SlideShare a Scribd company logo
1 of 6
MARK BOTIRIUS
P a g e 1 | 6
1 Two of the three key parts of evolution are: 1. Changes in the genetic material; 2.
Natural selection. Discuss how each of process acts on each of the following:
a. DNA (generally) b. rRNA genes c. mRNA genes d. tRNA genes
1a,1. General changesinDNA happenina varietyof ways. Overall,the mostcommontypes
of changesare base substitutions,indels,andinversions. (Rogers173). Base substitutionsare
furthercategorizedaseithertransitions(apurine orpyrimidine isexchangedforabase of the same
type) or transversions(apurine orpyrimidineisexchangedforone of the opposite type) with
transitionsbeingmore commonthantransversions. Base substitutionsare pointmutationsthat,
due to the redundantnature of the geneticcode,can eitherresultinasynonymousor
nonsynonymousmutation. Synonymousmutations,of course,willhave little ornoeffect(codon
biasnotwithstanding),while the effectof nonsynonymousmutationswill dependonthe properties
of the replacementaminoacidandcanrange fromno effecttoan extremelydeleteriousone.Next,
there are indels. Asitsname indicates,thisisachange in the DNA that resultsinthe additionor
deletionof geneticmaterial. The effectof these mutationscanvaryenormouslydependingonwhat
isbeinginsertedordeleted,andwhere itisinsertedordeleted. Forexample,if the indelisapoint
mutation,itoftencausesa frameshiftthatchangesthe readingframe of the gene thataltersthe
entire aminoacidsequence. Usuallythisproducesanonworkingprotein. Of course,indelsare not
limitedtosingle bases. Forexample,replicative transposons (Pierce 304) can insertlongstretchesof
DNA,oftendisruptinghostgenesinthe process. Also,Indelscanhave noeffectaswell. Much of
eukaryoticDNA isnon-coding. If the insertionordeletionoccursinan area of non-codingDNA that
doesnotalso have some otherfunction(suchasa promoter),oran area of an intronnotinvolvedin
some otheractivity(suchas splicing),thenthe indelcanhave noeffect. Indelscanalsocome froma
prophage leftbehindbyvirusesduringtheirlysogeniccycle thathassince mutated. (Rogers192-196)
I wouldbe negligentif Ididn’tpause here todiscusswhatcouldbe the most importantindel
of all,thatis alsolargelyunique tothiscourse. Thatis,the changesin DNA that isthe directresultof
endosymbioticevolutionarypathways. I wouldgive aspecificcitationhere,exceptthissource of
geneticvariationissoimportantandfundamental tothiscourse Iwouldhave tocite the firstnine
chaptersof Integrated MolecularEvolution. Examplesof thistype of indel are the presence of
mitochondrial andchromosomal genesinthe hostchromosome. These geneswere once apartof
the endosymbiontgenome thathave since moved(inserted) intothe hostchromosome andhave
beensubsequentlylost(deleted) fromthe original endosymbiont. Itshouldbe notedthatexamples
of thistype of indel are notlimitedtobacterial endosymbiontswithineukaryotes. A case in pointis
whena eukaryote hasanothereukaryote asanendosymbiont.
Lastly,there are inversions. Inthisgeneticchange,the DNA formsa loopduring
recombinationwhenone of the strandsbreaksintwoplaces. Whenthe strand isreintegrateditisin
a reverse orientationcausingthe sequence tobe subsequentlyinverted. The effectsfromthis
mutationcan be eitherminimal,apoptotic,orcarcinogenic. (Rogers173) (Iwasa478)
1a,2. Havingdiscussedthe effectsthatgeneticchangeshave onDNA (generally),Inow
turn myattentiontothe effectsof natural selectiononthese changes. Inotherwords,how does
natural selectioninfluence changesatthe level of DNA? One exampleisthe proofreadingfunction
of DNA polymerase. Thisisone instance where the firstchange inthe geneticmaterial discussed
(i.e.base substitutions) encountersanatural selectionprocess. There are manyDNA repair
pathwaysdesignedtocorrectbase substitutions. Forexample,DNA polymerasehasproofreading
capabilitiesduringreplicationanditscorrective capabilitiescanvarydependingonthe type of base
MARK BOTIRIUS
P a g e 2 | 6
substitution. Forinstance,if the base substitutionisdue todeamination,DNA polymeraseeasily
corrects the deaminationof cytosinetouracil butdoesnotcorrect the deaminationof 5-
methylcytosine tothymine. The reasonisbecause uracil doesnotbelonginDNA,while thymine
does.Base substitutionsof cytosine touracil are selectedagainst,whilebase substitutionsof 5-
methylcytosine tothymineare not. (Pierce 494) Likewise,transversionscause the DNA helixto
distortmore than translationsbecause purinesconsistof tworingsandpyrimidinesconsistof only
one ring. Asa result,base substitutionsthatare transversionsare alsoselectedagainst,sothat
transitionsare more common. Indelscanalsoexhibitselectioninthatsome typesare more
commonthan others. For example,genomewide repeatsalonecomprise over43% of the human
genome. (Watson206) Genome wide repeatsare causedalmostexclusivelybytransposons,
meaningthatintermsof differenttypesof indels,transposonsare highlyselectedfor. Now thatI
have coverednatural selectionasitaffectsgeneral DNA changes,Ican addressthe more specific
questionof what itmeanswithrespecttoa particulargene,namelyrRNA,mRNA,andtRNA genes.
1b, c, d; 1. All geneshave afewbasicand fundamental partsincommonthatrelate tothe
structure and functionof the moleculestheyproduce. These partsare the promoter,5’UTR (or the
firstexon),exons(e.g.euchromatin),introns(e.g.heterochromatinineukaryotes),3’UTR (the last
exon),andfinallyaterminationsite. All of the geneticchangesIhave discussedsofarhave the
abilitytooccur inany of these fundamental genesegmentsandresultinarange consistingof no
effecttoa deleteriouseffectforreasonsIhave alreadydescribed. Therefore,itismuchmore
efficienttosimplystate whatcanhappenwhenthese regionsare mutated,sinceIhave already
coveredthe typesof mutationsthatcan occur, and thenapplythatto rRNA mRNA,andtRNA genes.
The promoteris the locationonthe gene where transcriptionisinitiated. Changestothe
geneticmaterial of the promotercanresultinthe gene beingupregulated,downregulated,or
silencedaltogether. Thiswouldcorrespondinglyresultinapositive selection(if the genesare up
regulated) toanegative selection(ifthe genesare downregulatedorsilenced).If these genesare
the onescurrentlybeingexamined,the resultsare acorrespondingchange inthe expressionof
rRNA,mRNA,or tRNA genes. Nextisthe 5’ UTR.1
Thisregioncodesforthe 5’ UTR regionof mRNA,
whichiswhere the 5’ cap is added. Thiscap is importantbecause itiswhere capbinding proteins
attach. CBP’sare neededforproperattachmentof the mRNA tothe ribosome. A deleterious
mutationinthispart of the gene couldresultinimproperbindingof mRNA tothe ribosome and
therefore negative selection. (Rogers163) Followingthe 5’UTR regionon the listare the exons. This
isthe regionwhere the aminoacidsare coded. Geneticchangeshere affectthe proteinsthatthe
gene produces. The range of outcomesproceedsfromnone (i.e.asynonymousor othertype of
silentmutation) tobeneficial,(e.g.anaminoacidchange thatproducesa beneficialprotein) tolethal
(e.g.a frameshiftmutationthateliminatesacriticallyneededprotein). The resultingselection
possibilitiescorrespondinglyrange fromstronglyselectedfortostronglyselectedagainst.
Usually,exonsrefertogenesthatcode forproteins. Withregardsto rRNA,andtRNA
however,the codingregionsanalogoustoexonsare the SSU,LSU, 5s, 5.8s, ITS1, andITS2.
Mutationsinthese genescanhave a have a varietyof effects. The functionof the SSU,forexample,
isto transport the mRNA transcriptto the LSU, where itassociateswiththe LSUand properly
positionsthe transcriptinthe ribosome duplex fortranslation. If thisgene hasadeleterious
1In DNA, this is not always stated as a separateregion likeitis for mRNA, however it is always located within
the firstexon downstream from the promoter (in eukaryotes). In other words, the DNA code for the 5’ UTR of
mRNA is located in the firstexon. Likewise, the 3’ UTR is located in the lastexon.
MARK BOTIRIUS
P a g e 3 | 6
mutation,thenitispossible thatthe SSUwill notbe able to transportthe mRNA,orwill notbe able
to properlyinteractwiththe LSU resultinginaninabilitytotranslate mRNA toproteins.
The large subunitiswhere the enzymaticfunctionislocated. Itactuallycatalyzesthe reactionthat
joinsthe aminoacidto the growingpeptide chain. Mutationsinthisgene couldresultinalossof
enzymaticfunction,aninabilitytoproperlyassociate withthe SSU,oran inabilitytoproperly
associate withthe mRNA and/orthe growingpeptide chain. All of thiscouldleadtoalossof
translationof the mRNA. Furthermore,mutationsineitherthe SSUor LSU genescoulddistortthe
molecules,makingitimpossible toexitthe nuclearporestotravel tothe cytoplasm, where they
needtobe.
The functionof the tRNA’sisto bringthe amino acidsto the ribosome andtheyalsosetthe
geneticcode. Mutationsinthese geneswill likewise affectthese functions. Changesinthe
anticodonregionof the tRNA couldtherefore change the aminoacidcode forthat tRNA or cause it
to lose the ability tobindtothe tRNA altogether. Inaddition,the tRNA itselfmaylose the abilityto
interactproperlywiththe ribosome. All of these possibilitieswouldresultinanegative selection,
whichiswhythese genesare sostronglyconserved
Nextonmy listare introns. Surprisingly,intronscanbe foundinall three typesof RNA
genes. Changesinthese genescanaffecthow the intronsare splicedorevenif theyare splicedat
all. Withregards to mRNA,thiscould,of course,cause a failure toproduce a neededproteinor
produce a mutatedprotein. Inthe case of rRNAsand tRNAs,thiswouldcause a distortioninthe
shape of the moleculeswhichwouldcertainlyresultinanon-functional molecule.
Lastly,a mutationinthe 3’ UTR regionof the gene that codesfor mRNA couldaffectthe 3’ tail that is
addedat the endof the molecule. The 3’polyA tail functionstoprotectthe mRNA from
degradation. Withoutthistail,the lifeof the mRNA isgreatlyreduced,therebydestroyingits
functionality.
Finally,itwouldbe irresponsible if Ididn’tmentionone lastfacetof selectionongenesin
general,andrRNA,mRNA,andtRNA genesinparticular. Fromthe standpointof evolution,itis
probablyone of the most importantandagain,unique tothiscourse. It isthe selectionthatoccurs
followinganendosymbioticevent. Afteranendosymbioticevent,thereexiststwosetsof genesfor
Figure 1. This is anillustration from a power point presentationfrom Dr. Rogers class depicting the
rRNA, and to a lesser extent, tRNA genes.
MARK BOTIRIUS
P a g e 4 | 6
manycellularprocesses. Modernanalysisshows,however,thatthe genesthatfinallywindupinthe
hostchromosome are a mixture of hostandsymbiontgenes. Therefore,althoughitcouldbe due to
purelyrandomevents,itisalsolikelythatthe genesthatultimatelywoundupinthe chromosome
were the resultof selection. Those rRNA,mRNA,andtRNA genesthatbestservedthe organism
were positivelyselected.
2. Ribosomal genes are needed in multiple copies. Explain why. Outline some of the
mechanisms for creating or maintaining copy numbers sufficient for cells and organelles.
Explain how these processes might have developed and been selected for during
evolutionary processes.
The reasonwhy ribosomal genesare neededinmultiple copiescanbe demonstratedwitha
simple mathematical argument. There are an estimated106
proteinsinprokaryotesand109
for each
eukaryote (Rogers76) and the ribosome hasa clockspeedof only20 aminoacidsper second.
(Watson521) Therefore,inordertoproduce the needednumberof proteins,prokaryoteshave
approximately20,000 ribosomes,andeukaryotescontainapproximatelytenmillionormore.The
speedatwhichRNA polymerase cansynthesizearibosome isbetween50to 150 nucleotidesper
second. (Rogers76) UtilizingDr.Rogers’figure of 100 nucleotidespersecondgivesusatotal of one
day andthree hoursfor a single gene toproduce enoughribosomesforaprokaryote,andmore than
30 yearsfor a eukaryote. (Rogers76-77) Clearly,one gene isnotsufficient. Infact,the gene copy
numberpercell istypicallyinthe hundreds.
So howdo cellscreate enoughribosomal genes? Several methodshave beendiscussedin
class. The twoI findthe most interestingare the methodusedbythe protozoan Tetrahymena and
the frog Xenopuslaevis. Oneitherside of the Tetrahymena ribosomal gene are specialsequences
(calledA’andM repeats) thatare recognizedbyan endonuclease. A sectionof DNA containingthe
ribosomal gene iscutout,and telomeresare addedtoall of the endsexceptthe upstreamendof
the excerpt. Thisendcircularizesanda replicationbubble formsthattravelstowardsthe ribosomal
gene. The replicationbubble travelsall the waytothe openendof the excerpt,replicatingthe
ribosomal gene inthe process,andcreatinga DNA segmentthatissymmetrical aboutitscenter.
Figure 2. An illustration from Dr. Rogers’
PowerPoint. The top picture shows howone
end of the excerpt circularizes. The other end is
protectedfrom degradation bya telomere. The
replicationbubble travelsdownstream,
replicating the ribosomal gene inthe process.
The endresult is a DNA segment that contains
two copies ofthe ribosomal gene and is
symmetrical about its center.
MARK BOTIRIUS
P a g e 5 | 6
The new,linearDNA segmentcontainsA’-Msitesanditundergoesfurtherroundsof replicationto
produce the neededcopiesof ribosomal genes.
The mechanismforthe frog Xenopuslaevis issimilar. Like Tetrahymena,cutsare made at
signal sequencesflankingthe ribosomal gene. Inthe case of Xenopuslaevis,however,the cutsare
made at one or more ribosomal gene repeatsproducingseveral excerpts. These excerpts
individuallycircularizeandthenundergorollingcircle replicationtoincrease theirnumberto
produce the neededgene copy number.
The reasonI findthese two
mechanismsinterestingisthatthe
specificityof the splicingenzymesmakes
themverysimilartorestriction
endonucleasesfoundinbacteria. In
addition,rollingcircle replicationisalso
foundinbacterial conjugation. This
stronglysuggeststome that these
mechanismsmayhave beenobtainedby
these twoeukaryotesfromtheirbacterial
endosymbiontsinthe course of their
evolution.Thisanswersthe questionof
how these processesmighthave
developedinthe course of the evolution
of these twoparticularorganisms. These
bacterial mechanismswereconduciveto
creatingneededcopiesof ribosomal
genesandwere therefore subjectedtopositiveselectionandretained.
Anothermechanismforincreasingribosomalgene copynumberisprovidedbyamphibian
oocytes. The amphibianoogoniumdividesasymmetrically,withvirtuallyall of the mRNAsand
ribosomesgoingtothe largeroocyte. Thiseffectivelydoublesthe ribosomal numberforthe primary
oocyte therebyproviding the needednumberof ribosomes. One waythismechanismcouldhave
evolvedisbyselective pressuresatthe organismal level. Initially,the divisionof the oogoniumwas
symmetrical,producingzygotesof equivalentfitnessandribosomal numbers. Eventually,some of
the oogoniumproduceddaughteroocyteswithslightlydifferentproportionsof the parental
ribosomes. Those oocytesthatcontainedaslightlylargerproportionof ribosomeswere alittlemore
fit,and sowere positivelyselectedtoaslightdegree. Eventually,timeandnatural selectionresulted
inthe mechanismthatproducedthe fittestzygote,andthatmechanismwasone where the
oogoniumdividesasymmetrically.
Lastly,one of the mostcommonmechanismstoproduce the neededribosomal numberis
presentinplantsall aroundus. Many plantsare polyploidthroughaprocesscalledendomitosis,
where the genome iscopiedwithoutcytokinesis. Inotherwords,insteadof increasingonlythe
ribosomal genes,the entire genome isduplicatedleading toa veryhighC value andtherefore avery
highnumberof ribosomal genesaswell. (Rogers121) How could have polyploidyevolvedinplants?
Personally,Isee afewintriguingcluesinthe characteristicsof the life cyclesof manyplants. In
animals(like humans) ourmulticellularstage isdiplontic. Thatis,whenwe existasa multicellular
organism,ourgenome isdiploid. Plants,onthe otherhand,are not limitedtothisdiploidy. During
Figure 3. Another Dr. Rogers’ PowerPoint slide s howing the
rolling circle replicationmechanism usedby Xenopus laevis
increase ribosomal gene copynumber.
MARK BOTIRIUS
P a g e 6 | 6
part of theirmulticellularlife cycle,theyare diploid,likeus. Duringa differentpartof their
multicellularlife cycle,theyare haploid.ThisflexibilityinploidyIthinkiswhateventuallyledtotheir
abilitytobe polypoid,anditalsoexplainswhyanimals,suchashumans,donottolerate polyploidy
(itislethal tous). I thinka possible evolutionaryroute topolyploidyisthatsome ancientplant
ancestorwhose life cycle involved“alternationof generations”failedtoreduce itschromosome
number(N) duringmeiosis. Thisispossiblebecausewe know thatpolyploidyisnormallydue toa
failedreductiondivisioninmeiosis. (Futuyma505) Thisincrease inploidyledtoanincrease in
beneficial andneededgenes,suchasribosomal genes,whichledtoanincrease infitnessand
positive selection.
Works Cited
Futuyma,DouglasJ. Evolution.3rd. Sunderland:SinauerAssociates,2013.Hardback.
Iwasa,J and Marshall,W. Karp'sCell and Molecular Biology.8th. Hoboken:Wiley,2016.Book.
Pierce,BenjaminA. Genetics,A ConceptualApproach.New York:W.H.FreemanandCompany,2012.
Rogers,Scott Orland. Integrated MolecularEvolution.2nd.BocaRaton: CRC Press,2017. Hardback.
Watson,et al. MolecularBiology of the Gene. 7th. Boston:Pearson,2014.

More Related Content

What's hot

Transposable elements - MAYUR SONAGARA
Transposable elements - MAYUR SONAGARATransposable elements - MAYUR SONAGARA
Transposable elements - MAYUR SONAGARAMAYUR SONAGARA
 
type of genes - jumping genes
type of genes - jumping genestype of genes - jumping genes
type of genes - jumping genessaharzaidi178
 
Transposons or Jumping Genes or Transposable Elements
 Transposons or Jumping Genes or Transposable Elements Transposons or Jumping Genes or Transposable Elements
Transposons or Jumping Genes or Transposable ElementsAhsanAliRana
 
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium Poster
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium PosterSite-Directed Mutagenesis of β-2 Microglobulin Research Symposium Poster
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium PosterTyler Liang
 
Retrotransposon and its role in plant genome evolution
Retrotransposon and its role in plant genome evolutionRetrotransposon and its role in plant genome evolution
Retrotransposon and its role in plant genome evolutionJatindra Nath Mohanty
 
Chromosomal rearrangement pptx'
Chromosomal rearrangement pptx'Chromosomal rearrangement pptx'
Chromosomal rearrangement pptx'Deepak Arun
 
Gene regulatory networks
Gene regulatory networksGene regulatory networks
Gene regulatory networksMadiheh
 
Transposons (2) (3)
Transposons (2) (3)Transposons (2) (3)
Transposons (2) (3)Jyoti Yadav
 
Transposons: the jumping genes
Transposons: the jumping genesTransposons: the jumping genes
Transposons: the jumping genesAbhranil Das
 
Transposable Elements
Transposable ElementsTransposable Elements
Transposable ElementsAnju(pala) S
 
Bacterial transposable elements
Bacterial transposable elementsBacterial transposable elements
Bacterial transposable elementsTejaswini Petkar
 
Transcription associated mutation
Transcription associated mutationTranscription associated mutation
Transcription associated mutationsonam mahawar
 

What's hot (20)

Transposable elements - MAYUR SONAGARA
Transposable elements - MAYUR SONAGARATransposable elements - MAYUR SONAGARA
Transposable elements - MAYUR SONAGARA
 
type of genes - jumping genes
type of genes - jumping genestype of genes - jumping genes
type of genes - jumping genes
 
Transposons or Jumping Genes or Transposable Elements
 Transposons or Jumping Genes or Transposable Elements Transposons or Jumping Genes or Transposable Elements
Transposons or Jumping Genes or Transposable Elements
 
Transposable elements
Transposable elementsTransposable elements
Transposable elements
 
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium Poster
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium PosterSite-Directed Mutagenesis of β-2 Microglobulin Research Symposium Poster
Site-Directed Mutagenesis of β-2 Microglobulin Research Symposium Poster
 
Molecular Basis of Mutation
Molecular Basis of MutationMolecular Basis of Mutation
Molecular Basis of Mutation
 
Retrotransposon and its role in plant genome evolution
Retrotransposon and its role in plant genome evolutionRetrotransposon and its role in plant genome evolution
Retrotransposon and its role in plant genome evolution
 
Chromosomal rearrangement pptx'
Chromosomal rearrangement pptx'Chromosomal rearrangement pptx'
Chromosomal rearrangement pptx'
 
IME 2
IME 2IME 2
IME 2
 
TRANSPOSABLE ELEMENTS
TRANSPOSABLE ELEMENTSTRANSPOSABLE ELEMENTS
TRANSPOSABLE ELEMENTS
 
RNA processing
RNA processingRNA processing
RNA processing
 
Gene regulatory networks
Gene regulatory networksGene regulatory networks
Gene regulatory networks
 
Transposone
TransposoneTransposone
Transposone
 
Transposons (2) (3)
Transposons (2) (3)Transposons (2) (3)
Transposons (2) (3)
 
Transposons: the jumping genes
Transposons: the jumping genesTransposons: the jumping genes
Transposons: the jumping genes
 
Transposable Elements
Transposable ElementsTransposable Elements
Transposable Elements
 
2nd hour
2nd hour2nd hour
2nd hour
 
Forward genetics
Forward geneticsForward genetics
Forward genetics
 
Bacterial transposable elements
Bacterial transposable elementsBacterial transposable elements
Bacterial transposable elements
 
Transcription associated mutation
Transcription associated mutationTranscription associated mutation
Transcription associated mutation
 

Viewers also liked

Дидактические возможности видеоконтента в развитии познавательной активности ...
Дидактические возможности видеоконтента в развитии познавательной активности ...Дидактические возможности видеоконтента в развитии познавательной активности ...
Дидактические возможности видеоконтента в развитии познавательной активности ...school17d
 
COMMUNICATION IS USEFUL TO MEANS NEW HOME
COMMUNICATION IS USEFUL TO MEANS NEW HOMECOMMUNICATION IS USEFUL TO MEANS NEW HOME
COMMUNICATION IS USEFUL TO MEANS NEW HOMEMỹ Hoàng
 
Datos maternidad%2 c-paternidad%2c-excedencias-septiembre
Datos maternidad%2 c-paternidad%2c-excedencias-septiembreDatos maternidad%2 c-paternidad%2c-excedencias-septiembre
Datos maternidad%2 c-paternidad%2c-excedencias-septiembremiciudadreal
 
38 projeto basico-2015-09-29_13_59_07
38 projeto basico-2015-09-29_13_59_0738 projeto basico-2015-09-29_13_59_07
38 projeto basico-2015-09-29_13_59_07Francis Zeman
 
Trabajo practico nro 3
Trabajo practico nro 3Trabajo practico nro 3
Trabajo practico nro 3JuanPabloSale
 
39 estudo arquitetonico-2015-09-29_13_59_38
39 estudo arquitetonico-2015-09-29_13_59_3839 estudo arquitetonico-2015-09-29_13_59_38
39 estudo arquitetonico-2015-09-29_13_59_38Francis Zeman
 
Avoid Shiny Object Syndrome in Digital Marketing
Avoid Shiny Object Syndrome in Digital MarketingAvoid Shiny Object Syndrome in Digital Marketing
Avoid Shiny Object Syndrome in Digital MarketingTiffany Starnes
 
Resposta2 caso lai (1) (1)
Resposta2 caso lai (1) (1)Resposta2 caso lai (1) (1)
Resposta2 caso lai (1) (1)Francis Zeman
 
How to troubleshoot wireless connection problems
How to troubleshoot wireless connection problemsHow to troubleshoot wireless connection problems
How to troubleshoot wireless connection problemsAlex Robert
 
3 novo edital-pregao_presencial_2562014_2015-02-12_14_30_48
3   novo edital-pregao_presencial_2562014_2015-02-12_14_30_483   novo edital-pregao_presencial_2562014_2015-02-12_14_30_48
3 novo edital-pregao_presencial_2562014_2015-02-12_14_30_48Francis Zeman
 
Morsca silver jewelry
Morsca silver jewelryMorsca silver jewelry
Morsca silver jewelryTony Ng
 
14 edital alterado-2015-07-14_14_34_42
14 edital alterado-2015-07-14_14_34_4214 edital alterado-2015-07-14_14_34_42
14 edital alterado-2015-07-14_14_34_42Francis Zeman
 

Viewers also liked (16)

Дидактические возможности видеоконтента в развитии познавательной активности ...
Дидактические возможности видеоконтента в развитии познавательной активности ...Дидактические возможности видеоконтента в развитии познавательной активности ...
Дидактические возможности видеоконтента в развитии познавательной активности ...
 
COMMUNICATION IS USEFUL TO MEANS NEW HOME
COMMUNICATION IS USEFUL TO MEANS NEW HOMECOMMUNICATION IS USEFUL TO MEANS NEW HOME
COMMUNICATION IS USEFUL TO MEANS NEW HOME
 
Metodos de busqueda
Metodos de busquedaMetodos de busqueda
Metodos de busqueda
 
Datos maternidad%2 c-paternidad%2c-excedencias-septiembre
Datos maternidad%2 c-paternidad%2c-excedencias-septiembreDatos maternidad%2 c-paternidad%2c-excedencias-septiembre
Datos maternidad%2 c-paternidad%2c-excedencias-septiembre
 
38 projeto basico-2015-09-29_13_59_07
38 projeto basico-2015-09-29_13_59_0738 projeto basico-2015-09-29_13_59_07
38 projeto basico-2015-09-29_13_59_07
 
Trabajo practico nro 3
Trabajo practico nro 3Trabajo practico nro 3
Trabajo practico nro 3
 
39 estudo arquitetonico-2015-09-29_13_59_38
39 estudo arquitetonico-2015-09-29_13_59_3839 estudo arquitetonico-2015-09-29_13_59_38
39 estudo arquitetonico-2015-09-29_13_59_38
 
Avoid Shiny Object Syndrome in Digital Marketing
Avoid Shiny Object Syndrome in Digital MarketingAvoid Shiny Object Syndrome in Digital Marketing
Avoid Shiny Object Syndrome in Digital Marketing
 
Resposta2 caso lai (1) (1)
Resposta2 caso lai (1) (1)Resposta2 caso lai (1) (1)
Resposta2 caso lai (1) (1)
 
Rococó definitivo
Rococó definitivoRococó definitivo
Rococó definitivo
 
How to troubleshoot wireless connection problems
How to troubleshoot wireless connection problemsHow to troubleshoot wireless connection problems
How to troubleshoot wireless connection problems
 
3 novo edital-pregao_presencial_2562014_2015-02-12_14_30_48
3   novo edital-pregao_presencial_2562014_2015-02-12_14_30_483   novo edital-pregao_presencial_2562014_2015-02-12_14_30_48
3 novo edital-pregao_presencial_2562014_2015-02-12_14_30_48
 
Metodos de busqueda
Metodos de busquedaMetodos de busqueda
Metodos de busqueda
 
Morsca silver jewelry
Morsca silver jewelryMorsca silver jewelry
Morsca silver jewelry
 
Squash descripcion
Squash descripcionSquash descripcion
Squash descripcion
 
14 edital alterado-2015-07-14_14_34_42
14 edital alterado-2015-07-14_14_34_4214 edital alterado-2015-07-14_14_34_42
14 edital alterado-2015-07-14_14_34_42
 

Similar to IME 1

trnspsns-170820132104.pdf
trnspsns-170820132104.pdftrnspsns-170820132104.pdf
trnspsns-170820132104.pdfAnukrittiMehra
 
Lecture 4, gene mutation.ppt
Lecture 4, gene mutation.pptLecture 4, gene mutation.ppt
Lecture 4, gene mutation.pptMannat Mughal
 
Describe the role of different types of genomic changes in the evolut.pdf
Describe the role of different types of genomic changes in the evolut.pdfDescribe the role of different types of genomic changes in the evolut.pdf
Describe the role of different types of genomic changes in the evolut.pdfivylinvaydak64229
 
Week10genemutationlecturew10 130526195419-phpapp02
Week10genemutationlecturew10 130526195419-phpapp02Week10genemutationlecturew10 130526195419-phpapp02
Week10genemutationlecturew10 130526195419-phpapp02saad636
 
Transposone And Retrotransposone
Transposone And RetrotransposoneTransposone And Retrotransposone
Transposone And Retrotransposonesalar_bakhtiari
 
Genome rearrangement
Genome rearrangementGenome rearrangement
Genome rearrangementPinky Vincent
 
Life in four letters (2).pptx
Life in four letters (2).pptxLife in four letters (2).pptx
Life in four letters (2).pptxAnushkaDhiman6
 
Suppressor mutation
Suppressor mutationSuppressor mutation
Suppressor mutationDeepika Rana
 
Epigenetics : overview and concepts
Epigenetics : overview and conceptsEpigenetics : overview and concepts
Epigenetics : overview and conceptsPrabhash Bhavsar
 
Mugdha's seminar msc sem 2
Mugdha's seminar msc sem 2Mugdha's seminar msc sem 2
Mugdha's seminar msc sem 2mugdha-30
 

Similar to IME 1 (20)

trnspsns-170820132104.pdf
trnspsns-170820132104.pdftrnspsns-170820132104.pdf
trnspsns-170820132104.pdf
 
Lecture 4, gene mutation.ppt
Lecture 4, gene mutation.pptLecture 4, gene mutation.ppt
Lecture 4, gene mutation.ppt
 
Transposons in bacteria
Transposons in bacteriaTransposons in bacteria
Transposons in bacteria
 
Transposones
TransposonesTransposones
Transposones
 
Describe the role of different types of genomic changes in the evolut.pdf
Describe the role of different types of genomic changes in the evolut.pdfDescribe the role of different types of genomic changes in the evolut.pdf
Describe the role of different types of genomic changes in the evolut.pdf
 
1 12-2013
1 12-20131 12-2013
1 12-2013
 
Transposable elements
Transposable elementsTransposable elements
Transposable elements
 
Types of mutation
Types of mutationTypes of mutation
Types of mutation
 
Types of mutation
Types of mutationTypes of mutation
Types of mutation
 
Week10genemutationlecturew10 130526195419-phpapp02
Week10genemutationlecturew10 130526195419-phpapp02Week10genemutationlecturew10 130526195419-phpapp02
Week10genemutationlecturew10 130526195419-phpapp02
 
Transposone And Retrotransposone
Transposone And RetrotransposoneTransposone And Retrotransposone
Transposone And Retrotransposone
 
Examples Of Epigenetics
Examples Of EpigeneticsExamples Of Epigenetics
Examples Of Epigenetics
 
Genome rearrangement
Genome rearrangementGenome rearrangement
Genome rearrangement
 
Life in four letters (2).pptx
Life in four letters (2).pptxLife in four letters (2).pptx
Life in four letters (2).pptx
 
genetics.pptx
genetics.pptxgenetics.pptx
genetics.pptx
 
Dna mutation
Dna mutationDna mutation
Dna mutation
 
Mutations
Mutations Mutations
Mutations
 
Suppressor mutation
Suppressor mutationSuppressor mutation
Suppressor mutation
 
Epigenetics : overview and concepts
Epigenetics : overview and conceptsEpigenetics : overview and concepts
Epigenetics : overview and concepts
 
Mugdha's seminar msc sem 2
Mugdha's seminar msc sem 2Mugdha's seminar msc sem 2
Mugdha's seminar msc sem 2
 

IME 1

  • 1. MARK BOTIRIUS P a g e 1 | 6 1 Two of the three key parts of evolution are: 1. Changes in the genetic material; 2. Natural selection. Discuss how each of process acts on each of the following: a. DNA (generally) b. rRNA genes c. mRNA genes d. tRNA genes 1a,1. General changesinDNA happenina varietyof ways. Overall,the mostcommontypes of changesare base substitutions,indels,andinversions. (Rogers173). Base substitutionsare furthercategorizedaseithertransitions(apurine orpyrimidine isexchangedforabase of the same type) or transversions(apurine orpyrimidineisexchangedforone of the opposite type) with transitionsbeingmore commonthantransversions. Base substitutionsare pointmutationsthat, due to the redundantnature of the geneticcode,can eitherresultinasynonymousor nonsynonymousmutation. Synonymousmutations,of course,willhave little ornoeffect(codon biasnotwithstanding),while the effectof nonsynonymousmutationswill dependonthe properties of the replacementaminoacidandcanrange fromno effecttoan extremelydeleteriousone.Next, there are indels. Asitsname indicates,thisisachange in the DNA that resultsinthe additionor deletionof geneticmaterial. The effectof these mutationscanvaryenormouslydependingonwhat isbeinginsertedordeleted,andwhere itisinsertedordeleted. Forexample,if the indelisapoint mutation,itoftencausesa frameshiftthatchangesthe readingframe of the gene thataltersthe entire aminoacidsequence. Usuallythisproducesanonworkingprotein. Of course,indelsare not limitedtosingle bases. Forexample,replicative transposons (Pierce 304) can insertlongstretchesof DNA,oftendisruptinghostgenesinthe process. Also,Indelscanhave noeffectaswell. Much of eukaryoticDNA isnon-coding. If the insertionordeletionoccursinan area of non-codingDNA that doesnotalso have some otherfunction(suchasa promoter),oran area of an intronnotinvolvedin some otheractivity(suchas splicing),thenthe indelcanhave noeffect. Indelscanalsocome froma prophage leftbehindbyvirusesduringtheirlysogeniccycle thathassince mutated. (Rogers192-196) I wouldbe negligentif Ididn’tpause here todiscusswhatcouldbe the most importantindel of all,thatis alsolargelyunique tothiscourse. Thatis,the changesin DNA that isthe directresultof endosymbioticevolutionarypathways. I wouldgive aspecificcitationhere,exceptthissource of geneticvariationissoimportantandfundamental tothiscourse Iwouldhave tocite the firstnine chaptersof Integrated MolecularEvolution. Examplesof thistype of indel are the presence of mitochondrial andchromosomal genesinthe hostchromosome. These geneswere once apartof the endosymbiontgenome thathave since moved(inserted) intothe hostchromosome andhave beensubsequentlylost(deleted) fromthe original endosymbiont. Itshouldbe notedthatexamples of thistype of indel are notlimitedtobacterial endosymbiontswithineukaryotes. A case in pointis whena eukaryote hasanothereukaryote asanendosymbiont. Lastly,there are inversions. Inthisgeneticchange,the DNA formsa loopduring recombinationwhenone of the strandsbreaksintwoplaces. Whenthe strand isreintegrateditisin a reverse orientationcausingthe sequence tobe subsequentlyinverted. The effectsfromthis mutationcan be eitherminimal,apoptotic,orcarcinogenic. (Rogers173) (Iwasa478) 1a,2. Havingdiscussedthe effectsthatgeneticchangeshave onDNA (generally),Inow turn myattentiontothe effectsof natural selectiononthese changes. Inotherwords,how does natural selectioninfluence changesatthe level of DNA? One exampleisthe proofreadingfunction of DNA polymerase. Thisisone instance where the firstchange inthe geneticmaterial discussed (i.e.base substitutions) encountersanatural selectionprocess. There are manyDNA repair pathwaysdesignedtocorrectbase substitutions. Forexample,DNA polymerasehasproofreading capabilitiesduringreplicationanditscorrective capabilitiescanvarydependingonthe type of base
  • 2. MARK BOTIRIUS P a g e 2 | 6 substitution. Forinstance,if the base substitutionisdue todeamination,DNA polymeraseeasily corrects the deaminationof cytosinetouracil butdoesnotcorrect the deaminationof 5- methylcytosine tothymine. The reasonisbecause uracil doesnotbelonginDNA,while thymine does.Base substitutionsof cytosine touracil are selectedagainst,whilebase substitutionsof 5- methylcytosine tothymineare not. (Pierce 494) Likewise,transversionscause the DNA helixto distortmore than translationsbecause purinesconsistof tworingsandpyrimidinesconsistof only one ring. Asa result,base substitutionsthatare transversionsare alsoselectedagainst,sothat transitionsare more common. Indelscanalsoexhibitselectioninthatsome typesare more commonthan others. For example,genomewide repeatsalonecomprise over43% of the human genome. (Watson206) Genome wide repeatsare causedalmostexclusivelybytransposons, meaningthatintermsof differenttypesof indels,transposonsare highlyselectedfor. Now thatI have coverednatural selectionasitaffectsgeneral DNA changes,Ican addressthe more specific questionof what itmeanswithrespecttoa particulargene,namelyrRNA,mRNA,andtRNA genes. 1b, c, d; 1. All geneshave afewbasicand fundamental partsincommonthatrelate tothe structure and functionof the moleculestheyproduce. These partsare the promoter,5’UTR (or the firstexon),exons(e.g.euchromatin),introns(e.g.heterochromatinineukaryotes),3’UTR (the last exon),andfinallyaterminationsite. All of the geneticchangesIhave discussedsofarhave the abilitytooccur inany of these fundamental genesegmentsandresultinarange consistingof no effecttoa deleteriouseffectforreasonsIhave alreadydescribed. Therefore,itismuchmore efficienttosimplystate whatcanhappenwhenthese regionsare mutated,sinceIhave already coveredthe typesof mutationsthatcan occur, and thenapplythatto rRNA mRNA,andtRNA genes. The promoteris the locationonthe gene where transcriptionisinitiated. Changestothe geneticmaterial of the promotercanresultinthe gene beingupregulated,downregulated,or silencedaltogether. Thiswouldcorrespondinglyresultinapositive selection(if the genesare up regulated) toanegative selection(ifthe genesare downregulatedorsilenced).If these genesare the onescurrentlybeingexamined,the resultsare acorrespondingchange inthe expressionof rRNA,mRNA,or tRNA genes. Nextisthe 5’ UTR.1 Thisregioncodesforthe 5’ UTR regionof mRNA, whichiswhere the 5’ cap is added. Thiscap is importantbecause itiswhere capbinding proteins attach. CBP’sare neededforproperattachmentof the mRNA tothe ribosome. A deleterious mutationinthispart of the gene couldresultinimproperbindingof mRNA tothe ribosome and therefore negative selection. (Rogers163) Followingthe 5’UTR regionon the listare the exons. This isthe regionwhere the aminoacidsare coded. Geneticchangeshere affectthe proteinsthatthe gene produces. The range of outcomesproceedsfromnone (i.e.asynonymousor othertype of silentmutation) tobeneficial,(e.g.anaminoacidchange thatproducesa beneficialprotein) tolethal (e.g.a frameshiftmutationthateliminatesacriticallyneededprotein). The resultingselection possibilitiescorrespondinglyrange fromstronglyselectedfortostronglyselectedagainst. Usually,exonsrefertogenesthatcode forproteins. Withregardsto rRNA,andtRNA however,the codingregionsanalogoustoexonsare the SSU,LSU, 5s, 5.8s, ITS1, andITS2. Mutationsinthese genescanhave a have a varietyof effects. The functionof the SSU,forexample, isto transport the mRNA transcriptto the LSU, where itassociateswiththe LSUand properly positionsthe transcriptinthe ribosome duplex fortranslation. If thisgene hasadeleterious 1In DNA, this is not always stated as a separateregion likeitis for mRNA, however it is always located within the firstexon downstream from the promoter (in eukaryotes). In other words, the DNA code for the 5’ UTR of mRNA is located in the firstexon. Likewise, the 3’ UTR is located in the lastexon.
  • 3. MARK BOTIRIUS P a g e 3 | 6 mutation,thenitispossible thatthe SSUwill notbe able to transportthe mRNA,orwill notbe able to properlyinteractwiththe LSU resultinginaninabilitytotranslate mRNA toproteins. The large subunitiswhere the enzymaticfunctionislocated. Itactuallycatalyzesthe reactionthat joinsthe aminoacidto the growingpeptide chain. Mutationsinthisgene couldresultinalossof enzymaticfunction,aninabilitytoproperlyassociate withthe SSU,oran inabilitytoproperly associate withthe mRNA and/orthe growingpeptide chain. All of thiscouldleadtoalossof translationof the mRNA. Furthermore,mutationsineitherthe SSUor LSU genescoulddistortthe molecules,makingitimpossible toexitthe nuclearporestotravel tothe cytoplasm, where they needtobe. The functionof the tRNA’sisto bringthe amino acidsto the ribosome andtheyalsosetthe geneticcode. Mutationsinthese geneswill likewise affectthese functions. Changesinthe anticodonregionof the tRNA couldtherefore change the aminoacidcode forthat tRNA or cause it to lose the ability tobindtothe tRNA altogether. Inaddition,the tRNA itselfmaylose the abilityto interactproperlywiththe ribosome. All of these possibilitieswouldresultinanegative selection, whichiswhythese genesare sostronglyconserved Nextonmy listare introns. Surprisingly,intronscanbe foundinall three typesof RNA genes. Changesinthese genescanaffecthow the intronsare splicedorevenif theyare splicedat all. Withregards to mRNA,thiscould,of course,cause a failure toproduce a neededproteinor produce a mutatedprotein. Inthe case of rRNAsand tRNAs,thiswouldcause a distortioninthe shape of the moleculeswhichwouldcertainlyresultinanon-functional molecule. Lastly,a mutationinthe 3’ UTR regionof the gene that codesfor mRNA couldaffectthe 3’ tail that is addedat the endof the molecule. The 3’polyA tail functionstoprotectthe mRNA from degradation. Withoutthistail,the lifeof the mRNA isgreatlyreduced,therebydestroyingits functionality. Finally,itwouldbe irresponsible if Ididn’tmentionone lastfacetof selectionongenesin general,andrRNA,mRNA,andtRNA genesinparticular. Fromthe standpointof evolution,itis probablyone of the most importantandagain,unique tothiscourse. It isthe selectionthatoccurs followinganendosymbioticevent. Afteranendosymbioticevent,thereexiststwosetsof genesfor Figure 1. This is anillustration from a power point presentationfrom Dr. Rogers class depicting the rRNA, and to a lesser extent, tRNA genes.
  • 4. MARK BOTIRIUS P a g e 4 | 6 manycellularprocesses. Modernanalysisshows,however,thatthe genesthatfinallywindupinthe hostchromosome are a mixture of hostandsymbiontgenes. Therefore,althoughitcouldbe due to purelyrandomevents,itisalsolikelythatthe genesthatultimatelywoundupinthe chromosome were the resultof selection. Those rRNA,mRNA,andtRNA genesthatbestservedthe organism were positivelyselected. 2. Ribosomal genes are needed in multiple copies. Explain why. Outline some of the mechanisms for creating or maintaining copy numbers sufficient for cells and organelles. Explain how these processes might have developed and been selected for during evolutionary processes. The reasonwhy ribosomal genesare neededinmultiple copiescanbe demonstratedwitha simple mathematical argument. There are an estimated106 proteinsinprokaryotesand109 for each eukaryote (Rogers76) and the ribosome hasa clockspeedof only20 aminoacidsper second. (Watson521) Therefore,inordertoproduce the needednumberof proteins,prokaryoteshave approximately20,000 ribosomes,andeukaryotescontainapproximatelytenmillionormore.The speedatwhichRNA polymerase cansynthesizearibosome isbetween50to 150 nucleotidesper second. (Rogers76) UtilizingDr.Rogers’figure of 100 nucleotidespersecondgivesusatotal of one day andthree hoursfor a single gene toproduce enoughribosomesforaprokaryote,andmore than 30 yearsfor a eukaryote. (Rogers76-77) Clearly,one gene isnotsufficient. Infact,the gene copy numberpercell istypicallyinthe hundreds. So howdo cellscreate enoughribosomal genes? Several methodshave beendiscussedin class. The twoI findthe most interestingare the methodusedbythe protozoan Tetrahymena and the frog Xenopuslaevis. Oneitherside of the Tetrahymena ribosomal gene are specialsequences (calledA’andM repeats) thatare recognizedbyan endonuclease. A sectionof DNA containingthe ribosomal gene iscutout,and telomeresare addedtoall of the endsexceptthe upstreamendof the excerpt. Thisendcircularizesanda replicationbubble formsthattravelstowardsthe ribosomal gene. The replicationbubble travelsall the waytothe openendof the excerpt,replicatingthe ribosomal gene inthe process,andcreatinga DNA segmentthatissymmetrical aboutitscenter. Figure 2. An illustration from Dr. Rogers’ PowerPoint. The top picture shows howone end of the excerpt circularizes. The other end is protectedfrom degradation bya telomere. The replicationbubble travelsdownstream, replicating the ribosomal gene inthe process. The endresult is a DNA segment that contains two copies ofthe ribosomal gene and is symmetrical about its center.
  • 5. MARK BOTIRIUS P a g e 5 | 6 The new,linearDNA segmentcontainsA’-Msitesanditundergoesfurtherroundsof replicationto produce the neededcopiesof ribosomal genes. The mechanismforthe frog Xenopuslaevis issimilar. Like Tetrahymena,cutsare made at signal sequencesflankingthe ribosomal gene. Inthe case of Xenopuslaevis,however,the cutsare made at one or more ribosomal gene repeatsproducingseveral excerpts. These excerpts individuallycircularizeandthenundergorollingcircle replicationtoincrease theirnumberto produce the neededgene copy number. The reasonI findthese two mechanismsinterestingisthatthe specificityof the splicingenzymesmakes themverysimilartorestriction endonucleasesfoundinbacteria. In addition,rollingcircle replicationisalso foundinbacterial conjugation. This stronglysuggeststome that these mechanismsmayhave beenobtainedby these twoeukaryotesfromtheirbacterial endosymbiontsinthe course of their evolution.Thisanswersthe questionof how these processesmighthave developedinthe course of the evolution of these twoparticularorganisms. These bacterial mechanismswereconduciveto creatingneededcopiesof ribosomal genesandwere therefore subjectedtopositiveselectionandretained. Anothermechanismforincreasingribosomalgene copynumberisprovidedbyamphibian oocytes. The amphibianoogoniumdividesasymmetrically,withvirtuallyall of the mRNAsand ribosomesgoingtothe largeroocyte. Thiseffectivelydoublesthe ribosomal numberforthe primary oocyte therebyproviding the needednumberof ribosomes. One waythismechanismcouldhave evolvedisbyselective pressuresatthe organismal level. Initially,the divisionof the oogoniumwas symmetrical,producingzygotesof equivalentfitnessandribosomal numbers. Eventually,some of the oogoniumproduceddaughteroocyteswithslightlydifferentproportionsof the parental ribosomes. Those oocytesthatcontainedaslightlylargerproportionof ribosomeswere alittlemore fit,and sowere positivelyselectedtoaslightdegree. Eventually,timeandnatural selectionresulted inthe mechanismthatproducedthe fittestzygote,andthatmechanismwasone where the oogoniumdividesasymmetrically. Lastly,one of the mostcommonmechanismstoproduce the neededribosomal numberis presentinplantsall aroundus. Many plantsare polyploidthroughaprocesscalledendomitosis, where the genome iscopiedwithoutcytokinesis. Inotherwords,insteadof increasingonlythe ribosomal genes,the entire genome isduplicatedleading toa veryhighC value andtherefore avery highnumberof ribosomal genesaswell. (Rogers121) How could have polyploidyevolvedinplants? Personally,Isee afewintriguingcluesinthe characteristicsof the life cyclesof manyplants. In animals(like humans) ourmulticellularstage isdiplontic. Thatis,whenwe existasa multicellular organism,ourgenome isdiploid. Plants,onthe otherhand,are not limitedtothisdiploidy. During Figure 3. Another Dr. Rogers’ PowerPoint slide s howing the rolling circle replicationmechanism usedby Xenopus laevis increase ribosomal gene copynumber.
  • 6. MARK BOTIRIUS P a g e 6 | 6 part of theirmulticellularlife cycle,theyare diploid,likeus. Duringa differentpartof their multicellularlife cycle,theyare haploid.ThisflexibilityinploidyIthinkiswhateventuallyledtotheir abilitytobe polypoid,anditalsoexplainswhyanimals,suchashumans,donottolerate polyploidy (itislethal tous). I thinka possible evolutionaryroute topolyploidyisthatsome ancientplant ancestorwhose life cycle involved“alternationof generations”failedtoreduce itschromosome number(N) duringmeiosis. Thisispossiblebecausewe know thatpolyploidyisnormallydue toa failedreductiondivisioninmeiosis. (Futuyma505) Thisincrease inploidyledtoanincrease in beneficial andneededgenes,suchasribosomal genes,whichledtoanincrease infitnessand positive selection. Works Cited Futuyma,DouglasJ. Evolution.3rd. Sunderland:SinauerAssociates,2013.Hardback. Iwasa,J and Marshall,W. Karp'sCell and Molecular Biology.8th. Hoboken:Wiley,2016.Book. Pierce,BenjaminA. Genetics,A ConceptualApproach.New York:W.H.FreemanandCompany,2012. Rogers,Scott Orland. Integrated MolecularEvolution.2nd.BocaRaton: CRC Press,2017. Hardback. Watson,et al. MolecularBiology of the Gene. 7th. Boston:Pearson,2014.