b c a       . Copyright © 2011 Pearson, Inc. Slide 7.2 - 21
  • 22. Determinant of a Square Matrix   Let A  aij   be a matrix of order n  n (n  2). The determinant of A, denoted by det A or | A | , is the sum of the entries in any row or any column multiplied by their respective cofactors. For example, expanding by the ith row gives det A | A | ai1Ai1  ai2Ai2  ...  ainAin . Copyright © 2011 Pearson, Inc. Slide 7.2 - 22
  • 23. Inverses of n  n Matrices An n  n matrix A has an inverse if and only if det A ≠ 0. Copyright © 2011 Pearson, Inc. Slide 7.2 - 23
  • 24. Example Finding Inverse Matrices Determine whether the matrix has an inverse. If so, find its inverse matrix. A   5 1 8 3      Copyright © 2011 Pearson, Inc. Slide 7.2 - 24
  • 25. Example Finding Inverse Matrices A   5 1 8 3      Since det A  ad  bc  5318  7  0, we conclude that A has an inverse. Use the formula A1  1 ad  bc d b c a        1 7  3 1 8 5       3 7  1 7  8 7 5 7             . Copyright © 2011 Pearson, Inc. Slide 7.2 - 25
  • 26. Example Finding Inverse Matrices A   5 1 8 3    Check: A1A    3 7  1 7  8 7 5 7              5 1 8 3      3 7  8 7 3 7  3 7  40 7  40 7  8 7  15 7              1 0 0 1       I2 Similarly, A1A  I2 . Copyright © 2011 Pearson, Inc. Slide 7.2 - 26
  • 27. Properties of Matrices Let A, B, and C be matrices whose orders are such that the following sums, differences, and products are defined. 1. Community property Addition: A + B = B + A Multiplication: Does not hold in general 2. Associative property Addition: (A + B) + C = A + (B + C) Multiplication: (AB)C = A(BC) 3. Identity property Addition: A + 0 = A Multiplication: A·In = In·A = A Copyright © 2011 Pearson, Inc. Slide 7.2 - 27
  • 28. Properties of Matrices Let A, B, and C be matrices whose orders are such that the following sums, differences, and products are defined. 4. Inverse property Addition: A + (-A) = 0 Multiplication: AA-1 = A-1A = In |A|≠0 5. Distributive property Multiplication over addition: A(B + C) = AB + AC (A + B)C = AC + BC Multiplication over subtraction: A(B – C) = AB – AC (A – B)C = AC – BC Copyright © 2011 Pearson, Inc. Slide 7.2 - 28
  • 29. Quick Review The points (a) (1,  3) and (b) (x, y) are reflected across the given line. Find the coordinates of the reflected points. 1. The x-axis 2. The line y  x 3. The line y  x Expand the expression, 4. sin(x  y) 5. cos(x  y) Copyright © 2011 Pearson, Inc. Slide 7.2 - 29
  • 30. Quick Review Solutions The points (a) (1,  3) and (b) (x, y) are reflected across the given line. Find the coordinates of the reflected points. 1. The x-axis (a) (1,3) (b) (x,  y) 2. The line y  x (a) (  3,1) (b) ( y, x) 3. The line y  x (a) (  3, 1) (b) ( y, x) Expand the expression, 4. sin(x  y) sin x cos y  sin y cos x 5. cos(x  y) cos x cos y  sin x sin y Copyright © 2011 Pearson, Inc. Slide 7.2 - 30