SlideShare a Scribd company logo
1 of 6
Download to read offline
‘Año del Bicentenario del Perú: 200 años de Independencia’
CURSO
TRANSFERENCIA DE CALOR Y MASA
SECCIÓN
14856
DOCENTE
Ramiro Felix Cruz
TEMA
Laboratorio 1: Conducción de Calor
ALUMNO
Leonaldo Antoni Kancha Kuiro
CODIGO
U17101781
LIMA, 11 DE SETIEMBRE DEL 2021
Instrucciones:
- Hagan uso de las guías de laboratorio para soportar los cálculos. Usar las tablas
recomendadas
- Realizar los cálculos e incluir gráficas y discusión de resultados donde se
mencionen falencias en la toma de datos si existiesen. No es necesario
conclusiones, sólo discusión de resultados.
- Se deben usar todos los datos de temperatura para calcular sólo un valor de
conductividad del material
- Presentar los cálculos con detalles y el paso a paso
PREGUNTA
Cálculo de conductividad térmica usando regresión lineal univariable para las 3 pruebas
a diferente potencia como indica la tabla para el mismo material. Las dimensiones son
las siguientes: L = 12 cm, D = 3 cm
Conducción lineal de calor
Sección media Material: Latón
Temperatura ambiente: 25° C
Potencia
(W)
T1 (°C) T2 (°C) T3 (°C) T4 (°C) T5 (°C) T6 (°C) T7 (°C)
30.1 75.7 69.1 62 52 44.4 33.7 30.7
40.0 77 69.5 61.8 51.4 43.7 37.1 30.3
60.1 100 90.6 79.5 64.4 53.4 44.2 34.7
Distancia
desde
T1 (m)
0 0.02 0.04 0.06 0.08 0.1 0.12
1er Caso
Potencia= 30.1W
Ley de Fourier
𝑄 = −𝑘𝐴(
𝑑𝑇
𝑑𝑥
)
Cálculo del perfil de temperaturas 30.1W
Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal.
CALCULANDO LA CONDUCTIVIDAD
𝑄 =
𝑘𝐴(𝑇1 − 𝑇2)
𝐿
DONDE 𝑇1 > 𝑇2 ADEMÁS:
𝑑𝑇
𝑑𝑥
=
𝑇2−𝑇1
𝐿
𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2
Formula a usar
𝐾 =
𝑄
𝐴 (
𝑑𝑇
𝑑𝑥
)
𝐾 =
30.1 𝑊
(𝜋 ∗ 0.0152)𝑚2(398.93)
∆°𝑐
𝑚
𝐾 = 106.74
𝑊
𝑚∆°𝑐
Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9954, los datos
presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en
el logro del laboratorio.
0
20
40
60
80
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Potencia 30.1W
X Y
0 75.7
0.02 69.1
0.04 62
0.06 52
0.08 44.4
0.1 33.7
0.12 30.7
dt/dx -398.928571
R -0.99549306
2do Caso
Potencia= 40W
Ley de Fourier
𝑄 = −𝑘𝐴(
𝑑𝑇
𝑑𝑥
)
Cálculo del perfil de temperaturas 40W
Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal.
CALCULANDO LA CONDUCTIVIDAD
𝑄 =
𝑘𝐴(𝑇1 − 𝑇2)
𝐿
DONDE 𝑇1 > 𝑇2 ADEMÁS:
𝑑𝑇
𝑑𝑥
=
𝑇2−𝑇1
𝐿
𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2
Formula a usar
𝐾 =
𝑄
𝐴 (
𝑑𝑇
𝑑𝑥
)
𝐾 =
40 𝑊
(𝜋 ∗ 0.0152)𝑚2(398.21)
∆°𝑐
𝑚
𝐾 = 142.1
𝑊
𝑚∆°𝑐
Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9981, los datos
presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en
el logro del laboratorio.
0
20
40
60
80
100
120
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Potencia 40W
X Y
0 77
0.02 69.5
0.04 61.8
0.06 51.4
0.08 43.7
0.1 37.1
0.12 30.3
dt/dx -398.214286
R -0.9980915
3er Caso
Potencia= 60.1W
Ley de Fourier
𝑄 = −𝑘𝐴(
𝑑𝑇
𝑑𝑥
)
Cálculo del perfil de temperaturas 60.1W
Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal.
CALCULANDO LA CONDUCTIVIDAD
𝑄 =
𝑘𝐴(𝑇1 − 𝑇2)
𝐿
DONDE 𝑇1 > 𝑇2 ADEMÁS:
𝑑𝑇
𝑑𝑥
=
𝑇2−𝑇1
𝐿
𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2
Formula a usar
𝐾 =
𝑄
𝐴 (
𝑑𝑇
𝑑𝑥
)
𝐾 =
60.1 𝑊
(𝜋 ∗ 0.0152)𝑚2(562.14)
∆°𝑐
𝑚
𝐾 = 151.251
𝑊
𝑚∆°𝑐
Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9976, los datos
presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en
el logro del laboratorio.
0
20
40
60
80
100
120
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Potencia 60.1W
X Y
0 100
0.02 90.6
0.04 79.5
0.06 64.4
0.08 53.4
0.1 44.2
0.12 34.7
dt/dx -562.142857
R -0.99759055
Laboratorio 1

More Related Content

Similar to Laboratorio 1

Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Nagesh NARASIMHA PRASAD
 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conductionAree Salah
 
Soil Temperature and the Semi-Infinite Solid Approach
Soil Temperature and the Semi-Infinite Solid ApproachSoil Temperature and the Semi-Infinite Solid Approach
Soil Temperature and the Semi-Infinite Solid ApproachAlexandraSchiazza
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...Bishal Bhandari
 
Thermodynamics - Experiment 2
Thermodynamics - Experiment 2Thermodynamics - Experiment 2
Thermodynamics - Experiment 2syar2604
 
Temperature measurement erdi karaçal
Temperature measurement erdi karaçalTemperature measurement erdi karaçal
Temperature measurement erdi karaçalErdi Karaçal
 
Jean-Paul Gibson: Transient Heat Conduction in a Semi-Infinite Plate Compare...
Jean-Paul Gibson:  Transient Heat Conduction in a Semi-Infinite Plate Compare...Jean-Paul Gibson:  Transient Heat Conduction in a Semi-Infinite Plate Compare...
Jean-Paul Gibson: Transient Heat Conduction in a Semi-Infinite Plate Compare...Jean-Paul Gibson
 
390 Guided Projects Guided Project 31 Cooling cof.docx
390        Guided Projects Guided Project 31  Cooling cof.docx390        Guided Projects Guided Project 31  Cooling cof.docx
390 Guided Projects Guided Project 31 Cooling cof.docxrhetttrevannion
 
390 Guided Projects Guided Project 31 Cooling cof.docx
390        Guided Projects Guided Project 31  Cooling cof.docx390        Guided Projects Guided Project 31  Cooling cof.docx
390 Guided Projects Guided Project 31 Cooling cof.docxgilbertkpeters11344
 
Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...Paolo Fornaseri
 
Lab Report Conduction With Free Convection
Lab Report Conduction With Free ConvectionLab Report Conduction With Free Convection
Lab Report Conduction With Free ConvectionHamzaArain8
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientSteven Cooke
 
Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docxEngDiyar
 
Temperature measurement
Temperature measurementTemperature measurement
Temperature measurementsarkawtn
 

Similar to Laboratorio 1 (20)

Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.
 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conduction
 
Soil Temperature and the Semi-Infinite Solid Approach
Soil Temperature and the Semi-Infinite Solid ApproachSoil Temperature and the Semi-Infinite Solid Approach
Soil Temperature and the Semi-Infinite Solid Approach
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
 
Thermodynamics - Experiment 2
Thermodynamics - Experiment 2Thermodynamics - Experiment 2
Thermodynamics - Experiment 2
 
HTR Lab - Exp-03 - G-A2.pdf
HTR Lab - Exp-03 - G-A2.pdfHTR Lab - Exp-03 - G-A2.pdf
HTR Lab - Exp-03 - G-A2.pdf
 
Temperature measurement erdi karaçal
Temperature measurement erdi karaçalTemperature measurement erdi karaçal
Temperature measurement erdi karaçal
 
Temp-meas-sem.pdf
Temp-meas-sem.pdfTemp-meas-sem.pdf
Temp-meas-sem.pdf
 
Jean-Paul Gibson: Transient Heat Conduction in a Semi-Infinite Plate Compare...
Jean-Paul Gibson:  Transient Heat Conduction in a Semi-Infinite Plate Compare...Jean-Paul Gibson:  Transient Heat Conduction in a Semi-Infinite Plate Compare...
Jean-Paul Gibson: Transient Heat Conduction in a Semi-Infinite Plate Compare...
 
390 Guided Projects Guided Project 31 Cooling cof.docx
390        Guided Projects Guided Project 31  Cooling cof.docx390        Guided Projects Guided Project 31  Cooling cof.docx
390 Guided Projects Guided Project 31 Cooling cof.docx
 
390 Guided Projects Guided Project 31 Cooling cof.docx
390        Guided Projects Guided Project 31  Cooling cof.docx390        Guided Projects Guided Project 31  Cooling cof.docx
390 Guided Projects Guided Project 31 Cooling cof.docx
 
Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...
 
Parcial asincrona (2)
Parcial asincrona (2)Parcial asincrona (2)
Parcial asincrona (2)
 
Parcial asincrona
Parcial asincronaParcial asincrona
Parcial asincrona
 
Cep report
Cep reportCep report
Cep report
 
Lab Report Conduction With Free Convection
Lab Report Conduction With Free ConvectionLab Report Conduction With Free Convection
Lab Report Conduction With Free Convection
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge Coefficient
 
Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docx
 
Control system-lab
Control system-labControl system-lab
Control system-lab
 
Temperature measurement
Temperature measurementTemperature measurement
Temperature measurement
 

More from JoseCastillo569

7 ADHERENCIA DE LOS NEUMATICOS.pdf
7 ADHERENCIA DE LOS NEUMATICOS.pdf7 ADHERENCIA DE LOS NEUMATICOS.pdf
7 ADHERENCIA DE LOS NEUMATICOS.pdfJoseCastillo569
 
6 RESISTENCIA A LA RODADURA.pptx
6 RESISTENCIA A LA RODADURA.pptx6 RESISTENCIA A LA RODADURA.pptx
6 RESISTENCIA A LA RODADURA.pptxJoseCastillo569
 
8 DINAMICA TREN DE PROPULSION.pdf
8 DINAMICA TREN DE PROPULSION.pdf8 DINAMICA TREN DE PROPULSION.pdf
8 DINAMICA TREN DE PROPULSION.pdfJoseCastillo569
 
A9 CALCULO DE RELACION DE TRANSMISION.pdf
A9 CALCULO DE RELACION DE TRANSMISION.pdfA9 CALCULO DE RELACION DE TRANSMISION.pdf
A9 CALCULO DE RELACION DE TRANSMISION.pdfJoseCastillo569
 
A8 DINAMICA DEL TREN DE PROPULSION.pdf
A8 DINAMICA DEL TREN DE PROPULSION.pdfA8 DINAMICA DEL TREN DE PROPULSION.pdf
A8 DINAMICA DEL TREN DE PROPULSION.pdfJoseCastillo569
 
A7 ADHERENCIA DEL NEUMATICO.pdf
A7 ADHERENCIA DEL NEUMATICO.pdfA7 ADHERENCIA DEL NEUMATICO.pdf
A7 ADHERENCIA DEL NEUMATICO.pdfJoseCastillo569
 
Plan_Nac_Electromovilidad-Resumen-2021.pdf
Plan_Nac_Electromovilidad-Resumen-2021.pdfPlan_Nac_Electromovilidad-Resumen-2021.pdf
Plan_Nac_Electromovilidad-Resumen-2021.pdfJoseCastillo569
 

More from JoseCastillo569 (8)

7 ADHERENCIA DE LOS NEUMATICOS.pdf
7 ADHERENCIA DE LOS NEUMATICOS.pdf7 ADHERENCIA DE LOS NEUMATICOS.pdf
7 ADHERENCIA DE LOS NEUMATICOS.pdf
 
6 RESISTENCIA A LA RODADURA.pptx
6 RESISTENCIA A LA RODADURA.pptx6 RESISTENCIA A LA RODADURA.pptx
6 RESISTENCIA A LA RODADURA.pptx
 
8 DINAMICA TREN DE PROPULSION.pdf
8 DINAMICA TREN DE PROPULSION.pdf8 DINAMICA TREN DE PROPULSION.pdf
8 DINAMICA TREN DE PROPULSION.pdf
 
A9 CALCULO DE RELACION DE TRANSMISION.pdf
A9 CALCULO DE RELACION DE TRANSMISION.pdfA9 CALCULO DE RELACION DE TRANSMISION.pdf
A9 CALCULO DE RELACION DE TRANSMISION.pdf
 
A8 DINAMICA DEL TREN DE PROPULSION.pdf
A8 DINAMICA DEL TREN DE PROPULSION.pdfA8 DINAMICA DEL TREN DE PROPULSION.pdf
A8 DINAMICA DEL TREN DE PROPULSION.pdf
 
A7 ADHERENCIA DEL NEUMATICO.pdf
A7 ADHERENCIA DEL NEUMATICO.pdfA7 ADHERENCIA DEL NEUMATICO.pdf
A7 ADHERENCIA DEL NEUMATICO.pdf
 
Plan_Nac_Electromovilidad-Resumen-2021.pdf
Plan_Nac_Electromovilidad-Resumen-2021.pdfPlan_Nac_Electromovilidad-Resumen-2021.pdf
Plan_Nac_Electromovilidad-Resumen-2021.pdf
 
Banco enae
Banco enaeBanco enae
Banco enae
 

Recently uploaded

Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/FootingEr. Suman Jyoti
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxMustafa Ahmed
 
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...mikehavy0
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Studentskannan348865
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfSkNahidulIslamShrabo
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 

Recently uploaded (20)

Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/Footing
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
☎️Looking for Abortion Pills? Contact +27791653574.. 💊💊Available in Gaborone ...
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdf
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 

Laboratorio 1

  • 1. ‘Año del Bicentenario del Perú: 200 años de Independencia’ CURSO TRANSFERENCIA DE CALOR Y MASA SECCIÓN 14856 DOCENTE Ramiro Felix Cruz TEMA Laboratorio 1: Conducción de Calor ALUMNO Leonaldo Antoni Kancha Kuiro CODIGO U17101781 LIMA, 11 DE SETIEMBRE DEL 2021
  • 2. Instrucciones: - Hagan uso de las guías de laboratorio para soportar los cálculos. Usar las tablas recomendadas - Realizar los cálculos e incluir gráficas y discusión de resultados donde se mencionen falencias en la toma de datos si existiesen. No es necesario conclusiones, sólo discusión de resultados. - Se deben usar todos los datos de temperatura para calcular sólo un valor de conductividad del material - Presentar los cálculos con detalles y el paso a paso PREGUNTA Cálculo de conductividad térmica usando regresión lineal univariable para las 3 pruebas a diferente potencia como indica la tabla para el mismo material. Las dimensiones son las siguientes: L = 12 cm, D = 3 cm Conducción lineal de calor Sección media Material: Latón Temperatura ambiente: 25° C Potencia (W) T1 (°C) T2 (°C) T3 (°C) T4 (°C) T5 (°C) T6 (°C) T7 (°C) 30.1 75.7 69.1 62 52 44.4 33.7 30.7 40.0 77 69.5 61.8 51.4 43.7 37.1 30.3 60.1 100 90.6 79.5 64.4 53.4 44.2 34.7 Distancia desde T1 (m) 0 0.02 0.04 0.06 0.08 0.1 0.12
  • 3. 1er Caso Potencia= 30.1W Ley de Fourier 𝑄 = −𝑘𝐴( 𝑑𝑇 𝑑𝑥 ) Cálculo del perfil de temperaturas 30.1W Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal. CALCULANDO LA CONDUCTIVIDAD 𝑄 = 𝑘𝐴(𝑇1 − 𝑇2) 𝐿 DONDE 𝑇1 > 𝑇2 ADEMÁS: 𝑑𝑇 𝑑𝑥 = 𝑇2−𝑇1 𝐿 𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2 Formula a usar 𝐾 = 𝑄 𝐴 ( 𝑑𝑇 𝑑𝑥 ) 𝐾 = 30.1 𝑊 (𝜋 ∗ 0.0152)𝑚2(398.93) ∆°𝑐 𝑚 𝐾 = 106.74 𝑊 𝑚∆°𝑐 Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9954, los datos presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en el logro del laboratorio. 0 20 40 60 80 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Potencia 30.1W X Y 0 75.7 0.02 69.1 0.04 62 0.06 52 0.08 44.4 0.1 33.7 0.12 30.7 dt/dx -398.928571 R -0.99549306
  • 4. 2do Caso Potencia= 40W Ley de Fourier 𝑄 = −𝑘𝐴( 𝑑𝑇 𝑑𝑥 ) Cálculo del perfil de temperaturas 40W Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal. CALCULANDO LA CONDUCTIVIDAD 𝑄 = 𝑘𝐴(𝑇1 − 𝑇2) 𝐿 DONDE 𝑇1 > 𝑇2 ADEMÁS: 𝑑𝑇 𝑑𝑥 = 𝑇2−𝑇1 𝐿 𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2 Formula a usar 𝐾 = 𝑄 𝐴 ( 𝑑𝑇 𝑑𝑥 ) 𝐾 = 40 𝑊 (𝜋 ∗ 0.0152)𝑚2(398.21) ∆°𝑐 𝑚 𝐾 = 142.1 𝑊 𝑚∆°𝑐 Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9981, los datos presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en el logro del laboratorio. 0 20 40 60 80 100 120 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Potencia 40W X Y 0 77 0.02 69.5 0.04 61.8 0.06 51.4 0.08 43.7 0.1 37.1 0.12 30.3 dt/dx -398.214286 R -0.9980915
  • 5. 3er Caso Potencia= 60.1W Ley de Fourier 𝑄 = −𝑘𝐴( 𝑑𝑇 𝑑𝑥 ) Cálculo del perfil de temperaturas 60.1W Se hallo la derivada de la temperatura con respecto a la longitud por regresión lineal. CALCULANDO LA CONDUCTIVIDAD 𝑄 = 𝑘𝐴(𝑇1 − 𝑇2) 𝐿 DONDE 𝑇1 > 𝑇2 ADEMÁS: 𝑑𝑇 𝑑𝑥 = 𝑇2−𝑇1 𝐿 𝐴 = 𝐴𝑏 = 𝜋 × 𝑟2 Formula a usar 𝐾 = 𝑄 𝐴 ( 𝑑𝑇 𝑑𝑥 ) 𝐾 = 60.1 𝑊 (𝜋 ∗ 0.0152)𝑚2(562.14) ∆°𝑐 𝑚 𝐾 = 151.251 𝑊 𝑚∆°𝑐 Una vez hallado la gráfica y calculado con el coeficiente de correlación R=0.9976, los datos presentan correlación negativa lo cual nos indica que los errores de medición son mínimas en el logro del laboratorio. 0 20 40 60 80 100 120 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Potencia 60.1W X Y 0 100 0.02 90.6 0.04 79.5 0.06 64.4 0.08 53.4 0.1 44.2 0.12 34.7 dt/dx -562.142857 R -0.99759055