OSLab

GLOA: A New Job
Scheduling Algorithm for
Grid Computing
Julie Kim
kjulee114@gmail.com
2013-1st AI System Design
Table of Contents
•
•
•
•
•
•

OSLab

Grid computing
The significant problem
How to solve it?
The new approach, GLOA
Result of simulation
Conclusion

2
Grid Computing

OSLab

Federation of computer resources from multiple locations
to reach a common goal
http://www.gridcafe.org/nav/WhatIsGrid.jpg

3
Grid Computing

OSLab

Variety Type of
Applications
Multiple
Resources
http://www.digipede.net/images/digipede-overview.gif

4
Resource Scheduling

http://img1.findthebest.com/sites/default/files/688/media/images/eResource_Scheduler.jpg

OSLab

5
NP-Complete

http://imgs.xkcd.com/comics/np_complete.png

OSLab

6
For search…

OSLab

Deterministic
Algorithm

Heuristic
Algorithm

http://imgs.xkcd.com/comics/np_complete.png, http://ars.els-cdn.com/content/image/1-s2.0-S1568494609000180-gr1.jpg,
`http://www.obitko.com/tutorials/genetic-algorithms/images/lbdna10p.gif

7
Combination…
•
•
•
•

OSLab

GA-SA
GA-TS
PSO-SA
Hybrid PSO

8
GLOA
Problem
Space

OSLab

Effect of Social Leaders

Problem
Space

9
http://thecollaboratory.wdfiles.com/local--files/2012-sociology/Social%20groups(1).jpg
Group Leader

OSLab

• The best member
• Members try to become similar
• Find solution space
• Randomly interchanged some variables
between groups
– Come out of local minima

10
http://www.empiremarketing.ca/reportuploads/1316465877-Leading_by_example_SEO.png
Steps

OSLab

• Initial Population Production
– P members * n groups

• Calculating Fitness Values of All group
Members
– Fitness(member_i)=1/makespan(member_i)

• Determine Leader
– The most fitness member

11
GLOA

OSLab

Solution space

N groups

P members

12
Steps

OSLab

• Mutation Operator
– new =r1 *old+r2 *leader +r3 *random
– If it is better, replace old

• One-way Crossover Operator
– Some parameters values are replaced with
another values of another group
– To escape local minima

• Repetition
13
Simulation

OSLab

• JRE
• 2.66 GHz cpu, 4GB memory

14
Simulation

OSLab

15
Conclusion

OSLab

• Purpose of the Grid Computing
– Make Common Resources available to a central
computer
– computational power, bandwidth, and databases

• GLOA
–
–
–
–

scheduling tasks/jobs in a computational grid
wasting less computation time
produce shortest makespans
could be applied in the real world
• Less overhead on resources
16
OSLab

Q&A

17
OSLab

THANKS

18
References

OSLab

• Pooranian, Z., M. Shojafar, J. H. Abawajy, and M. Singhal.
GLOA: A New Job Scheduling Algorithm for Grid
Computing. IJIMAI(2013.03), p.59-64
• http://casd.csie.ncku.edu.tw/meeting/n1/20121214/CloudDLS%20Dynamic%20trusted%20scheduling%20for%20Cloud
%20computing.pdf
• http://en.wikipedia.org/wiki/Deterministic_algorithm
• http://en.wikipedia.org/wiki/Simulated_annealing
• http://en.wikipedia.org/wiki/Particle_swarm_optimizationhttp
://www.inf.ucv.cl/~bcrawford/Cuesta_Olivares/NuevasMetahe
uristicas/1-s2.0-S0020025509001200-main.pdf
• http://www.ise.ncsu.edu/fangroup/ie789.dir/IE789F_tabu.pdf

19

GLOA:A New Job Scheduling Algorithm for Grid Computing